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Abstract

In this work, we investigate the convergence properties of the backward regularized Wasser-
stein proximal (BRWP) method for sampling a target distribution. The BRWP approach
can be shown as a semi-implicit time discretization for a probability flow ODE with the score
function whose density satisfies the Fokker-Planck equation of the overdamped Langevin
dynamics. Specifically, the evolution of the score function is computed using a kernel for-
mula derived from the regularized Wasserstein proximal operator. By applying the Laplace
method to obtain the asymptotic expansion of this kernel formula, we establish guaranteed
convergence in terms of the Kullback–Leibler divergence for the BRWP method towards a
strongly log-concave target distribution. Our analysis also identifies the optimal and max-
imum step sizes for convergence. Furthermore, we demonstrate that the deterministic and
semi-implicit BRWP scheme outperforms many classical Langevin Monte Carlo methods,
such as the Unadjusted Langevin Algorithm (ULA), by offering faster convergence and re-
duced bias. Numerical experiments further validate the convergence analysis of the BRWP
method.

Keywords: Entropy dissipation; Regularized Wassertein proximal; Laplace methods;
Score functions; Optimal time stepsize.

1 Introduction

Sampling from complex and potentially high-dimensional distributions is increasingly cru-
cial in data science Andrieu et al. (2003), computational mathematics Durmus and Moulines
(2018), and engineering Leimkuhler and Matthews (2015). Efficient sampling algorithms
are central to numerous real-world applications, including identifying global optimizers
for high-dimensional functions Ma et al. (2019), generating samples from latent spaces in
generative modeling Song and Ermon (2019), and solving Bayesian inverse problems to es-
timate posterior distributions Stuart (2010); Garbuno-Inigo et al. (2020). The success of
these applications heavily relies on the efficiency, reliability, and theoretical convergence
guarantees of the employed sampling algorithms.
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Convergence analysis of BRWP

Given the importance of sampling from known distributions, various algorithms have
been developed and analyzed. Markov Chain Monte Carlo (MCMC) methods are widely
used Ma et al. (2021); Mengersen and Tweedie (1996); Bélisle et al. (1993); Carrillo et al.
(2022); Betancourt (2017). A well-known example is the overdamped Langevin dynam-
ics, which relies on a gradient drift vector field and a simple diffusion process introduced
by Gaussian noise. Theoretical results show that the continuous-time Langevin Monte
Carlo (LMC) method can converge to a stationary distribution under appropriate assump-
tions Otto and Villani (2000). In practice, challenges arise with LMC when discretizing
the Langevin dynamics in time, particularly due to the dimension dependence caused by
the random walk component and the bias introduced by finite time stepsize. Notable
LMC methods include the Unadjusted Langevin Algorithm (ULA), which employs an ex-
plicit Euler time discretization Parisi (1981), the Metropolis-Adjusted Langevin Algorithm
(MALA), which incorporates an acceptance-rejection step Xifara et al. (2014), and the
Proximal Langevin Algorithm, which utilizes an implicit time update in the drift vector
field Liang and Chen (2022).

In recent years, studies such as Song and Ermon (2019); Lu et al. (2022); Chen et al.
(2024); Huang et al. (2024) have focused on the probability flow ODE derived from Langevin
dynamics. This approach involves expressing the diffusion process, driven by Brownian mo-
tion, in terms of the score function, which is the gradient of the logarithm of the density
function. The density itself satisfies the Fokker-Planck equation associated with over-
damped Langevin dynamics. This reformulation also connects to the gradient flow of the
Kullback–Leibler (KL) divergence in the Wasserstein space, which is the probability den-
sity space endowed with the Wasserstein-2 metric Otto and Villani (2000). In this context,
the score function represents the Wasserstein gradient of the negative Boltzmann-Shannon
entropy. It has been shown that utilizing the score function is an effective method for
sampling a target distribution, particularly from a numerical standpoint Lu et al. (2022);
Zhang and Chen (2022); Zhao et al. (2024); Wang and Li (2022).

The application of probability flow ODEs into sampling problems presents several
significant challenges. Firstly, the computation or approximation of the score function
can be both computationally intensive and inaccurate from finite samples. Secondly,
the time discretization of the probability flow ODE is crucial. The time-implicit Jor-
dan–Kinderlehrer–Otto (JKO) scheme addresses this by iteratively solving the proximal
operator of the KL divergence in Wasserstein space. However, the JKO scheme is com-
putationally demanding due to the absence of a closed-form update for the Wasserstein
proximal operator, which typically requires an additional minimization procedure. To mit-
igate these issues, a regularization term can be introduced to the Wasserstein proximal
operator, as demonstrated in Li et al. (2023), leading to a system that admits a closed-
form solution via the Hopf-Cole transformation. This solution, known as the kernel for-
mula, enables a semi-implicit time discretization of the evolution of the score function,
forming the basis of the Backward Regularized Wasserstein Proximal (BRWP) scheme.
The BRWP scheme, initially introduced in Tan et al. (2023) using empirical distribution
to approximate density function, was later enhanced in Han et al. (2024) using tensor train
approximation for high-dimensional distributions. Analysis in Han et al. (2024); Tan et al.
(2023) demonstrates that, for Gaussian target distributions, the BRWP scheme achieves
faster convergence and exhibits less sensitivity to dimensionality in terms of mixing time,
suggesting its potential applicability to a broader class of non-Gaussian distributions.

In this work, we explore the convergence properties of the BRWP scheme for sampling
from strongly log-concave distributions. By leveraging the Laplace method on the kernel
formula, we show that the BRWP algorithm is a semi-implicit discretization of the prob-
ability flow ODE, where the score function is evaluated at the next time point and free
from Brownian motion. This implicit approach enhances the robustness and stability of the
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sampling process. Moreover, since the probability flow ODE in the BRWP scheme is deter-
ministic, we can conduct higher-order numerical analysis, which enables faster convergence
by optimizing the step size, as demonstrated in our upcoming analysis.

We informally demonstrate the main results as below. We aim to sample a target distri-
bution ρ∗ := 1

Z exp(−βV ) with a given potential function V ∈ C2(Rd;R), a normalization
constant Z =

∫

Rd exp(−βV (x))dx < ∞, a constant inverse temperature β, and an initial
density ρ0. In particular, in section 3, we show that the following kernel formula from the
regularized Wasserstein proximal operator

ρT (x) =

∫

Rd

exp
[

− β
2

(

V (x) +
||x−y||22

2T

)]

∫

Rd exp
[

− β
2

(

V (z) +
||z−y||2

2

2T

)]

dz
ρ0(y)dy , (1)

provides a one-step time approximation of the Fokker-Planck equation:

∂ρ

∂t
= ∇ · (∇V ρ) + β−1∆ρ .

Here, the stepsize is given as T > 0.

Theorem 1 (Informal, see Theorem 4) For fixed x ∈ R
d and stepsize T > 0, suppose ρ0 satisfies

the Fokker-Planck equation at time t0. Then we have

ρT (x) = ρ0(x) + T
∂ρ0
∂t

∣

∣

∣

∣

t=t0

(x) +O(T 2) . (2)

With the help of the kernel formula (1) and assume that it can be computed accurately,
we implement the following semi-implicit discretization with the stepsize h > 0 of the score
dynamic to sample from ρ∗:

xk+1 = xk − h(∇V (xk) + β−1∇ log ρT (xk)) , (3)

where ρT (x) = ρ(tk + T, x). Considering the evolution of the density function associated
with xk, denoted as ρk, in section 4, we show the convergence guarantees of the proposed
sampling method in terms of the KL divergence where DKL(ρk‖ρ∗) =

∫

ρk log
ρk

ρ∗
dx.

Theorem 2 (Informal, see Theorem 12) Assume ρ∗ is strongly log-concave with constant α. For a
sufficient small constant δ > 0, the BRWP algorithm will achieve an error of DKL(ρk‖ρ∗) ≤ δ, with

k = O
( | ln δ|
2α

√
δ

)

,

where the stepsize is chosen as T = h =
√
δ when

√
δ < 2/(3α).

The convergence of Langevin dynamics-based methods has been extensively studied un-
der various assumptions in the literature Balasubramanian et al. (2022); Durmus and Moulines
(2018); Dwivedi et al. (2019); Chewi et al. (2024). In comparison to methods like ULA,
proximal Langevin, and other Langevin dynamics-based sampling algorithms, our scheme—being
free from noise—offers a sampling complexity that is independent of the dimension d and
has a bias that is only on the order of

√
δ. Additionally, the explicit decay results facilitate

the selection of an optimal step size, which is achievable due to the deterministic nature
of our approach. Similarly, the convergence of sampling algorithms derived from the prob-
ability flow ODE has been investigated in Gao and Zhu (2024); Chen et al. (2023, 2022).
However, these results are often unstable, with errors tending to infinity as time progresses,
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and they generally rely on the assumption of an accurately estimated score function at each
time step Yang and Wibisono (2022). In this work, we provide a precise choice of stepsize
and offer a detailed analysis of how to approximate the evolution of the density function
using the regularized Wasserstein proximal operator which is depicted in detail in section
5.

Finally, in Section 6, we present numerical experiments to validate our theoretical
results and briefly outline several future research directions in conclusion.

2 Review on Probability Flow ODE with Score Function, Regularized

Wasserstein Proximal Operator, and BRWP Algorithm

In this section, we begin by outlining the sampling problem for a given target distribution
and reviewing classical sampling algorithms derived from overdamped Langevin dynam-
ics, along with their convergence analysis in Wasserstein space. We then discuss various
sampling algorithms based on discrete-time approximations of the Fokker-Planck equation,
including the ULA, JKO scheme, and BRWP. To provide a comprehensive comparison, we
summarize the sampling complexity and optimal stepsize for BRWP and several popular
existing methods in Table 1.

2.1 Sampling problem

We aim to generate a collection of samples {xk,j}Nj=1 ∈ R
d, with k ∈ Z representing the

iteration steps, and j = 1, · · ·N forming the number of samples, drawn from a known
probability distribution, also named a Gibbs distribution

ρ∗(x) =
1

Z
exp(−βV (x)) ,

where Z =
∫

Rd exp(−βV (x))dx < +∞ is the normalization constant, β > 0 is the inverse

temperature, and V ∈ C2(Rd;R) represents the potential function. The collection {x0,j}Nj=1

is an arbitrary set of initial particles, and the objective of the sampling algorithm is to
ensure that, as k increases, the distribution of {xk,j}Nj=1 approximates the density function
ρ∗.

The classical sampling algorithm is to consider the Langevin dynamics, which is de-
scribed by the stochastic differential equation

dXt = −∇V (Xt)dt+
√

2β−1dBt , (4)

where Bt denotes the standard Brownian motion in R
d. The density function of Xt evolves

according to the Kolmogorov forward equation, also named Fokker-Planck equation:

∂ρ

∂t
=∇ · (ρ∇V ) + β−1∆ρ

=∇ · (ρ∇V ) + β−1∇ · (ρ∇ log ρ)

=β−1∇ ·
(

ρ∇ log
ρ

ρ∗

)

,

(5)

where the second equality is based on the fact that ∇ log ρ = ∇ρ/ρ. Clearly, ρ∗ is an
equilibrium of the Fokker-Planck equation (5). Thus, the invariant distribution of Langevin
dynamics follows ρ∗.

A known fact is that the Fokker-Planck equation corresponds to the Wasserstein-2
gradient flow of the KL divergence

DKL(ρ‖ρ∗) :=
∫

ρ log
ρ

ρ∗
dx .

4
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This means that the Fokker-Planck equation (5) can be formulated as

∂ρ

∂t
= β−1∇ ·

(

ρ∇ δ

δρ
DKL(ρ‖ρ∗)

)

,

where δ
δρ is the L2 first variation w.r.t. the density function ρ. Furthermore, in the

Wasserstein space, the squared norm of the gradient of the KL divergence, also known as
the relative Fisher information, is written as

I(ρ‖ρ∗) =
∫
∥

∥

∥

∥

∇ log
ρ

ρ∗

∥

∥

∥

∥

2

2

ρdx .

From any initial distributions, the probability density of Langevin dynamics converges
to the target distribution ρ∗. Specifically, we have

d

dt
DKL(ρ‖ρ∗) = −β−1I(ρ‖ρ∗) < 0 .

Moreover, when ρ∗ satisfies the log-Sobolev inequality (LSI) with constant α, we can es-
tablish the relationship between the KL divergence and Fisher information

DKL(ρ‖ρ∗) ≤
1

2βα
I(ρ‖ρ∗) . (6)

This inequality can be viewed as the gradient-dominated condition, commonly known as
the Polyak-Lojaciewicz (PL) inequality in the Wasserstein space. From now on, we assume
that ∇2V � αI, or ρ∗ is strongly log-concave, such that the LSI holds Gross (1975);
Bakry and Émery (2006).

