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Abstract
In our research, we broaden the scope of Fourier–Stieltjes transforms to encompass locally
compact groups, denoted as G. We achieve this extension by leveraging the induced rep-
resentation from a closed subgroup K . From this, we deduce the Fourier transform f̂ of a
Haar-integrable function f defined on G. Specifically, we express f̂ as the Fourier–Stieltjes
transform μ̂ of the measure μ = f λ, where λ denotes the Haar measure of G. Our work
is significant because when applied to Lie groups with compact subgroups K , our Fourier–
Stieltjes transform m̂ exhibits more nuanced characteristics compared to the traditionally
defined one via the Gel’fand transform, which is standard in the context of Lie groups. We
rigorously substantiate this observation. One of the principal challenges we confront is the
construction of the “trigonometric functions”, which serve as the foundation for building the
Fourier transform.
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1 Introduction

The vector measures generalizing scalar measures attracted a great interest in recent decades
due to their numerous applications in functional analysis, control systems, signal analysis,
quantum information, quantum theories, and many other domains of applications. For more
details on vector measure theory, see for instance, [4, 9] and [1] for some applications on
compact groups. Also, Clarkson [6] used theoretical ideas on vector measures to prove that
many Banach spaces do not admit equivalent uniformly convex norms. In the same vein,
Gel’fand [14] proved that L1[0, 1] is not isomorphic to a dual of a Banach space. Lyapunov
[20] showed that the range of a (non-atomic) vector measure is closed and convex. Lyapunov
[20]’ swork occupies a prominent place inmodernmathematics since it lies at the intersection
of the theory of convex sets and measure theory. The Lyapunov convexity theorem became
the starting point of numerous studies in the framework of mathematical analysis as well as
in the realm of geometric research into the convex sets that are ranges of non-atomic vector
measures [18]. In addition, Bartle [2], Dinculeanu, Kluvánek [9], Dunford and Schwartz
[10], and Lindenstrauss and Pelczyńki [19] gave many seminal results on vector measure.
For instance, Diestel and Uhl Jr [8] provided a comprehensive survey on vector measures.
Applications of vector measures were discussed in the work by Kluvánek [17]. Fernández
and Faranjo [11] studied the Rybakov’s theorem for vector measures in Fréchet spaces.
Curbera and Ricker [7] wrote a survey on vector measures, integration, and applications.
More information on vector measures can also be found in [7, 8].

To focus on our interest, let G be a locally compact group, m a vector measure on G into
a Banach algebra A, λ a left or right Haar measure on G, and f ∈ L1(G, λ).

If the group G is abelian, the Fourier–Stieltjes transform of m is given by the relation

m̂(χ) =
∫
G

〈χ, t〉dm(t), (1)

while the Fourier transform of f is given by

f̂ (χ) =
∫
G

〈χ, t〉 f (t)dλ(t), (2)

where χ denotes a character of G.
If G is compact and A = C, then the Fourier–Stieltjes transform of m is a family of

endomorphisms (m̂(σ ))σ∈� given by

〈
m̂(σ )ξ, η

〉 =
∫
G

〈
U

σ

t ξ, η
〉
dm(t), (3)

and the associated Fourier transform is provided by the relation

〈
f̂ (σ )ξ, η

〉
=

∫
G

〈
U

σ

t ξ, η
〉
f (t)dλ(t), (4)

where Uσ denotes a unitary representation of the group G.
If G is compact andA is any arbitrary Banach algebra, Assiamoua [1] defined a Fourier–

Stieltjes transformof a bounded vectormeasurem onG as a family (m̂(σ ))σ∈� of sesquilinear
mappings of Hσ × Hσ with values in A given by the relation,

m̂(σ )(ξ, η) =
∫
G

〈
U

σ

t ξ, η
〉
dm(t), (5)
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and the Fourier transform of a function f ∈ L1(G) as a family of continuous endomorphisms
( f̂ (σ ))σ∈� of sesquilinear applications of Hσ × Hσ with value in A, given by the relation

f̂ (σ )(ξ, η) =
∫
G

〈
U

σ

t ξ, η
〉
f (t)dλ(t). (6)

In the continuation of previous investigations by [1], the presentwork addresses a construction
of the Fourier–Stieltjes transform on locally compact groups from a group representation
induced by a representation of a compact subgroup. For this purpose, we consider a locally
compact group G, K a compact subgroup of G, μ a G-invariant measure on the left coset
space G/K , and Lσ a unitary representation of K into a separable Hilbert space Hσ . Then,
we define the Fourier–Stieltjes transform of a bounded vector measure on the locally compact
group G using the representation ULσ

of G induced by Lσ . In this context one usually uses
Gel’fand transform to define the Fourier transform. Given a locally compact group G with
Haar measure dx , a unitary commutative Banach algebra A, and X(A) its spectrum, the
Gel’fand transform of x , x ∈ A, is the function Gx : X(A) −→ C such that Gx (χ) = χ(x).
The mapping x �−→ Gx : A −→ C

