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Abstract

The interplay between stochastic processes and optimal control has been extensively explored in the
literature. With the recent surge in the use of diffusion models, stochastic processes have increasingly
been applied to sample generation. This paper builds on the log transform, known as the Cole-Hopf
transform in Brownian motion contexts, and extends it within a more abstract framework that includes
a linear operator. Within this framework, we found that the well-known relationship between the Cole-
Hopf transform and optimal transport is a particular instance where the linear operator acts as the
infinitesimal generator of a stochastic process. We also introduce a novel scenario where the linear op-
erator is the adjoint of the generator, linking to Bayesian inference under specific initial and terminal
conditions. Leveraging this theoretical foundation, we develop a new algorithm, named the HJ-sampler,
for Bayesian inference for the inverse problem of a stochastic differential equation with given termi-
nal observations. The HJ-sampler involves two stages: (1) solving the viscous Hamilton-Jacobi partial
differential equations, and (2) sampling from the associated stochastic optimal control problem. Our
proposed algorithm naturally allows for flexibility in selecting the numerical solver for viscous HJ PDEs.
We introduce two variants of the solver: the Riccati-HJ-sampler, based on the Riccati method, and the
SGM-HJ-sampler, which utilizes diffusion models. We demonstrate the effectiveness and flexibility of
the proposed methods by applying them to solve Bayesian inverse problems involving various stochas-
tic processes and prior distributions, including applications that address model misspecifications and
quantifying model uncertainty.
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1 Introduction

Uncertainty Quantification (UQ) plays a vital role in scientific computing, helping to quantify and manage
the inherent uncertainties in complex models and simulations [82, 79]. Within UQ, two significant areas
of active research are Bayesian inference and sampling from data distributions. Bayesian inference has
garnered considerable interest within the scientific computing community due to its ability to rigorously
combine prior information with observational data, addressing model uncertainties and enhancing predictive
capabilities [96, 64, 11, 116, 114, 113]. Meanwhile, the second area—sampling from data distributions—has
gained popularity in the machine learning and AI communities. This surge in interest is largely driven
by the success of generative models, particularly diffusion models, which excel at generating high-quality
samples from complex, high-dimensional distributions [92, 26, 108, 107, 28, 103]. Diffusion models, and
more generally score-based methods, have been employed not only for data generation but also for solving
a wide range of scientific computing problems, including inverse problems [91], sampling [86, 110, 108, 7],
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distribution modification [98], mean-field problems [66, 111], control problems [99, 100], forward and inverse
partial differential equations (PDEs) [102], and Schrödinger bridge problems [19, 85, 87, 39]. This broad
applicability makes diffusion models a powerful tool in both AI and scientific computing.

In this work, we establish connections between these two subfields of UQ. Specifically, we observe that the
Bayesian posterior distribution for certain inverse problems involving stochastic processes can be represented
as a PDE, which is further linked to a stochastic optimal control problem. Based on this connection, we
design an algorithm that solves certain Bayesian sampling problems by addressing the associated stochastic
optimal control problem. This algorithm bears similarities to diffusion models, particularly a class known
as Score-based Generative Models (SGMs). By highlighting this connection, our work offers a novel link
between Bayesian inference, generative models, and traditional stochastic optimal control, providing new
directions for exploration and development.

Theoretically, this connection arises as a special case of the log transform, where the initial condition
incorporates the observation, and the terminal condition reflects the prior distribution in the Bayesian
inference problem. The log transform has been extensively studied in the literature [34, 32, 37, 71] and is
often referred to as the Cole-Hopf transform [30, 59, 60] when applied to Brownian motion. This transform
connects the nonlinear system, consisting of Hamilton-Jacobi (HJ) equations coupled with Fokker-Planck
equations, to its linear counterpart, the Kolmogorov forward and backward equations. Traditionally, the
Cole-Hopf transform is used to simplify the solution of nonlinear PDEs by converting them into linear
PDEs, which are generally easier to solve. In probability theory, it is also employed as a tool for sampling,
known as Doob’s h-transform. Beyond these established uses, we introduce a novel application of the log
transform within Bayesian inference, a context that presents some open questions and opportunities for
further research (see the discussion in the summary).

From a more detailed and practical perspective, we consider the Bayesian inference problem where the
likelihood is determined by YT |Y0, with Yt governed by a Stochastic Differential Equation (SDE). The goal
is to solve the inverse problem of the stochastic process, specifically inferring the position of Yt given an
observation at its terminal position YT . For this class of problems, we propose an algorithm called the
HJ-sampler, which generates sample paths from the posterior distribution by solving the corresponding
stochastic optimal control problem. The algorithm consists of two steps: first, computing the control, and
second, sampling the optimal trajectories. Different versions of the algorithm arise based on the method used
to compute the control. In this paper, we present two such versions: the Riccati-HJ-sampler, which applies
the Riccati method, and the SGM-HJ-sampler, which leverages the SGM method. A key advantage of the
HJ-sampler is its flexibility. The first step, which computes the control, is independent of the second step,
which samples the trajectories. This allows for flexibility in adjusting the observation position YT , the time T ,
and the discretization size without requiring a recomputation of the control. Beyond the proposed algorithm
itself, this connection between Bayesian inference and control theory allows us to harness techniques from
both control algorithms and diffusion models for efficient Bayesian sampling. Additionally, it offers a potential
Bayesian interpretation of diffusion models and opens up avenues for their generalization.

While the log transform has been employed in various sampling algorithms in the literature [5, 109, 106,
42, 21], our approach differs in its application. These existing methods, and also other sampling algorithms
such as such as Hamiltonian Monte Carlo [74], variational inference [6, 44, 80], and Langevin-type Monte
Carlo [101, 38], typically include the target distribution as part of the terminal condition, requiring an
explicit analytical formula for the density function. In contrast, our approach assumes that only the prior
density or prior samples are available, with the likelihood being provided by a stochastic process, which
may not have an analytical form. In other words, the terminal condition in our method encodes only the
prior information, while the likelihood is embedded within the stochastic process. This decoupling provides
the flexibility discussed earlier and ensures that the sampling process directly corresponds to the original
stochastic process, allowing us to generate entire sample paths rather than finite-dimensional sample points.

The remainder of the paper is organized as follows. In Section 2, we detail the log transform at an abstract
level, followed by specific cases in Sections 2.1 and 2.2. Section 2.1 connects the log transform to stochastic
optimal transport (SOT) and Schrödinger bridge problems, while Section 2.2 focuses on the special case
related to Bayesian inference setups, which is the primary contribution of this paper. Based on the content
in Section 2.2, an algortihm caled the HJ-sampler algorithm is presented in Section 3, and numerical results
are provided in Section 4. Finally, Section 5 summarizes the findings, discusses limitations, and outlines
future research directions. Additional technical details are provided in the appendix. In Figure 1, we present
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the roadmap of this paper, highlighting the relationships between the main concepts and methodologies
discussed.

Figure 1: Roadmap of this paper. The black sections represent well-known concepts in the literature, while
the red sections indicate our contributions.