Utilizing the PL inequality, one can show that the KL divergence converges exponen-
tially along the Wasserstein gradient flow (see Lemma 17 in the appendix for more details)

DKL(ρt‖ρ∗) ≤ exp(−2αt)DKL(ρ0‖ρ∗) ,

where ρt(x) = ρ(t, x).
Although the convergence at the continuous time level is promising, numerical analysis

of the particle trajectory in the discrete Langevin dynamics reveals a bias and a dependence
on the dimensionality of the problem. This issue arises due to the evolution of Brownian
motions in approximating Langevin dynamics, which can slow down convergence in high-
dimensional sampling problems, as its variance is proportional to the dimension. More
details will be provided in the next subsection.

Given these difficulties, in this work, we instead consider a probability flow ODE, where
the diffusion is generated by the score function:

dXt = −∇V (Xt)dt− β−1∇ log ρt(Xt)dt . (7)

The trajectory of (7) differs from the Langevin dynamics (4). However, using the identity
∇ log ρ = ∇ρ/ρ, it is straightforward to show the corresponding Liouville equation remains
the Fokker-Planck equation (5). Consequently, the corresponding probability flow continues
to be the Wasserstein gradient flow for the KL divergence. In continuous time, the KL
divergence still converges exponentially fast along the flow given by (7).

Moreover, since the ODE (7) is deterministic, it is feasible to perform higher-order
numerical analysis under finite time stepsizes to explore the higher-order error terms in-
troduced by discretization and optimal stepsize associated with the discretization. This
analysis will be the main focus of Section 4, where we demonstrate the improved conver-
gence rate and accuracy.
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2.2 Discrete time approximation

Although the KL divergence converges exponentially fast in continuous time along the
flow given by the Fokker-Planck equation, discretizing Langevin dynamics slows down
convergence. It also introduces a bias term due to the discretization error. For example,
applying explicit Euler discretization with stepsize h to (4) results in the ULA

xk+1 = xk − h∇V (xk) +
√

2β−1hzk , (8)

where zk ∼ N (0, I). The convergence of ULA is well studied, and Vempala and Wibisono
(2019) shows

DKL(ρk‖ρ∗) ≤ exp(−αhk)DKL(ρ0‖ρ∗) +
8hdL2

α
,

where ρk represents the density at time tk = kh and −LI � ∇2V � LI. The discretization
induces an error term of order h, which depends on the dimension d that arises from the
Brownian motion term. This makes high-dimensional cases particularly challenging and
limits the optimal selection of stepsize.

Then we turn to study the discretization of the probability flow ODE (7) and note
that one of the primary challenges is the approximation of the score function. It becomes
increasingly difficult and inaccurate in high-dimensional spaces. As a result, a straightfor-
ward explicit Euler discretization can be highly unstable, potentially causing ρk to become
concentrated around the global minimum of V (x) due to the drift term ∇V (x). Hence, an
implicit discretization to (7) becomes highly demanding.

Implicit methods for solving Langevin dynamics have also been extensively studied,
including proximal Langevin Wibisono (2019), proximal sampler with restricted Gaussian
oracle Liang and Chen (2022), and implicit Langevin Hodgkinson et al. (2021). In partic-
ular, from the density level, the implicit method usually corresponds to a certain splitting
Bernton (2018) of the classical JKO scheme for the Fokker-Planck equation

ρk+1 = argmin
ρ∈P2(Rd)

β−1DKL(ρ‖ρ∗) +
1

2h
W2(ρ, ρk)

2 , (9)

where W2(ρ, ρk) is the Wasserstein-2 distance between densities ρ and ρk.
However, the aforementioned implicit implementation requires solving certain proximal

operators or a system of nonlinear equations, which could be time-consuming and difficult
for general families of density functions. In light of this, a semi-implicit Euler discretization
method was proposed in Tan et al. (2023); Han et al. (2024) for the particle evolution
equation (7) at time tk:

xk+1 = xk − h
(

∇V (xk) + β−1∇ log ρT (xk)
)

, (10)

where ρT (x) = ρ(tk+T, x), and for simplicity, we omit tk in ρT when there is no confusion.
In other words, we only evaluate the score function in the next time step.

2.3 Regularized Wasserstein proximal operator and kernel formula

Concerning (10), one may note approximating the terminal density ρT := ρ(tk + T, ·) is
challenging due to non-linearity concerning the initial density and high dimensional nature
of the density function ρ. The classical JKO scheme in (9) also requires an expensive
optimization operation.

To address this, we first note that the JKO scheme can be regarded as a Wasserstein
proximal operator with KL divergence. Then by considering a regularized Wasserstein
proximal operator Li et al. (2023), a kernel formula can be obtained to compute its solution.
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The solution can be adapted to approximate the evolution of the density function along
the Fokker-Planck equation with a small stepsize.

Assume tk = 0 for simplicity. Specifically, we first recall the Wasserstein proximal with
linear energy

ρT = argmin
q

[

1

2T
W2(ρ0, q)

2 +

∫

Rd

V (x)q(x)dx

]

. (11)

Note that this is slightly different from the Wasserstein proximal operator with KL di-
vergence as we will later add a Laplacian regularization to this. Additionally, by the
Benamou-Brenier formula Benamou and Brenier (2000), the Wasserstein-2 distance can be
expressed as an optimal transport problem, leading to

W2(ρ0, q)
2

2T
= inf

ρ,v

∫ T

0

∫

Rd

1

2
‖v(t, x)‖22ρ(t, x) dx dt ,

where the minimizer is taken over all vector fields v : [0, T ]× R
d → R

d, density functions
ρ : [0, T )× R

d → R, such that

∂ρ

∂t
+∇ · (ρv) = 0 , ρ(0, x) = ρ0(x) , ρ(T, x) = q(x) .

Solving (11) is usually a challenging optimization problem. In Li et al. (2023), mo-
tivated by Schrödinger bridge systems, the authors introduce a regularized Wasserstein
proximal operator by adding a Laplacian regularization term, leading to

ρT = argmin
q

inf
v,ρ

∫ T

0

∫

Rd

1

2
||v(t, x)||22ρ(t, x) dx dt +

∫

Rd

V (x)q(x) dx , (12)

with
∂ρ

∂t
+∇ · (ρv) = β−1∆ρ , ρ(0, x) = ρ0(x) , ρ(T, x) = q(x) . (13)

Introducing a Lagrange multiplier function Φ, we find that solving ρT is equivalent to
computing the solution of the coupled PDEs











∂tρ+∇x · (ρ∇xΦ) = β−1∆xρ ,

∂tΦ+ 1
2 ||∇xΦ||22 = −β−1∆xΦ ,

ρ(0, x) = ρ0(x) , Φ(T, x) = −V (x) .

(14)

Comparing the first equation in (14) with the Fokker-Planck equation defined in (5), we
observe that the solution to the regularized Wasserstein proximal operator (12) approxi-
mates the terminal density ρ when T is small. In other words, by solving the coupled PDE
(14), we can approximate the evolution of the Fokker-Planck equation. This approximation
will be justified rigorously in Section 3.

The motivation for considering the regularized Wasserstein proximal operator as an
approximate solution lies in the fact that the coupled PDEs (14) can be solved using a
Hopf-Cole type transformation. Then ρ(t, x) can be computed by solving a system of
backward-forward heat equations

ρ(t, x) = η(t, x)η̂(t, x) , (15)

where η̂ and η satisfy

∂tη̂(t, x) = β−1∆xη̂(t, x) ,

∂tη(t, x) = −β−1∆xη(t, x) , (16)

η(0, x)η̂(0, x) = ρ0(x), η(T, x) = exp (−βV (x)) .
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Denote Gt(x, y) = 1/(4π t
β )

d
2 exp(−‖x − y‖22/(4 t

β )) as the heat kernel with thermal

diffusivity β. The solution to the regularised Wasserstein proximal operator (12) can be
computed as















ρ(t, x) = (GT−t ∗ exp(− V
2β )) · (Gt ∗ ρ0

GT ∗exp(− V
2β )

)(x) ,

v(t, x) = 2β−1∇ log(GT−t ∗ exp(− V
2β )) ,

ρT = exp(− V
2β )(x) ∗ (GT ∗ ρ0

GT ∗exp(− V
2β )

)(x) .

In particular, we are mostly interested in the terminal density ρT which is an approximation
to the density function that evolves from the Fokker-Planck equation with initial density ρ0
at time T . We write down the explicit formula of ρT for the convenience of the upcoming
discussion

ρT (x) = ProxT,V (ρ0)(x) :=

∫

Rd

exp
[

− β
2

(

V (x) +
||x−y||22

2T

)]

∫

Rd exp
[

− β
2

(

V (z) +
||z−y||2

2

2T

)]

dz
ρ0(y)dy. (17)

2.4 BRWP algorithm

We now present the complete BRWP algorithm for sampling based on the semi-implicit
discretization of the probability flow ODE.

Algorithm 1 BRWP for Sampling from ρ∗ = 1

Z exp(−βV )

1: Input: Initial particle set {x0,j}Nj=1

2: for k = 1, 2, 3, . . . do

3: Given ρk as the density function for {xk,j}, compute ρtk+T (xk,j) using the kernel
formula.

4: for each particle j = 1, 2, . . . , N do

5: Update particle:

xk+1,j = xk,j − h
(

∇V (xk,j) + β−1∇ log ρtk+T (xk,j)
)

6: end for

7: end for

Here, T represents the stepsize for the evolution of the Fokker-Planck equation in (5),
and h represents the discretization stepsize for the score dynamics (7). In our discussion, we
are primarily interested in the case where T = h. We use different notations to emphasize
that these are discretization parameters for two distinct processes.

The goal of this work is to establish results on the sampling complexity and maximum
stepsize h required for the convergence of the interacting particle system generated by (10)
under the following assumptions on ρ∗

• Stronly log-concavity: The target distribution ρ∗ is log-concave, i.e., there exists a constant
α > 0 such that ∇2V � αI.

• Bounded derivatives: The second and third derivatives of the function V are bounded.
Specifically, there exist constants L,M > 0 such that ‖∇2V ‖∞ ≤ L and ‖∇3V ‖∞ ≤M .

We note that the first assumption ensures the existence of a log-Sobolev inequality, while the
second assumption facilitates the convergence of second and third order Taylor expansions

8
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involving V . The bounded derivative assumptions are for theoretical convenience and do
not appear in the final expression of sampling complexity or mixing time. Moreover, we
only require that ‖∇2V ‖∞ and ‖∇3V ‖∞ are bounded in a neighborhood of the particles
{xk,j}, where the neighborhood size is proportional to the discretization stepsize. Our
numerical experiments (see Section 6) demonstrate that the proposed methods work for a
general family of distributions.

We first summarize the theoretical results we will prove in Section 4 in Table 1, where
we compare BRWP with other popular methods. Sampling complexity refers to the number
of iterations needed to achieve at a given level of accuracy.

Algorithm
Sampling complexity when

DKL(ρk‖ρ
∗) ≤ δ

Maximum stepsize h

BRWP (this paper) O
(

| ln δ|

2αδ1/2

)

2
3α

ULA (Vempala and Wibisono (2019)) O
(

dL2

α2δ

)

α
4L2

Underdamped Langevin (Ma et al. (2021)) O
(

d1/2(L3/2+d1/2K)

α2δ1/2

)

O
(

α

L3/2

)

Proximal Langevin (Wibisono (2019)) O
(

d1/2(L3/2+dK)

α3/2δ1/2

)

min
{

1
8L

, 1
K
, 3α
32L2

}

Table 1: Iteration complexities for Langevin algorithms under log-Sobolev inequality with
constant α. Here −LI � ∇2V � LI and K is the upper bound for ‖∇3V ‖op.

In the next section, we shall assume that we know exactly ρk at time tk and focus on
investigating the approximate density given by the kernel formula (17).

3 Laplace Approximation to the kernel formula

In this section, we demonstrate that the solution to the regularized Wasserstein proximal
operator (17) approximates the evolution of the Fokker-Planck equation (5) when T is small
by utilizing the Laplace method. The proof shows that the solution to the Fokker-Planck
equation can be approximated using the kernel formula without the need for inversion or
optimization.

Our strategy is to employ the Laplace method up to two terms Bleistein and Handelsman
(1986)

∫

Ω

g(x) exp

(

−f(x)
T

)

dx = (2πT )d/2 exp

(

−f(x
∗)

T

)[

g(x∗)

|∇2f(x∗)|1/2 +
T

2
H1(x

∗) +O(T 2)

]

, (18)

where x∗ = argminx f(x) is the unique minimizer of f in Ω, |∇2f | is the determinant
of the Hessian matrix of f , and H1 is the first-order term of the expansion. The ex-
plicit form for H1 is given below, with its detailed derivation available in Section 8.3 of
Bleistein and Handelsman (1986). Writing fp = ∂

∂xp
f for p = 1, · · · , d, we have

H1(x
∗) = −|∇2f(x∗)|−1/2

{

− fsrqBsqBrpgp +Tr(CB) (19)

+ g

[

fpqrfstu

(

1

4
BpsBqrBtu +

1

6
BpsBqtBru

)

− 1

4
fpqrsBprBqs

]}

x=x∗

,

9
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where we use the summation convention to sum over all indices from 1 to d. The matrices
in the expression are defined as

C = {gpq} , B = {Bpq} ,
∑

Bpqfqr(x
∗) = δpr .