X(A) is called the transformation of Gel’fand associated
with A. The spherical Fourier transform is the Gel’fand transform associated with L1(G)�,
the space of integrable, bi-invariant functions by a compact subgroup K of G on G. In this
case, for f ∈ L1(G)�, Gx is denoted F f or f̂ and is defined by

f̂ (χ) =
∫
G

f (x)χ(x−1)dx . (7)

Our method of construction of Fourier transform has several advantages over the Gel’fand
transform. First, our transform is injective while the Gel’fand transform is not always injec-
tive. Second, the Gel’fand transform is limited to spherical functions only while our Fourier
transform exists for the whole L1(G, A), 1 ≤ p < ∞. Finally, our method is constructive
while in Gel’fand transformation the Fourier transform is obtained by induction.

Thepaper is organized as follows. InSect. 1,we recall the definitionof a vectormeasure and
the unit representation of a group which are useful in the next sections. In Sect. 2, we provide
the proof of the Shur’s orthogonality property in connection with induced representation
and we define the Fourier–Stieltjes transform of a vector measure and the Fourier transform
of a function in L1(G,A). Also, we report several properties we discovered for our newly
developed Fourier–Stieltjes transform in Sect. 2.

2 Preliminaries

In this section, for the clarity of the development, we briefly recall useful known main
definitions and results, and set our notations. We consider a locally compact space G, the
Banach spaces A and F over the field K, (K = R or C), and denote by K(G,A) the vector
space of all continuous functions f : G −→ A with a compact support, and by C(G,A) the
space of continuous functions f : G −→ A.

For simplification, we write K(G) instead of K(G, R) or K(G, C). For each subset K of
G, let denote by KK (G,A) the space of functions with support contained in K . KK (G,A)

is a subspace of K(G,A).

Definition 2.1 For every function f ∈ K(G,A), we define

‖ f ‖ := sup
t∈G

‖ f (t)‖A.
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The mapping f �→ ‖ f ‖ is a norm on each space KK (G,A); it defines the topology of
uniform convergence on G over K(G).

Definition 2.2 On K(G,A), the topology of the compact convergence is the locally convex
topology defined by the family of seminorms

‖ f ‖K = sup
t∈K

‖ f (t)‖A,

where K takes the elements in the set of compact subsets of G.

Proposition 2.3 The space K(G,A) is dense in the space C(G,A) for the topology of the
compact convergence [9].

Definition 2.4 A vector measure on G with respect to two spaces A and F , or an (A,F)-
measure on G, is any linear mapping m : K(G,A) −→ F having the property that, for
each compact set K ⊂ G, the restriction m to the subspace KK (G,A) is continuous for the
topology of uniform convergence, i.e. for each compact set, there exists a number aK > 0
such that

‖m( f )‖ ≤ aK sup {‖ f (t)‖A, t ∈ K } .

The value m( f ) of m for a function f ∈ K(G,A) is called the integral of f with respect
to m also denoted by

∫
G f dm or

∫
G f (t)dm(t). A vector measure is said to be dominated if

there exists a positive measure μ such that∥∥∥∥
∫
G

f (t)dm(t)

∥∥∥∥ ≤
∫
G

| f (t)|dμ(t), f ∈ K(G).

If m is dominated, then there exists a smallest positive measure |m|, called the modulus
or the variation of m, that dominates it. A positive measure is said to be bounded if it is
continuous in the uniform norm topology of K(G). A vector measure is said to be bounded
if it is dominated by a bounded positive measure. If m is bounded, then |m| is also bounded.

Denoting by M1(G,A) the Banach algebra of bounded vector measures on G, the map-
ping

m �→ ‖m‖ =
∫
G

χGd|m| (8)

is a norm on M1(G,A), where χG represents the characteristic function of G.

In the sequel, K will denote a compact subgroup of G, ν and λ, the left Haar measures on K
and G, respectively.

Definition 2.5 Let μ be a Radon measure on G/K , the homogenous space of left K -cosets
and g an element of G. Define μg by μg(E) = μ(gE) for the Borel subsets E of G/K .
The measure μ is called G−invariant measure if μg = μ, for g ∈ G, see [12, 13] for more
details.

Throughout the paper, μ will denote the G− invariant measure on G/K . If ν denotes a Haar
measure in K , we have the following theorem:

Theorem 2.6 For any f ∈ K(G), we have [12, 15, 16]:∫
G

f (g)dλ(g) =
∫
G/K

dμ(ġ)
∫
K

f (gk)dν(k). (9)
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Theorem (2.6) also extends to every f ∈ L1(G, λ, A), see [5].