2 The log transform: bridging linear and non-linear systems in
the context of stochastic processes

This section introduces the log transform, a mathematical technique that establishes a connection between
linear and nonlinear systems. We investigate this transform in the context of a versatile linear operator,
Aϵ,t, which may represent differential, difference, integral operators, or combinations thereof. In Sections 2.1
and 2.2, examples are provided where Aϵ,t functions as either the infinitesimal generator of a stochastic
process or its adjoint. The subscript ϵ indicates the inclusion of a positive parameter in the operator,
reflecting the degree of stochasticity in these examples. The operator may also depend on the spatial
variable x and the time variable t. We put t in the subscript because different equations may involve the
operator at different times, while we omit the dependence on x for simplicity of notation.

We introduce two functions, µ and ν, that map from Rn × [0, T ] to R and comply with the linear system
specified below: {

∂tµ = Aϵ,T−tµ,

∂tν = A∗
ϵ,tν,

(1)

where each operator is applied at the point (x, t) for any x ∈ Rn and t ∈ [0, T ]. The notation A∗
ϵ,t denotes

the adjoint of Aϵ,t in L2(Rn) with respect to the spatial variable x. The log transform establishes a nonlinear
relationship between the pairs (µ, ν) and (ρ, S) as follows:

ρ(x, t) = µ(x, T − t)ν(x, t), S(x, t) = ϵ logµ(x, T − t), (2)

where the constant ϵ in the second equation is the same as the hyperparameter in the operator Aϵ,t. The
corresponding inverse transformation reads

µ(x, t) = e
S(x,T−t)

ϵ , ν(x, t) = ρ(x, t)e−
S(x,t)

ϵ . (3)

This leads to a coupled nonlinear system for ρ and S:{
∂tρ+ ρe−

S
ϵ Aϵ,te

S
ϵ − e

S
ϵ A∗

ϵ,t(ρe
−S

ϵ ) = 0,

∂tS + ϵe−
S
ϵ Aϵ,te

S
ϵ = 0,

(4)
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where each operator is applied at the point (x, t) for any x ∈ Rn and t ∈ [0, T ]. We refer to the first equation
in (4) as the (generalized) Fokker-Planck equation and the second as the (generalized) HJ equation. As
shown in Example 2.1 and further discussed in Appendices A and C, when Aϵ,t corresponds to an SDE,
the equations in (4) reduce to the Fokker-Planck equation and the viscous HJ PDE. In such instances, we
refer to the second equation in (4) as the viscous HJ PDE, but we refrain from using the term “viscous” for
general cases due to the potential absence of a Laplacian term in the equation in such contexts.

This transformation illustrates the connection between linear and nonlinear systems. The log transform,
particularly whenAϵ,t acts as the infinitesimal generator of a stochastic process, is recognized in the literature.
For context, we briefly touch upon this aspect in Section 2.1, offering it as part of the broader narrative.
Our novel contribution emerges in Section 2.2, where we establish a new link to the Bayesian framework by
considering Aϵ,t as the adjoint of the infinitesimal generator. This insight is crucial for the algorithm we
develop later in the paper. By integrating these elements into a comprehensive theoretical framework, we
highlight the interconnectedness of diverse applied mathematics fields, such as stochastic processes, control
theory, neural networks, and PDEs. This interdisciplinary approach fosters the potential for leveraging
algorithms developed in one field to address problems in another, encouraging innovative cross-disciplinary
applications.

2.1 The connection between the log transform and stochastic optimal control

Figure 2: This figure illustrates the log transform (2) applied when Aϵ,t is as the infinitesimal generator of a
stochastic process Xt. On the left, a general process is depicted, while on the right, the specific instance of a
scaled Brownian motion (see Example 2.1) is presented. The time orientation selected here is consistent with
that used in stochastic optimal control or stochastic optimal transport problems, aligning with the reversal
of the viscous HJ PDE (see Remark 2.2 for details).

In this section, we choose the linear operator Aϵ,t in (1) and (4) to be the infinitesimal generator of a
stochastic (Feller) process Xt in Rn from t = 0 to t = T . This operator incorporates ϵ to denote the level of
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stochasticity. Its adjoint is represented by A∗
ϵ,t. For further mathematical details on the concepts discussed

here, we refer readers to [63, 77].
The linear system in equation (1) encompasses the Kolmogorov backward equation (KBE) for µ and the

Kolmogorov forward equation (KFE) for ν. The non-linear system (4) constitutes a system for stochastic
optimal control, with the source of stochasticity being intrinsically linked to the underlying process Xt.
Since the connection works for a general stochastic process, the stochastic nature of the controlled system
may extend beyond Brownian motion, enabling consideration of jump processes as well. When Xt adheres
to an SDE, the two systems (1) and (4) become two PDE systems (see Example 2.1 and Appendix A).
Furthermore, general stochastic processes could lead to systems characterized by discretized PDEs, integral
equations, or integro-differential equations. An illustrative example of the scaled Poisson process is provided
in Appendix B. An illustration of a general process, as well as a specific case of a scaled Brownian motion,
is presented in Figure 2.

Under this setup, the log transform elucidates the relationship between the coupled forward-backward
Kolmogorov equations and controlled stochastic systems. This transformation has been extensively studied
in the literature (see, for example, [34, 32, 37, 71]). It is also referred to as the Cole-Hopf transform [30] in
the context of Brownian motion. The efficacy of the log transform in numerical methodologies stems from
its ability to linearize the nonlinear system (4), simplifying the complexity inherent in non-linear dynamics
and associated stochastic optimal control challenges.

Remark 2.1 (Initial or terminal conditions) The log transform’s effectiveness between equations (1)
and (4) is invariant to the initial or terminal conditions applied, provided these conditions are consistently
adapted following the transformation. This principle allows for varied applications, as demonstrated with sub-
sequent examples linking the system to certain mean-field games (MFG), stochastic optimal control, stochastic
optimal transport (SOT), and stochastic Wasserstein proximal operators, among other areas. For a general
process, it is also related to the Schrödinger bridge problem. See the following example for more details.

Example 2.1 (Brownian motion) We consider the scenario where the underlying process is a scaled
Brownian motion, denoted by Xt =

√
ϵWt, where Wt represents a Brownian motion in Rn. The infinitesimal

generator Aϵ,t and its adjoint operator A∗
ϵ,t are characterized by Aϵ,t = A∗

ϵ,t = ϵ
2∆x, resulting in both the

KBE and KFE in (1) being heat equations:

∂tµ =
ϵ

2
∆xµ, ∂tν =

ϵ

2
∆xν. (5)

The other non-linear system (4) manifests as the Fokker-Planck PDE and the viscous HJ PDE (with a
distinct sign from the usual case, see Remark 2.2):

∂tρ+∇x · (ρ∇xS) =
ϵ

2
∆xρ, ∂tS +

1

2
∥∇xS∥2 +

ϵ

2
∆xS = 0. (6)

In this scenario (and generally when the underlying process Xt is described by an SDE, as detailed in Ap-
pendix A), the log transform, known as the Cole-Hopf transform, has been extensively examined in the
literature [30, 59, 60]. For more applications of the Cole-Hopf transform, see [22, 75, 43, 14, 108].