We can then apply this approximation to the kernel formula of the regularized Wasserstein
proximal operator in (17) to obtain the asymptotic expansion when T is small. In Theorem
4, we will show that ρT , computed from the kernel formula satisfies

ρT (x) = ρ0(x) + T
∂ρ0
∂t

∣

∣

∣

∣

t=t0

(x) +O(T 2) ,

where ρ0 satisfies the Fokker-Planck equation at time t0. The proof relies on exploring
the explicit representations of the first two terms in the approximation (18), the Taylor
expansion of the potential function V (by the bounded derivative assumption), and the
uniqueness of the minimizer x∗ in (19), which follows from the log-concavity assumption.

3.1 Approximation to the normalization term

Firstly, we derive the approximation result for the denominator in the kernel formula (17),
as shown in the following lemma.

Lemma 3 For any y, assuming T∆V (sy) ≤ 1, we have

(

β

4πT

)d/2 ∫

Rd

exp

(

−β
2

(

V (z) +
||z − y||22

2T

))

dz (20)

=
1

1 + T/2∆V (s̃y)
exp

(

−β
2

(

V (s̃y) +
‖s̃y − y‖22

2T

))

+O(T 2) ,

where
sy = y − T∇V (sy) , s̃y = y − T∇V (y) .

Proof For the normalization term in (17) and fixed y, we have

(

β

4πT

)d/2 ∫

Rd

exp

(

−β
2

(

V (z) +
||z − y||22

2T

))

dz (21)

=

(

β

4πT

)d/2 ∫

Rd

exp

(

− β

2T

(

TV (z) +
‖z − y‖22

2

))

dz

=exp

(

− β

2T

(

TV (sy) +
‖sy − y‖22

2

))

[

1

|1 + T∇2V (sy)|1/2
+
T

β
H1(sy) +O

(

2T

β

)2
]

,

where sy is defined as the argmin of the exponent

sy := argmin
z

{

TV (z) +
||y − z||22

2

}

.

Next, we verify that H1(sy) is of order O(T ). Concerning the general form of Laplace
method (18), we note

g(z) = 1 , f(z) = TV (z) +
‖z − y‖22

2
, fpq(z) = T

∂2V

∂zp∂zq
(z) + δpq , fpqr(z) = T

∂3V

∂zp∂zq∂zr
(z) ,

10
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where the quadratic term becomes a constant after taking the second-order partial deriva-
tive and vanishes after taking the third-order partial derivative. Given that the B matrix
in (19) is the inverse of a diagonal matrix plus T∇2V , the magnitude of the diagonal entries
of B is O(1).

Thus, looking at the expression of H1(sy), we confirm that

H1(sy) = O(T ) ,

as all terms in (19) are of the order O(T ). Then the approximation in (21) is simplified to

(

β

4πT

)d/2 ∫

Rd

exp

(

−β
2

(

V (z) +
||z − y||22

2T

))

dz (22)

=
1

|1 + T∇2V (sy)|1/2
exp

(

− β

2T

(

TV (sy) +
‖sy − y‖22

2

))

+O(T 2) .

Next, we compute sy more explicitly. Since V (z) is convex, so is TV (z) + ‖z − y‖22 for
any y and T with respect to z. This ensures sy is unique. By the first-order optimality
condition, sy satisfies

T∇V (sy) + sy = y .

To further simplify the expression and compute the integral explicitly, we define an
approximation for sy as

s̃y := y − T∇V (y) . (23)

By definition of s̃y, we have

‖s̃y − sy‖2 = T ‖∇V (sy)−∇V (y)‖2 ≤ LT ‖sy − y‖2 = LT 2‖∇V (sy)‖2 = O(T 2) .

The inequality holds when∇V is Lipschitz continuous with constant L which can be implied
by ∇2V is bounded by L along the line segment connecting y and sy.

Finally, for the determinant of the Hessian matrix, we apply the Taylor expansion of
the determinant operator and the square root function to obtain

|I + T∇2V (sy)| = I + T∆V (sy) +O(T 2) , (24)

|I + T∇2V (sy)|1/2 = I +
T

2
∆V (sy) +O(T 2) ,

which converges when T∆V (sy) ≤ 1.

We arrive at the desired result by combining equations (21) to (24).

3.2 Approximation to the kernel formula

In this subsection, we will present the approximation to the complete kernel formula for
ρT and discuss several implications of the approximation. Letting

V0(x) = −β−1 log ρ0(x) ,

we follow a similar approach as in the proof of Lemma 3 to derive the asymptotic approxi-
mation of ρT . Due to the similarity in the proof of the following theorem, we will highlight
the key steps and leave the complete proof in the appendix.

11
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Theorem 4 For fixed x, assume that ∆V0 is bounded above on the line segment connecting x and
rx, where rx satisfies rx = x+T∇(V − 2V0)(rx). Moreover, when T∆V (rx) ≤ 1 and T∆V0(rx) ≤ 1,
we have

ρT (x) = ρ0(x)
[

1− βT∇(V − V0) · ∇V0(x) + T∆(V − V0)(x)
]

+O(T 2) . (25)

If ρ0 satisfies the Fokker-Planck equation at time t0, we have

ρT = ρ0 + Tβ−1∇ ·
(

∇ log
ρ0
ρ∗
ρ0

)

+O(T 2) = ρ0 + T
∂ρ

∂t

∣

∣

∣

∣

t=t0

+O(T 2) . (26)

Proof The main proof is divided into three steps.
Step 1: Substituting (20) into the expression for ρT in (17), we obtain

ρT (x) = exp

(

−β
2
V (x)

)

·
∫

Rd

1 + T
2∆V (s̃y)

(4πT/β)d/2
exp

[

−β
2

( ||x− y||22
2T

+ 2V0(y)− V (s̃y)−
||y − s̃y||22

2T

)]

dy +O(T 2) ,

where s̃y = y − T∇V (y).
Step 2: Applying the Laplace method to approximate the integral obtained in Step 1,

we arrive at

ρT (x) =
exp

(

−β
2V (x)

)

[

1 + T
2∆V (s̃r̃x)

]

1 + T
2 ∆(2V0 − V )(r̃x)

·

exp

[

−β
2

( ||x− r̃x||22
2T

− ||r̃x − s̃r̃x ||22
2T

+ 2V0(r̃x)− V (s̃r̃x)

)]

+O(T 2) ,

where
r̃x := x+ T∇(V − 2V0)(x) ,

being the minimizer of the exponent.
Step 3: Using a Taylor expansion on the exponent again and the definitions of s̃r̃x and

r̃x, we derive

2V0(r̃x)− V (s̃r̃x) +
||x− r̃x||22

2T
− ||r̃x − s̃r̃x ||22

2T
= 2V0(x)− V (x) + 2T∇(V − V0) · ∇V0(x) +O(T 2) ,

which leads directly to the desired result after substitution.
Finally, the relation (26) comes from

∂ρ

∂t

∣

∣

∣

∣

t=t0

= β−1∇ ·
(

∇ log
ρ0
ρ∗
ρ0

)

= (∆(V − V0)− β∇V0 · ∇(V − V0)) ρ0 .

We observe that it is sufficient for the Hessian of V0 to be bounded only within a
T -neighborhood around the sampling point x, rather than requiring global boundedness,
which can be challenging to verify in practice. Additionally, since most sampling points
are typically situated near the high-density regions of ρ∗, it is adequate for V0 to exhibit
reasonable smoothness specifically within these high-density areas.

We remark that (26) implies ρT computed from the kernel formula serves as a first-
order approximation to the solution of the Fokker-Planck equation. Before proceeding to

12
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the particle formulation of our sampling algorithm, we present two direct corollaries of the
approximation in Theorem 4. These corollaries demonstrate that if the kernel formula (17)
is successfully applied for a small time stepsize T , i.e.,

ρk+1 = ProxT,V (ρk) , k = 0, 1, 2, · · · , (27)

the KL divergence and Fisher information between ρk and ρ∗ will converge exponentially
with an error term of O(T 2).

Firstly, for the convergence of the KL divergence, we have the following lemma whose
proof can be found in Appendix A.2.

Lemma 5 For ρk at iteration k defined by (27), we have

DKL(ρk‖ρ∗)−DKL(ρk+1‖ρ∗) = Tβ−1I(ρk‖ρ∗) +O(T 2) .

Applying the PL inequality (6), we obtain a lower bound for the decay of the KL energy

DKL(ρk‖ρ∗)−DKL(ρk+1‖ρ∗) ≥ 2αTDKL(ρk‖ρ∗) +O(T 2) .

Using Grönwall’s inequality, we then establish the exponential convergence of the KL di-
vergence.

Theorem 6 Under the same assumptions as in Theorem 4, with ρk from (27), we have

DKL(ρk‖ρ∗) ≤ DKL(ρ0‖ρ∗) exp(−2αkT ) +O(T ) . (28)

Similarly, the convergence of the Fisher information can be derived by applying the
Taylor expansion to

∫

‖∇ log ρk

ρ∗
‖22ρkdx, alongside the exponential convergence of the Fisher

information along the flow of Fokker-Planck equation as proved in Lemma 17 in the ap-
pendix. This leads to the following corollary.

Corollary 7 Under the same assumptions as in Theorem 4, with ρk from (27), we have

I(ρk‖ρ∗) ≤ I(ρ0‖ρ∗) exp(−2αkT ) +O(T ) . (29)

4 Rapid Convergence of BRWP

In this section, we analyze the convergence of the BRWP presented in Algorithm 1, where
the particle evolves according to

xk+1 = xk − h(∇V (xk) + β−1∇ log ρT (xk)) , (30)

with ∇ log ρT being a first-order approximation to the score function at time tk + T for
T ≤ h, where ρT satisfies

ρT = ρk + Tβ−1∇ ·
(

∇ log
ρk
ρ∗
ρk

)

+O(T 2) . (31)

According to Theorem 4, the kernel formula (17) provides a feasible way to compute ρT
without any optimization and inversion. Since ρk and ρ∗ are independent of T , the order
of the error term will remain the same after taking the gradient on (31). More practical
considerations of evaluating this formula will be addressed in Section 5.

Our primary objective is to determine the sampling complexity and maximum step size
outlined in Table 1 at the end of Section 2, as well as to analyze the mixing time of the
BRWP algorithm. Specifically, we will first analyze the evolution of the density function
under discretization and then derive the rate of decay for the KL divergence between the
density function of the generated particles and ρ∗.

13
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4.1 Evolution of density function of the particle system

In the next lemma, we will first derive the evolution of the density function for the discrete
particle system (30). Since most of the derivation is Taylor expansion and standard inte-
gration by parts, we will highlight key steps in the following proof and leave the complete
derivation in the Appendix A.3.

Lemma 8 The evolution of the density function corresponding to (30) is given by

ρk+1 =ρk + hβ−1∇ ·
(

∇ log
ρk
ρ∗
ρk

)

+ hTβ−2∇ ·
[

∇
(∇ · (∇ log ρk

ρ∗
ρk)

ρk

)

ρk

]

(32)

+
h2

2
∇ · (φ̃ρk) +O(h3) ,

where
φ̃ :=

[

∇ · (∇φ∇φT ) + (∇φ)T (∇φ · ∇ log ρk)
]

, φ := β−1(log ρT − log ρ∗) . (33)

Proof [Sketch of the proof] The outline of the proof is given as follows.
Step 1. Let φ(x) = V (x) + β−1 log ρT (x). For any smooth function u, we have

∫

uρk+1 dx =

∫
[

u− h∇φ · ∇u+
h2

2
∇φT∇2u∇φ

]

ρk dx+O(h3)

=

∫

u



ρk + h∇ · (∇φρk) +
h2

2

∑

i,j

∂2

∂xi∂xj

(

∂φ

∂xi

∂φ

∂xj
ρk

)



 dx +O(h3) . (34)

Step 2. The term involving the Hessian can be simplified to

∑

i

∂

∂xi

(

∂φ

∂xi

∂φ

∂xj
ρk

)

=
[

∇ · (∇φ∇φT ) + (∇φ)T (∇φ · ∇ log ρk)
]

ρk = φ̃ · ρk .

Step 3. The desired result follows by noting that

log ρT = ρk + Tβ−1
∇ ·
(

∇ log ρk

ρ∗
ρk

)

ρk
+O(T 2) .