Definition 2.7 A unit representation of G is a homomorphism L from G into the group
U (H) of the invertible unitary linear operators on some nonzero Hilbert space H , which is
continuous with respect to the strong operator topology satisfying for g1, g2 ∈ G,

Lg1g2 = Lg1Lg2 and L1 = I dH .

H is called the representation space of L , and its dimension is called the dimension or degree
of L .

SupposeM is a closed subspace of H .M is called an invariant subspace for L if LgM ⊂
M ∀g ∈ G. If M is invariant and M �= {0}, then LM such that

LM
g = Lg|M

defines a representation of G onM, called a subrepresentation of L . If L admits an invariant
subspace that is nontrivial ( i.e. �= {0} or H ) then L is called reducible, otherwise L is
irreducible. If G is compact and L irreducible then the dimension of L is finite.

Definition 2.8 Two unit irreducible representations L and V into H and N , respectively, are
said to be equivalent if there is an isomorphism T : H −→ N such that, ∀t ∈ G,

T ◦ Lt = Vt ◦ T .

Consider now the subgroup K , � the coset space of the class of irreducible representations
of K (called the dual object of K ), σ ∈ �, Lσ a representative of σ , Hσ a representation
space of Lσ , and dσ its dimension.

Theorem 2.9 Let (Lσ
i j )1≤i, j≤dσ be the matrix of Lσ in an orthonormal basis (ξi )

dσ
i=1 of Hσ .

Then, (see [3, 12, 16, 21]),
∫
K
Lσ
i j (t)L

σ
lm(t)dν(t) = δilδ jm

dσ

(10)

and ∫
K
Lσ
i j (t)L

τ
lm(t)dν(t) = 0 if σ �= τ. (11)

Let q : G −→ G/K be the canonical quotientmap ofG intoG/K and suppose Hσ separable.
Denote by HLσ

0 the set

HLσ

0 = {
u ∈ C(G, Hσ ) : q(Supp(u)) is compact and u(gk) = Lσ

k−1u(g)
}
. (12)

Proposition 2.10 If η : G −→ Hσ is continuous with compact support, then the function
uη such that

uη(g) =
∫
K
Lσ
k η(gk)dν(k) (13)

belongs to H Lσ

0 , and is uniformly continuous on G. Moreover, every element of H Lσ

0 is of
the form uη, see [12] for more details.
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Proposition 2.11 The mapping:

(u, v) �−→ 〈u, v〉 =
∫
G/K

〈u(g), v(g)〉Hσ
dμ(ġ). (14)

on HLσ

0 × HLσ

0 is an inner product on HLσ

0 .

G acts on HLσ

0 by left translation, u �−→ Ltu, so we obtain a unitary representation of G
with respect to this inner product on HLσ

0 . The inner product is preserved by left translations,
since μ is invariant. Hence, if we denote by HLσ

the Hilbert space completion of HLσ

0 , the
translation operators Lt extend to unitary operators on HLσ

. Then the map t �−→ Ltu is
continuous from G to HLσ

for each u ∈ HLσ

0 , and then, since the operators Lt are uniformly
bounded, they are strongly continuous on HLσ

. Hence, they define a unitary representation
of G, called the representation induced by Lσ , denoted by ULσ

:

ULσ

t u(g) = Ltu(g) = u(t−1g).

The representation space is denoted HLσ
.

Remark 2.12 • The representations ofG induced from K are generally infinite-dimensional
unless G/K is a finite set.

• If the induced representationULσ
is irreducible then Lσ is irreducible [3]. The converse

of this statement is false.
• ULσ ∈ U (HLσ ),whereU (HLσ ) denotes the group of invertible unitary linear operators

on HLσ .

Lebesgue Spaces Let λ be a positive measure on the locally compact group G, and A
Banach algebra. For a function f : G −→ A, we define

Np( f ) =
(∫

G
‖ f (t)‖p

A dλ(t)

) 1

p (15)

for 1 ≤ p < ∞, where
∫
G
denotes the upper integral [4], and

N∞( f ) = inf {α : ‖ f (t)‖A ≤ α, λ − almost everywhere } . (16)

We denote by Lp(G, λ,A) the set of all λ-measurable functions f : G −→ A such that
Np( f ) < ∞, 1 ≤ p ≤ ∞. The mapping f �−→ Np( f ) is seminorm in Lp(G, λ,A).

