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Abstract

Ptychography is a popular imaging technique that combines diffractive imaging with scanning
microscopy. The technique consists of a coherent beam that is scanned across an object in a
series of overlapping positions, leading to reliable and improved reconstructions. Ptychographic
microscopes allow for large fields to be imaged at high resolution at additional computational
expense. In this work, we explore the use of the fast Partial Fourier Transforms (PFTs), which
efficiently compute Fourier coefficients corresponding to low frequencies. The core idea is to use
the PFT in a plug-and-play manner to warm-start existing ptychography algorithms such as the
ptychographic iterative engine (PIE). This approach reduces the computational budget required
to solve the ptychography problem. Our numerical results show that our scheme accelerates the
convergence of traditional solvers without sacrificing quality of reconstruction.

1 Introduction

Ptychography is a coherent diffraction imaging (CDI) technique used across various fields in-
cluding materials science [12, 13, 23], biology [18, 28], and x-ray crystallography [7]. Originally
developed to enhance resolution in electron or x-ray microscopy, ptychography replaces single-
element detectors with two-dimensional array detectors and integrates diffractive imaging with
scanning microscopy. In this process, a coherent beam is systematically moved over an object in a
pattern of overlapping positions, linking information across successive diffraction patterns (refer to
Fig. 1). In conventional single-pattern CDI, the application of appropriate finite support constraints
is essential for the effectiveness of standard algorithms such as Error Reduction [10], Hybrid Input
Output (HIO) [8], gradient-based algorithms [5], Relaxed Averaged Alternating Reflections [15],
and Saddle Point Optimization [17, 31]. In ptychography, prior knowledge of scanning positions
inherently provides these constraints, resulting in methods that are quicker and more reliable than
those used in single-pattern CDI.

The extensive use of ptychography has spurred significant research into its reconstruction tech-
niques. The extended Ptychographic Iterative Engine (ePIE) [16] is one of the most favored meth-
ods, involving alternating projections onto non-convex modulus constraint sets, and has become
increasingly popular in the optics field. Mathematically, PIE functions as a projected steepest de-
scent algorithm applied to a specific objective function. Other established methods include conven-
tional gradient-based techniques and the Wirtinger Flow [5, 36], which employs a spectral method
for initial setup. Another well-known method, called PhaseLift [4], reformulates the phase retrieval
challenge as a convex optimization problem, but requires solving for a significantly larger number of
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Figure 1: Illustration of the ptychography experiment with three overlapping scans.

unknowns, becoming impractical for large-scale applications. Despite considerable efforts, solving
large-scale ptychographic phase retrieval remains a formidable challenge due to the complexity of
handling high resolution, high overlaps, and small scanning beams, all of which contribute to vast
amounts of intricate data.

1.1 Our Contribution

In this work, we focus on large scale ptychography problems where even applying the FFT
is considered computationally taxing. In particular, we explore the use of recent work on fast
partial Fourier transforms (PFTs) [21] as a warm up mechanism within the ePIE algorithm to
accelerate convergence and time-to-solution of large-scale ptychographic phase retrieval problems.
See Figure 2 for an illustration of the PFT and Section 3.1 for more details. The core idea is
to let the PFT-based ePIE algorithm capture the large features from the low frequencies in the
initial iterations of ePIE, followed by standard FFT-based ePIE to capture the fine details of the
reconstruction. Our experiments show that including the PFT within existing algorithms such as
the ePIE 1) does not reduce the quality of the reconstruction, and 2) helps accelerate convergence
by improving runtimes for large-scale problems. Importantly, in order to be able to use the PFT
in gradient-based algorithms, it is necessary to be able to differentiate through the PFT operator.
To this end, we also provide a PyTorch [22] implementation of the PFT in order for users to be
able to differentiate through the operator using automatic differentiation (AD) [32].

2 Ptychography Background

Let z ∈ Cn be the object of interest and dj ∈ Rm be the observed data (or intensities) measured
from the jth probe, where n and m are the dimensions of the vectorized object and data resolution
images, respectively. A ptychography experiment is modeled by

dj = |F(ω ⊙ Qjz)|, j = 1, . . . , N, (1)

where F ∈ Cm×m is the discrete Fourier operator, ω ∈ Rm is the localized probe, zj is the object
after being scanned, ⊙ represents the Hadamard (or element-wise) product, and Qj ∈ Rm×n is
a matrix with binary elements extracting a patch (with the index j and size m) from the entire
sample. The blind ptychography problem (BPP) is an inverse problem and can be stated as:

Find ω and z such that dj = |F(ω ⊙ Qjz)| for j = 1, . . . , N . (2)
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FFT (512 × 512) PFT (128 × 128)

Figure 2: Illustration of coefficients computed by the PFT. On the left, we show the full FFT applied to an
image of size 512 × 512. The red square shows the frequencies that the PFT computes on the right without
requiring one to take the FFT of the original image and then cropping as one might naively attempt.

In practice, the observations dj can contain noise, usually Poisson, as is common in most inverse
problems. In our experiments, we will also consider the (non-blind) ptychography problem where
the probes are known. This model can be realistic in some settings where domain scientists know
the probing mechanism a priori. We also note that the above is a specific type of ptychography
based on CDI; however other forms of ptychography exist, e.g., Fourier Ptychography [37], and
frequency-resolved optical gating (FROG) [30]. While the techniques discussed in this work can be
applied to all of them, we will only discuss CDI-based ptychography for ease of presentation.

