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Abstract

This paper investigates the relationship between the von Mises plasticity
model with isotropic hardening and the class of generalized standard ma-
terials, characterized by a reversible elastic energy density and a dissipa-
tion potential. Our analysis demonstrates that within the linearized theory
framework, the constitutive equations of the von Mises plasticity model
indeed define a generalized standard material. We further discuss the im-
plications of this finding for the robustness of the projection algorithm used
in the finite element implementation of the model. The results contribute
to a deeper understanding of the model’s mathematical foundations and its
computational stability in numerical simulations.
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1. Introduction

The formalism of generalized standard materials (GSM) was first intro-
duced by Halphen and Nguyen (1975) in the context of elasto-plasticity. In
short, the constitutive equations of GSM are described by the expressions
of the elastic energy density (also called reversible elastic potential) and the
dissipation potential. The elastic energy density, stored in the material by
its deformation under external stimuli, provides by derivation the Cauchy
stress and the thermodynamics forces, while the dissipation potential, gives
rise to the evolution equations of the internal states variables. The for-
malism GSM was developed within the framework of linearized theory and
is suitable for rate independent materials. Although these two restrictions
may limit the use of this formalism to describe a vast majority of mate-
rials and their behaviors under various external conditions, the successes
credited to the GSM approach is tremendous in view of the nice local and
global stability properties it offers for robust numerical implementations in
finite element subroutines. Of course, for other materials, additional pre-
cautions are required to guarantee local and global stabilities of numerical
schemes, since the tangent stiffness matrix can become non-invertible during
nonlinear analyses.

Initially developed in the context of small strain rate independent elasto-
plasticity by Halphen and Nguyen (1975) and later on reviewed by Ziegler
and Wehrli (1987), the GSM formalism was extended to finite strain elasto-
plasticity by Hackl (1997). The later extension was proposed as an alter-
native theoretical framework to overcome the usual problems encountered
in the use of classical finite elasto-plasticity models. These problems in-
clude arbitrariness in the choice of yield functions and flow rules, difficulty
to obtain a clear distinction between the concept of frame indifference and
material symmetry which is complicated by the unclear role played by the in-
troduction of the intermediate configuration1, and generally non-equivalence
between the yield functions obtained in the different configurations intro-
duced by the adoption of a multiplicative decomposition of the deformation
gradient, see Lee (1969). Once developed, the GSM framework has con-
tinuously played a key role in modeling of materials, see Fremond (2002),

1Some authors may argued that the velocity gradient can be additively decomposed
into an elastic and plastic parts only in the intermediate configuration; however, from
the author point of view, this can simply be a heuristic assumption from the beginning,
exactly as in the small strain formulation where the Eularian deformation rate is additively
decomposed into an elastic and a plastic part
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Hackl (1997), Maugin (1992) among other authors, and ductile fracture in
porous solids, see Enakoutsa et al. (2007). Applications of the formalism to
metal plasticity whether it is described by a simple von Mises model within
the linearized theory assumption or a J2 plasticity theory has received little
attention in the litterature. The objective of this work is to overcome this
insufficiency. Namely, we shall study the relationship between the formalism
GSM and a very simple metal plasticity model, the von Mises model. The
outline of the paper is as follows.

• Section 2 gives an overview of some of the work of Halphen and Nguyen
(1975) and Nguyen (1977) on generalized standard materials.

• Section 3 demonstrates how the constitutive relations of the classical
small strain von Mises model with isotropic hardening define a gener-
alized standard material. In addition, we discuss the benefits of this
property on the numerical implementation of von Mises model into a
numerical subroutine using the well-known projection algorithm.

2. Overview of the formalism of GSM

In this section we give a brief summary of some aspects of the works
of Halphen and Nguyen (1975) and Nguyen (1977) on GSM. The theory is
applicable only in the context of linearized theory.

The constitutive law of a generalized standard material is described by
two thermodynamic potentials. The first one is the free energy ψ(ε,α),
which is a function of the strain tensor ε and a familly of internal variables
collectively denoted α. This function must be convex with respect to both
the varibles ε and α taken separately. (Convexity with respect to the global
variable (ε,α) is not required). The stress tensor σ and the thermodynamic
force F associated to α are then given by

σ ≡ ∂ψ

∂ε
(ε,α) ; F ≡ −∂ψ

∂α
(ε,α). (1)

The second thermodynamic potential is the dissipation potential φ(α̇).
This function must be convex, non-negative and zero for α̇ = 0. It gov-
erns the evolution equations of the internal variables through the equivalent
equations

