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Kernel Expansions for High-Dimensional
Mean-Field Control with Non-local Interactions

Alexander Vidal, Samy Wu Fung, Stanley Osher, Luis Tenorio, Levon Nurbekyan

Abstract—Mean-field control (MFC) problems aim to
find the optimal policy to control massive populations of
interacting agents. These problems are crucial in areas such
as economics, physics, and biology. We consider the non-
local setting, where the interactions between agents are
governed by a suitable kernel. For N agents, the interaction
cost has O(N2) complexity, which can be prohibitively
slow to evaluate and differentiate when N is large. To
this end, we propose an efficient primal-dual algorithm
that utilizes basis expansions of the kernels. The basis
expansions reduce the cost of computing the interactions,
while the primal-dual methodology decouples the agents
at the expense of solving for a moderate number of dual
variables. We also demonstrate that our approach can
further be structured in a multi-resolution manner, where
we estimate optimal dual variables using a moderate N
and solve decoupled trajectory optimization problems for
large N . We illustrate the effectiveness of our method on
an optimal control of 5000 interacting quadrotors.

Index Terms—mean-field control, interaction kernels,
optimal control, swarm control, deep learning, Hamilton-
Jacobi-Bellman, mean-field games.

I. INTRODUCTION

Mean-Field Control (MFC) [6] is a class of optimal
control problems that primarily focus on controlling
systems comprising a large number of identical inter-
acting agents. These problems are designed to optimize
collective rather than individual behaviour of the agents;
in other words, the goal is to control the statistical
properties of the population, e.g., the distribution of
the agents in the state space or the physical space.
Therefore, MFC problems can be found in numerous ap-
plications, including epidemic modeling [2], [27], [11],
finance [9], [12], [7], and water distribution [3], [4].
There are two primary computational challenges when
solving MFC problems, the curse-of-dimensionality, and
the coupling among agents arising from non-local in-
teractions. While many methods have addressed the
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Fig. 1. Optimal swarm trajectories for 5000 quadrotors using our
proposed primal-dual approach. The black X denotes the target.

curse-of-dimensionality when solving MFCs [45], [19],
[52], [31], a key computational challenge remains when
solving high-dimensional MFC problems with non-local
interactions; namely, when modeling N agents with non-
local interactions [40], evaluation of the interaction cost
has complexity O(N2) at any given time, rendering
existing MFC approaches computationally expensive.

A. Our Contribution
We propose a primal-dual framework based on kernel

expansions to solve high-dimensional MFC problems
with non-local interactions. In particular, by introducing
coefficients that capture the mean-field interaction [39],
our proposed primal-dual approach decouples all the
agents at the expense of the updates of a moderate
number of dual variables, rendering the optimization
of primal variables parallelizable. In our numerical
results, we are able to approximate optimal control
of 5000 quadrotor agents (see Figure (1)). Accom-
panying animated graphics and code for our experi-
ments can be found in https://github.com/mines-opt-ml/
kernel-expansions-for-mfc.

II. BACKGROUND

We are interested in MFC problems of the form

inf
θ,ρ

J (θ, ρ)

s.t. ∂tρt(x) +∇ · (ρt(x)f(t,x,θ)) = 0, t ∈ (0, T ),
(1)
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where {ρt}, t ∈ [0, T ], are probability densities on Rd
with known initial density ρ0, representing the distribu-
tion of the agents in the state-space at each time t. The
objective function J is defined as

J (θ, ρ) =
∫ T

0
[Ex∼ρsL(s,x,θx(s)) + F(ρs) ] ds

+ G(ρT ),
(2)

where θ : IRd × [0, T ] → U ⊂ IRq is the control and
U is a sufficiently regular domain (see [16] see Sec. I.3,
I.8-9); the function f : [0, T ]× IRd× IRq → IRd models
the dynamics of the agents, and L : [0, T ]×Rd×U → R
is the Lagrangian that controls a particular performance
criterion, e.g., kinetic energy. Note that the indistin-
guishability of the agents yields controls that depend
(besides the time variable) only on the position of one
agent at a time.