2.1 The Ptychographic Iterative Engine

As previously stated, the ePIE algorithm is perhaps the most widely used algorithm in practice
due to its simplicity. It can be viewed as an alternating projection algorithm onto non-convex
modulus constraint sets that solve following feasibility problem. Let the jth measurement constraint
set and its corresponding projection operator be denoted by

Mω
j = {z ∈ Cn : |F(ω ⊙ Qjz)| = dj} and PMω

j
(z) = F−1 [dj ⊙ exp(iθ(F(ω ⊙ Qjz)))] , (3)

where θ : C → [−π, π] returns the argument of a complex number and is applied element-wise.
The ePIE algorithm generates an approximation to problem by solving the following optimization
problem

min
ω,z

Φ(ω, z) = 1
N

N∑
j=1

∥∥∥ω ⊙ Qjz − PMω
j
(z)
∥∥∥2

. (4)

In particular, the ePIE iterates are given by

zk+1
j = zk

j − βω̄k
(

ωk ⊙ zk
j − PMωk

j

(zk
j )
)

, (5)

ωk+1 = ωk − γz̄k+1
j

(
ωk ⊙ zk+1

j − PMωk
j

(zk+1
j )

)
, j = 1, . . . , N, (6)

where β, γ > 0 are positive scalars corresponding to step sizes generally chosen to be small [26, 29]
and ω̄ is the the complex conjugate of ω. The above iterates correspond to performing gradient
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descent updates on Φ with respect to zj and ω in an alternating manner [35]. Importantly, we
note that to recover z from the latest zj , j = 1, . . . , N iterates, the pixels extracted (or illuminated)
by Qj are updated in z. Finally, we remark that when the probe ω is known, then the problem
is known as a non-blind ptychographic retrieval problem, and the corresponding algorithm simply
uses (5) and is known as PIE.

3 A Hybrid ePIE algorithm

In this section, we describe the PFT and present our proposed hybrid ePIE algorithm.

3.1 The Fast Partial Fourier Transform (PFT)

As seen in Section 2, the key ingredient in the blind (and non-blind) ptychography problem is
the discrete fast Fourier transform (FFT), F . Although the discrete FFT is fast and can be applied
in O(n log n) complexity, it can be the primary bottleneck of reconstruction algorithms such as
ePIE when the size of the image is extremely high (n ≫ 1).

Recently, an algorithm for approximating the FFT, called the fast partial Fourier transform
(PFT) [21], was introduced to speed up the computation of the FFT with applications to time
series. The primary motivation for the PFT arises from applications where the the resulting data
from the FFT in the frequency domain is sparse i.e., the Fourier coefficients corresponding to high
frequencies are predominantly small or equal to zero, and not all Fourier coefficients are necessary for
the task at hand [21]. Indeed, computing the FFT and then cropping the necessary coefficients still
requires a cost of O(n log n). To this end, the core idea of the PFT is to have a fast mechanism that
truncates the high frequencies from the FFT in an efficient manner; in particular, the application
of the PFT can be done at a cost of O(n + m̃ log m̃) where m̃ ≪ n.

For ease of presentation, we describe the one-dimensional PFT; however, a two-dimensional
version is a straightforward extension and its description can be found in Appendix A. To implement
the PFT, there are two phases, an offline phase, which is used to pre-compute the polynomial
approximation (see Algorithm 1), and then an online phase which allows one to apply the PFT on
the fly (see Algorithm 2). As we are only concerned with ptychographic reconstructions, we are
primarily concerned with the online phase of the PFT application and also leave a more thorough
derivation of the offline phase in Appendix A.

3.1.1 PFT Offline Configuration Phase: Approximating Twiddle Factors

While a thorough derivation and description of the PFT is presented in [21], we present parts
of the derivation in this work for completeness. Recall that the Discrete Fourier Transform (DFT)
is given by:

ẑt =
∑

k∈[n]
zke(−2πitk/n) (7)

where z ∈ Cn is an n-dimensional complex data vector and [n] = {0, 1, . . . , n − 1}. We assume
that n is a composite integer so that there exist p, q > 1 such that n = pq. The Cooley-Tukey
algorithm [6] rearranges the above expression as:

ẑt =
∑

k∈[p]

∑
j∈[q]

zqk+je−2πit(qk+j)/n =
∑

k∈[p]

∑
j∈[q]

zqk+je(−2πitj/n) · e(−2πitk/p). (8)
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Further modification of the above expression yields

ẑt =
∑

k∈[n]
zke−2πit(k−q/2)/n · e−πit/p

=
∑

k∈[p]

∑
j∈[q]

zqk+je−2πit(j−q/2)/n · e−2πitk/p · e−πit/p.
(9)

Here, [q] corresponds to the set {0, 1, . . . , q−1}. The key idea behind the PFT is to use a polynomial
to approximate the exponential eπix. Afterwards, one can re-scale the polynomials and use exponent
laws to get an approximation of each of the twiddle factors in the collection

{
e−2πit(j−q/2)/n

}q−1

j=0
.