By introducing distinct sets of initial or terminal conditions, the coupled PDE system (6) can be linked
to first-order optimality conditions of various problems, including specific MFG, stochastic optimal control,
SOT, or stochastic Wasserstein proximal operator. For instance, if we assign the initial condition ρ0 to ρ
and the terminal condition −J to S, the coupled PDE system (6) is linked to the following MFG:

min

{∫ T

0

∫
Rn

1

2
∥v(x, s)∥2ρ(x, s)dxds+

∫
Rn

J(x)ρ(x, T )dx :
∂ρ

∂t
+∇x · (vρ) = ϵ

2
∆xρ, ρ(x, 0) = ρ0(x)

}
, (7)

which is also associated with the stochastic Wasserstein proximal point of F(µ) =
∫
Rn J(x)µ(x)dx at ρ0

(see [93, 62, 40]). Specifically, if ρ0 represents a Dirac mass centered at a point z0, this MFG problem
reduces to the following stochastic optimal control problem:

min

{
E

[∫ T

0

1

2
∥vs∥2ds+ J(ZT )

]
: dZs = vsds+

√
ϵdWs, Z0 = z0

}
, (8)
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whose value equals −S(z0, 0). Alternatively, if we specify both initial and terminal conditions for ρ (denoted
by ρ0 and ρT ), the PDE system (6) becomes associated with the following SOT problem:

min

{∫ T

0

∫
Rn

1

2
∥v(x, s)∥2ρ(x, s)dxds : ∂ρ

∂t
+∇x · (vρ) = ϵ

2
∆xρ, ρ(x, 0) = ρ0(x), ρ(x, T ) = ρT (x)

}
. (9)

Similar results hold for a general SDE. More details are provided in Appendix A.
The exploration of these connections can be broadened to encompass scenarios characterized by a wider

range of stochastic behaviors. This expansion necessitates the consideration of controlled stochastic processes
that incorporate stochastic elements beyond the realm of Brownian motion. Furthermore, these connections
are intricately linked to the large deviation principle governing the underlying stochastic processes. While
the literature has thoroughly examined cases involving Brownian motion from the perspective of the large
deviation principle, as detailed in [8, 10, 34, 27, 20], more complex stochastic processes have been explored in
[9, 36, 84, 37, 12, 61, 67, 25, 47]. Additional research has been directed towards elucidating the connections
between these models and gradient flows within certain probabilistic spaces, as seen in [1, 31, 81, 78, 49].
However, extending the gradient flow concept to encompass jump processes demands a novel approach to
defining geometry within probability spaces, diverging from traditional interpretations based on Wasserstein
space, as discussed in [70, 72, 71, 13, 29]. Consequently, establishing a direct correlation between the general
logarithmic transformation and gradient flow remains elusive.

Remark 2.2 [Regarding the time direction] The viscous HJ PDE in (6) exhibits a different sign in front of
the diffusion term compared to the traditional viscous HJ PDE. This discrepancy arises from the direction of
time. To maintain consistency with the controlled stochastic process in MFG or SOT, the time direction is
reversed. In essence, upon applying time reversal to S and subsequently taking the negative sign, the function
S̃(x, t) = −S(x, T − t) satisfies the traditional viscous HJ PDE:

∂tS̃(x, t) +
1

2
∥∇xS̃(x, t)∥2 =

ϵ

2
∆xS̃(x, t).

With this discrepancy in signs, the log transform becomes µ(x, t) = exp
(

S(x,T−t)
ϵ

)
= exp

(
− S̃(x,t)

ϵ

)
, thereby

restoring the correct sign in the traditional Cole-Hopf transform applied to S̃.

2.2 The connection between log transform and Bayesian inference

In this section, we delve into the scenario where the linear operator Aϵ,T−t is the adjoint operator to the
infinitesimal generator of an underlying stochastic process Yt, and we illustrate its relevance to Bayesian
inference. To our knowledge, this connection, along with related algorithms for a general process, has yet to
be documented in existing literature. The relationship between the Cole-Hopf formula and Bayesian inference
has been previously examined in [22], albeit with a focus on scaled Brownian motion as the underlying process
and on computing the posterior mean rather than conducting posterior sampling.

Consider an n-dimensional stochastic (Feller) process Yt, with Aϵ,T−t representing the adjoint of its
infinitesimal generator. In contrast to the previous section, the first equation in (1) describes the KFE, while
the second corresponds to the KBE. The initial condition for µ is defined as the marginal density function of

Y0, and for ν, it is set as the scaled Dirac delta function δz(·)
P (YT=z) at a fixed point z ∈ Rn. According to the

properties of the KFE, the density function µ(·, t) evolves to match the marginal density of Yt. For ν, the

KBE ensures that ν(x, t) = E[ν(YT , 0)|YT−t = x] =
∫
Rn

δz(y)
P (YT=z)P (YT = y|YT−t = x) dy = P (YT=z|YT−t=x)

P (YT=z) .

Through the log transform (2), the function ρ is given by

ρ(x, 0) = µ(x, T )ν(x, 0) = P (YT = x)
δz(x)

P (YT = z)
= δz(x),

ρ(x, t) = µ(x, T − t)ν(x, t) = P (YT−t = x)
P (YT = z|YT−t = x)

P (YT = z)
= P (YT−t = x|YT = z),

(10)

indicating that ρ(·, t) represents the conditional density of YT−t given YT = z. If z is the observed value of
YT , then ρ(·, t) provides the Bayesian posterior density for YT−t|YT = z.
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Figure 3: Depiction of the log transform (2) when the linear operator Aϵ,T−t acts as the adjoint of the
infinitesimal generator for the stochastic process Yt, illustrating its application in Bayesian inference. With
specific initial and terminal conditions, the function µ evolves from the prior distribution to the data dis-
tribution, while ρ evolves from a Dirac delta centered at the observation yobs of YT to the corresponding
posterior distribution. The first line shows the evolution of µ from right to left, while the second and third
lines display the evolutions of ν and ρ from left to right. The figures depict the graphs of the respective
density functions, and the relationships among the three lines represent the first part of the log transform (2).
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From a Bayesian perspective, given the initial and terminal conditions, µ(·, t) evolves from the prior
density P (Y0) at t = 0 to the data density P (YT ) at t = T , while ρ(·, t) evolves from the Dirac delta δz at
YT for t = 0 to the posterior density P (Y0|YT = z) at t = T . In terms of the nonlinear system for ρ and S,
the function ρ satisfies (10) when the following initial and terminal conditions are applied for ρ and S:

ρ(x, 0) = δz(x), S(x, T ) = ϵ logP (Y0 = x). (11)

An illustration is provided in Figure 3.
Throughout this paper, we assume that the distribution is either continuous or a mixture of continuous

and discrete components, allowing us to represent it either as a density function or as a finite combination of
Dirac masses. The terms “distribution” and “density function” will be used interchangeably as appropriate
in the context.

Remark 2.3 (Partial observation) A significant consideration in Bayesian inference involves scenarios
of partial observation, relevant in applications such as image inpainting. The computations above remain
valid even with only a partial observation of YT . For example, if Yt is a concatenation of Yt,1 ∈ Rm and
Yt,2 ∈ Rn−m, and only an observation yobs ∈ Rm for YT,1 is available, the analysis adapts accordingly. In
this remark, for any generic variable x, the notation x1 with a subscript ‘1’ refers to the vector comprising
the first m elements of x, while x2, denoted with a subscript ‘2’, encompasses the remaining n−m elements.
The formulation of the function µ remains as previously described, but the initial condition for ν is modified

to ν(x, 0) =
δyobs (x1)

P (YT,1=yobs)
for any vector x = (x1, x2) ∈ Rn. Following a computation akin to the earlier one,

we derive that ν(x, t) = E[ν(YT , 0)|YT−t = x] =
∫ δyobs (y1)

P (YT,1=yobs)
P (YT = y|YT−t = x)dy =

P (YT,1=yobs|YT−t=x)
P (YT,1=yobs)

.