The functionals F and G model the interactions among
agents within the time-horizon (0, T ) and at the final
time T , respectively. For the terminal interaction cost
we use

G(ρT ) = Ex∼ρTG(x)

for a suitably chosen G.
For the non-local interactions within the time horizon

(0, T ) we use

F(ρt) =
1

2
E(x,y)∼ρt⊗ρtK(x,y), (3)

where K : Rd × Rd → R is a positive definite ker-
nel [37, Chapter 6]. In our examples, the interaction term
penalizes agents from being too close to one another.
Thus, we want K(x,y) to be large when x and y are
close and small otherwise. Common choices of kernels
include a Gaussian kernel [40], [1] or the inverse distance
kernel [31], [15]. The double expectation (or integral)
in (3) results in a significant computational burden when
solving the MFC problem (2) because evaluation of F
for N agents results in O(N2) complexity.

III. PRIMAL-DUAL FRAMEWORK FOR AGENT
DECOUPLING

A. Saddle Point Formulation

To address the computational challenges associated
with evaluation of the interaction cost (3), we extend
the kernel expansion framework introduced in [33],
[34], [39], [40], [43] to MFC problems. We begin by
approximating the kernel in (3) with with a quadratic
(in the feature space) function

K(x,y) ≈ Kr(x,y) = ζ(x)⊤Kr ζ(y), (4)

where ζ = (ζ1, ζ2, . . . , ζr)
⊤, ζi ∈ C2(IRd) are some

basis functions or features, and Kr is an r×r symmetric
positive-definite matrix. Note that when Kr is diagonal
we obtain a truncated Mercer series approximation [36].
While there are many ways to choose ζ [43], [1], in
this work we use a neural network approximation. More
details are provided in Sec. V. The objective function
(2) can now be approximated using

Jr(θ, ρ) =
∫ T

0
Ex∼ρsL(s,x,θx(s)) ds

+
1

2

∫ T

0
E(x,y)∼ρs⊗ρsKr(x,y) ds

+ G(ρT ).

(5)

Next, we rewrite the approximate interaction term
in (5) using (4) to obtain

1

2
E(x,y)∼ρt⊗ρtKr(x,y)

=
1

2
Ex∼ρtζ(x)

⊤ KrEy∼ρtζ(y)

=
1

2
c⊤t Krct,

(6)

where
ct = Ex∼ρtζ(x), t ∈ (0, T ).

Using convex duality, we have that

1

2
c⊤t Krct =sup

at

[
a⊤t ct −

1

2
a⊤t K

−1
r at

]
=sup

at

[
Ex∼ρta

⊤
t ζ(x)−

1

2
a⊤t K

−1
r at

]
.

(7)

Hence, optimizing (5) is equivalent to the saddle point
problem

inf
θ,ρ

sup
a

∫ T

0
Ex∼ρsL(s,x,θx(s)) ds+ G(ρT )

−
∫ T

0
Ex∼ρsa

⊤
s ζ(x) ds−

1

2

∫ T

0
a⊤s K−1

r as ds.

Interchanging the inf and sup and changing the sign
of the objective function, we arrive at the variational
formulation in [40]:

inf
a
sup
θ

1

2

∫ T

0
a⊤s K−1

r as ds

−
∫ T

0
Ex∼ρsL(s,x,θx(s)) ds−

∫ T

0
Ex∼ρsa

⊤
s ζ(x) ds

− G(ρT )
s.t. ∂sρs(x) +∇ · (ρs(x)f(s,x,θx(s))) = 0, s ∈ (0, T ).

(8)

Since Lagrangian coordinates are more suitable for high-
dimensional problems [45], [31], [20], [19], we reformu-
late (8) in Lagrangian coordinates. More specifically, let

∂szx(s) = f(s, zx(s),θx(s)), zx(0) = x, (9)

2



for s ∈ (0, T ), where we suppress the dependence of z
on θ until it is necessary.

Then x ∼ ρ0 yields zx(s) ∼ ρs, where ρs is the solu-
tion of the constraints equation in (8). Consequently, (8)
can be written as

inf
a
sup
θ

Ex∼ρ0

[
1

2

∫ T

0
a⊤s K−1

r as ds

−
∫ T

0
L(s, zx(s),θx(s)) ds−

∫ T

0
a⊤s ζ(zx(s)) ds

−G(zx(T ))
]
,

s.t. (9) holds.
(10)

The function at encodes information about the interac-
tions among the agents. Indeed, the optimization over θ
in (10) decouples into regular optimal control problems

ϕa(t,x) = inf
θ

∫ T

t
L(s, zx(s),θx(s))ds

+
∫ T

t
a⊤s ζ(zx(s)) ds+G(zx(T )),

s.t. (9) holds.