To choose the approximating polynomial of the exponential function eπix, we consider the choice
of hyper-parameter p given n and desired output size m̃. Let ∥·∥R be the uniform norm (supremum
norm) restricted to a set R ⊆ R, that is, ∥f∥R = sup {|f(x)| : x ∈ R}. Then, given non-negative
integer α, and non-zero real number ξ, we define the polynomial Pα,ξ as the best approximation to
eπix out of the space Pα of polynomials on R of degree at most α under the restriction |x| ≤ |ξ| as:

Pα,ξ = arg min
P ∈Pα

∥∥∥P (x) − eπix
∥∥∥

|x|≤|ξ|
. (10)

We remark that such polynomials exist and are unique and there are minimax algorithms that can
be used to compute them [9]. The goal is to choose ξ ∈ R such that |m̃| ≤ |ξ|. Given a tolerance
ε > 0 and a positive integer r ≥ 1, we define ξ(ε, r) to be the scope about the origin such that
the exponential function eπix can be approximated by a polynomial of degree less than r with
approximation bound ε:

ξ(ε, r) := sup
{

ξ ≥ 0 :
∥∥∥Pr−1,ξ(x) − eπix

∥∥∥
|x|≤ξ

≤ ε

}
, (11)

where we express the corresponding polynomial as Pr−1,ξ(x) =
∑

j∈[r] wε,r,jxj . Using a mini-
max approximation algorithm [9], precompute ξ(ε, r) and {wε,r,j}j∈[r] for several tolerance ε’s (e.g.
10−1, 10−2, . . . ) and positive integer r’s (the authors of [21] choose values in the range 1 ≤ r ≤ 25).
When n, m̃, p, and ε are given, we choose the minimum r satisfying ξ(ε, r) ≥ m̃/p. Following
the preceding argument, one can then show that the re-scaled polynomial Pr−1,ξ(ε,r)(−2t(j −
q/2)/n) approximates e−2πit(j−q/2)/n on |t| ≤

∣∣∣ n
2(j−q/2) · m̃

p

∣∣∣ for each j ∈ [q] [21]. Noting that∣∣∣ n
2(j−q/2) · m̃

p

∣∣∣ =
∣∣∣ q

2j−q · m̃
∣∣∣ ≥ m̃ for all j ∈ [q], we have a polynomial approximation on |t| ≤ m̃

for each twiddle factor in the collection
{

e−2πit(j−q/2)/n
}q−1

j=0
, namely the the re-scaled polynomials{

Pr−1,ξ(ε,r)(−2t(j − q/2)/n)
}q−1

j=0
. Algorithm 1 shows how to build the polynomial approximation∗.

The polynomial coefficients wϵ,r−1,j are precomputed, and we obtain them from the code database
of [21].

3.1.2 Online PFT Computation

Substituting the approximating polynomial described in Section 3.1.1 for the twiddle factors
in (9) and performing some algebraic manipulations, we can represent the summation as a matrix-
matrix multiplication C = Z × B where Z ∈ Cp×q is the reshaped data vector z and B ∈ Cq×r is

∗The algorithm written here centers the PFT at 0 - this is all we need for our purposes. However, with a minor
modification, one may also compute the PFT centered at another coordinate [21]
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Algorithm 1 : Configuration (Offline) Phase of 1D PFT
Input: Input size n ∈ N, crop size m̃ ∈ N, divisor p ∈ N, and tolerance ε

Output: Matrices B ∈ Cq×r, W ∈ C(2m̃+1)×r, divisor p, and number of rows and columns, q and r

1: q = n/p
2: r = min{r ∈ N : ξ(ε, r) ≥ m̃/p} ▷ degree of polynomial P approximating eπix within tolerance ε
3: for (l, j) ∈ [q] × [r] do
4: x = (1 − 2l/q)
5: B[l, j] = wε,r−1,j · xj ▷ Using precomputed wε,r−1,j

6: end for
7: for k = −m̃, −m̃ + 1, . . . , m̃ − 1, m̃ do
8: W [k, j] = (k/p)j · e−πik/p ▷ Precompute remaining terms
9: end for

Algorithm 2 : Computation (Online) Phase of 1D PFT
Input: Vector z ∈ Cn, crop size m̃, and configuration results B ∈ Cq×r, W ∈ C2m̃+1×r, p, q, r
Output: Vector ẑPFT of estimated Fourier coefficients of z in range [−m̃, m̃]

1: Z = z.reshape(p, q) ▷ reshape z into p × q matrix
2: C = Z × B ▷ matrix multiply Z by B
3: for j ∈ [r] do
4: Ĉ[:, j] = FFT(C[:, j]) ▷ apply FFT to each column of C
5: end for
6: for k = −m̃, −m̃ + 1, . . . , m̃ − 1, m̃ do
7: ẑPFT[k] =

∑r−1
j=0

(
Ĉ[k%p, j] · W [k, j]

)
▷ sum values of Ĉ (modulus p) times W

8: end for

defined in line 5 of Algorithm 1 followed by a series of FFT computations applied to the columns of
the resulting matrix C. Worth noting, the primary cost in Algorithm 2 arises from a) the matrix-
matrix multiplication between a matrix Z ∈ Cp×q and B ∈ Cq×r in line 2 and b) the application of
the FFT on a vector of size Cp, which is shown to have complexity O(n + m̃ log m̃) [21, Theorem
3]. For thorough details, we refer the reader to [21, Section 3.4].