To simplify notation, we define

Dβ
k (u) :=

β−1

ρk
∇ · (∇uρk) . (35)

Equation (32) can then be rewritten more compactly as

ρk+1 = ρk + hDβ
k

(

log
ρk
ρ∗

)

ρk + hTDβ
k ◦ Dβ

k

(

log
ρk
ρ∗

)

ρk +
h2

2
∇ · (φ̃ρk) +O(h3) . (36)

Next, we can substitute (36) into the definition of KL divergence and apply the defini-

tion of Dβ
k to obtain the decay of KL divergence at each time step. The result is summarized

in the following lemma and is derived using integration by parts and the Taylor expansion
of the logarithmic function. The detailed proof is provided in Appendix A.3.
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Lemma 9 For the density function evolves from (30) from time tk to tk+1 = tk + h, we have

DKL(ρk‖ρ∗)−DKL(ρk+1‖ρ∗) = hβ−1I(ρk‖ρ∗)−
h(h+ 2T )

2

∫
∣

∣

∣

∣

Dβ
k

(

log
ρk
ρ∗

) ∣

∣

∣

∣

2

ρkdx (37)

− h2

2
β−2

∫
〈

∇ log
ρk
ρ∗
, ∇2 log

ρk
ρ∗

∇ log
ρk
ρ∗

〉

ρk dx+O(h3) .

4.2 Convergence of KL divergence and the mixing time

In the expansion presented in Lemma 9, the first term, associated with Fisher information,
induces the exponential decay due to the PL inequality (6), which is also common in the
analysis of time-discretizations of Langevin dynamics. Thus, the second and third terms,
which result from discretization errors, are crucial for comparing the convergence rates of
different schemes.

Given that our expansion includes terms up to O(h2), it is natural to consider identities
related to the second-order time derivative of KL divergence along the flow of the Fokker-
Planck equation. Assuming ρk satisfies the Fokker-Planck equation at time tk, Lemma 18
in the appendix provides the well known identity

d2

dt2
DKL(ρk‖ρ∗) = 2β−1

∫
〈

∇ log
ρk
ρ∗
, ∇2V∇ log

ρk
ρ∗

〉

ρk dx+ 2β−2

∫
∥

∥

∥

∥

∇2 log
ρk
ρ∗

∥

∥

∥

∥

2

F

ρk dx .

Additionally, using the definition of Dβ
k in (35), Lemma 19 in the appendix shows

another representation of the second-order derivative of KL divergence

1

2

d2

dt2
DKL(ρk‖ρ∗) =

∫
∣

∣

∣

∣

Dβ
k

(

log
ρk
ρ∗

)
∣

∣

∣

∣

2

ρk dx+ β−2

∫
〈

∇ log
ρk
ρ∗
, ∇2 log

ρk
ρ∗

∇ log
ρk
ρ∗

〉

ρk dx .

Substituting these results into (37), we obtain

DKL(ρk‖ρ∗)−DKL(ρk+1‖ρ∗) (38)

≥ hβ−1I(ρk‖ρ∗)−
h(h+ 2T )

4

d2

dt2
DKL(ρk‖ρ∗)

− hT

2
β−2

[
∫
∥

∥

∥

∥

∇2 log
ρk
ρ∗

∥

∥

∥

∥

2

F

ρk dx+

∫
∥

∥

∥

∥

∇ log
ρk
ρ∗

∥

∥

∥

∥

4

2

ρk dx

]

+O(h3)

=hβ−1I(ρk‖ρ∗)−
h(h+ 3T )

4

d2

dt2
DKL(ρk‖ρ∗)

+
hTβ−1

2

∫
〈

∇ log
ρk
ρ∗
, ∇2V∇ log

ρk
ρ∗

〉

ρk dx− hTβ−2

2

∫
∥

∥

∥

∥

∇ log
ρk
ρ∗

∥

∥

∥

∥

4

2

ρk dx+O(h3) ,

where we used the inequality

‖A‖2F + ‖x‖42 ≥ −2
∑

ij

xiaijxj = −2xTAx ,

in the second line. Regarding the terms in the final line of (38), the second-order time
derivative can be bounded using the PL inequality by writing it as the difference of the
Fisher information at tk and tk+1, while the third term can be bounded below by the strong
log-concavity assumption. This leaves us with the task of bounding the term with the fourth
power, which involves detailed calculations using vector calculus identities. In Lemma 20
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in the appendix, we show that for continuous time, where ρ satisfies the Fokker-Planck
equation

∂

∂t

∫
∥

∥

∥

∥

∇ log
ρ

ρ∗

∥

∥

∥

∥

4

2

ρ dx ≤ −4α

∫
∥

∥

∥

∥

∇ log
ρ

ρ∗

∥

∥

∥

∥

4

2

ρ dx ,

which implies that the fourth-order term also decays exponentially.
Hence, for the density function evolving according to (32), we have the following result.

Lemma 10 For ρk satisfying the iterative relationship (32), we have

∫
∥

∥

∥

∥

∇ log
ρk
ρ∗

∥

∥

∥

∥

4

2

ρk dx ≤ exp(−4αhk)

∫
∥

∥

∥

∥

∇ log
ρ0
ρ∗

∥

∥

∥

∥

4

2

ρ0 dx +O(h) . (39)

Proof The result follows from combining the findings in Lemma 20, the relation

ρk+1 = ρk + h
∂ρk
∂t

+O(h2) = ρtk+h +O(h2) ,

where ρtk+h is the density evolving according to the exact Fokker-Planck equation at time
tk + h with initial density ρk at time tk, and Grönwall’s inequality.

The next Lemma will describe the relation of KL divergence at tk and tk+1 whose proof
follows from the results established in Lemma 10 and the application of the PL inequality
to (38), as detailed in Appendix A.3.

Lemma 11 Let M0 := β−2
∫

‖∇ log ρ0

ρ∗
‖42ρ0 dx, tk = kh, and T = sh for s ∈ [0, 1]. Then, the decay

of KL divergence in one step is given by

DKL(ρk+1‖ρ∗) ≤
[

1− 2αh+ (1 + 2s)α2h2
]

DKL(ρk‖ρ∗) +
h2s

2
M0 exp(−4αhk) +O(h3) . (40)

We are now ready to present the main theorem concerning the convergence guarantee
of the BRWP algorithm in terms of KL divergence.

Theorem 12 Suppose T = sh for s ∈ [0, 1]. The KL divergence at the k-th time step satisfies

DKL(ρk‖ρ∗) ≤ exp [−αkh (2− (1 + 2s)αh)]DKL(ρ0‖ρ∗) (41)

+
h2

2

sM0 exp(−4αkh)

exp(−4αh)− (1− 2hα+ (1 + 2s)α2h2)
+O(h2) .

When s = 1, the algorithm achieves an error DKL(ρk‖ρ∗) ≤ δ with

k = O
( | ln δ|
2α

√
δ

)

,

and the stepsize h =
√
δ when

√
δ < 2

3α and δ ≪ 1.

Proof By applying results in Lemma 21 regarding the convergence of general sequences
of the form (40), we obtain the inequality (41).

We note that since

h

exp(−4αh)− (1− 2hα+ (1 + 2s)α2h2)
=

1

−2α+O(h)
,
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the second term in (41) is of order h exp(−4αtk) and much smaller than the first term for
small h. Hence, let h2 = δ, s = 1, and require the first term in (41) to be of order O(δ).
This implies

k ≥ ln(DKL(ρ0‖ρ∗))− ln δ

hα(2 − 3αh)
.

Substituting h2 = δ into the above, we obtain the desired result on sampling complexity.

We remark that from Han et al. (2024); Tan et al. (2023), the bias of BRWP for target
Gaussian distribution is of order h2, which coincides with our current analysis and is better
than ULA whose bias is of order O(h).

However, in practice, we usually choose a small stepsize to make the bias term small.
We present the following corollary on the maximum and optimal stepsize. The result is
based on the explicit decay result in Theorem 12, which is useful for the case α is large or
adaptive step size, i.e., using a larger stepsize for the first few iterations.

Corollary 13 For T = h, regarding the convergence of the KL divergence with the BRWP algorithm:

• The maximum allowable step size is h = 2
3α .

• The step size that yields the fastest convergence is h = 1
3α .

Some other quantities are also often useful for measuring the efficiency of a sampling
algorithm including the Wasserstein-2 distance between ρk and ρ∗ and the mixing time. In
particular, the mixing time is defined as

tmix(δ, ρ0) = min{k | dTV (ρk, ρ
∗) ≤ δ} , (42)

where ρk is the density function at time tk starting from ρ0 and

dTV (ρk, ρ
∗) =

∫

Rd

|ρk(x) − ρ∗(x)| dx . (43)

Recalling the Pinsker’s inequality

dTV (ρk, ρ
∗)2 ≤ 1

2
DKL(ρkρ

∗‖ρ∗) ,

and the Talagrand’s inequality

α

2
W2(ρk, ρ

∗)2 ≤ DKL(ρk‖ρ∗) ,

we obtain the following direct corollary of Theorem 12.

Corollary 14 When T = h for the BRWP algorithm, the convergence of the Wasserstein-2 distance
between ρk and ρ∗ is given by

W2(ρk, ρ
∗)2 ≤ 2 exp (−αkh(2− 3αh))

α
DKL(ρ0‖ρ∗) +

h2M0 exp(−4αkh)

α(exp(−4αh)− (1 − 2hα+ 3α2h2))
+O(h2).

The mixing time will be tmix(δ, ρ0) = O
(

| ln δ|
2αδ

)

DKL(ρ0‖ρ∗) with h = δ .
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5 Estimation of Score function and Practical Consideration

In this section, we analyze the impact of numerical errors arising from approximating the
score function, ∇ log ρT , at each iteration of the interacting particle system described in
(7). These errors can significantly affect the overall numerical performance. One com-
mon approach for estimating the score function is kernel density estimation, as employed
in Tan et al. (2023); Han et al. (2024). Based on existing accuracy results for score esti-
mation (e.g., Wibisono et al. (2024); Jiang and Zhang (2009)), the score function can be
approximated with high accuracy, provided that a sufficiently large number of particles is
used. This assumption underlies the results presented in Section 4.

For example, if the error in the score function estimation is of order O(h2), then the
previous discussions remain valid, as this would introduce an additional error term of order
O(h3). However, if the score function estimation lacks sufficient accuracy, our results in
Section 4 will be weakened due to the introduction of an additional error term from the
score function estimation itself.

Additionally, we explore an alternative method for computing the score function by it-
eratively applying the kernel formula (17). This approach circumvents the need to estimate
the score function at each iteration, potentially improving efficiency and stability.

5.1 Score function from successive approximation

We denote the sequence of density functions ρ̃k as the density generated by evaluating the
regularized proximal operator (27)

ρ̃k+1 = ProxT,V (ρ̃k) , (44)

with ρ̃0 = ρ0 as the initial density. As discussed previously, we also denote ρk as the density
function generated by BRWP as in (7).

We propose a direct computation of the score function in each iteration using the
regularized Wasserstein proximal operator, bypassing the need to construct an empirical
distribution or perform kernel density estimation from the particles {xk,j}. This approach
leads to the following algorithm.

Algorithm 2 BRWP for Sampling from ρ∗ = 1

Z exp(−βV ) with successively evaluating the
regularized Wasserstein proximal operator.

1: Let ρ̃0 = ρ0.
2: for k = 1, 2, 3, . . . do

3: Compute ρ̃k+1 with (44) and ∇ρ̃k+1 with (45).
4: for each particle j = 1, 2, . . . , N do

5: xk+1,j = xk,j − h(∇V (xk,j) + β−1∇ log ρ̃k+1(xk,j)).
6: end for

7: end for

Since ∇ log ρ̃k+1 = ∇ρ̃k/ρ̃k, computing the score function requires us to also compute
the evolution of the gradient of ρ̃k, which can be derived by taking the gradient of the
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kernel formula (17). The gradient formula is expressed as follows

∇ρ̃k+1(x) =− β

2
∇V (x)ρ̃k+1(x)− β

∫

Rd

(x−y)
2T exp

[

−β
2

(

V (x) +
‖x−y‖2

2

T

)]

∫

Rd exp
[

−β
2

(

V (z) +
‖z−y‖2

2

2T

)]

dz
ρ̃k(y) dy (45)

=− β

(

1

2
∇V (x) +

x

2T

)

ρ̃k+1(x) +
β

2T

∫

Rd

y exp
[

−β
2

(

V (x) +
‖x−y‖2

2

2T

)]

∫

Rd exp
[

−β
2

(

V (z) +
‖z−y‖2

2

2T

)]

dz
ρ̃k(y) dy .

The asymptotic value of ∇ρ̃k+1 can be obtained using the Laplace method, as summarized
in the first statement of the following lemma. Additionally, the difference between the two
sequences of density functions, ρk and ρ̃k, is addressed in the second statement.

Lemma 15 For ρ̃k from (44) and ρk from (7) with the same initial density ρ0, we have:

1. The gradient of ρ̃k obtained from the gradient of kernel formula (45) satisfies

∇ρ̃k+1(x) = ∇ρ̃k(x) + T∇∂ρ̃k
∂t

∣

∣

∣

∣

t=tk

(x) +O(T 2) ; (46)

2. The difference between the two sequences of density functions satisfies

ρ̃k − ρk = O(h2) , ∇ log ρ̃k −∇ log ρk = O(h2) .

Proof The proof of the first statement follows similar lines to those in Section 3, so we
defer it to the Appendix A.4.