(11)

Thus, once an optimal at is known, agents only need
to solve decoupled optimal control problems, and the
interaction information is reflected in the dependence
of the cost function in (11) on at. Hence, throughout
this paper, we refer to at as the global interaction
coefficients.

The function ϕa is called the value function [16]; it is
the viscosity solution of the Hamilton-Jacobi equation{

−∂tϕ(t,x) +H(t, x,∇xϕ(t,x)) = a⊤t ζ(x)

ϕ(T,x) = G(x).
(12)

Eliminating the optimization over θ in (10) we arrive at

inf
a

1

2

∫ T

0
a⊤s K−1

r as ds − Ex∼ρ0ϕa(0,x), (13)

which is then the dual formulation of the optimization
of (5) and reveals again the variational nature of the
global interaction coefficients.

Some remarks are in order. First, we have transformed
the coupled optimization problem (2) into a saddle point
problem where the agents are completely decoupled at
the expense of introducing a moderate number of dual
variables (global interaction coefficients). That is, there
is no longer a double expectation arising from (3) to
compute the interaction between every pair of agents.
Importantly, for a fixed vector function a, we can solve
for θ in a completely parallel manner. In this case
our original control θ is the primal variable and the
interaction coefficients at are the dual variables. Second,
the global interaction coefficients at can be reused. More

specifically, the primal-dual problem only needs to be
solved once. One may then solve another instance of (8).
In our experiments we show how (8) can be solved for
one instance using 100, 400, 800, and 1000 agents and
can then reuse the corresponding a⋆100,a

⋆
400,a

⋆
800, and

a⋆1000 for an experiment with a new instance of the MFC
problem with 1000 agents (see Sec. V-E).

B. Discretization and Primal-Dual Algorithm

To approximate the solution to (10), we use the di-
rect transcription approach [14] for simplicity. However,
we note that any optimal control/trajectory generation
algorithm (e.g., [52], [45], [42]) can be used with our
primal-dual framework when solving for θ in (10). Fix
a uniform time discretization

0 = t1 < t2 < · · · < tn = T, (14)

with time-step h = tk − tk−1. We define a discrete
formulation where the time integrals in (10) are approxi-
mated using sums over the grid (14) and the expectations
are approximated using sample averages over N agents
x1, . . . ,xN drawn independently from ρ◦:

L(a,θ) = h

2

n∑
k=1

a⊤tk K
−1
r atk

− h

N

n∑
k=1

N∑
ℓ=1

L(tk, zxℓ
(tk),θxℓ

(tk))

− h

N

n∑
k=1

N∑
ℓ=1

a⊤tkζ(zxℓ
(tk))−

1

N

N∑
ℓ=1

G(zxℓ
(T )),

(15)

where zxℓ
(tk) is the discretized state for the ℓth agent at

time tk obtained using, e.g., Euler’s method to solve the
ODE (9). From now on we will use θ and a to denote,
respectively, the matrices with entries θxℓ

(tk) and atk ,
and θx = (θx(t1), . . . ,θx(tn)).

Importantly, we note again that L is separable with
respect to the agents; that is, we may write,

L(a,θ) = 1

N

N∑
ℓ=1

Lℓ(a,θxℓ
), (16)

where

Lℓ(a,θℓ) =
h

2

n∑
k=1

a⊤tk K
−1
r atk

− h
n∑
k=1

L(tk, zxℓ
(tk),θxℓ

(tk))

− h

n∑
k=1

a⊤tkζ(zxℓ
(tk))−G(zxℓ

(T )).

(17)
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Following [39], [33], we approximate the saddle point
of (17) with the following primal-dual iterations

θk+1
xℓ

= argmax
θ

Lℓ(ak,θxℓ
), ℓ = 1, . . . , N (18)

ak+1 = argmin
a

L(a,θk+1
ℓ ) +

∥a− ak∥2

2γ
, (19)

where γ > 0 is a chosen parameter and the optimization
variables (a,θ) are initialized randomly. We note that the
primal update (18) can be done in parallel for each agent
and can be solved efficiently using, e.g., L-BFGS [32],
while the dual update consists of minimizing a quadratic
term with the analytic solution

ak+1
ti =

(
I+ haK

−1
r

)−1
(
akti + ha

1

N

N∑
l=1

ζ
(
z
θk+1
i

xl (ti)
))

(20)
for i = 1, 2, . . . , n, where ha = hγ. In our experiments,
Kr is the identity matrix because we use a kernel
expansion of the form

Kr(x,y) = ζ(x)⊤ζ(y), (21)

where ζ : Rd → Rr is a neural network (see Sec. V-A)