A hyper-parameter that needs to be chosen for the PFT computation is the integer p such
that n = pq. In our experiments, we are interested in the setting where m̃ ≪ n as we wish to
economically capture low frequency features when deploying the PFT. In this case, the primary cost
in Algorithm 2 occurs in the matrix-matrix multiplication in line 2, which has complexity O(nr).
Thus, it is recommended that m̃/p be small so that the number r of approximating polynomial
terms decreases [21, Section 4.3]. As previously mentioned, a 2D implementation of the PFT is a
straightforward extension of the 1D PFT, where given an image of size n1 × n2, we have to decide
on m̃1, m̃2, p1, p2. In our experiments, we find that choosing p1 = p2 = m̃1 = m̃2 = 64 is adequate
for improved performance. In this case, the resulting cropped image, has size 128 × 128 since the
cropping is performed from [−m̃1, m̃1] × [−m̃2, m̃2] from the center; we note that an FFT on an
image of size 128 × 128 is trivial to compute.

3.2 Hybrid ePIE Algorithm

We propose a hybrid ePIE algorithm that consists of using a PFT-based ePIE as a “warm up”
followed by the standard FFT-based ePIE. The idea is to use the PFT-based ePIE to capture large
features arising from the low frequencies in a cheap manner. Indeed, while one may use the PFT
in a plug-and-play manner, we empirically observe that it is better to initially capture the large

6



features early on, and let the standard FFT-based ePIE algorithm capture the fine details in later
iterations.

To run the PFT-based ePIE, we convert the observed data dj , j = 1, . . . , N to match the output
dimension of FPFT. Considering the reshaped version of dj as a matrix, this can be easily done by
cropping the centers of dj ∈ Rm1×m2 to generate dcrop

j ∈ Rm̃1×m̃2 .

Algorithm 3 : Hybrid ePIE Algorithm
Input: Initial Guess z ∈ Cn1n2×1, crop size parameters m̃1, m̃2, observed data dj ∈ Rm1×m2 for

j = 1, . . . , N , stopping tolerances ϵP F T , ϵ, maximum number of iterations nmaxiters,P F T , nmaxiters
Output: Solution zopt

1: Construct cropped data dcrop
j ∈ Rm̃1m̃2×1 from dj ▷ crop centers of dj , j = 1 . . . , N

2: run PFT-based ePIE iterates (5) - (6) using dcrop
j , j = 1, . . . , N until convergence to obtain zPFT

3: run FFT-based ePIE iterates (5) - (6) using dj , j = 1, . . . , N and zPFT as an initial condition until
convergence to obtain zopt.

4 Numerical Experiments

We consider the non-blind and the blind ptychography problem. For each problem type, we
investigate the quality of reconstructions on a small experiment with image size 512×512 and study
the quality of local minima. Indeed, the PFT is only worth employing when the runtime over the
FFT is reduced - this is not as obvious in the small experiments. To this end, we demonstrate the
computational benefits of using the PFT, and in particular the proposed hybrid PIE, on a large
experiment with image size 16384 × 16384. For all experiments, we assume m = n, i.e. square
images. We work with two images, the baboon and cameraman. We set the baboon image to be
the magnitude and the cameraman to be the phase of the ground truth, as shown in Figure 3.
Here, the magnitude is chosen to have range [0, 1] and the phase is chosen to have range [0, π/2].
As explained in Section 3.1, one wants p1 and p2 such that m̃1/p1 and m̃2/p2 is small; in our
case, we find that choosing m̃ = p = 64 is good enough for all of our experiments. More details
on the choice of hyperparameter p can be found in [21, Section 4.3]. Finally, the stopping criteria
considered in all algorithms is ∥zk+1−zk∥/∥zk∥. Following [21], we choose a tolerance of 10−7 in the
computation of the approximating polynomial in Algorithm 4. Our numerical results are also based
on a PyTorch implementation of the PFT that was translated from that presented in [21]. The
small-scale experiments (Sections 4.1.2 and 4.2.2) are run on a machine equipped with Intel Core
i5-9400 CPU, 2.90GHz and 16GB of RAM while large-scale experiments (Sections 4.1.3 and 4.2.3)
are run on a Lambda Vector machine with a AMD Threadripper Pro 3955WX processor containing
16 cores, 3.90 GHz, 64 MB cache, PCIe 4.0.

4.1 Non-Blind Ptychography

4.1.1 Experimental Setup

As explained in Section 2, the non-blind ptychography experimental setup assumes ω is known.
In this case, we use probes that resembles an identity operator, that is, ω⊙Qkz = Qkz, k = 1, . . . , N .
Moreover, each probe illuminates n

2 × n
2 pixels. That is, the illumination Qk ∈ Rn×n is a matrix

that satisfies

[Qk]i,j =
{

1 if pixel (i, j) is illuminated
0 otherwise

. (12)

7



True Magnitude True Phase

Figure 3: The ground truth used to simulate data in numerical experiments. The baboon image is used as
the magnitude and the cameraman image is used as the phase of the object of interest.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

Figure 4: Scanning positions generated by the illumination windows described in Section 4.1.2. For the
small problem where n1 = n2 = 512 (Section 4.1.1), each illumination window Qi has size 256 × 256 and
shifts 128 pixels at a time. Similarly, for the large-scale problem where n1 = n2 = 16384 (Section 4.1.3, each
illumination window Qi has size 8192 × 8192 and shifts 4096 pixels at a time. In both setups, there is a 50%
overlap between consecutive probes.