Definition 2.13 L p(G, λ,A) will denote the set of equivalence classes [ f ] of functions f ∈
Lp(G, λ,A) where g ∈ [ f ] means that f − g is null λ− almost everywhere

In the following, f will be used instead of [ f ] to denote an element in L p(G, λ,A)

Theorem 2.14 ‖.‖p = Np is a norm in L p(G, λ,A). With this norm, L p(G, λ,A) becomes
a Banach space.

Proposition 2.15 L p(G, λ,A) ∩ Lq(G, λ,A) is dense in L p(G, λ,A) and in Lq(G, λ,A).

Remark 2.16 If m is a dominated vector measure of G with respect toA and a Banach space
F , then Lp(G,m,A) is by convention the space Lp(G, |m|,A).

Remark 2.17 Assuming that λ is a Haar measure of G, for any f ∈ L1(G, λ,A) f λ is a
vector measure absolutely continue with respect to λ and for any g ∈ K(G,A)

f λ(g) =
∫
G

f (t)g(t)dλ(t). (17)
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3 Main results

Assume that K is compact and Hσ is both finite and separable, then HLσ
also exhibits

separability. Moreover, each of these spaces possesses a Hilbertian basis constructed through
the Gram-Schmidt process. In our investigation, we assume the selection of K such that both
Lσ and ULσ

are irreducible.

3.1 Schur orthogonaltity relations

Let (θi )
∞
i=1 be an orthonormal basis of HLσ

and let (ξi )
dσ
i=1 be an orthonormal basis of Hσ .

We define

uL
σ

i j (t) :=
〈
ULσ

t θ j , θi

〉
HLσ

=
∫
G/K

〈
θ j (t

−1g), θi (g)
〉
dμ(ġ) (18)

and

Lσ
i j (k) := 〈

Lσ
k ξ j , ξi

〉
Hσ

.

As a result, there is a family of mappings (αis)
dσ
s=1 of G into K wi th (K = R or C) such

that

θi (g) =
dσ∑
s=1

αis(g)ξs .

We have:

δi j = 〈
θ j , θi

〉
HLσ =

∫
G/K

〈
θ j (g), θi (g)

〉
Hσ

dμ(ġ) =
dσ∑
s=1

∫
G/K

α js(g)αis(g)dμ(ġ).

Proposition 3.1 ∀σ ∈ � and ∀i, j ∈ {1, 2, ...}, uLσ

i j ∈ K(G).

Proof The continuity of uL
σ

i j results from their construction.

According to Eq. (13), for all u ∈ HLσ
, there is η ∈ K(G, Hσ ) such that uη(g) =∫

K
Lσ
k η(gk)dν(k). It follows that q(supp(u)) ⊂ q(supp(η)).

Let A be the support of η. For every g ∈ G and k ∈ K , gk ∈ A �⇒ g ∈ Ak−1.

AK =
⋃

k∈K Ak−1 is compact because A and K are compact. Furthermore, ∀g /∈ AK ,

u(g) = 0 then supp(u) ⊂ AK . Since supp(u) is a closed subset of AK then it is compact.
Now let B and C be supp(θ j ) and supp(θi ), respectively. Assume

D = {
t ∈ G : g ∈ C �⇒ t−1g ∈ B

}
. According to Eq. (18),

〈
θ j (t−1g), θi (g)

〉 = 0 if t /∈ D,

and then uL
σ

i j (t) = 0, then supp(uL
σ

i j ) ⊂ D. In addition,

t−1g ∈ B with g ∈ C �⇒ t ∈ CB−1.

Then supp(uL
σ

i j ) ⊂ D ⊂ CB−1. Since CB−1 is compact, supp(uL
σ

i j ) is also compact. ��
Therefore, we have
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Corollary 3.2 ∫
G

∣∣∣uLσ

i j (t)uL
σ

lm (t)
∣∣∣ dλ(t) < ∞.

We have K\G = G/K and therefore

Lemma 3.3 ∀u ∈ HLσ
, u(kt) = Lku(t) and u(tk) = Lσ

k−1u(t).

Proof There is η ∈ C(G, Hσ ) such that

u(t) =
∫
K
Lσ (ξ)η(tξ)dν(ξ). [12]

u(tk) =
∫
K
Lσ (ξ)η(tkξ)dν(ξ), k ∈ K

=
∫
K
Lσ (k−1ξ)η(tξ)dν(ξ)

= Lσ
k−1

∫
K
Lσ (ξ)η(tξ)dν(ξ)

= Lσ
k−1u(t).

There exists β ∈ C(G, Hσ ) such that

u(t) =
∫
K
Lσ (ξ−1)β(ξ t)dν(ξ). [3]

u(kt) =
∫
K
Lσ (ξ−1)β(ξkt)dν(ξ)

=
∫
K
Lσ (kξ−1)β(ξ t)dν(ξ)

= Lσ
k

∫
K
Lσ (ξ−1)β(ξ t)dν(ξ)

= Lσ
k u(t).