For the second statement, we use induction. By Lemma 8 and Theorem 4, we have

ρ1 = ρ0 + h
∂ρ0
∂t

+O(h2) , ρ̃1 = ρ0 + h
∂ρ0
∂t

+O(h2) ,

where the time derivative is the derivative along the flow of the Fokker-Planck equation.
Thus, ρ̃1 − ρ1 = O(h2).

Inductively, at the k-th iteration, we have

ρk+1 − ρ̃k+1 = ρk − ρ̃k + h
∂(ρk − ρ̃k)

∂t
+O(h2) = O(h2) .

Hence, the result for the score function follows similarly.

The significance of Lemma 15 is that we can use the approximate score function
∇ log ρ̃k+1 in each iteration to avoid repeatedly approximating the density function. Since
our approximate score function is accurate up to the order O(T 2), all discussions in Section
4 still hold. This is summarized in the following corollary.

Corollary 16 For sampling with the particle evolution equation

xk+1 = xk − h(∇V (xk) + β−1∇ log ρ̃k+1(xk)) , ρ̃k+1 = Proxh,V (ρ̃k) , ρ̃0 = ρ0 , (47)

the results in Lemma 8 and Theorem 12 also hold for the corresponding density function.

In particular, to evaluate high-dimensional integrals in kernel formulas, we can utilize
tensor train approximations as applied in Han et al. (2024). This approach essentially shifts
the difficulty from high-dimensional sampling problems to evaluating high-dimensional in-
tegrals, which can be efficiently tackled using advanced tensor methods due to the structure
of the kernel formula as it involves heat kernels that can be evaluated dimension by dimen-
sion.
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6 Numerical Experiments

In this section, we present several numerical experiments to illustrate the theoretical results
derived in the previous sections. All below numerical experiments are conducted in a 10-
dimensional sample space, i.e., Rd with d = 10 and we only plot the result in the first
dimension for the purpose of presentation.

Example 1. In this example, we explore the evolution of density functions over sev-
eral iterations using the kernel formula (17). Consistent with Theorem 4, we numerically
demonstrate that the computed density converges to the target density under an appro-
priately chosen step size. To efficiently manage the high-dimensional integrations involved,
we employ tensor train approximation for the density functions. Further details on this
approach can be found in our previous work Han et al. (2024).

The first distribution we consider is a mixed Gaussian distribution defined as

ρ∗(x) =
1

2(2πσ2)d/2

[

exp

(

−‖x− a‖22
2σ2

)

+ exp

(

−‖x+ a‖22
2σ2

)]

, (48)

where a = 2.
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(a) T = 0.01, 20 iterations.
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(b) T = 0.01, 100 iterations.
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(c) T = 0.01, 400 iterations.
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(d) T = 0.05, 20 iterations.
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(e) T = 0.05, 40 iterations.
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(f) T = 0.1, 15 iterations.

Figure 1: Evolution of the density function (blue) with (17) for different stepsizes T for
the first dimension. The initial density is N (0, 2). The target density is a mixed Gaussian
(red).

From Fig. 1, we observe that for sufficiently small stepsizes, the generated density con-
verges to the target density very satisfactorily. Furthermore, comparing the first and last
plots, we note that a larger time stepsize results in faster convergence while having a larger
approximation error.

Next, we consider a mixture of L1 and L1/2 norms, where

ρ∗(x) =
1

Z

[

exp(−‖x+ 2~e1‖1) +
1

2
exp(−‖x− 2~e1‖21/2)

]

,
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~e1 is the vector with the first entry equal to 1 and all other entries equal to 0, and Z is the
normalization constant.
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(a) Initial distribution.
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(b) T = 0.05, 20 iterations.
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(c) T = 0.05, 50 iterations.

Figure 2: Evolution of the density function (blue) for the first dimension with (17) as the
target density with a mixture of L1 and L1/2 norms (red).

From Fig. 2, we observe that even for the non-smooth potential function, which exceeds
the assumptions made in the previous analysis, the density still converges to the target
distribution satisfactorily using the kernel formula.
Example 2: In the second example, we assess the convergence of the BRWP algorithm by
computing the score function based on the density function evolved using the regularized
Wasserstein proximal operator, as outlined in Algorithm 2. We compare the performance
of the BRWP method with that of the explicit Euler discretization of the probability
flow ODE, which utilizes the score function at time tk approximated by a kernel density
estimation with Gaussian kernel from particles, and the ULA described in (8).

The figure below shows the distribution of particles after 50 iterations for the mixed
Gaussian distribution defined in (48).

(a) BRWP (b) Explicit Euler. (c) ULA.

Figure 3: Histogram of 500 particles after 50 iterations in the first dimension for a Gaussian
mixture distribution with h = T = 0.02.

Comparing the first and second graphs in Fig. 3, it is evident that the semi-implicit
discretization (BRWP) improves the robustness of sampling and mitigates the variance re-
duction phenomenon observed in the explicit Euler discretization. Additionally, comparing
the first and last plots, we note that the BRWP algorithm provides a more accurate and
structured approximation to the target distribution due to its noise-free nature.

In the second experiment, we consider a mixture of Gaussian and Laplace distributions
defined as

ρ∗(x) =
1

Z

[

exp

(

−‖x− 2‖22
2σ2

)

+ exp

(

−‖x+ 2‖1
2b

)]

,
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where Z is the normalization constant.

(a) BRWP
10 iterations

(b) ULA
10 iterations

(c) BRWP
20 iterations

(d) ULA
20 iterations

Figure 4: Histogram of 500 particles in the first dimension for the mixture of Gaussian and
Laplace distributions with h = T = 0.02.

In Fig. 4, the TT-BRWP algorithm exhibits faster convergence to the target distribution
compared to ULA, which is consistent with our previous theoretical results.

7 Conclusion and discussion

In this work, we present the convergence analysis of the BRWP algorithm, which is de-
signed to sample from a known distribution up to a normalization constant. The algorithm
relies on a semi-implicit time discretization of a noise-free probability flow ODE with the
diffusion generated by the score function. The corresponding Liouville equation is still the
Fokker-Planck equation of the overdamped Langevin dynamic. To address the challenge of
approximating the evolution of the density function which usually involves intensive opti-
mization, we apply the regularized Wasserstein proximal operator, whose solution is repre-
sented by a simple kernel formula. Using the Laplace method, we first demonstrate that the
kernel formula serves as a first-order approximation to the evolution of the Fokker-Planck
equation. Given the noise-free nature of the new sampling algorithm, we then conduct
a high-order numerical analysis to study the KL divergence convergence guarantee of the
BRWP algorithm. The analysis shows that the new approach offers faster convergence in
high-dimensional settings and exhibits less bias than many existing methods. Additionally,
we derive the optimal and maximum stepsizes required for convergence.

Our BRWP sampling method can be viewed as an interacting particle system based
on a kernel derived from the regularized Wasserstein proximal operator. This concept
shares similar motivations with sampling algorithms from interacting particle systems pro-
posed in Garbuno-Inigo et al. (2020); Carrillo et al. (2022); Reich and Weissmann (2021);
Carrillo et al. (2019); Liu and Wang (2016). However, we apply and evaluate these ker-
nels differently. Here, we apply the interacting particle systems to approximate the linear
Fokker-Planck equation, while other methods generate new interacting particle samplers
from nonlinear Fokker-Planck equations. It is essential to highlight that a major challenge
of our algorithm in practice is accurately approximating the density function and efficiently
simulating the kernel formula, particularly as the dimension increases.

There are several interesting future directions to explore from this work. First, it would
be valuable to extend the discussion to more general non-log-concave distributions and
investigate the convergence of the algorithm. Second, the current analysis and numerical
framework can be extended and generalized to different schemes, addressing challenges
such as constrained sampling problems, sampling from group symmetric distribution, and
sampling under different metrics. Lastly, we are also applying this approach to broader
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fields, including global optimization, time-reversible diffusion, and solving high-dimensional
Hamilton-Jacobi equations.
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Appendix A. Postponed Proofs and Lemmas

In this section, we provide proofs for lemmas and theorems that are used in our analysis.
Some of the results in Section A.1 are well-known. We include them in the appendix for
the sake of completeness.

A.1 Identities and inequalities along the flow of the Fokker-Planck equation

Let ρ∗(x) = 1
Z exp(−βV (x)). When ∇2V � αI, it is known that ρ∗ satisfies the log-Sobolev

inequality. Specifically, for any smooth function g with Eρ∗(g2) ≤ ∞, we have
∫

g2 log g2ρ∗ dx−
∫

g2ρ∗ dx log

∫

g2ρ∗ dx ≤ 2

βα

∫

‖∇g‖2ρ∗ dx . (49)

Note that the factor of β arises from the definition ρ∗ = 1
Z exp(−βV ), and our assumption

applies to the function V .
Using the log-Sobolev inequality, we can derive the following dissipation result for

Fokker-Planck equation (5).

Lemma 17 If ρ∗ satisfies the log-Sobolev inequality (49) and ρ is the solution to the Fokker-Planck
equation (5), then

d

dt
DKL(ρ‖ρ∗) = −β−1I(ρ) ≤ −2αDKL(ρ‖ρ∗) .

Proof By definition of KL divergence, we have

d

dt
DKL(ρ‖ρ∗) =

∫

∂

∂t
ρ log

ρ

ρ∗
dx = β−1

∫

∇ ·
(

∇ log
ρ

ρ∗
ρ

)

log
ρ

ρ∗
dx = −β−1

∫
∥

∥

∥

∥

∇ log
ρ

ρ∗

∥

∥

∥

∥

2

2

ρ dx .

Substituting g2 = ρ
ρ∗

to (49), we further obtain the following inequality relating KL diver-
gence and Fisher information

DKL(ρ‖ρ∗) =
∫

log
ρ

ρ∗
ρ dx ≤ 1

2βα

∫
∥

∥

∥

∥

∇ log
ρ

ρ∗

∥

∥

∥

∥

2

2

ρ dx =
1

2βα
I(ρ‖ρ∗) .

Then, for the second-order time derivative of the KL divergence, we can derive the
following two relations using the definition and integration by parts. These relations are
crucial for the proof of Lemma 11.

Lemma 18 When ρ∗ satisfies the log-Sobolev inequality and ρ is the solution to the Fokker-Planck
equation, the second-order time derivative of KL divergence satisfies
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(i)

d2

dt2
DKL(ρ‖ρ∗) = 2β−2

∫
∥

∥

∥

∥

∇2 log
ρ

ρ∗

∥

∥

∥

∥

2

F

ρ dx+ 2β−1

∫
〈

∇ log
ρ

ρ∗
,∇2V∇ log

ρ

ρ∗

〉

ρ dx .

(ii)
d2

dt2
DKL(ρ‖ρ∗) = −β−1 d

dt
I(ρ) ≥ 2β−1αI(ρ) ≥ 4β−1α2DKL(ρ‖ρ∗) .

Proof Using the fact that ρ satisfies the Fokker-Planck equation, and recall our definitions
of Dβ and the generator L as used in Section 4 which are

Dβ(u) =
β−1

ρ
∇ · (∇u ρ) , L(v) = β−1∆v −∇V · ∇v . (50)

Using integration by parts, we then get

d2

dt2
DKL(ρ‖ρ∗) =

d

dt

∫

∂

∂t
ρ log

ρ

ρ∗
dx =

∫

∂2ρ

∂t2
log

ρ

ρ∗
dx +

∫
∣

∣

∣

∣

∂ρ

∂t

∣

∣

∣

∣

2
1

ρ
dx (51)

=

∫
[

β−1∆
∂ρ

∂t
+∇ ·

(

∇V ∂ρ
∂t

)]

log
ρ

ρ∗
dx+

∫
∣

∣

∣

∣

Dβ

(

log
ρ

ρ∗

)
∣

∣

∣

∣

2

ρ dx

=

∫

Dβ

(

log
ρ

ρ∗

)

L
(

log
ρ

ρ∗

)

ρ dx+

∫
∣

∣

∣

∣

Dβ

(

log
ρ

ρ∗

)∣

∣

∣

∣

2

ρ dx

=2

∫

Dβ

(

log
ρ

ρ∗

)

L
(

log
ρ

ρ∗

)

ρ dx+

∫

Dβ

(

log
ρ

ρ∗

)[

Dβ

(

log
ρ

ρ∗

)

− L
(

log
ρ

ρ∗

)]

ρ dx

=− 2β−1

∫

∇ log
ρ

ρ∗
· ∇L

(

log
ρ

ρ∗

)

ρ dx+ β−1

∫

Dβ

(

log
ρ

ρ∗

)∥

∥

∥

∥

∇ log
ρ

ρ∗

∥

∥

∥

∥

2

2

ρ dx

=− 2β−1

∫

∇ log
ρ

ρ∗
· ∇L

(

log
ρ

ρ∗

)

ρ dx+ β−1

∫

L
∥

∥

∥

∥

∇ log
ρ

ρ∗

∥

∥

∥

∥

2

2

ρ dx ,

where the last inequality comes from the fact that Dβ
(

log ρ
ρ∗

)

ρ = β−1∆ρ+∇ · (∇V ρ).
The commutator between L and ∇ for a smooth function f can be written as

∇Lf − L∇f = ∇
(

β−1∆f −∇V · ∇f
)

− β−1∆(∇f) +∇V · ∇2f = −∇2V∇f .