IV. RELATED WORKS

A. Multiagent Control

Traditional approaches to multiagent control do not
operate in the mean-field framework. The paper [22]
introduces a theoretical framework for the discrete time
model for autonomous agents presented in [47] that
sparked a variety of studies exploring multiagent con-
trol. One can now find many surveys and tutorials on
multiagent control; for example, [38], [17], [8], [29],
[48], [5], [28]. The works in [42], [46], [30], [41]
propose methods for multi-agent optimal control that
use a neural network to parameterize the value function.
A survey on these approaches and their connections to
optimal transport and generative modeling can be found
in [44]. Several interesting applications of multiagent
control include wind turbines [23], vehicle coordination
[25], and reusable launch vehicles [18]. Other quadrotor
simulation experiments can be found in [21], [35]. We
refer to [26] for multiagent swarm planning.

B. Mean-Field Control

Many works have explored solving mulit-agent swarm
problems using MFC. The early work [51] provides
a multiagent control approach for interacting agents
related to MFC by incorporating statistical estimates of
the global system properties. [53] introduces an MFC
approach that replaces local coordination strategies and

is supplemented with stability analyses and velocity
control experiments consisting of 1024 robot swarms.
For a comprehensive introduction/review of MFCs, we
refer the reader to the survey [13] and references therein.

Our proposed method is most closely related to [1],
which employs a similar kernel expansion approach but
is used in the context of potential mean-field games
(MFG). In particular, [1] uses a random Fourier features
approximation of the interaction term as opposed to a
neural network approach. A similar method uses poly-
nomial bases for low-dimensional MFGs [40]. We refer
to the survey [50] for MFG approaches that decouple
interaction and agent control. Our work is also motivated
by the works in [45], [31] and [49]; the former uses
deep learning to solve MFC and MFG problems. The
latter combines policy gradient estimation with the MFC
framework and provides a linear convergence result.
However, neither work considers non-local interactions.

V. NUMERICAL EXPERIMENTS

In order to demonstrate the effectiveness of our
primal-dual framework, we conduct experiments with
swarms consisting of 1000 and 5000 agents. The primal-
dual formulation proves to be valuable in addressing
challenges associated with large-scale swarm control
where the dimensionality of the problem arising from
the number of agents poses significant computational
hurdles when computing the non-local interaction be-
tween agents. The generated trajectories showcase co-
ordinated motion of interacting agents using two types
of dynamics, double integrator and quadcopter [10].
These experiments emphasize the algorithm’s ability to
numerically solve optimal control of swarms. For all
experiments, we choose the following stopping criteria:
∥∇θL(θk)∥ ≤ ϵtol (optimality criterion for primal vari-

able),
∥∥akti − 1

N

N∑
l=1

ζ(z
θk+1
i

xl (ti))
∥∥ < ϵtol for all ti (op-

timality criterion for dual variable), and ∥∇θJr(θk)∥ <
ϵtol in order to ensure the MFC problem (5) is solved.
Here, we choose ϵtol = 0.5.

A. Kernel Approximation

In our experiments, we use exponential interaction
kernels

K(x,y) = α1e
−∥x−y∥2/2, x,y ∈ R3. (22)

We build the approximation in (4) in two steps. First,
we find ζ̃ = (ζ̃1, ζ̃2, · · · , ζ̃r) such that

K̃(x,y) = e−∥x−y∥2/2 ≈ ζ̃(x)⊤ζ̃(y). (23)
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Fig. 2. Kernel Approximation: Gaussian kernel (left) and neural
network kernel approximation using r = 50 basis functions (right).

Next, we set
ζ(x) =

√
α1 ζ̃(x).

Hence, we achieve (4) with Kr being the identity matrix.
For (23), we train a single-layer feed-forward neu-

ral network ζ̃ with one 100-dimensional hidden layer.
The network outputs r = 50 basis functions ζ̃i for
i = 1, . . . , r and has 5450 total network parameters.
The network is trained on 1e5 samples drawn uniformly
from the cube [−3, 3]3 for 5e4 iterations using the Adam
optimizer [24] with a learning rate of 1e − 3 and a
scheduler that sales the learning rate by 1e − 1 every
1e4 iterations. Training occurs by minimizing the sample
mean squared-error between the true kernel values and
our approximate kernel values generated by the network.
In order to obtain higher accuracy, we also penalize
the norm of the difference of the true gradient and the
approximate gradient of the kernel. In this experiment,
we obtain a validation loss of 7.70e-03, which we found
to be accurate enough for our MFC experiments. As an
illustration, we show the true Gaussian kernel and its
neural network approximation in Figure 2.