F ∈ ∂φ(α̇) ⇔ α̇ ∈ ∂φ̃(F) (2)

where φ̃ denotes the Legendre-Fenchel transform of φ, and ∂φ and ∂φ̃ the
sub-differentials of φ and φ̃. In the case of a time-independent behavior, as
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considered in this paper, φ is a positively homogeneous function of degree 1
of α̇. Its Legendre-Fenchel transform φ̃ is then the indicator function of a
closed convex set C (the reversibility domain) in the space of thermodynamic
forces F. This set being defined by an inequality of the type Φ(F) ≤ 0 for
some function Φ, the sub-differential ∂φ̃(F) consists of the sole vector 0 if
F lies in the interior of C, of the half-straight line {η(∂Φ/∂F)(F), η ≥ 0} if
F lies on the boundary of C, and is empty if F lies outside C. The evolution
law (2)2 of α may thus be re-written in the equivalent form

α̇ = η
∂Φ

∂F
(F) , η

{
= 0 if Φ(F) < 0
≥ 0 if Φ(F) = 0.

(3)

This means that the evolution of α obeys a kind of “generalized normality
property”.

Generalized standard materials obey several nice properties. The first
one is that the evolution equation (2)2 of α automatically warrants non-
negativeness of the dissipation D, and thus thermodynamic consistency of
the model.

The second property is given as follows. Let quantities at time t be
denoted with an upper index 0 and quantities at t+ ∆t without any special
symbol. Then, provided that the evolution equation (2) of α is discretized in
time with an implicit scheme, the determination of the value ofα ≡ α(t+∆t)
from those of ε0 ≡ ε(t), α0 ≡ ε(t) and ∆ε ≡ ε(t + ∆t) − ε(t) ≡ ε − ε0
(projection problem) is equivalent to minimizing the function

χ(ε,α0,∆α) ≡ ψ(ε,α0 + ∆α) + φ(∆α) (4)

with respect to ∆α.
The third property which is a consequence of the second one, is that of

symmetry of the tangent matrix of the global elasto-plastic iterations.
The proofs of the three previous properties were widely discussed in

Enakoutsa et al. (2007) in the context of ductile fracture of porous solids
and are not repeated here.

3. von Mises model and the class of GSM

The objective of this section is to demonstrate that the constitutive
relations of von Mises plasticty model with isotropic hardening define a gen-
eralized standard material. We begin by recalling the constitutive equations
of this model which consist of several elements.
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• The first element, the von Mises yield criterion with isotropic harden-
ing, reads

σeq ≡
[

3

2
σ′ijσ

′
ij

] 1
2

≤ σ(εeq) = σ̄. (5)

In this equation σeq denotes the “von Mises equivalent stress”, σ′ is
the deviatoric stress tensor, and σ(εeq) represents the yield stress in
simple tension which depends on the “von Mises cumulative equivalent
plastic strain” εeq defined by:

εeq ≡
∫ t

0
ε̇eq(r)dr , ε̇eq ≡

[
2

3
ε̇ij ε̇ij

] 1
2

(6)

where ε̇eq is the “von Mises equivalent plastic strain rate”. The param-
eter σ(εeq) is usually determined experimentally by means of simple
tension tests. For the sake of simplicity, we idealize this function by a
linear formula in the form:

σ(εeq) = σ0 + hεeq (7)

where σ0 represents the initial (obtained before the appearance of any
strain hardening) yield stress in simple tension tests, and h is a positive
hardening slope.

• The second element is the Prandlt-Reuss flow rule which obeys the
“normality rule” and is defined as:

ε̇p =
3

2

ε̇eq
σeq
σ′, ε̇eq


= 0 if σeq < σ(εeq)

≥ 0 if σeq = σ(εeq).
(8)

We shall now show that these equations satisfy the required properties to
fit in the class of generalized standard materials. To that end, we must first
define the state variables and the free energy or the elastic potential of the
material, then check that the later meets the required properties defined in
Section 2.

The state of the material is described by the following variables: the
components of the total strain ε and a set of internal variables including the
components of the plastic deformation εp and the mean equivalent plastic
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strain. The free energy is defined as an elastic deformation energy plus a
“blocked” strain hardening energy

ψ(ε, εp, εeq) =
1

2
(ε− εp) : C : (ε− εp) +

∫ εeq

0
σ(ε)dε (9)

where C is the fourth-rank elastic stiffness matrix and σ(εeq) is the yield
stress which depends upon the cumulative plastic strain.