Consequently, the function ρ satisfies

ρ(x, 0) = µ(x, T )ν(x, 0) = P (YT = x)
δyobs

(x1)

P (YT,1 = yobs)
= δyobs

(x1)P (YT,2 = x2|YT,1 = yobs),

ρ(x, t) = µ(x, T − t)ν(x, t) = P (YT−t = x)
P (YT,1 = yobs|YT−t = x)

P (YT,1 = yobs)
= P (YT−t = x|YT,1 = yobs),

(12)

for any t ∈ (0, T ) and x = (x1, x2) ∈ Rn. While the computation is feasible in this scenario, the primary
challenge in implementing the proposed algorithm in Section 3 lies in sampling from ρ(·, 0), that is, deter-
mining how to draw samples from the conditional distribution P (YT,2 = x2|YT,1 = yobs). Advancing the
proposed algorithm to address this issue necessitates additional research.

This section, along with Section 2.1, presents two distinct examples of the log transform using different
instances of the operator Aϵ,t. In Section 2.1, we investigated the log transform’s role when Aϵ,t acts as the
infinitesimal generator of a stochastic process Xt, linking it to certain MFG, SOT, stochastic optimal control,
and the stochastic Wasserstein proximal operator – fields that are at the forefront of current research. In
contrast, this section explores the application of the log transform when Aϵ,T−t is the adjoint operator of
the infinitesimal generator of Yt, and its relation to Bayesian inference. In scenarios where the infinitesimal
generator is self-adjoint (such as in a Brownian motion process), these two situations are the same. When
considering SDEs, these two cases are intuitively related in a reversed manner, highlighting a compelling
research path into this duality and its potential to connect Bayesian inference with MFGs and related areas.

Until now, our discussion has focused on theoretical connections. In the next section, we will utilize these
insights to develop a Bayesian sampling algorithm, named the HJ-sampler, which is designed to solve the
inverse problem related to the process Yt within a Bayesian framework.

3 A Bayesian sampling method for inverse problems: HJ-sampler

As explored in Section 2.2, the log transform establishes a connection to the Bayesian framework under
specific initial and terminal conditions. This section aims to harness this connection by introducing an
algorithm, the HJ-sampler, designed for a particular subset of inverse problems.

Initially, we outline the category of problems addressed. Considering an underlying stochastic process
Yt, with a prior distribution Pprior on Y0, our objective is to infer the solution Yt for t ∈ [0, T ) based on the
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terminal observation YT = yobs. Essentially, we aim to tackle the inverse problem associated with Yt within
the Bayesian framework. Setting the marginal distribution of Y0 as the prior distribution Pprior, our task
becomes to obtain samples from the posterior distribution P (Yt|YT = yobs) for t ∈ [0, T ). Starting from the
observation yobs, the HJ-sampler produces a sequence of posterior samples for Yt, moving backwards in time
from t = T to t = 0, through the resolution of the associated stochastic optimal control problem.

Subsequently, the discussion will progress in two phases. Firstly, in Section 3.1, we introduce the HJ-
sampler for general stochastic processes, entailing two primary steps: solving S and thereafter sampling from
ρ as defined in equation (4). Following this, in Section 3.2, attention shifts to SDE scenarios, delving into
the numerical details of each step.

3.1 HJ-sampler for general stochastic processes

Figure 4: The figure illustrates the SGM-HJ-sampler algorithm, consisting of two steps. The first step,
shown in the top panel, corresponds to the training phase, where training data is generated by sampling Yt

from µt, and a neural network is trained to approximate the scaled control or score function. The heatmap in
the middle represents the evolution of the density function µt from right to left, with time on the horizontal
axis and space on the vertical axis. The black curves display the sample paths, demonstrating the training
data. The second step, in the bottom panel, represents the inference phase, where posterior samples of
Yt | YT = yobs (with density ρτ ) are generated by sampling the controlled paths Zτ . The heatmap shows the
evolution of ρτ from left to right, with the black curves representing the generated sample paths, and the
white curve depicting the sample mean of the posterior distribution. The graphs of the initial and terminal
densities are displayed on the sides of each panel.

In this section, we present the HJ-sampler, an algorithm designed for a broad class of stochastic processes
Yt, where the underlying stochasticity is not limited to traditional Brownian motion dynamics. As delineated
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in Section 2.2, by setting the terminal condition for S to ϵ logPprior and the initial condition for ρ to δyobs
,

we derive that ρ(·, t) represents the conditional distribution of YT−t given YT = yobs. This enables the
acquisition of posterior samples for YT−t given YT = yobs, utilizing ρ(·, t). By sampling from ρ(·, t) over the
interval from t = 0 to t = T , we construct a continuous flow of posterior samples that traces the evolution
from YT back to Y0, conditional on YT = yobs.

Building upon this foundational understanding, we introduce an algorithm named the HJ-sampler, which
comprises two primary stages:

1. Initially, we solve the HJ equation as specified in the second line of (4), which is the following HJ
equation with terminal condition: {

∂tS + ϵe−
S
ϵ Aϵ,te

S
ϵ = 0,

S(x, T ) = ϵ logPprior(x).
(13)

2. Subsequently, we obtain samples from ρ as delineated in the first line of (4), which is expressed as:{
∂tρ+ ρe−

S
ϵ Aϵ,te

S
ϵ − e

S
ϵ A∗

ϵ,t(ρe
−S

ϵ ) = 0,

ρ(x, 0) = δyobs
(x).

(14)

Remark 3.1 (Flexibility of the observation time T ) The HJ-sampler is designed to sample the poste-
rior distribution of Yt given YT for t ∈ [0, T ). However, it can be generalized to sample the distribution of Yt

given Ys as long as 0 ≤ t < s ≤ T . This flexibility means that the observation time does not need to be fixed
at the start. If the observation time s is initially unknown, the algorithm can be modified by first solving the
HJ equation for a sufficiently large T that is guaranteed to exceed s. In the second step, instead of using the
original S, the time-shifted version (x, t) 7→ S(x, t + T − s) is applied to the PDE governing ρ. Sampling
from ρ then provides posterior samples for Yt | Ys = yobs. Consequently, if the underlying process and prior
distribution remain unchanged, adjusting the observation time s and location yobs does not require re-solving
the HJ equation in the first step.

The HJ-sampler operates through a sequential two-step process. In the first step, prior information is
used to set up the terminal condition for S, after which the function S is solved to compute the control
for the second step. Since this step does not depend on observational data yobs, it can be precomputed
offline using traditional numerical solvers [76, 48, 45, 2, 104, 68, 24, 51, 50, 15] or scientific machine learning
techniques [23, 73, 41, 3, 97, 17, 16, 113]. The second step, dependent on the outcomes of the first, uses the
observational data to set the initial condition for ρ. This structured separation between prior information
and observational data allows for flexibility and precomputation, with the precomputed control applied to
generate Bayesian samples once the data is available. In Section 3.2.2, the application of SGMs for SDEs
further illustrates this process, with the first step corresponding to the training phase and the second step
to the inference stage.