B. Experimental Setup

1) Double Integrator: We approximate the optimal
controller of a swarm of agents with dynamics given by

ż =



ẋ = vx

ẏ = vy

ż = vz

v̇x = ax

v̇y = ay

v̇z = az

(24)

where the controls are denoted by the variable θ =
(v̇x, v̇y, v̇z) ∈ IR3 and v̇ are the accelerations that cor-
respond to each spatial dimension. Agents are penalized
if they get too close to each other using the interaction
kernel (22) and the penalty parameter α1 = 2e5 to weigh
the interaction cost.

The agents must also avoid colliding into two obsta-
cles. The obstacles are modeled as a function Q : IR3 →
IR defined as in [42]; namely,

Q(x) = QA(x)1A(x) +QB(x)1B(x),

where A = [−2, 2]× [−0.5, 0.5]× [0, 7] and B =
[2, 4]× [−1, 1]× [0, 4], 1S is the indicator function of a
set S, and QA and QB are, respectively, the density
functions of the Gaussian distributions N(µ1,Σ1) and
N(µ2,Σ2) with µ1 = (0, 0, 2), µ2 = (2.5, 0, 2),
Σ1 = Diag{9, 3, 9}, and Σ2 = Diag{9, 3, 3}. To avoid
the obstacles, Q is included in the Lagrangian as

L(t, zx(t),θ) = ∥θx(t)∥2 + α2Q(zx(t)) (25)

with α2 = 1e7. Finally, we use the terminal cost

G(zx(T )) =
α3

2
∥zx(T )− ztarget∥2 (26)

with α3 = 1e4. The agents are initialized randomly as
zxl

(0) ∼ N(xmean, 0.8 I), l = 1, 2, . . . , N , and xmean =
(0,−0.5, 0, . . . , 0) ∈ IR6. The target for the agents is
chosen to be the point (0, 0, 7, 0, . . . , 0) ∈ IR6.

To solve the primal problem, we use 250 L-BFGS [32]
iterations for fast initial improvement followed by 750
iterations of gradient descent to ensure convergence of
the gradient norm.

2) Quadrotor: We approximate the optimal controller
of a swarm of quadrotors whose dynamics are given by

ż =



ẋ = vx

ẏ = vy

ż = vz

ψ̇ = vψ

θ̇ = vθ

ϕ̇ = vϕ

v̇x = u
m

(sin(ϕ) sin(ψ) + cos(ϕ) cos(ψ) sin(θ))

v̇y = u
m

(− cos(ψ) sin(ϕ) + cos(ϕ) sin(θ) sin(ψ))

v̇z = u
m

cos(θ) cos(ϕ)− g

v̇ψ = τ̃ψ

v̇θ = τ̃θ

v̇ϕ = τ̃ϕ
(27)

where the state
z = (x, y, z, ψ, θ, ϕ, vx, vy, vz, vψ, vθ, vϕ) ∈ IR12 is
comprised of the spatial positions (x, y, z), the angular
orientation of the quadrotor, (ψ, θ, ϕ), and v defines
the velocities associated with the spatial positions and
angular orientations. The controls are defined by the
variable θ = (u, τ̃ψ, τ̃θ, τ̃ϕ) ∈ IR4 where u is the
primary propulsion force oriented downward from the
underside of the quadrotor and (τ̃ψ, τ̃θ, τ̃ϕ) define the
torques corresponding to (ψ, θ, ϕ). Here, agents must
avoid collision with one another. The penalty parameters
are the same as those described in the double-integrator
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Fig. 3. Swarm Control Experiments. Left panel: Trajectories and gradient norms for double integrator dynamics with 1000 agents. Right
panel: Trajectories and gradient norms for quadrotor dynamics with 1000 agents. On the left of each panel, trajectories are shown where each
agent must reach the target (black X) and avoid colliding with one another. On the right of each panel, gradient norm history of primal-dual is
shown: The primal and dual optimality criterion are plotted in blue and orange, respectively. The gradient norm of the original MFC problem (5)
with the approximate kernel is shown in green.

experiments and are chosen as α1 = 5e4, α2 = 0, and
α3 = 2e3. In each primal-dual iteration, we use 20 L-
BFGS [32] iterations for the primal problem (18) per
dual update (19).