The illumination window is shifted n
4 pixels at a time starting from the top-left corner downward

until it reaches the bottom-left corner. The probe is then shifted upwards and then to the right
until it reaches the top edge again. This scanning procedure is continued until we have covered
the entire image, and results in a total of 9 probes with 50% overlap between adjacent probes (see
Figure 4 for an illustration).

4.1.2 Distribution of Reconstruction Quality

To test whether the proposed algorithm 3 leads to improved reconstructions, we compare the
distribution of relative errors of the reconstructed images between the PIE and the proposed hybrid
PIE algorithms on small-scale images of size 512 × 512. We generate 150 reconstructions using
both algorithms with uniformly random initial guesses (here, we choose uniformly random in [0, 1]
for the magnitude and [0, π/2] for the phase). We then compute the relative error of the final
reconstructions

||z − ztrue||
||ztrue||

(13)

where z is our current reconstruction estimate and ztrue is the ground truth. Similarly, we also
compute the relative errors, peak signal-to-noise ratio (PSNR) [20], and structural similarity index
SSIM [33] of the magnitude and phase to better understand the quality of reconstructions.

Figure 5 shows the relative errors between a) the full object, b) the magnitude of the object, and
c) the phase of the object. The results show that the hybrid PIE approach leads to a similar, if not
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a) z b) Magnitude of z c) Phase of z

Figure 5: Histogram of the final reconstruction relative errors. The blue histogram shows the relative error
frequency for PIE and the orange histogram shows the relative error frequency for hybrid PIE. a) shows the
relative error of the reconstructed object, b) shows relative errors of only the magnitude of the object, and
c) shows the relative errors of the phase of the object.

Magnitude SSIM Phase SSIM Magnitude PSNR Phase PSNR

Figure 6: Histogram of the final SSIM and PSNR values for the reconstructed images. The blue histogram
shows the SSIM/PSNR for PIE and the orange histogram shows the SSIM/PSNR for hybrid PIE.

slightly better, distribution of reconstructions as the distribution of the traditional PIE. Similarly,
Figure 6 shows a comparisons of the distributions of magnitude and phase SSIM and PSNRs (note
for this figure that higher SSIM and PSNR is better).

4.1.3 Large-Scale Reconstruction

To demonstrate the computational benefits of using a PFT-based PIE in the proposed hybrid
algorithm, we run a larger experiment where n1 = n2 = m1 = m2 = 16384, and m̃1 = m̃2 = p1 =
p2 = 64, leading to a cropped image of size 128 × 128. The degree of the approximating polynomial
in this setting is given by degrees r1 = r2 = 13, which is obtained from the precomputed values
ξ(ε, r) defined in Section 3.1.1. Here, we run the PFT-based PIE algorithm until a tolerance of
ϵpft = 10−2 or a maximum number of 50 iterations is reached. Afterwards, we run the standard
FFT-based PIE until a tolerance of ϵ = 5×10−4 or a maximum number of 100 iterations is reached.
Here, we choose step sizes β = 10 for the FFT-based PIE and βP F T = 10−3 for the PFT-based PIE.
These were chosen tuned using a logarithmic gridsearch over the set {10−6, 10−5, . . . , 102, 103}, and
afterwards using a standard gridsearch starting from the currently chosen parameter, e.g., 10−2,
to the next order of magnitude, e.g., 10−1. The intuition for choosing a higher tolerance for the
PFT-based PIE is based on the fact that the PFT-based PIE will primarily capture large features,
whereas the FFT-based PIE needs more iterations to capture fine details. For all reconstructions,
we use total variation regularization [27] with parameters λ = 10−6 for the FFT-based PIE and
λ = 102 for the PFT-based PIE. These are the parameters that led to the lowest relative error and
were found over a logarithmic gridsearch over the set {10−6, 10−5, . . . , 102, 103}. Interestingly, the
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PIE Phase PFT Warmup Phase Hybrid PIE Phase

PIE Magnitude PFT Warmup Magnitude Hybrid PIE Magnitude

Figure 7: Large-scale phase and magnitude reconstructions of the FFT-based PIE (first column), PFT-based
PIE warmup (second column), and Hybrid PIE (third column. These reconstructions are for the large-scale
ptychography problem where n1 = n2 = 16384.

PFT-based PIE benefits from larger total variation.
In Figure 7, we show the reconstructions of the magnitude and phase generated by PIE, the

initial PFT-based PIE, and the proposed hybrid PIE. In Figure 8, we show the objective function
values of the full reconstruction (first column), the phase (second column), the magnitude (third
column), and the relative errors (fourth column). Here, the x-axis represents time in minutes.
Similar results are shown in Figure 9, where we only show the phase and magnitude structural
similarity index (SSIM) [33] and peak signal to noise ratio (PSNR) [25]. We observe that using the
PFT-based PIE as warm up leads to improved SSIM and PSNR on the phase and magnitudes of
the reconstruction.