The main challenge in implementing the HJ-sampler lies in efficiently sampling from ρ(·, t), which evolves
according to the dynamics in (14). These dynamics relate to stochastic optimal control problems with a
terminal cost of −ϵ logPprior. Optimal control strategies, denoted by u∗, are derived by applying operators
to S, allowing posterior samples to be generated by sampling optimally controlled stochastic trajectories.
The type of stochasticity in Yt directly influences the nature of the control problem; for example, if Yt follows
jump process dynamics, the control problem will involve a controlled jump process rather than a traditional
controlled SDE. In the remainder of this paper, we focus specifically on cases where the underlying process
is governed by an SDE, reducing the HJ equation (13) to a traditional viscous HJ PDE, corresponding to a
stochastic optimal control problem. Section 3.2 introduces the details of the HJ-sampler algorithm and its
variants for this case, while Section 4 presents the numerical results. Extensions of the HJ-sampler to more
general processes are left for future exploration.

3.2 HJ-sampler for SDEs

In this section, and throughout the remainder of this paper, we concentrate on stochastic processes described
by an n-dimensional SDE dYt = b(Yt, t)dt+

√
ϵdWt, where b : Rn × [0, T ] → Rn acts as the drift component,
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and Wt represents Brownian motion in Rn. While our results are broadly applicable to general SDEs,
additional details are provided in Appendix C. Here, the operator Aϵ,T−t is defined as Aϵ,T−tf = −∇x ·
(b(x, t)f) + ϵ

2∆xf , and the HJ equation (13) becomes:∂tS − b(x, T − t) · ∇xS(x, t) +
1

2
∥∇xS∥2 +

ϵ

2
∆xS − ϵ∇x · b(x, T − t) = 0,

S(x, T ) = ϵ logPprior(x).
(15)

The corresponding Fokker-Planck equation (14) evolves into:∂tρ+∇x · (ρ(∇xS − b(x, T − t)))− ϵ

2
∆xρ = 0,

ρ(x, 0) = δyobs
(x),

(16)

where the solution ρ(·, t) is the same as the marginal distribution of an underlying SDE. Consequently, we
obtain posterior samples by sampling from this underlying SDE.

In this scenario, our HJ-sampler algorithm comprises two primary steps:

1. Numerically solve the HJ PDE (15) to determine S;

2. Generate samples from ρ that satisfies (16) by simulating the controlled SDE:

dZτ = (∇xS(Zτ , τ)− b(Zτ , T − τ))dτ +
√
ϵdWτ , Z0 = yobs. (17)

For practical implementation, the Euler–Maruyama method [56] discretizes the SDE as follows:

Zk+1 = Zk + (∇xS(Zk, τk)− b(Zk, T − τk))∆τ +
√
ϵ∆τξk, Z0 = yobs, (18)

where ξ0, . . . , ξNt−1 are independent and identically distributed (i.i.d.) samples from the n-dimensional
standard normal distribution.

Thus, the samples obtained from the discretized SDE Zk serve as approximations of the posterior samples
for YT−k∆τ given YT = yobs. An informal error estimation for the HJ-sampler is provided in Appendix C.3.

In the HJ-sampler algorithm, the choice of the numerical solver in each step can be adapted based
on the practical requirements of the application. For instance, in the second step, the Euler–Maruyama
method can be replaced with higher-order schemes to achieve higher accuracy. However, solving the viscous
HJ PDE (15) in the first step is more challenging, particularly in high-dimensional settings, making the
selection of numerical solvers for this step critical. In lower-dimensional cases, grid-based numerical solvers
such as Essentially Non-Oscillatory (ENO) schemes [76], Weighted ENO schemes [48], or the Discontinuous
Galerkin method [45] can be employed.

In addition to these grid-based methods, this paper introduces two grid-free numerical solvers that have
the potential for application to high-dimensional problems:

• If the Hamiltonian is quadratic and the prior distribution is a Gaussian mixture, the HJ PDEs can be
solved using Riccati ODEs (see Section 3.2.1).

• For more complex cases, we propose neural network-based methods, such as SGMs, as a solution (see
Section 3.2.2).

Since the sampling process only requires ∇xS, our focus is on determining ∇xS rather than solving for
S itself.

3.2.1 Riccati-HJ-sampler

In scenarios where the prior distribution is Gaussian and the drift term b(Yt, t) of the SDE is linear in Yt,
expressed as A(t)Yt + β(t), where A : [0, T ] → Rn×n (throughout this paper, Rm×n denotes the space of
matrices with m rows and n columns) and β : [0, T ] → Rn are continuous functions, both the Hamiltonian
and the initial condition in (15) adopt quadratic forms. Consequently, the HJ PDE (15) can be efficiently
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solved using Riccati ODEs [105, 35]. We apply a numerical ODE solver to solve the corresponding Riccati
ODEs and call this version of the HJ-sampler the Riccati-HJ-sampler.

Specifically, if we assume the prior density Pprior follows Pprior(θ) =
1√

(2π)n det(Σ)
exp

(
− 1

2 (θ − θP )TΣ−1(θ − θP )
)
,

with θP ∈ Rn and Σ ∈ Sn
++ (in this paper, Sn

++ denotes the set containing all n × n symmetric positive
definite matrices) representing the mean and covariance matrix, respectively, the solution to the viscous HJ
PDE (15) is expressed as:

S(x, t) = −1

2
(x− q(T − t))TQ(T − t)−1(x− q(T − t))− r(T − t),

where Q : [0, T ] → Sn
++, q : [0, T ] → Rn, and r : [0, T ] → R satisfy the Riccati ODE system outlined below:


Q̇(t) = I +Q(t)A(t)T +A(t)Q(t),

q̇(t) = A(t)q(t) + β(t),

ṙ(t) =
ϵ

2
Tr(2A(t) +Q(t)−1),


Q(0) =

1

ϵ
Σ,

q(0) = θP ,

r(0) =
nϵ

2
log(2π) +

ϵ

2
log det(Σ).

(19)

To facilitate sampling, it is sufficient to compute Q and q, from which ∇xS(x, t) can be derived as follows:

∇xS(x, t) = −Q(T − t)−1(x− q(T − t)). (20)

For Gaussian mixture priors, assume the prior distribution is a convex combination of Gaussian distri-
butions:

Pprior =

M∑
j=1

wjP
j
prior, where P j

prior(x) =
1√

(2π)n det(Σj)
exp

(
−1

2
(x− θPj )

TΣ−1
j (x− θPj )

)
. (21)

Here, wj serves as the mixture coefficient, determining the relative contribution of each Gaussian component

in the mixture and satisfying
∑M

j=1 wj = 1. Additionally, θPj ∈ Rn and Σj ∈ Sn
++ are the mean vectors

and covariance matrices of P j
prior, respectively. Utilizing the log transform, solving the viscous HJ PDE (15)

becomes equivalent to solving the KFE with the initial condition set as Pprior, which results in a linear

equation. Consequently, the solution µ is expressed as µ =
∑N

j=1 wjµj , where µj satisfies the KFE for the

initial condition P j
prior. Therefore, the solution to the viscous HJ PDE (15) is formulated as:

S(x, t) = ϵ logµ(x, T − t) = ϵ log

 N∑
j=1

wjµj(x, T − t)

 = ϵ log

 N∑
j=1

wj exp

(
Sj(x, t)

ϵ

)
= ϵ log

 N∑
j=1

wj exp

(
− 1

2ϵ
(x− qj(T − t))TQj(T − t)−1(x− qj(T − t))− rj(T − t)

ϵ

) ,

(22)

where Sj addresses the viscous HJ PDE (15) with the terminal condition ϵ logµj(·, 0) and can be computed

using Qj , qj , and rj that solve the Riccati ODEs (19) for each j-th Gaussian prior P j
prior. The optimal

control is then given by:

∇xS(x, t) = −
∑N

j=1 wjQj(T − t)−1(x− qj(T − t)) exp
(
− 1

2ϵ (x− qj(T − t))TQj(T − t)−1(x− qj(T − t))− 1
ϵ rj(T − t)

)∑N
j=1 wj exp

(
− 1

2ϵ (x− qj(T − t))TQj(T − t)−1(x− qj(T − t))− 1
ϵ rj(T − t)

) .