C. Results

For both dynamics, we plot trajectories and optimality
criteria using 1000 agents in Figure 3. For optimality cri-
teria, we plot the gradient norm history of the objective
function (5) (in green) along with the primal and dual
optimality criteria (in blue and orange).

Our results show that our proposed primal-dual ap-
proach solves the proposed problem (5) in a decoupled
manner as seen in the iterates (18). The 5000-quadrotor
experiment shown in Figure 1 in the introduction has
the same experimental setup. These experiments were
run on an Apple MacBook Pro 8-core 3200 MHz M1
laptop running macOS Monterey 12.0.1 with a total of
16GB of RAM.

D. Time Comparison: Coupled vs. Primal-Dual

To illustrate why the primal-dual approach is pre-
ferred, we compare the runtimes between solving (1)
directly (we refer to this as the coupled approach) and
the proposed primal-dual approach using the quadrotor
dynamics with 20 and 50 agents. Figure 5 shows the
advantages of using the primal-dual approach, especially
as the number of agents increases. The experiments were
run on an Apple MacBook Pro 8-core 3200 MHz M1
laptop running macOS Monterey 12.0.1 with a total of
16GB of RAM. As expected, the primal-dual approach
is faster in terms of cumulative runtime due to the
sequential nature of the coupled approach. It is worth
noting that our simple implementation did not fully
utilize the parallel nature of our primal-dual framework
and further time gains could be achieved with a more

advanced parallel implementation (e.g., using a star
network topology infrastructure).

E. Reusing the Global Mean-Field Interaction

An important benefit of our primal-dual approach
is that the global interaction coefficients a can be
computed, saved, and then reused on future instances
of the MFC problem (1). This is because once a is
obtained, only the primal problem requires optimization
regardless of the number of agents. Consequently, a can
be determined using fewer agents than the number of
trajectories that are required as long as the interaction is
adequately approximated. This is particularly beneficial
for situations where, for example, some quadrotors might
lose power because re-computing the interaction is not
required. We empirically demonstrate this in Figure 4
as follows. First, we compute the optimal coefficients
a⋆100 using 100 agents, a⋆400 using 400 agents, a⋆800 using
800 agents, and a⋆1000 using 1000 agents. Second, we
sample 1000 fixed initial conditions x ∼ ρ0. Finally,
we re-solve the primal problem only with these new
initial points using a100,a400,a800, and a1000 until the
primal optimality condition is satisfied. Figure 4 shows
that, as long as there are enough samples, trajectories
generated using a⋆100, a

⋆
400, a

⋆
800, and a⋆1000 are qualita-

tively and quantitatively similar. Finally, as previously
stated, Figure 4 indicates that one may solve for a⋆ using
fewer agents and use this pre-computed a⋆ to solve new
instances of the MFC problem, with a potentially larger
number of agents, and in a completely parallel manner.

VI. CONCLUSIONS

We propose a primal-dual framework based on kernel
expansions for solving mean-field control (MFC) prob-
lems. Our approach decouples agent interactions by in-
troducing global interaction coefficients based on kernel
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Fig. 4. Quadrotor Controller: Illustration of trajectories using different mean-field interaction coefficients. Here, a⋆100, a
⋆
400, a

⋆
800, and a⋆1000

are interaction coefficients by solving the primal-dual for 100, 400, 800, and 1000 agents, respectively. Next, to make a proper comparison among
the different coefficients, we sample a fixed set of 1000 initial conditions from ρ0 and re-solve the primal problem using a⋆100, a

⋆
400, a

⋆
800, a

⋆
1000.
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Fig. 5. Gradient norm vs. cumulative runtime (minutes) for the
objective function Jr in (5) for 20 and 50 agents. Each algorithm
is run three times and the fastest run is chosen. Optimization stops
when the gradient norm reaches 5e − 1. Orange shows the coupled
approach and green shows our primal-dual approach.
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Fig. 6. Number of agents used to train the mean-field interaction
coefficients a vs. relative norm difference ∥ak−a1000∥/∥a1000∥ for
k = 100, 400, 800, and 1000 agents for quadrotor dynamics.

expansions. These coefficients allow us to reformulate
the MFC problem as a saddle point problem where the
primal problem can be solved in parallel. Moreover, new
instances of the MFC problem can be solved at reduced
costs by reutilizing the global interaction coefficients.

Our experiments show that the primal-dual framework is
effective at solving MFC problems, including an optimal
swarm control problem of 5000 quadrotors.
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