Using the Bochner’s formula

1

2
∆
(

‖∇f‖22
)

= ∆∇f · ∇f + ‖∇2f‖2F ,

we note that

1

2
L‖∇f‖22 −∇f · ∇L(f) (52)

=
1

2
L‖∇f‖22 −∇f · L∇f +

〈

∇f,∇2V∇f
〉

=β−1

(

1

2
∆‖∇f‖22 −∇f ·∆∇f

)

− 1

2
∇V · ∇‖∇f‖22 + 〈∇f,∇2f∇V 〉+

〈

∇f,∇2V∇f
〉

=β−1‖∇2f‖2F +
〈

∇f,∇2V∇f
〉

,

Combining the final equality in (52) with (51), we obtain the first statement.

24



Convergence analysis of BRWP

Substituting f = log ρ
ρ∗

into (52) and combined with (51), we get

d2

dt2
DKL(ρ‖ρ∗) = 2β−2

∫
∥

∥

∥

∥

∇2 log
ρ

ρ∗

∥

∥

∥

∥

2

F

ρ dx+ 2β−1

∫
〈

∇ log
ρ

ρ∗
,∇2V∇ log

ρ

ρ∗

〉

ρ dx

≥2β−1α

∫
∥

∥

∥

∥

∇ log
ρ

ρ∗

∥

∥

∥

∥

2

2

ρ dx = 2β−1αI(ρ) ≥ 4α2DKL(ρ‖ρ∗) ,

where we used ∇2V � αId and the final inequality follows from Lemma 17.

Lemma 19 Let ρ satisfy the Fokker-Planck equation (5). Then, the second-order time derivative
of the KL divergence satisfies

1

2

d2

dt2
DKL(ρ‖ρ∗) =

∫
∣

∣

∣

∣

Dβ

(

log
ρ

ρ∗

)∣

∣

∣

∣

2

ρ dx+ β−2

∫
〈

∇ log
ρ

ρ∗
, ∇2 log

ρ

ρ∗
∇ log

ρ

ρ∗

〉

ρ dx ,

where Dβ is defined in (50).

Proof Firstly, by the definition of KL divergence and computation in (51), we have

d2

dt2
DKL(ρ‖ρ∗) =

∫

Dβ

(

log
ρ

ρ∗

)

L
(

log
ρ

ρ∗

)

ρ dx+

∫
∣

∣

∣

∣

Dβ

(

log
ρ

ρ∗

)∣

∣

∣

∣

2

ρ dx .

Moreover, we note the following relationship

Dβ

(

log
ρ

ρ∗

)

− L
(

log
ρ

ρ∗

)

= β−1

∥

∥

∥

∥

∇ log
ρ

ρ∗

∥

∥

∥

∥

2

2

.

Thus, we can express

∫
∣

∣

∣

∣

Dβ

(

log
ρ

ρ∗

)
∣

∣

∣

∣

2

ρ dx =
1

2

[

∫

Dβ

(

log
ρ

ρ∗

)

L
(

log
ρ

ρ∗

)

ρ dx+

∫
∣

∣

∣

∣

Dβ

(

log
ρ

ρ∗

)
∣

∣

∣

∣

2

ρ dx

]

+
1

2

∫
(

Dβ

(

log
ρ

ρ∗

)

− L
(

log
ρ

ρ∗

))

Dβ

(

log
ρ

ρ∗

)

ρ dx

=
1

2

d2

dt2
DKL(ρ‖ρ∗) +

β−1

2

∫
∥

∥

∥

∥

∇ log
ρ

ρ∗

∥

∥

∥

∥

2

2

Dβ

(

log
ρ

ρ∗

)

ρ dx

=
1

2

d2

dt2
DKL(ρ‖ρ∗)− β−2

∫
〈

∇ log
ρ

ρ∗
, ∇2 log

ρ

ρ∗
∇ log

ρ

ρ∗

〉

ρ dx ,

where the last equality uses the identity for any smooth function u

∫

‖∇u‖22Dβ(u)ρ dx = β−1

∫

‖∇u‖22∇ · (∇uρ) dx

=− β−1

∫

∇‖∇u‖22 · ∇uρ dx = −2β−1

∫

〈

∇u, ∇2u∇u
〉

ρ dx .
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A.1.1 Convergence of fourth order term

We show the fourth power of ‖∇ log ρ
ρ∗
‖ also converges exponentially in Wasserstein space.

The below result is used in the proof of Theorem 12.

Lemma 20 When ρ∗ is strongly log-concave with ∇2V � αI and ρ is the solution to the Fokker-
Planck equation, we have

∂

∂t

∫
∥

∥

∥

∥

∇ log
ρ

ρ∗

∥

∥

∥

∥

4

2

ρdx ≤ −4α

∫
∥

∥

∥

∥

∇ log
ρ

ρ∗

∥

∥

∥

∥

4

2

ρdx .

Proof Taking the time derivative directly, we have

∂

∂t

∫
∥

∥

∥

∥

∇ log
ρ

ρ∗

∥

∥

∥

∥

4

2

ρdx = 4

∫
∥

∥

∥

∥

∇ log
ρ

ρ∗

∥

∥

∥

∥

2

2

〈

∇ log
ρ

ρ∗
,∇∂ρ/∂t

ρ

〉

ρdx+

∫
∥

∥

∥

∥

∇ log
ρ

ρ∗

∥

∥

∥

∥

4

2

∂ρ

∂t
dx . (53)

Using the identity ∂ρ
∂t = β−1∇ ·

(

∇ log ρ
ρ∗
ρ
)

and integration by parts, the first term above

equals to

4

∫
∥

∥

∥

∥

∇ log
ρ

ρ∗

∥

∥

∥

∥

2

2

〈

∇ log
ρ

ρ∗
, ∇∂ρ/∂t

ρ

〉

ρdx (54)

=− 4

∫

∇ ·
(

∥

∥

∥

∥

∇ log
ρ

ρ∗

∥

∥

∥

∥

2

2

∇ log
ρ

ρ∗

)

∂ρ/∂t
ρ

ρdx− 4

∫
∥

∥

∥

∥

∇ log
ρ

ρ∗

∥

∥

∥

∥

2

2

〈

∇ log
ρ

ρ∗
,
∇ρ
ρ

〉

∂ρ

∂t
dx

=− 4β−1

∫

∇ ·
(

∥

∥

∥

∥

∇ log
ρ

ρ∗

∥

∥

∥

∥

2

2

∇ log
ρ

ρ∗

)

∇ ·
(

∇ log
ρ

ρ∗
ρ

)

dx

− 4β−1

∫
∥

∥

∥

∥

∇ log
ρ

ρ∗

∥

∥

∥

∥

2

2

〈

∇ log
ρ

ρ∗
,
∇ρ
ρ

〉

∇ ·
(

∇ log
ρ

ρ∗
ρ

)

dx

=4β−1

∫

〈

∇∇ ·
(

∥

∥

∥

∥

∇ log
ρ

ρ∗

∥

∥

∥

∥

2

2

∇ log
ρ

ρ∗

)

,∇ log
ρ

ρ∗

〉

ρdx

+ 4β−1

∫

〈

[

∇
〈

∥

∥

∥

∥

∇ log
ρ

ρ∗

∥

∥

∥

∥

2

2

∇ log
ρ

ρ∗
,
∇ρ
ρ

〉

]

, ∇ log
ρ

ρ∗

〉

ρdx .

For the last term in (54), it can be simplified as

4β−1

∫

〈

[

∇
〈

∥

∥

∥

∥

∇ log
ρ

ρ∗

∥

∥

∥

∥

2

2

∇ log
ρ

ρ∗
,
∇ρ
ρ

〉

]

,∇ log
ρ

ρ∗

〉

ρdx (55)

=4β−1

∫

〈〈

∇
(

∥

∥

∥

∥

∇ log
ρ

ρ∗

∥

∥

∥

∥

2

2

∇ log
ρ

ρ∗

)

,
∇ρ
ρ

〉

,∇ log
ρ

ρ∗

〉

ρdx

+ 4β−1

∫

〈〈

∥

∥

∥

∥

∇ log
ρ

ρ∗

∥

∥

∥

∥

2

2

∇ log
ρ

ρ∗
,∇
(∇ρ
ρ

)

〉

,∇ log
ρ

ρ∗

〉

ρdx

=4β−1

∫

〈

(

∇
(
∥

∥

∥

∥

∇ log
ρ

ρ∗

∥

∥

∥

∥

2

2

∇ log
ρ

ρ∗

))T

∇ log
ρ

ρ∗
,∇ρ

〉

dx

+ 4β−1

∫
∥

∥

∥

∥

∇ log
ρ

ρ∗

∥

∥

∥

∥

2

2

〈

∇ log
ρ

ρ∗
,∇
(∇ρ
ρ

)

∇ log
ρ

ρ∗

〉

dx ,
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where we have used for u =
∥

∥

∥
∇ log ρ

ρ∗

∥

∥

∥

2

2
∇ log ρ

ρ∗
, v = ∇ρ

ρ

(∇(u · v))i =
∑

j

[

∂uj
∂xi

vj + uj
∂vj
∂xi

]

= ((∇u) · v)i + (u · (∇v))i where (∇u)ij =
∂uj
∂xi

,

in first equality. We also used

(A · u) · v =
∑

ij

aijujvi =
∑

j

(
∑

i

aijvi)uj = (AT v) · u , (u · A) · v = (uTA)v = u · (Av) ,

in the second equality.
Noting that ∇(∇ρ/ρ) = ∇2 log ρ, the last term in (55) equals to

4β−1

∫
∥

∥

∥

∥

∇ log
ρ

ρ∗

∥

∥

∥

∥

2

2

〈

∇ log
ρ

ρ∗
,∇
(∇ρ
ρ

)

∇ log
ρ

ρ∗

〉

ρdx (56)

=4β−1

∫
∥

∥

∥

∥

∇ log
ρ

ρ∗

∥

∥

∥

∥

2

2

〈

∇ log
ρ

ρ∗
,∇2 log ρ∇ log

ρ

ρ∗

〉

ρdx .

Moreover, applying integration by parts with respect to ∇ρ to the first term in the last
line of (55), we get

4β−1

∫

〈

(

∇
(∥

∥

∥

∥

∇ log
ρ

ρ∗

∥

∥

∥

∥

2

2

∇ log
ρ

ρ∗

))T

∇ log
ρ

ρ∗
, ∇ρ

〉

dx (57)

=− 4β−1

∫

∇ ·
[(

∇
(∥

∥

∥

∥

∇ log
ρ

ρ∗

∥

∥

∥

∥

2

2

∇ log
ρ

ρ∗

))T

∇ log
ρ

ρ∗

]

ρdx

=− 4β−1

∫

〈

∇ ·
(

∇
(∥

∥

∥

∥

∇ log
ρ

ρ∗

∥

∥

∥

∥

2

2

∇ log
ρ

ρ∗

)T)

, ∇ log
ρ

ρ∗

〉

ρdx

− 4β−1

∫

Tr

{

∇
(
∥

∥

∥

∥

∇ log
ρ

ρ∗

∥

∥

∥

∥

2

2

∇ log
ρ

ρ∗

)

∇2 log
ρ

ρ∗

}

ρdx ,

where we used for A = ∇
(

∥

∥

∥
∇ log ρ

ρ∗

∥

∥

∥

2

2
∇ log ρ

ρ∗

)

, b = ∇ log ρ
ρ∗
, and

∇ · (AT b) =
∑

j

∂
∑

i aijbi
∂xj

=
∑

ij

(

∂aij
∂xj

bi + aij
∂bi
∂xj

)

= (∇ ·AT ) · b+
∑

ij

aij(∇b)Tij

=(∇ ·AT ) · b+Tr{A(∇b)} , (Aij) = aij , ∇ ·AT =
∑

j

∂aij
∂xj

.