��
The following theorem shows the Schur orthogonality relation for the the case of the repre-
sentation ULσ

of G induced by the unitary irreducible representation Lσ of K .

Theorem 3.4 We have ∫
G
uL

σ

i j (t)uL
σ

lm (t)dλ(t) = ci jlm
dσ

(19)

where

ci jlm :=
∫
G/K

dμ(ṫ)
dσ∑

r ,s=1

∫
G/K

α js(t
−1g)αir (g)dμ(ġ)

∫
G/K

αms(t
−1h)αlr (h)dμ(ḣ)

=
dσ∑

r ,s=1

∫
(G/K )3

α js(t
−1g)αir (g)αms(t

−1h)αlr (h)dμ(ġ)dμ(ḣ)dμ(ṫ)

and ∫
G
uL

σ

i j (t)uL
τ

lm (t)dλ(t) = 0 if σ �= τ. (20)
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Proof By a straightforward computation, we obtain:∫
G/K

〈
θ j (gk), θi (g)

〉
Hσ

dμ(ġ) =
∫
G/K

〈
Lσ (k−1)θ j (g), θi (g)

〉
Hσ

dμ(ġ)

=
dσ∑

s,r=1

∫
G/K

α js(g)αir (g)
〈
Lσ (k−1)ξs, ξr

〉
Hσ

dμ(ġ)

=
dσ∑

r ,s=1

Lσ
rs(k

−1)

∫
G/K

α js(g)αir (g)dμ(ġ).

Besides, we get:

uL
σ

i j (tk) =
∫
G/K

〈
θ j (k

−1t−1g), θi (g)
〉
dμ(ġ)

=
∫
G/K

〈
Lσ (k−1)θ j (t

−1g), θi (g)
〉
dμ(ġ)

=
∫
G/K

〈
Lσ (k−1)θ j (t

−1g), θi (g)
〉
dμ(ġ)

=
dσ∑

r ,s=1

Lσ
rs(k

−1)

∫
G/K

α js(t
−1g)αir (g)dμ(ġ)

and∫
G
uL

σ

i j (t)uL
σ

lm (t)dλ(t) =
∫
G/K

∫
K
uL

σ

i j (tk)uL
σ

lm (tk)dν(k)dμ(ṫ)

=
∫
G/K

dμ(ṫ)
∫
K
(
∑
r ,s=1

Lσ
rs(k

−1)

∫
G/K

α js(t
−1g)αir (g)dμ(ġ)

×
∑
p,q=1

Lσ
pq(k

−1)

∫
G/K

αmq(t
−1h)αlp(h)dμ(ḣ))dν(k)

=
∫
G/K

dμ(ṫ)
∑

r ,s,p,q=1

∫
K
(Lσ

rs(k
−1)

∫
G/K

α js(t
−1g)αir (g)dμ(ġ)

×Lσ
pq(k

−1)

∫
G/K

αmq(t
−1h)αlp(h)dμ(ḣ))dν(k).

Thus,∫
G
uL

σ

i j (t)uL
σ

lm (t)dλ(t) =
∫
G/K

dμ(ṫ)
∑

r ,s,p,q=1

∫
K
(Lσ

rs(k
−1)Lσ

pq (k
−1)dν(k)

∫
G/K

α js(t
−1g)αir (g)dμ(ġ)

×
∫
G/K

αmq(t
−1h)αlp(h)dμ(ḣ)

=
∫
G/K

dμ(ṫ)
∑

r ,s,p,q=1

δrpδsq

dσ

∫
G/K

α js(t
−1g)αir (g)dμ(ġ)

×
∫
G/K

αmq(t
−1h)αlp(h)dμ(ḣ) according to [10]
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= 1

dσ

dσ∑
r ,s=1

∫
(G/K )3

α js(t
−1g)αir (g)αms(t

−1h)αlr (h)dμ(ġ)dμ(ḣ)dμ(ṫ)

= ci jlm
dσ

.