(23)
In summary, to manage a mixed Gaussian prior Pprior, the Riccati-HJ-sampler initially involves solving for

Qj , qj , and rj using the Riccati ODEs described in (19) for each j-th Gaussian component, P j
prior. The

control ∇xS is then derived from (23).
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3.2.2 SGM-HJ-sampler

In many complex scenarios, traditional numerical solvers struggle to efficiently and flexibly solve the viscous
HJ PDE (15), especially in higher dimensions. To overcome these limitations, neural network-based methods
can be employed. These approaches allow for approximating either the entire solution S or its gradient ∇xS,
which is essential for determining the control dynamics in the second step of the HJ-sampler. In this
section, we propose an algorithm called the SGM-HJ-sampler, which integrates a diffusion model known
as SGM [92, 26, 108, 107, 28] within the HJ-sampler framework. In the literature, SGMs are used to
approximate the score function ∇ logP (Yt = x) using a neural network trained on samples of Yt. Within our
framework, this function corresponds to 1

ϵ∇xS(x, T − t) according to the log transform. The neural network
is then utilized as a scaled control to generate posterior samples. For more insights into diffusion models
and their recent applications, we refer to the survey in [103]. Additionally, other neural network approaches
for approximating S or ∇xS can also be explored in future research.

The SGM approach is structured into two phases: training and inference. During the training phase,
the model learns the score function by minimizing a score-matching loss function using data sampled from
a stochastic process. In the inference phase, this learned score function is used to reverse the process,
starting from an initial “noise” state to generate samples that reflect the data distribution. These two
phases closely correspond to the two steps of the HJ-sampler. The first step of the HJ-sampler is similar to
the training stage of the SGM, where the goal is to train a neural network to approximate the score function
∇ logP (Yt = x) = 1

ϵ∇xS(x, T − t), using data derived from the process Yt. Similarly, the second step of the
SGM-HJ-sampler aligns with the inference phase of the SGM, where samples are generated from a controlled
stochastic process utilizing the learned score function. This alignment makes the SGM method well-suited
for integration into the HJ-sampler framework.

While our method shares foundational similarities with SGMs, it introduces distinct variations that set
it apart. Standard SGMs and other diffusion models typically involve a forward process that transitions
from data to noise, followed by a reverse process that reconstructs the data from the noise. In contrast,
our model follows a different structure. We utilize two distinct processes: the first moves from the prior
distribution P (Y0) = Pprior to the data distribution P (YT ), while the second transitions from an observed
datum Z0 = yobs to the posterior distribution P (Y0|YT = yobs). As a result, unlike conventional diffusion
models that use data points for training and prior samples for inference, our model uses prior samples for
training and observation points for inference. These similarities and differences may provide a new perspective
on diffusion models, enriching both the theoretical and practical understanding of these methods.

The SGM-HJ-sampler utilizing the SGM approach comprises two distinct steps:

1. Training stage: Data is generated by sampling Yt using the Euler–Maruyama method as follows:

Yk+1,j = Yk,j + b(Yk,j , tk)∆t+
√
ϵ∆tξk,j , (24)

where ξk,j are i.i.d. standard Gaussian, and Y0,j are prior samples, for k = 1, . . . , Nt − 1 and j =
1, . . . , Ny. Here, Yk,j denotes the j-th sample for Ytk . We use Nt to denote the number of time
discretizations and Ny to denote the number of sample paths in training. A neural network sW (where
W denotes the trainable parameters) is trained to fit ∇ logP (Yt) using the implicit score-matching
function:

Nt∑
k=1

Ny∑
j=1

λk

(
1

2
∥sW (Yk,j , tk)∥2 +∇x · sW (Yk,j , tk)

)
, (25)

where λk > 0 are tunable weighting hyperparameters. For high-dimensional problems, it is standard
practice to enhance scalability by employing the sliced version [90, 92]:

Nt∑
k=1

Ny∑
j=1

λk

(
1

2
∥sW (Yk,j , tk)∥2 +

Nv∑
ℓ=1

vTℓ ∇x(sW (Yk,j , tk)
T vℓ)

)
, (26)

where vℓ ∈ Rn are i.i.d. samples from a standard Gaussian distribution. For more details and discussion
about the loss function, see Appendix C.2.2.
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2. Inference stage: The discretized process Zk is sampled according to the equation:

Zk+1 = Zk + (ϵsW (Zk, T − τk)− b(Zk, T − τk))∆τ +
√
ϵ∆τηk, Z0 = yobs, (27)

where ηk are i.i.d. standard Gaussian samples for k = 1, . . . , Nz, distinct from those used in the training
stage. This is the Euler–Maruyama discretization for Zτ , and Zk is a sample for Zτk . Note that we
use different notations for the sample size and time grid size in training (Ny and ∆t) and inference
(Nz and ∆τ) to emphasize that these two discretizations do not need to be the same. Note that the
inference stage of the SGM-HJ-sampler differs from that of the standard SGM: rather than starting
from an initial “noise” state, the process begins at the observation point yobs.

This structured approach ensures that our model is both innovative and aligned with established method-
ologies while offering potential for future exploration. In this method, we do not require an explicit prior
probability density function, nor do we obtain the posterior probability density function directly. Instead,
the approach relies on prior samples and generates posterior samples.

µ(·, 0) µ(·, T ) ρ(·, 0) ρ(·, T )
HJ-sampler prior distribution data distribution Dirac mass on observation posterior distribution

Diffusion models data distribution prior distribution ρ(·, 0) = µ(·, T ) ρ(·, T ) = µ(·, 0)

Table 1: Difference between HJ-sampler and diffusion models: the initial and terminal conditions for µ and
ρ have different meanings in the corresponding problems, i.e., posterior sampling for HJ-sampler and data
generation for diffusion models.

Remark 3.2 (Difference between SGM-HJ-sampler and SGM) Although our training and inference
stages share similar formulas with diffusion models, the key differences lie in the practical interpretation of
the initial and terminal conditions, the specific problems each method is designed to address, the nature of
the challenges inherent in these problems, and the directions for future improvements.

Diffusion models or SGMs are designed to generate samples from the underlying distribution of the data.
Therefore, their data density function (which corresponds to our µ(·, 0)) is unknown. A stochastic process
is chosen to transform the data distribution into a simpler distribution (which corresponds to our µ(·, T )).
This process is manually selected to balance complexity and implementation difficulty, ensuring that µ(·, T ) is
easy to sample. In this setup, µ(·, T ) functions like a prior. A large number of samples are drawn from this
prior and then transformed using the reverse process to generate samples in the original data distribution.
The training and inference steps correspond to the forward and reverse processes, enabling the use of ODEs
or their solution operators, rather than the reverse SDE, to enhance the efficiency of the sampling stage.