Next noting that when u =
∥

∥

∥
∇ log ρ

ρ∗

∥

∥

∥

2

2
∇ log ρ

ρ∗

(∇ · (∇u)T )i =
∑

j

∂(∇u)ij
∂xj

=
∑

j

∂

∂xj

∂uj
∂xi

=
∂

∂xi

∑

j

∂uj
∂xj

= (∇(∇ · u))i ,

hence the first term in both the last line of (57) and (54) cancels. Now, it only remains to
look at the last term in (57). Firstly, for a scalar function ζ = ‖∇ log ρ

ρ∗
‖22 and a vector

function u = ∇ log ρ
ρ∗
, we have

(∇(ζu))ij =
∂ζuj
∂xi

=
∂ζ

∂xi
uj + ζ

∂uj
∂xi

= (∇ζuT )ij + ζ(∇u)ij .
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This implies

− 4β−1

∫

Tr

{

∇
(∥

∥

∥

∥

∇ log
ρ

ρ∗

∥

∥

∥

∥

2

2

∇ log
ρ

ρ∗

)

∇2 log
ρ

ρ∗

}

ρdx (58)

=− 4β−1

∫

Tr

{(

∇
∥

∥

∥

∥

∇ log
ρ

ρ∗

∥

∥

∥

∥

2

2

(

∇ log
ρ

ρ∗

)T

+

∥

∥

∥

∥

∇ log
ρ

ρ∗

∥

∥

∥

∥

2

2

∇2 log
ρ

ρ∗

)

∇2 log
ρ

ρ∗

}

ρdx

=− 8β−1

∫

Tr

{(

∇2 log
ρ

ρ∗
· ∇ log

ρ

ρ∗

)(

∇2 log
ρ

ρ∗
· ∇ log

ρ

ρ∗

)T }

ρdx

− 4β−1

∫
∥

∥

∥

∥

∇ log
ρ

ρ∗

∥

∥

∥

∥

2

2

∥

∥

∥

∥

∇2 log
ρ

ρ∗

∥

∥

∥

∥

2

F

ρdx

=− 8β−1

∫
∥

∥

∥

∥

∇2 log
ρ

ρ∗
∇ log

ρ

ρ∗

∥

∥

∥

∥

2

2

ρdx− 4β−1

∫
∥

∥

∥

∥

∇ log
ρ

ρ∗

∥

∥

∥

∥

2

2

∥

∥

∥

∥

∇2 log
ρ

ρ∗

∥

∥

∥

∥

2

F

ρdx ,

where we also used the fact that ∇2 log ρ
ρ∗

is symmetric and AbbTAT = Ab(Ab)T .

Finally, the second term in (53) will be

∫
∥

∥

∥

∥

∇ log
ρ

ρ∗

∥

∥

∥

∥

4

2

∂ρ

∂t
dx = −4β−1

∫
∥

∥

∥

∥

∇ log
ρ

ρ∗

∥

∥

∥

∥

2

2

〈

∇ log
ρ

ρ∗
,∇2 log

ρ

ρ∗
∇ log

ρ

ρ∗

〉

ρdx . (59)

Combing equations (53) to (59), we arrive

∂

∂t

∫
∥

∥

∥

∥

∇ log
ρ

ρ∗

∥

∥

∥

∥

4

2

ρdx = −4β−1

∫
∥

∥

∥

∥

∇2 log
ρ

ρ∗

∥

∥

∥

∥

2

F

∥

∥

∥

∥

∇ log
ρ

ρ∗

∥

∥

∥

∥

2

2

ρdx

− 4

∫
∥

∥

∥

∥

∇ log
ρ

ρ∗

∥

∥

∥

∥

2

2

〈

∇ log
ρ

ρ∗
, ∇2V∇ log

ρ

ρ∗

〉

ρdx− 8β−1

∫
∥

∥

∥

∥

∇2 log
ρ

ρ∗
∇ log

ρ

ρ∗

∥

∥

∥

∥

2

2

ρdx .

The desired result can now be achieved by noting the condition that ∇2V � αI.

A.2 Postponed proof for Theorems and Lemmas in section 3

Proof [Proof of Theorem 4.] Substituting (20) into the expression for ρT in (17), we arrive

ρT (x) = exp

(

−
β

2
V (x)

)∫

Rd

exp
(

−β
||x−y||22

4T

)

∫

Rd exp
[

− β
2

(

V (z) +
||z−y||2

2

2T

)]

dz
ρ0(y)dy (60)

= exp

(

−
β

2
V (x)

)∫

Rd

1 + T
2
∆V (s̃y)

(4πT/β)d/2
exp

[

−
β

2

(

||x− y||22
2T

+ 2V0(y)− V (s̃y)−
||y − s̃y||

2
2

2T

)]

dy +O(T 2) .

For fixed x, to apply the approximation with the Laplace method as in (18), we let

f(y) =
||x− y||22

2
+ 2TV0(y)− TV (s̃y)−

||y − s̃y||22
2

, g(y) = 1 . (61)

Then we may write the minimizer for f(y) which is a function of x as

rx = argmin
y

f(y) = argmin
y

{ ||x− y||22
2

+ 2TV0(y)− TV (s̃y)−
||y − s̃y||22

2

)}

.

Similar to the derivation for Lemma 3, the first-order optimality condition leads to

−(rx − x)− 2T∇V0(rx) +
[

T
∂s̃rx
∂rx

∇V (s̃rx) +

(

1− ∂s̃rx
∂rx

)

(rx − s̃rx)

]

= 0 ,
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where
∂s̃rx
∂rx

is the Jacobian of s̃rx .
To simplify the expression for rx, by definition of s̃rx in (23) and replacing y with rx,

we have
rx − s̃rx = T∇V (rx) .

This leads to

− (rx − x)− 2T∇V0(rx) + T∇V (rx) = 0 ⇒ rx = x+ T∇(V − 2V0)(rx) ,

as the term involves
∂s̃rx
∂rx

cancel out.
Then as a similar argument as in the proof of Lemma 3, we can define a linearized

approximate solution to rx as

r̃x = x+ T∇(V − 2V0)(x) , (62)

where |r̃x− rx| = O(T 2) under the assumption ∇2(V0 −V ) is bounded on the line segment
connection x and rx.

Now, note that the Hessian of f(rx) in (61) will be

∇2f(rx) = 1 + T∇2(V0 − V )(rx)−
T 2

2
∇3V (rx) = 1 + T∇2(V0 − V )(rx) +O(T 2) .

Using the Taylor expansion for the determinant function in (24) and the definition of
r̃x, we are ready to apply the Laplace method to ρT in (60) to get

ρT (x) = exp

(

−
β

2
V (x)

)∫

Rd

exp
(

−β
||x−y||22

4T

)

∫

Rd exp
[

− β
2

(

V (z) +
||z−y||2

2

2T

)]

dz
ρ0(y)dy (63)

=
exp

(

−β
2
V (x)

) [

1 + T
2
∆V (s̃rx)

]

|1 + T∇2(V0 − V )(rx) +O(T 2)|1/2
exp

[

−
β

2

(

||x− rx||
2
2

2T
−

||rx − s̃rx ||
2
2

2T
+ 2V0(rx)− V (s̃rx)

)]

+O(T 2)

=
exp

(

− β
2
V (x)

)

[1 + T
2
∆V (s̃r̃x)]

1 + T
2
∆(2V0 − V )(r̃x)

exp

[

−
β

2

(

||x− r̃x||
2
2

2T
−

||r̃x − s̃r̃x ||
2
2

2T
+ 2V0(r̃x)− V (s̃r̃x)

)]

+O(T 2) .

For the exponent in the second exponential function in the last line of (63), using the
definition of r̃x and s̃x and skipping the factor −β/2, it can be simplified as

2V0(r̃x)− V (s̃r̃x) +
T

2
‖∇(V − 2V0)(x)‖22 −

T

2
‖∇V (r̃x)‖22 +O(T 2)

=2V0 (x+ T∇(V − 2V0)(x)) − V (x− 2T∇V0(x)) +
T

2
‖∇(V − 2V0)(x)‖22 −

T

2
‖∇V (x)‖22 +O(T 2)

=2V0(x) + 2T∇V0 · ∇(V − 2V0)(x) − V (x) + 2T∇V · ∇V0(x)

+
T

2
‖∇(V − 2V0)(x)‖22 −

T

2
‖∇V (x)‖22 +O(T 2)

=2V0(x) − V (x) + 2T∇(V − V0) · ∇V0(x) +O(T 2) ,

where we have used the Taylor expansion on V0 and V , and the relation

s̃r̃x = r̃x − T∇V (r̃x) = x+ T∇(V − 2V0)(x) − T∇V (x) +O(T 2) = x− 2T∇V0(x) +O(T 2) .

Lastly, for the coefficient before the exponential term in (63), with the help of the
Neumann series, we derive

1 + T
2∆V (s̃r̃x)

1 + T
2∆(2V0 − V )(r̃x)

=

[

1+
T

2
∆V (x)

][

1−T
2
∆(2V0−V )(x)

]

+O(T 2) = 1+T∆(V −V0)(x)+O(T 2) ,
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under the assumption that |T∆(2V0 − V )(x)| ≤ 2. Combining the above expression, we
arrive at the desired result in Theorem 4.

Proof [Proof of Lemma 5.] Firstly, by Taylor expansion and approximation in Theorem
4, we have

log ρk+1 = log

[

ρk

(

1 + Tβ−1
∇ · (∇ log ρk

ρ∗
ρk)

ρk
+O(T 2)

)]

= log ρk + Tβ−1
∇ · (∇ log ρk

ρ∗
ρk)

ρk
+O(T 2) .

This implies

ρk+1 log
ρk+1

ρ∗
=

[

ρk + Tβ−1∇ ·
(

∇ log
ρk
ρ∗
ρk

)][

log
ρk
ρ∗

+ Tβ−1
∇ · (∇ log ρk

ρ∗
ρk)

ρk

]

+O(T 2) .

Then by the definition of KL divergence, we have

DKL(ρk‖ρ∗)−DKL(ρk+1‖ρ∗)

=− Tβ−1

∫

∇ ·
(

∇ log
ρk
ρ∗
ρk

)(

1 + log
ρk
ρ∗

)

dx+O(T 2)

=Tβ−1I(ρk‖ρ∗) +O(T 2) .

A.3 Postponed proof and additional Lemma used in Section 4

Proof [Proof of Lemma 8.] To develop the evolution of the density function for this partial
evolution equation up to the third-order term O(h3), we will rely on the Taylor expansion.
Denote φ(x) = V (x) + β−1 log ρT (x) for simplicity. Then we have xk+1 = xk − h∇φ(xk).

For any smooth function u, the iterative relationship between xk+1 ∼ ρk+1 and xk ∼ ρk
implies

Eρk+1
(u) =

∫

u(x)ρk+1(x) dx =

∫

u(x− h∇φ(x))ρk(x) dx (64)

=

∫
[

u(x)− h∇φ(x) · ∇u(x) + h2

2
∇φ(x)T∇2(u)(x)∇φ(x)

]

ρk(x) dx +O(h3) .

For the term involving the Hessian, integration by parts leads to

∫

∇φ(x)T∇2(u)(x)∇φ(x)ρk(x) dx =

∫

∑

i,j

(

∂φ

∂xi

∂φ

∂xj

∂2u(x)

∂xi∂xj

)

ρk(x) dx

=

∫

∑

i,j

∂2u(x)

∂xi∂xj

(

∂φ

∂xi

∂φ

∂xj
ρk(x)

)

dx =

∫

u(x)
∑

i,j

∂2

∂xi∂xj

(

∂φ

∂xi

∂φ

∂xj
ρk(x)

)

dx.

Conducting integration by parts on the gradient term, (64) will become

∫

uρk+1 dx =

∫

u



ρk + h∇ · (∇φρk) +
h2

2

∑

i,j

∂2

∂xi∂xj

(

∂φ

∂xi

∂φ

∂xj
ρk

)



 dx+O(h3).
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For the h2 order term, we note the summation over i index can be re-written as

∑

i

∂

∂xi

(

∂φ

∂xi

∂φ

∂xj
ρk

)

=
∑

i

∂

∂xi

(

∂φ

∂xi

∂φ

∂xj

)

ρk +
∂φ

∂xj

∑

i

∂φ

∂xi

∂ρk
∂xi

=
[

∇ · (∇φ∇φT ) + (∇φ)T (∇φ · ∇ log ρk)
]

ρk = φ̃ · ρk ,

where we use the notation φ̃ defined in (33).

In this case, since (31) implies

log ρT = ρk + Tβ−1
∇ ·
(

∇ log ρk

ρ∗
ρk

)

ρk
+O(T 2) ,

we can obtain the evolution of density corresponds to (30) with an error term of order h3

as

ρk+1 = ρk + h∇ · (∇V ρk + β−1∇ log ρT ρk) +
h2

2

d
∑

j=1

∂

∂xj
(φ̃ρk) +O(h3)

=ρk + h∇ · (∇V ρk + β−1∇ρk) + hTβ−2∇ ·
[

∇
(∇ · (∇ log ρk

ρ∗
ρk)

ρk

)

ρk

]

+
h2

2

d
∑

j=1

∂

∂xj
(φ̃ρk) +O(h3)

=ρk + hβ−1∇ ·
(

∇ log
ρk
ρ∗
ρk

)

+ hTβ−2∇ ·
[

∇
(∇ · (∇ log ρk

ρ∗
ρk)

ρk

)

ρk

]

+
h2

2

d
∑

j=1

∂

∂xj
(φ̃ρk) +O(h3) ,

which is the desired result.