With this definition, it is obvious that the free energy ψ is strictly convex
with respect to the internal variable ε, the quadratic form defined by C being
positive-definite. The free energy is also strictly convex with respect to εp

for the same reason, as previously invoqued. Thanks to the fact that the
hardening slope is positive, the free energy is also strictly convex with respect
to the variable εeq. Furthermore, the free energy is the sum of two strictly
convex functions depending upon εp and εeq; consequently, the free energy
is strictly convex with respect to the global variable (εp, εeq) as desired.

The derivative of ψ with respect to ε is equal to σ, as also desired, and
the thermodynamic forces Fεp and F εeq , associated to the internal variables
εp and εeq, are given by

Fεp = − ∂ψ
∂εp

= C : (ε− εp) = σ

F εeq = − ∂ψ

∂εeq
= −σ(εeq) ≡ σ

(10)

(by definition of the current yield stress σ̄.)
The next task to complete is to check that the reversibility domain de-

fined by von Mises yield criterion with isotropic hardening in the space of
thermodynamic forces (by expressing von Mises yield function as a function
of the variables Fεp and F εeq , instead of the variables σ and σ) is convex.
The transformation of the variables (σ, σ) to (Fεp , F εeq) = (σ,−σ) being
linear, it suffices to show that the reversibility domain in the space of the
first variables, C ≡ {(σ, σ); Φ(σ, σ) ≤ 0}, is convex. This is obvious due to
the fact that von Mises yield function Φ 2 is a convex function with respect
to the global variable (σ, σ). Indeed,

Φ(σ, σ̄) = Φ(Fεp ,Fεeq) = σeq − σ̄ = ||Fεp′ ||+ Fεeq (11)

where the symbol ||.|| denotes the Eucludian norm. It follows that von Mises
yield function Φ is convex; hence, by linearity of the transformation of the

2The expression of the yield criterion (5) allows to define such a function
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variables (σ, σ̄) to (Fεp , Fεeq)=(σ,−σ̄), the reversibility domain is convex
with respect to the global variable (σ, σ̄).

The last thing to check is that the evolution equations associated to
the internal variables εp and εeq satisfy the “generalized normality rule”
with respect to von Mises yield function, expressed as a function of the
thermodynamic forces, i.e.:

ε̇p = η
∂Φ

∂Fεp
≡ η∂Φ

∂σ

ε̇eq = η
∂Φ

∂F εeq
≡ −η∂Φ

∂σ

(12)

Note that the evolution equation (12)1 is equivalent to the flow rule associ-
ated to the yield criterion by the normality property. It suffices, to complete
the verification, to check that the evolution equation (12)2 is satisfied. And
yet

Φ(σ, σ) = σeq − σ ⇒ ∂Φ

∂σij
=

3

2

σij
′

σeq
and

∂Φ

∂σ
= −1.

The relation (12)1 then gives

ε̇pij = η
3

2

σ′ij
σeq

. (13)

Taking the magnitude of both sides of Eq.(13), we get

η = ε̇eq,

which is precisely the value of η given by Eq.(12)2. Hence, the “generalized
normality rule” with respect to the global variable (ε, εeq) is satisfied. This
proves that small strain von Mises plasticity model with isotropic harden-
ing can be described within the context of generalized standard materials,
which guarantees that this model is automatically thermodynically consis-
tent. From the numerical point of view, the generalized standard character
of von Mises model ensures that the tangent matrix associated to the global
elasto-plastic iterations is symmetric; this should avoid spurious problems of
non-invertible matrix arrising during nonlinear analyses. The property also
warrants that the problem of projection of the elastically computed stress
tensor onto the yield locus (plastic correction of the elastic predictor) admits
a unique solution, provided that the equations of this problem are obtained
through implicit time-discretization with respect to the components of the
plastic strain and the hardening parameter.
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4. Closure

In conclusion, we have proposed a thermodynamic re-formulation of the
constitutive equations governing the von Mises plasticity model within the
framework of small strain theory. This re-formulation utilizes two key poten-
tials: a convex elastic energy density to describe the material’s elastic state
and an irreversible plastic dissipation potential to govern the evolution of
plasticity.

The stress and state variables are derived from the elastic energy, while
the plastic dissipation potential provides the evolution equations for the
internal state variables. Our analysis reveals that the reversibility domain
associated with this formulation is convex, and the thermodynamic forces
comply with a ”generalized normality rule.”

Consequently, the von Mises plasticity model with isotropic hardening
can be effectively described within the context of generalized standard ma-
terials. This ensures robust local and global stability in numerical imple-
mentations, which is crucial for achieving high-fidelity structural designs
involving elasto-plastic materials in finite element analysis.
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