4.2 Blind Ptychographic Retrieval

4.2.1 Experimental Setup

For the blind experiments, we follow a very similar setup to that in [24]. We use the same
images of the baboon and cameraman where the baboon image is set to be the magnitude and the
cameraman is set to be the phase of the ground truth. We also set the range of the true phase to
be [0, π

2 ] as before.
Following [24], we use circular probes for the blind ptychography problem and the probe, ω

is also to be reconstructed. Note this is a very different experimental setup to that the nonblind
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Figure 8: Objective function values (first column), phase relative errors (second column), magnitude relative
errors (third column), and relative errors (fourth column) for a large-scale ptychographic reconstruction
explained in Section 4.1.1. The x-axis represents time in minutes. Green dot represents the transition from
the PFT-based PIE to the FFT-based PIE in the hybrid algorithm.
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Figure 9: SSIM and PSNR for PIE (blue) and Hybrid PIE (orange) for the phase and magnitude
over time (in minutes). The green dot represents the transition from the PFT-based PIE to the
FFT-based PIE in the hybrid algorithm.

setting. For a specified radius of pixels r, each illumination window Qk ∈ Rn×n for k = 1, . . . , N is
a matrix that satisfies

[Qk]i,j =
{

1 if pixel (i, j) lies within circle of radius r

0 otherwise.
(14)

Moreover, the true probe function in this experiment is given by

ω(x, y) = exp
(

−x2 + y2

2σ2

)
. (15)

where σ = 106. The probe is shifted 150n
768 pixels at a time starting from the top-left corner to

the right until it reaches the top-right corner. The probe is then shifted downwards and then to
the left until it reaches the left edge again. This scanning procedure is continued until we have
covered the entire image, and results in a total of 16 probes with roughly 50% overlap between
adjacent probes. An illustration of the illumination window is shown in Figure 10 for the small-
scale experiment (Section 4.2.2) and in Figure 16 for the large-scale experiment (Section 4.2.3).
We remark, unlike in the non-blind case, there are nuances in the experimental setup with circular
illumination windows that do not allow for the exact same settings when moving up to the large-
scale setting. Moreover, following [24] due to the circular nature of the probes, images need to be
padded so that the entire image can be covered by the probes. This leads to reconstructions that
include the padding (see Figure 13).

Finally, we remark that in this implementation of ePIE (5), (6), we follow the techniques
proposed in [24] where the probes, i.e., the value of j, are chosen uniformly at random with no
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Figure 10: Scanning positions of the illumination window described in Section 4.2.1. Here, each probe
illuminates a circle of radius 175 pixels and shifts 150 pixels at a time, leading to roughly 50% overlap
between consecutive probes.

a) z b) Magnitude of z c) Phase of z

Figure 11: Histogram of the final reconstruction relative errors. The blue histogram shows the relative error
frequency for ePIE and the orange histogram shows the relative error frequency for hybrid ePIE. a) shows
the relative error of the reconstructed object, b) shows relative errors of only the magnitude of the object,
and c) shows the relative errors of the phase of the object.

replacement; that is, rather than choose j sequentially in each iteration (as was done in the non-
blind case), we choose j randomly until all N probes have been utilized. This random selection is
chosen following, where it is observed that this randomness helps avoid local minima.

4.2.2 Distribution of Reconstruction Quality

We now consider the distribution of the relative errors for the reconstructed images from the
ePIE and warm-started ePIE algorithms on small-scale images of size 512 × 512. As with the
non-blind ptychography experiments, we generate a sample of 150 guess images where the guess
magnitude is initialized with uniform random values in the range [0, 1] and [0, π

2 ] for the guess
phase. We then compute the relative error of the final reconstructions using (13), as well as the
PSNR, and SSIM of the magnitude and phase, respectively, to further analyze the quality of the
reconstructions.

Figure 11 shows the relative errors between a) the full object, b) the magnitude of the object,
and c) the phase of the object. The results show that hybrid ePIE tends to find a better distribu-
tion of reconstructions compared to the distribution of vanilla ePIE. In particular, we see that the
relative errors of the magnitude are lower in the hybrid approach. Moreover, we observe that the
relative errors of the phase are similar in value (but with lower variance) between hybrid ePIE and
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Figure 12: Histogram of the final SSIM and PSNR values for the reconstructed images. The blue histogram
shows the SSIM/PSNR for ePIE and the orange histogram shows the SSIM/PSNR for hybrid ePIE.

traditional ePIE. We also compare the distribution of the final SSIM and PSNR values of the recon-
structed image from ePIE and hybrid ePIE shown in Figure 12. We observe that the distribution
of the SSIM values are overall higher in the hybrid approach. However, the hybrid ePIE magnitude
reconstructions achieve higher PSNR values and overall slightly lower phase reconstruction PSNR
values than vanilla ePIE. In other words, the PSNR histograms support the result of the relative
errors, demonstrating the reconstruction of the magnitude makes up for the reconstruction of the
phase in the hybrid algorithm.