If σ �= τ then

∫
G
uL

σ

i j (t)uL
τ

lm (t)dλ(t) =
∫
G/K

dμ(ṫ)
∑

r ,s,p,q=1

∫
K
(Lσ

rs(k
−1)Lτ

pq(k
−1)dν(k)

∫
G/K

α js(t
−1g)αir (g)dμ(ġ) ×

×
∫
G/K

αmq(t
−1h)αlp(h)dμ(ḣ) = 0 according to [11]

��

In the case of a particular orthonormal basis, the orthogonality relation reduces to the fol-
lowing:

Corollary 3.5 Choosing an orthonormal basis (ξi )
dσ
i=1 of Hσ such that

∫
(G/K )3

α js(t
−1g)αir (g)αms(t

−1h)αlr (h)dμ(ġ)dμ(ḣ)dμ(ṫ) =

⎧⎪⎪⎨
⎪⎪⎩

1

d2σ
if j = m and i = l

0 if not

(21)

(or, also, ci jlm = δilδ jm) leads to

∫
G
uL

σ

i j (t)uL
σ

lm (t)dλ(t) = δilδ jm

dσ

. (22)

Proof With the conditions 21, we have

∫
G
uL

σ

i j (t)uL
σ

lm (t)dλ(t)= 1

dσ

dσ∑
r ,s=1

∫
(G/K )3

α js(t
−1g)αir (g)αms(t

−1h)αlr (h)dμ(ġ)dμ(ḣ)dμ(ṫ)

= δilδ jm

dσ

dσ∑
i, j=1

1

d2σ

= δilδ jm

dσ

d2σ
d2σ∫

G
uL

σ

i j (t)uL
σ

lm (t)dλ(t) = δilδ jm

dσ

.
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In the sequel, (θi )
∞
i=1 will designate an orthonormal basis of HLσ

and (ξi )
dσ
i=1 that of Hσ ,

where (ξi )
dσ
i=1 is chosen such that∫
G/K

dμ(ṫ)
∫
G/K

α js(t
−1g)αir (g)dμ(ġ)

∫
G/K

αms(t
−1h)αlr (h)dμ(ḣ)

=

⎧⎪⎪⎨
⎪⎪⎩

1

d2σ
if j = m and i = l

0 if not.

��

3.2 Fourier–Stieltjes transform on a locally compact groupwith a compact subgroup

Definition 3.6 Assume m ∈ M1(G,A). We define the Fourier–Stieltjes transform of an
arbitrary measure m as the family (m̂(σ ))σ∈� of sesquilinear mappings on HLσ × HLσ

into
A, given by the relation

m̂(σ )(u, v) =
∫
G

〈
U

Lσ

t u, v
〉
HLσ

dm(t) =
∫
G

∫
G/K

〈
u(t−1g), v(g)

〉
dμ(ġ)dm(t). (23)

According to the Remark 2.17 and the Definition 3.6, for any f ∈ L1(G,A, λ), where λ

denotes aHaarmeasure onG, theFourier transformof f is a family ( f̂ (σ ))σ∈� of sesquilinear
mappings of HLσ × HLσ

into A, given by the relation

f̂ (σ )(u, v) =
∫
G

〈
U

Lσ

t u, v
〉
HLσ

f (t)dλ(t) =
∫
G

∫
G/K

〈
u(t−1g), v(g)

〉
f (t)dμ(ġ)dλ(t).

(24)

3.3 Properties of the Fourier–Stieltjes transform

Let denote by S(�,A) = ∏
σ∈�S(HLσ × HLσ

,A), where S(HLσ × HLσ
,A) is the set of

all the sesquilinear mappings of HLσ ×HLσ
intoA. Also, assume

∏
σ∈�S(HLσ ×HLσ

,A)

is a vector space for the addition and multiplication by a scalar of mappings.

Definition 3.7 For � ∈ S(�,A) = ∏
σ∈�S(HLσ × HLσ

,A), note ‖�‖∞ the quantity is
defined by

‖�‖∞ = sup{‖�(σ)‖ : σ ∈ �} (25)

with ‖�(σ)‖ = sup{‖�(σ)(u, v)‖A : ‖u‖HLσ ≤ 1, ‖v‖HLσ ≤ 1}. Let define:
(i) S∞(�,A) = {� ∈ S(�,A) : ‖�‖∞ < ∞}.
(ii) S00(�,A) = {� ∈ S(�,A) : {σ ∈ � : �(σ) �= 0} is finite}.
(iii) S0(�,A) = {� ∈ S(�,A) : ∀ε > 0 {σ ∈ � : ‖�(σ)‖ > ε} is finite}.
Proposition 3.8 Let us consider� in S(�,A). There is a matrix (aσ

i j )1≤i, j≤∞, aσ
i j ∈ A such

that

�(σ) =
∞∑

i, j=1

dσa
σ
i j û

Lσ

i j
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with ûL
σ

i j the Fourier transform of uL
σ

i j given by

ûL
σ

i j (σ )(u, v) =
∫
G

〈
U

Lσ

t u, v
〉
HLσ

uL
σ

i j (t)dλ(t).

Proof For all u, v ∈ HLσ
such that u = ∑∞

j=1 β jθ j and v = ∑∞
i=1 γiθi ,

�(σ)(u, v) =
∞∑

i, j=1

β jγ i�(σ)(θ j , θi ).