However, in our method, we aim at Bayesian inference rather than sample generation from a distribution
described by data. Moreover, the stochastic processes of Yt and Zt are not in a forward and reverse relation-
ship; they differ by a factor of ν. Thus, we have four different initial and terminal densities: µ(·, 0), µ(·, T ),
ρ(·, 0), and ρ(·, T ), instead of just two. Our interpretation of these four densities also differs. See Table 1
for more details. In our case, the process Yt is governed by the model of the underlying dynamics, which
may be complicated, but we assume that samples from Yt can still be obtained in the first step. In terms of
the second step, we cannot apply the techniques designed for SGMs to accelerate the inference process, as Yt

and Zτ are not reverse processes of each other, and the control ∇xS differs from ϵ∇x log ρ. According to the
theory connecting SDEs and ODEs, the marginal distribution for Zτ is the same as the marginal distribution
of the following ODE:

˙̃Zτ = ϵsW (Z̃τ , T − τ)− b(Z̃τ , T − τ)− ϵ

2
∇x log ρ(Z̃τ , τ), (28)

provided that the initial distributions of Z0 and Z̃0 are the same. However, we cannot use the ODE for Z̃τ to
accelerate the inference process due to the lack of information on ∇x log ρ. Even if we can generate samples
from this ODE, the sample paths of Z̃τ differ from those of Zτ , and only the marginal distributions match.
Consequently, the advantage of trajectory sampling is lost.

While the previous two paragraphs outline the differences between the SGM and SGM-HJ-sampler meth-
ods, these distinctions also point to divergent directions for future development. In the literature [89, 88,
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52, 53], key directions in the development of diffusion models include finding effective ways to add noise
(i.e., SDE design), improving the training process by adjusting loss weights and data generation methods,
and accelerating inference processes. The future improvements for the SGM-HJ-sampler are different. Since
the underlying SDE process is determined by the problem setup and is usually complicated, we cannot design
the SDE or the training data distribution. Moreover, as discussed earlier, we cannot utilize ODE-based sam-
pling techniques like those in diffusion models. Thus, future work may focus on enhancing the loss design
by integrating more model-specific knowledge into the loss function (see [46] for example). In the context of
Bayesian inference problems, a simpler form of the prior distribution µ(·, 0) could allow for more efficient
incorporation of prior information, providing a basis for further algorithmic extensions.

Remark 3.3 (Theoretical unification of SGM-HJ-sampler and SGM) These two methods can be un-
derstood within the same theoretical framework. Through the log transform, the diffusion model is a special
case where the function ν(·, 0) is constantly equal to 1, and µ(·, 0) represents the data distribution. In con-

trast, the SGM-HJ-sampler is a special case where ν(·, 0) is a scaled Dirac delta function
δyobs (·)

P (YT=yobs)
at the

observation point yobs, and µ(·, 0) corresponds to the prior distribution. From this perspective, both methods
can be viewed as applications of the log transform, albeit with different interpretations of the initial condi-
tions. A related perspective on SGMs is also explored in [4], which interprets diffusion models through the
lens of optimal control.

From the perspective of diffusion models, the SGM-HJ-sampler can also be viewed as a conditional sam-
pling variant of SGM. According to diffusion model theory, the following SDE

dỸτ = (ϵsW (Ỹτ , T − τ)− b(Ỹτ , T − τ))dτ +
√
ϵdWτ , Ỹ0

d
= YT , (29)

where
d
= denotes equality in distribution, provides the reverse process of Yt, meaning (Ỹ0, Ỹτ ) is distribu-

tionally equivalent to (YT , YT−τ ). If we change the distribution of Ỹ0 from that of YT to a Dirac mass δyobs

while keeping the SDE unchanged, we obtain the process Zτ in (17). Since the SDE does not change, the
conditional distribution of Zτ given Z0 = yobs is the same as the distribution of Ỹτ given Ỹ0 = yobs, which
equals the posterior distribution of YT−τ given YT = yobs. This reasoning underpins the SGM-HJ-sampler
from the perspective of diffusion model theory.

4 Numerical examples

In this section, we demonstrate the accuracy, flexibility, and generalizability of our proposed HJ-sampler
by applying it to four test problems. In Section 4.1, we begin with a verification test, using 1D and 2D
scaled Brownian motions to present quantitative results that showcase the HJ-sampler’s performance. In
Section 4.2, we consider the underlying process Yt to be an Ornstein–Uhlenbeck (OU) process, demonstrating
how the HJ-sampler can handle model uncertainty and misspecification in ODEs [115]. Specifically, in
the model misspecification part of this example, a second-order ODE is incorrectly modeled as a linear
ODE. We introduce uncertainty by adding white noise to this misspecified ODE, transforming it into an
OU process, and then solve the inference problem using the HJ-sampler. The third example, detailed
in Section 4.3, illustrates the method’s potential in addressing model misspecification in nonlinear ODEs.
Finally, Section 4.4 demonstrates the method’s scalability by solving a 100-dimensional problem.

For the first example and the 1D OU process case, we have analytical formulas for the posterior density
functions, which serve as ground truths for quantitative comparison. These cases also have analytical solu-
tions to the viscous HJ PDEs (15). We refer to the version of the HJ-sampler that utilizes this analytical
solution as the analytic-HJ-sampler, which serves as a baseline to isolate and distinguish errors from the
first and second steps of the HJ-sampler. The analytical formulas and ground truths are provided in Ap-
pendix E. The algorithm’s flexibility in sampling from P (Yt|Ys = yobs) for 0 ≤ t < s ≤ T and yobs ∈ Rn

(see Remark 3.1) is demonstrated by selecting various t and s in several examples. Single precision is used
in all numerical experiments for illustration purposes. Additional details on the numerical implementations
can be found in Appendix D, with further results in Appendix F. The code for these examples will be made
publicly available upon acceptance of this paper.
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4.1 Brownian motion

In this section, we consider scaled 1D and 2D Brownian motions dYt =
√
ϵdWt, where Wt is a standard

Brownian motion and ϵ > 0 is the hyperparameter indicating the level of stochasticity, as the underlying
process. We solve the Bayesian inverse problem by sampling from P (Yt | Ys = yobs), where 0 ≤ t < s ≤ T ,
using the proposed HJ-sampler. The objective is to infer the value of Yt from the underlying stochastic
model, given the observation Ys = yobs and the prior on Y0. The posterior distribution for this problem
has an analytical solution, serving as the ground truth for error computation and quantitative analysis of
the HJ-sampler’s performance. Additionally, since the viscous HJ PDE (15) also has an analytical solution,
we can compare the performance of the SGM-HJ-sampler and the analytic-HJ-sampler to isolate the errors
arising from the first and second steps.

4.1.1 1D cases

yobs = −2 yobs = −1 yobs = 0 yobs = 1.5 yobs = 3 yobs ∼ P (YT )
analytic-HJ-sampler 0.0024 0.0023 0.0037 0.0018 0.0018 0.0024± 0.0006
SGM-HJ-sampler 0.0054 0.0069 0.0103 0.0175 0.0208 0.0104± 0.0051

(a) W1 errors of posterior samples for Y0 | YT = yobs, computed for different values of yobs (∆τ = 0.01).