4.2.3 Large-Scale Reconstruction

As in the nonblind case, we demonstrate the computational benefits of using a PFT-based ePIE
in the proposed algorithm. Here, n1 = n2 = m1 = m2 = 8200, and m̃1 = m̃2 = p1 = p2 = 64,
leading to a cropped image of size 128 × 128. The degree of the approximating polynomial in
this setting is given by degrees r1 = r2 = 13, which is obtained from the precomputed values
ξ(ε, r) defined in Section 3.1.1. Here, we run the PFT-based ePIE algorithm until a tolerance of
ϵPFT = 10−2 or a maximum number of 10 iterations is reached. Afterwards, we run the standard
FFT-based ePIE until a tolerance of ϵ = 5 × 10−4 or a maximum number of 50 iterations is
reached. Here, we choose step sizes γ = β = 10 for the FFT-based ePIE and γP F T = βP F T =
2 × 10−3 for the PFT-based ePIE. These were chosen tuned using a logarithmic gridsearch over
the set {10−6, 10−5, . . . , 102, 103}, and afterwards using a standard gridsearch starting from the
currently chosen parameter, e.g., 10−2, to the next order of magnitude, e.g., 10−1. The intuition
for choosing a higher tolerance for the PFT-based ePIE is based on the fact that the PFT-based
ePIE will primarily capture large features, whereas the FFT-based ePIE needs more iterations
to capture fine details. For all reconstructions, we use total variation regularization [27] with
parameters λ = 10−6 for the FFT-based ePIE and λ = 103 for the PFT-based ePIE. These are the
parameters that led to the lowest relative error and were found over a logarithmic gridsearch over
the set {10−6, 10−5, . . . , 102, 103}.

In Figure 14, we show the objective values of the full reconstruction (first column), the phase
(second column), the magnitude (third column), and the relative errors (fourth column). Here,
the x-axis represents time in minutes. Similar results are shown in Figure 15, where we only
show the phase and magnitude structural similarity index (SSIM) [33] and peak signal to noise
ratio (PSNR) [25]. We observe that while using the PFT-based ePIE as warm up leads to overall
improved reconstructions, there are some trade-offs, this can be seen in, e.g., the hybrid ePIE
magnitude reconstruction. However, for this particular large-scale run, we obtain a very good
quality phase reconstruction as seen in Figure 13. This is appealing as the primary object of
interest in ptychography (also known as ptychographic phase retrieval).
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Figure 13: Large-scale phase and magnitude reconstructions of the FFT-based ePIE (first column), PFT-
based ePIE warmup (second column), and Hybrid ePIE (third column. These reconstructions are for the
large-scale ptychography problem where n1 = n2 = 8200.

As a final note, there is a nontrivial padding element for this ptychographic experiment, where
the image recovered consists of the reconstruction and corresponding noisy padding. To address
this, we use the built-in function match template algorithm from scikit-image [14] to generate
Figure 13 .

5 Discussion

We present a new hybrid algorithm for ptychographic phase retrieval based on the fast partial
Fourier transform (PFT), which only computes the coefficients corresponding to low frequencies.
The PFT is utilized within the ptychographic iterative engine (PIE). The hybrid algorithm consists
of using PFT-based PIE in early iterations as a warm up followed by the standard FFT-based PIE
algorithm. The core idea is to let the PFT-based PIE iterations capture large features corresponding
to low frequencies whereas the FFT-based PIE iterations capture fine details in the reconstruction.
Our numerical results demonstrate that the proposed hybrid PIE algorithm accelerates conver-
gence by reducing the time-to-solution. This work also provides a PyTorch implementation of
the PFT with automatic differentiation capabilities, enabling ease of use of the PFT within, e.g.,
deep learning architectures and other optimization algorithms. Future works include exploring a
differentiable optimization methodology [1, 19, 11] of the proposed hybrid algorithm as well as
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Figure 14: Objective values on full reconstruction (first column), phase relative errors (second column),
magnitude relative errors (third column), and relative errors (fourth column) for a large-scale ptychographic
reconstruction explained in Section 4.2.1. The x-axis represents time in minutes. Green dot represents the
transition from the PFT-based ePIE to the FFT-based ePIE in the hybrid algorithm.
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Figure 15: SSIM and PSNR for ePIE (blue) and Hybrid ePIE (orange) for the phase and magnitude
over time (in minutes). The green dot represents the transition from the PFT-based ePIE to the
FFT-based ePIE in the hybrid algorithm.

distributed methods such as alternating direction method of multipliers [3, 2, 34]. Our code can be
found in https://github.com/mines-opt-ml/pft-for-ptycho.
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A 2D PFT Algorithm

We present the two-dimensional (2D) extension of the PFT algorithm. Analogous to the 1D
case, we begin by recalling the 2D DFT given by:

ẑt1,t2 =
∑

(k1,k2)∈[n1]×[n2]
zk1,k2e−2πit1k1/n1e−2πit2k2/n2 (16)

where now z ∈ Cn1×n2 is a complex-valued matrix of size n1 × n2. We assume that n1 = p1q1 and
n2 = p2q2 are composite integers where p1, p2, q1, q2 > 1. Then rearranging the above expression,
we get:

ẑt1,t2 =
∑

k1,k2,j1,j2

zq1k1+j1,q2k2+j2

∏
ν

e−2πitν(jν−qν/2)/nν · e−2πitνkν/pν · e−πitν/pν (17)

where k1 ∈ [p1], k2 ∈ [p2], j1 ∈ [q1], j2 ∈ [q2], and ν = 1, 2. As before, we want to use polynomial ap-
proximations for the exponential eπix. Afterwards, by re-scaling the polynomials and using exponent
laws, one can get an approximation of the twiddle factors in the collection

{
e−2πitν(jν−qν/2)/nν

}qν−1

jν=0
.