Defining (�(σ)(θ j , θi )) = (aσ
i j ), the matrix of �(σ) in the basis (θi )

∞
i=1 and we have

ûL
σ

i j (σ )(u, v) =
∫
G

〈
U

Lσ

t u, v
〉
HLσ

uL
σ

i j (t)dλ(t)

=
∞∑

l,m=1

βmγ l

∫
G
uL

σ

lm uL
σ

i j dλ(t) = β jγ i

dσ

.

�(σ)(u, v) =
∞∑

i, j=1

aσ
i jβ jγ i =

∞∑
i, j=1

dσa
σ
i j û

Lσ

i j (u, v)

which yields

�(σ) =
∞∑

i, j=1

dσa
σ
i j û

Lσ

i j .

��
Corollary 3.9 For any f ∈ L1(G,A, λ), there is a matrix (ai j )1≤i, j≤∞, ai j ∈ A such that

f̂ (σ ) =
∞∑

i, j=1

dσa
σ
i j û

Lσ

i j .

Lemma 3.10 Let us denote by Lσ (G) the set of finite linear combinations functions t �−→〈
ULσ

t u, v
〉
HLσ and L(G) = ⋃

σ∈� Lσ (G). L(G) is dense in C0(G) for the topology of the
uniform convergence, where C0(G) denotes the space of continuous funtions of G into K

vanishing at infinity.

Proof (i) First, we have L(G) ⊂ C0(G) moreover for f ∈ L(G) we have abviously f ∈
L(G).

(ii) Let t1 and t2 be two elements of G such that t1 �= t2. Let us suppose by contradiction
that for every f ∈ L(G), f (t1) = f (t2). Thus, by chosing f = fk = uL

σ

ik we have〈
ULσ

t1 θi , θk
〉 = 〈

ULσ

t2 θi , θk
〉
for i, k ∈ {1, 2, ...}. Let us fix i and make k running over the

set {1, 2, ...}. Then, antilinear mappings φULσ
t1

θi
= 〈

ULσ

t1 θi , .
〉
and φULσ

t2
θi

= 〈
ULσ

t2 θi , .
〉

are identically equal in HLσ
thereforeULσ

t1 θi = ULσ

t2 θi �⇒ θi = ULσ

t2t
−1
1

θi �⇒ ULσ

t2t
−1
1

≡
IHLσ . It means that t2 = t1. There is a contradiction; hence, there is f ∈ L(G) such that
f (t1) �= f (t2).

(iii) Let t be any element of G; since ULσ

t is invertible, there exist i, k ∈ {1, 2, ...} such that
ULσ

t θi = θk . Therefore, we have
〈
ULσ

t θi , θk
〉 = 〈θk, θk〉 = 1 �= 0 i.e f (t) �= 0.

According to Stone-Weierstrass theorem for locally compact spaces L(G) is dense in
C0(G). ��
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Theorem 3.11 The mapping m �−→ m̂ from M1(G,A) into S∞(�,A) is linear, injective
and continuous.

Proof Let m, n ∈ M1(G,A) such that m̂ = n̂. For any u, v ∈ HLσ × HLσ
and any σ ∈ �,

we have:

m̂ = n̂ ⇐⇒
∫
G

〈
ULσ

t u, v
〉
HLσ

dn(t) =
∫
G

〈
ULσ

t u, v
〉
HLσ

dm(t)

⇐⇒
∫
G

〈
ULσ

t u, v
〉
HLσ

d(n − m)(t) = 0 (26)

for any σ in �, and u,v in HLσ
.

L(G) is dense in C0(G) according to the previous lemma. Then, L(G) is dense in
K(G). Thus n − m can be viewed as a linear map of K(G) which is identically null. Then∫
G

〈
ULσ

t u, v
〉
HLσ

d(n − m)(t) = 0 �⇒ n − m ≡ 0 i.e. m = n. The mapping m �−→ m̂ is

therefore injective.
Next, let us now prove the continuity of the mapping m �−→ m̂.

‖m̂(σ )‖ = sup
{‖m̂(σ )(u, v)‖A : ‖u‖HLσ ,≤ 1 and ‖v‖HLσ ,≤ 1

}

= sup

{∥∥∥∥
∫
G

〈
ULσ

t u, v
〉
HLσ

dm(t)

∥∥∥∥A : ‖u‖HLσ ,≤ 1 and ‖v‖HLσ ,≤ 1

}

≤
∫
G

χGd|m| = ‖m‖,

since ULσ

t is unitary. Thus, ‖m̂(σ )‖ ≤ ‖m‖, σ ∈ � and ‖m̂‖∞ ≤ ‖m‖. As a consequence,
m̂ ∈ S∞(�,A) and the mapping is continuous.