Proof [Proof of Lemma 9.] Using the Taylor expansion of the log function, we can derive

log ρk+1 = log ρk + hDβ
k

(

log
ρk
ρ∗

)

− h2

2

∣

∣

∣

∣

Dβ
k

(

log
ρk
ρ∗

) ∣

∣

∣

∣

2

+ hTDβ
k ◦ Dβ

k

(

log
ρk
ρ∗

)

+
h2

2ρk
∇ · (φ̃ρk) +O(h3) ,

and

ρk+1 log
ρk+1

ρ∗
= ρk log

ρk
ρ∗

[

1 + hDβ
k

(

log
ρk
ρ∗

)

+ hTDβ
k ◦ Dβ

k

(

log
ρk
ρ∗

)

+
h2

2ρk
∇ · (φ̃ρk)

]

+ ρk

[

hDβ
k

(

log
ρk
ρ∗

)

− h2

2

∣

∣

∣

∣

Dβ
k

(

log
ρk
ρ∗

)
∣

∣

∣

∣

2

+ hTDβ
k ◦ Dβ

k

(

log
ρk
ρ∗

)

+
h2

2ρk
∇ · (φ̃ρk)

]

+ h2ρk

∣

∣

∣

∣

Dβ
k

(

log
ρk
ρ∗

) ∣

∣

∣

∣

2

+O(h3)

=ρk log
ρk
ρ∗

+
h2

2
ρk

∣

∣

∣

∣

Dβ
k

(

log
ρk
ρ∗

) ∣

∣

∣

∣

2

+

[

hDβ
k

(

log
ρk
ρ∗

)

+ hTDβ
k ◦ Dβ

k

(

log
ρk
ρ∗

)

+
h2

2ρk
∇ · (φ̃ρk)

]

ρk

(

1 + log
ρk
ρ∗

)

+O(h3) .
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Then substituting the above expression into the formula of KL divergence, we have

DKL(ρk‖ρ∗)−DKL(ρk+1‖ρ∗) (65)

=− h

[
∫
(

Dβ
k

(

log
ρk
ρ∗

)

ρk + TDβ
k ◦ Dβ

k

(

log
ρk
ρ∗

)

ρk +
h

2
∇ ·
(

φ̃ρk

)

)(

1 + log
ρk
ρ∗

)

dx

]

− h2

2

∫
∣

∣

∣

∣

Dβ
k

(

log
ρk
ρ∗

)∣

∣

∣

∣

2

ρk dx+O(h3) .

Next, we analyze each term in (65) carefully. Firstly, the O(h) term is nothing but the
Fisher information

−
∫

Dβ
k

(

log
ρk
ρ∗

)(

1 + log
ρk
ρ∗

)

ρk dx = β−1

∫
∥

∥

∥

∥

∇ log
ρk
ρ∗

∥

∥

∥

∥

2

2

ρkdx = β−1I(ρk‖ρ∗) .

Secondly, for the φ̃ term, recalling that

φ = β−1(log ρT − log ρ∗) = β−1 log
ρk
ρ∗

+O(T ) ,

then φ̃ can be simplified as

φ̃ρk =
[

∇ · (∇φ∇φT ) + (∇φ)T (∇φ · ∇ log ρk)
]

ρk = β−2(ρk∇ ·Ψ+∇ρTk Ψ) , (66)

where Ψ := ∇ log ρk

ρ∗
(∇ log ρk

ρ∗
)T . The above uses the vector identifies for u = ∇φ, v = ∇ρk,

and

uT (u · v) = uj
∑

i

uivi =
∑

i

(uiuj)vi = vT (uuT ) .

Moreover, let Ψ = {ψi,j}, we have

(∇ · (Ψρk))j =
∑

i

∂ψijρk
∂xi

=
∑

i

∂ψij

∂xi
ρk +

∑

i

ψij
∂ρk
∂xi

,

which implies ∇ · (Ψρk) = ρk∇ ·Ψ+∇ρTk Ψ.

Hence, we can simplify the term involves φ̃ in (65) as

∫

φ̃ρk · ∇ log
ρk
ρ∗
dx = β−2

∫
〈

∇ log
ρk
ρ∗
, ρk∇ ·Ψ+∇ρTk Ψ

〉

dx

=β−2

∫
〈

∇ log
ρk
ρ∗
, ∇ · (Ψρk)

〉

dx

=− β−2

∫
〈

∇ log
ρk
ρ∗
, ∇2 log

ρk
ρ∗

∇ log
ρk
ρ∗

〉

ρk dx.

The last equality comes from the fact that letting u = log ρk

ρ∗
and

∫

∑

j

[

∂ju
∑

i

∂

∂xi
(∂iu∂juρ)

]

dx = −
∫

∑

i,j

∂2iju∂iu∂juρdx = −
∫

(∇u)T∇u2∇uρ dx ,

where ∂ju = ∂u/∂xj.
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Finally, for the order hT term in (65), the definition of Dβ
k and integration by parts

imply
∫

Dβ
k ◦ Dβ

k

(

log
ρk
ρ∗

)(

1 + log
ρk
ρ∗

)

ρkdx

=

∫

β−1

ρk
∇ ·
[

∇Dβ
k

(

log
ρk
ρ∗

)

ρk

](

1 + log
ρk
ρ∗

)

ρkdx

=−
∫

β−1

〈

∇Dβ
k

(

log
ρk
ρ∗

)

, ∇ log
ρk
ρ∗
ρk

〉

dx

=

∫

Dβ
k

(

log
ρk
ρ∗

)

β−1∇ ·
[

∇ log
ρk
ρ∗
ρk

]

dx

=

∫
∣

∣

∣

∣

Dβ
k

(

log
ρk
ρ∗

)
∣

∣

∣

∣

2

ρkdx .

Combining all the above simplifications to (65), we are ready to arrive at the final
expression in (37).

Proof [Proof for Lemma 11.] For the second-order time derivative in (37), we note that

d2

dt2
DKL(ρk‖ρ∗) =

1

h

[

dDKL(ρtk+h‖ρ∗)
dt

− dDKL(ρk‖ρ∗)
dt

]

+O(h) (67)

=
β−1

h
[I(ρk‖ρ∗)− I(ρk+1‖ρ∗)] +O(h) ,

as
d

dt
DKL(ρk‖ρ∗) = −β−1I(ρk‖ρ∗) , I(ρk+1‖ρ∗) = I(ρtk+h‖ρ∗) +O(h2) .

Substituting the exponential convergence of the fourth power term (39) and discrete
approximation to second order time derivative (67) into (38), we finally obtain

DKL(ρk+1‖ρ∗) +
h+ 3T

4β
I(ρk+1‖ρ∗) (68)

≤DKL(ρk‖ρ∗)−
h

β

(

1− h+ 3T

4h
+ α

T

2

)

I(ρk‖ρ∗) +
hT

2
M0 exp(−4αtk) +O(h3) ,

where M0 := β−2
∫

‖∇ log ρ0

ρ∗
‖42ρ0dx that depends on the initial density and we have used

∇2V � αI.
Since 1− (h+ 3T )/(4h) ≥ 0, using the PL inequality (6), we note (68) implies

(

1 + α
h+ 3T

2

)

DKL(ρk+1‖ρ∗)

≤
[

1− 2αh

(

1− h+ 3T

4h
+ α

T

2

)]

DKL(ρk‖ρ∗) +
hT

2
M0 exp(−4αhk) +O(h3) ,

which is equivalent to

DKL(ρk+1‖ρ∗) ≤
1− 2αh

(

1− h+3T
4h + αT

2

)

1 + αh+3T
2

DKL(ρk‖ρ∗) +
hT

2
(

1 + αh+3T
2

)M0 exp(−4αhk) +O(h3)

=

(

1− hα
2 + sαh

1 + α
2 h(1 + 3s)

)

DKL(ρk‖ρ∗) +
h2s

2
M0 exp(−4αhk) +O(h3) (69)

=
[

1− 2hα+ (1 + 2s)α2h2
]

DKL(ρk‖ρ∗) +
h2s

2
M0 exp(−4αhk) +O(h3) .
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The next lemma is used in the proof of Theorem 12 to derive the exponential decay of
KL divergence with a bias term.

Lemma 21 For a sequence that satisfies

ak+1 ≤ (1− c1h)ak + h2c2 exp(−c3kh) +O(h3) ,

where h, ci > 0 for i = 1, 2, 3, and c1h < 1, we have

ak ≤(1 − c1h)
ka0 + h2

c2 exp(−c3kh)
exp(−c3h)− (1− c1h)

+O(h3) (70)

≤ exp(−c1kh)a0 + h2
c2 exp(−c3kh)

exp(−c3h)− (1− c1h)
+O(h3) .

Proof We first show the sequence satisfies the following inductive relationship

ak+1 ≤ (1− c1h)
k+1a0 + h2c2

k
∑

j=0

(1− c1h)
j exp(−c3(k − j)h) +O(h3) .

It is true for k = 0. And for the case k ≥ 1, we have

ak+1 ≤ (1− c1h)ak + h2c2 exp(−c3kh) +O(h3)

≤(1− c1h)
k+1a0 + h2c2





k−1
∑

j=0

(1− c1h)
j exp(−c3(k − 1− j)h) + exp(−c3kh)



+O(h3)

=(1− c1h)
k+1a0 + h2c2

k
∑

j=0

(1− c1h)
j exp(−c3(k − j)h) +O(h3) .

For the term under summation, using geometric series, we derive

k
∑

j=0

(1− c1h)
j exp(−c3(k − j)h) = exp(−c3kh)

k
∑

j=0

[(1− c1h) exp(c3h)]
j

=exp(−c3kh)
1− (1− c1h)

k+1 exp(c3(k + 1)h)

1− (1− c1h) exp(c3h)

=
exp(−c3kh)− (1− c1h)

k+1 exp(c3h)

1− (1 − c1h) exp(c3h)
=

exp(−c3(k + 1)h)− (1− c1h)
k+1

exp(−c3h)− (1− c1h)

≤ exp(−c3(k + 1)h)

exp(−c3h)− (1− c1h)
.

Then we arrive

ak+1 ≤ (1 − c1h)
k+1a0 + h2

c2 exp(−c3(k + 1)h)

exp(−c3h)− (1− c1h)
+O(h3) .
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A.4 Postponed proof for Theorems and Lemmas in section 5

Proof [Proof of the first statement in Lemma 15] We recall the proof of Theorem 4 and

denote Ṽk = −β−1 log ρ̃k. We adopt the same definitions for rx, srx , r̃x, and s̃rx as in
Section 3. Replacing ρ0 with ρ̃k, we derive the following

∇ρ̃k+1(x) = −
β

2

∫

Rd

[

∇V (x) + (x−y)
T

]

exp
[

−β
2
(V (x) +

‖x−y‖22
2T

)
]

∫

Rd exp
[

−β
2

(

V (z) +
‖z−y‖2

2

2T

)]

dz
ρ̃k(y) dy (71)

=−
β

2
∇V (x)ρ̃k+1(x)−

β

2T

∫

Rd

(x− y)
exp

[

−β
2
(V (x) +

‖x−y‖22
2T

)
]

∫

Rd exp
[

−β
2

(

V (z) +
‖z−y‖2

2

2T

)]

dz
ρ̃k(y) dy +O(T 2)

=−
β

2T

∫

Rd

(x− y)

(

1 +
T

2
∆V (sy)

)

exp

[

−
β

2

(

V (x) +
‖x− y‖22

2T
+ 2Ṽk(y)− V (sy)−

‖y − sy‖
2
2

2T

)]

dy

−
β

2
∇V (x)ρ̃k+1(x) +O(T 2) .

To apply the Laplace method in (18) to the integral in (71), we write

g(y) = (x− y)

(

1 +
T

2
∆V (sy)

)

, f(y) =
‖x− y‖22

2
+ T (2Ṽk(y)− V (sy))− T 2 ‖∇V (y)‖22

2
,

as in (18). Given the factor 1
T preceding this integral, we have to consider all the O(T )

term in (19).

Firstly, for the leading-order term in the expansion (18), using the definition x− rx =
T∇(2Ṽk − V )(rx) and the expression from Theorem 4, it will be

−β
2
ρ̃k+1(x)g(x

∗) = −β
2
ρ̃k+1(x)∇

[

(2Ṽk − V )(x) − 2T∇(V − Ṽk) · ∇(Ṽk)(x)
]

+O(T 2) .

Next, for the first-order term H1(x
∗) in (19), we note that since fpqr = O(T ) and

g(x∗)fpqrs(x
∗) = O(T 2), the last two terms are of order O(T 2). Additionally, for the

matrix B, since fqr = δqr + O(T ), the Neumann series leads to Bqr = δqr + O(T ) as
B = {fqr(x∗)}−1. Therefore, the first two terms in H1(x

∗) are

Tr(CB) =
T

2

∑

p

∂2

∂y2p
[(x− y)∆V (y)] +O(T 2) = −T∇∆V (y) +O(T 2) ,

and

−fsrqBsqBrpgp = −fqqpgp +O(T 2) = T∇∆(2Ṽk(y)− V (y)) +O(T 2) .

Hence, the second term in the expansion (18) is

2T

β

β

4T
ρ̃k+12T∇∆(Ṽk(x)− V (x)) = ρ̃k+1(x)T∇∆(Ṽk − V )(x) .

Finally, substituting the above into (71) and recalling our expression for ρ̃k+1 in The-
orem 4, we derive

∇ρ̃k+1 = ∇ρ̃k + T∇∂ρ̃k
∂t

+O(T 2) .
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