Using the same definitions and notation as in Section 3.1.1, choose the minimum rν satisfying
ξ(ε, rν) ≥ m̃ν/pν to get the re-scaled polynomial approximations

{
Prν−1,ξ(ε,rν)(−2tν(jν − qν/2)/nν)

}qν−1

jν=0
.

Algorithm 4 shows how to build the polynomial approximation. The polynomial coefficients
wε,rν−1,j are precomputed, and we obtain them from the code database of [21].

Algorithm 4 : Configuration (Offline) Phase of 2D PFT
Input: Input size (n1, n2) ∈ N2, crop size (m̃1, m̃2) ∈ N2, divisors (p1, p2) ∈ N2, and tolerance

ε
Output: Matrices B1 ∈ Cq1×r1 , B2 ∈ Cq2×r2 , tensor W ∈ C(2m̃1+1)×(2m̃2+1)×r1×r2 , configura-

tion results p1, p2, q1, q2, r1, r2

1: for ν = 1, 2 do
2: qν = nν/pν

3: rν = min{rν ∈ N : ξ(ε, rν) ≥ m̃/p} ▷ degree of polynomial P approximating eπix within
tolerance ε

4: for l ∈ [qν ], j ∈ [rν ] do
5: x = (1 − 2l/qν)
6: Bν = wε,rν−1,j · xj ▷ Using precomputed wε,rν−1,j

7: end for
8: end for
9: for (t1, t2) = ([−m̃1, . . . , m̃1] × [−m̃2, . . . , m̃2]) do

10: W [t1, t2, j1, j2] = (t1/p1)j1e−πit1/p1 · (t2/p2)j2e−πit2/p2 ▷ Precompute remaining terms
11: end for

Substituting the approximating polynomials for the twiddle factors in (17) and performing
some algebraic manipulations (in particular, swapping and rewriting summations), we represent
the summations as matrix-matrix multiplications between C(k1,k2) = B⊤

1 × Z(k1,k2) × B2 where
Z(k1,k2) ∈ Cq1×q2 are slices of the data matrix z, the matrices B1 ∈ Cq1×r1 and B2 ∈ Cq2×r2

are defined in line 6 of Algorithm 4 followed by a series of 2D FFT computations on C for each
(k1, k2) ∈ [p1] × [p2]. As in the 1D PFT, we note that the primary cost of Algorithm 5 lies in the
matrix multiplications between Z(k1,k2), B1, and B2 and the 2D FFT computations on each of the

19



matrices C(k1,k2) ∈ Cr1×r2 . This gives us time complexity O(n + m̃ log m̃), where n = n1n2 and
m̃ = m̃1m̃2. For thorough details, we refer the reader to [21, Appendix B].

Algorithm 5 : Computation (Online) Phase of 2D PFT
Input: 2D array Z of size n1 × n2, crop size (m̃1, m̃2), tensor W ∈ C(2m̃1+1)×(2m̃2+1)×r1×r2 ,

configuration results B1 ∈ Cq1×r1 , B2 ∈ Cq2×r2 , p1, p2, q1, q2, r1, r2
Output: 2D array ẐP F T of estimated Fourier coefficients of Z

1: Z = Z.reshape(p1, q1, p2, q2)
2: Z = Z.permute(0, 2, 1, 3).contiguous()
3: Z = Z.reshape(p1, p2, q1, q2) ▷ reshape z into p1 × p2 × q1 × q2 tensor
4: for (k1, k2) ∈ [p1] × [p2] do
5: C[k1, k2, :, :] = B⊤

1 × Z[k1, k2, :, :] × B2 ▷ matrix multiply B⊤
1 by Z[k1, k2, :, :] by B2

6: end for
7: for (j1, j2) ∈ [r1] × [r2] do
8: Ĉ[:, :, j1, j2] = FFT2(C[:, :, j1, j2]) ▷ apply 2D FFT to matrices C[:, :, j1, j2]
9: end for

10: for (t1, t2) = ([−m̃1, . . . , m̃1] × [−m̃2, . . . , m̃2]) do
11: ẐP F T [t1, t2] =

∑
j1∈[r1],j2∈[r2] Ĉ[t1%p1, t2%p2, j1, j2] · W [t1, t2, j1, j2] ▷ Hadamard product

12: end for

B Illumination Windows For Large-Scale Blind Ptychography

We provide an illustration of the illumination window for the large-scale experiment. The size
of the image is 8200 × 8200, each circular probe has a radius of 2553 pixels, and shifts 2188 pixels
at a time.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16

Figure 16: Scanning positions of the illumination window described in Section 4.2.1. Here, each probe
illuminates a circle of radius 2553 pixels and shifts 2188 pixels at a time, leading to roughly 50% overlap
between consecutive probes.

20


	Introduction
	Our Contribution

	Ptychography Background
	The Ptychographic Iterative Engine

	A Hybrid ePIE algorithm
	The Fast Partial Fourier Transform (PFT)
	PFT Offline Configuration Phase: Approximating Twiddle Factors
	Online PFT Computation

	Hybrid ePIE Algorithm

	Numerical Experiments
	Non-Blind Ptychography
	Experimental Setup
	Distribution of Reconstruction Quality
	Large-Scale Reconstruction

	Blind Ptychographic Retrieval
	Experimental Setup
	Distribution of Reconstruction Quality
	Large-Scale Reconstruction


	Discussion
	2D PFT Algorithm
	Illumination Windows For Large-Scale Blind Ptychography