Corollary 3.12 The mapping f �−→ f̂ from L1(G, λ,A) intoS∞(�,A) is linear, injective,
and continuous.

Proof Here we consider f , g ∈ L1(G, λ,A) such that f̂ = ĝ then
∫
G

〈
ULσ

t u, v
〉
HLσ

f dλ(t) =
∫
G

〈
ULσ

t u, v
〉
HLσ

f dλ(t)

�⇒
∫
G

〈
ULσ

t u, v
〉
HLσ

( f − g)dλ(t) = 0.

For the same reasons as the previous proof we have f − g ≡ 0 then f = g.

‖ f̂ (σ )‖ = sup
{
‖ f̂ (σ )(u, v)‖A : ‖u‖HLσ ,≤ 1 and ‖v‖HLσ ,≤ 1

}

= sup

{∥∥∥∥
∫
G

〈
ULσ

t u, v
〉
HLσ

f (t)dλ(t)

∥∥∥∥ : ‖u‖HLσ ,≤ 1 and ‖v‖HLσ ,≤ 1

}

≤
∫
G

‖ f (t)‖dλ(t) = ‖ f ‖1.

Thus, ‖ f̂ (σ )‖ ≤ ‖ f ‖1, σ ∈ � and ‖ f̂ ‖∞ ≤ ‖ f ‖1. Hence, f̂ ∈ S∞(�,A) and the mapping
is continuous. ��
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3.4 Modified Peter–Weyl theorem

The following theorem gives the inverse formula of Fourier transform in the context of our
work.

Theorem 3.13 For every f ∈ L2(G,A), there is aσ
i j ∈ A, 1 ≤ i, j < ∞, σ ∈ � such that

f =
∑
σ∈�

dσ

∞∑
i, j=1

aσ
i j u

Lσ

i j . (27)

Proof With Proposition 3.8 for g ∈ L1(G, λ,A), there exists (aσ
i j )1≤i, j≤∞, aσ

i j ∈ A such
that

ĝ(σ ) =
∞∑

i, j=1

dσa
σ
i j û

Lσ

i j

with ûL
σ

i j (σ )(u, v) =
∫
G

〈
U

Lσ

t u, v
〉
HLσ

uL
σ

i j (t)dλ(t) and ĝ(σ )(θ j , θi ) = aσ
i j .

Thus ĝ = ∑
σ∈� dσ

∑∞
i, j=1 a

σ
i j û

Lσ

i j .
It is well known that L1(G, λ,A) ∩ L2(G, λ,A) is dense in L2(G, λ,A). Then, for

every f ∈ L2(G, λ,A) there exists a sequence ( fn) in L1(G, λ,A)∩ L2(G, λ,A) such that
fn −−−→

n→∞ f in L2(G, λ,A). f̂n = ∑
σ∈� dσ

∑n
i, j=1∞ aσ

i j û
Lσ

i j where naσ
i j = f̂n(σ )(θ j , θi ).

We have f̂n(σ )(θ j , θi ) −−−→
n→∞ f̂ (σ )(θ j , θi ) ie there exists aσ

i j inA such that naσ
i j −−−→

n→∞ aσ
i j .

Finally f̂ = ∑
σ∈� dσ

∑∞
i, j=1 a

σ
i j û

Lσ

i j .

According to the Corollary 3.12 the mapping f �−→ f̂ is injective; as a consequence,

f̂ =
∑
σ∈�

dσ

∞∑
i, j=1

aσ
i j û

Lσ

i j i.e. f̂ =
̂

⎛
⎝∑

σ∈�

dσ

∞∑
i, j=1

aσ
i j u

Lσ

i j

⎞
⎠ �⇒ f =

∑
σ∈�

dσ

∞∑
i, j=1

aσ
i j u

Lσ

i j . ��

Corollary 3.14 For every f ∈ L2(G,A), we have

f =
∑
σ∈�

dσ

∞∑
i, j=1

f̂ (θ j , θi )u
Lσ

i j . (28)

4 Concluding remarks

In this study, we’ve formulated a comprehensive framework for the Fourier–Stieltjes trans-
form, complete with Shur’s orthogonality property, tailored specifically for locally compact
groups. Our contributions encompass:

• Establishing the Fourier–Stieltjes transform of a bounded vector measure on a locally
compact group within the confines of a Banach algebra.

• Unraveling the Fourier transform of a Haar integrable function.
• Delving into the pertinent properties associated with our newly developed Fourier–

Stieltjes transform. These properties encompass sesquilinearity, injectivity, and continu-
ity, each playing a crucial role in understanding the transform’s behavior and applications.
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