Metric ∆τ = 0.5 ∆τ = 0.1 ∆τ = 0.01 ∆τ = 0.001
analytic- W1 0.1141 0.0217 0.0022 0.0008

HJ-sampler Wall time (s) 0.0 0.2 2.0 28.6
SGM- W1 0.1140 0.0224 0.0053 0.0040

HJ-sampler Wall time (s) 0.3 1.1 10.5 106.8

(b) W1 errors and the wall time for sampling from P (Y0 | YT = −3), with different values of ∆τ in (27).

Table 2: The quantitative results for the scaled 1D Brownian motion with Gaussian prior. In (a), we compare
the performance of the analytic-HJ-sampler and SGM-HJ-sampler on specific values of yobs (columns 2–6) and
on 1,000 random samples of yobs drawn from P (YT ) (rightmost column). In (b), we examine the performance
and computational wall time of both the analytic-HJ-sampler and SGM-HJ-sampler for different ∆τ values
in (27). The performance is measured by Wasserstein-1 distances (W1) between the samples from the exact
posterior distribution P (Y0 | YT = yobs) (Gaussian) and the posterior samples generated by the proposed
algorithm. The W1 distances are computed using 1× 106 samples, and the neural network in the SGM-HJ-
sampler is trained on snapshots taken every ∆t = 0.01.

In this section, we validate the proposed HJ-sampler through numerical experiments on 1D problems with
different prior distributions, including Gaussian, Gaussian mixture, and a mixture of uniform distributions.

We first assume a standard Gaussian prior for Y0, where Y0 ∼ N (0, 12) with ϵ = 1 and T = 1. For
the SGM-HJ-sampler, the interval [0, T ] is uniformly discretized with a step size of ∆t = 0.01 in (24) to
generate training data. In the inference stage, we set ∆τ = 0.01 in (27) to obtain posterior samples by
solving the controlled SDE. To quantitatively evaluate the posterior samples, we compute the Wasserstein-1
distance (W1) between the exact posterior samples and those obtained using both the analytic-HJ-sampler
and SGM-HJ-sampler. The results for specific values of the observation yobs for YT are presented in Table 2(a)
and Figure 12, which demonstrate that both samplers produce high-quality posterior samples, though the
analytic-HJ-sampler consistently outperforms the SGM-HJ-sampler. This difference highlights the errors
arising from the two steps of the HJ-sampler: the analytic-HJ-sampler only incurs error from discretizing
the controlled SDE in the second step, whereas the SGM-HJ-sampler also introduces error from the neural
network approximation in the first step. We also assess their performance over 1,000 random samples of yobs
drawn from P (YT ), reporting the mean and standard deviation of W1 in the rightmost column of Table 2(a).
Next, we analyze the performance and computational wall time of both HJ-samplers with varying ∆τ .
Table 2(b) shows the trade-off between accuracy and efficiency in both samplers. Notably, for the SGM-HJ-
sampler, the W1 errors improve at a slower rate when ∆τ is reduced from 0.01 to 0.001 compared to the
analytic-HJ-sampler. This indicates that the error from the neural network, trained with ∆t = 0.01, becomes
the dominant factor, constraining further error reduction despite a smaller ∆τ . Wall times are measured on
a standard laptop CPU (13th Gen Intel(R) Core(TM) i9-13900HX, 2.20 GHz, 16 GB RAM).
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(a) P (Y0 | Ys = yobs) for different yobs ∈ R and s ∈ (0, T ].

(b) P (Yt | Ys = yobs) for different t ∈ [0, T ) with fixed observation yobs = 2 and time s = T .

(c) P (Yt | Ys = yobs) for different yobs ∈ R and 0 ≤ t < s ≤ T .

Figure 5: Histograms depicting the distribution of posterior samples for the scaled 1D Brownian motion case
with a Gaussian mixture prior, across different observation times s and data values yobs. For all cases, the
posterior samples, obtained from the SGM-HJ-sampler, utilize the same pretrained neural network, trained
on t ∈ [0, T ] with T = 1. The black dashed lines represent the exact posterior density functions (Gaussian
mixture). Each histogram is generated from 1× 106 samples.

We then apply the HJ-sampler to a 1D Gaussian mixture prior. Specifically, the prior of Y0 is a mixture
of three Gaussians, N (0, 0.52), N (−2, 0.82), and N (2, 0.62), with equal weights, and we set ϵ = 1, T = 1,
and ∆τ = 0.001. We demonstrate the flexibility of the SGM-HJ-sampler by generating posterior samples for
the following cases:

(a) P (Y0 | Ys = yobs) for yobs ∈ R and s ∈ (0, T ],

(b) P (Yt | Ys = yobs) for t ∈ [0, T ), s = T , and yobs = 2,

(c) P (Yt | Ys = yobs) for yobs ∈ R and 0 ≤ t < s ≤ T .

The results, shown in Figure 5(a), (b), and (c), indicate that the posterior samples from the SGM-HJ-
sampler agree with the exact posterior density functions. Table 3 provides quantitative results for case (c).
Notably, in all cases, the neural network is trained once before knowing the observation yobs and time s,
and after receiving the data, the second step of the HJ-sampler generates posterior samples without needing
re-training. This flexibility is discussed in Remark 3.1.

Finally, we test the method on a more challenging case where the prior distribution is compactly sup-
ported. We consider a prior consisting of a mixture of two uniform distributions, U [−0.75,−0.25) and
U [0.25, 0.75), with equal weights, and set ϵ = 0.05, T = 1, and ∆τ = 0.001. Using both the analytic-HJ-
sampler and SGM-HJ-sampler, we generate posterior samples of Y0 given different observation points yobs
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Y0.01 | Y0.8 = −4 Y0.02 | Y0.5 = −2 Y0.05 | Y0.6 = 0.5 Y0.45 | Y0.95 = 1 Y0.03 | Y0.4 = 3
analytic-HJ-sampler 0.0019 0.0029 0.0034 0.0026 0.0027
SGM-HJ-sampler 0.0098 0.0072 0.0069 0.0110 0.0079

Table 3: W1 error for the scaled 1D Brownian motion case with a Gaussian mixture prior. The W1 distances
are calculated between 1 × 106 posterior samples of Yt | Ys = yobs obtained using two versions of the HJ-
sampler (with ∆τ = 0.001) and 1× 106 samples from the exact posterior distribution (Gaussian mixture).

(a) The analytic-HJ-sampler.

(b) The SGM-HJ-sampler.

Figure 6: Histograms depicting the distribution of posterior samples of Y0 | Ys = yobs for the scaled 1D
Brownian motion case with a prior distribution consisting of a mixture of uniform distributions, across
different observation times s and data values yobs. In all cases, the posterior samples, obtained using the
SGM-HJ-sampler, utilize the same pretrained neural network, trained on t ∈ [0, T ] with T = 1. The black
dashed lines represent the exact posterior density functions. Each histogram is generated from 1 × 106

samples. The prior is a mixture of two uniform distributions, U [−0.75,−0.25) and U [0.25, 0.75), with equal
weights.

for various observation times s ∈ (0, T ]. Results are presented in Figure 6, showing that both HJ-samplers
are capable of producing reliable posterior samples that align closely with the exact posterior density func-
tions. However, the analytic-HJ-sampler outperforms the SGM-HJ-sampler due to the latter’s neural network
approximation error.

4.1.2 A 2D case

We now consider a 2D case with the prior for Y0 given as a mixture of two Gaussian distributions with

means µ1 = [0.5, 0.5]T and µ2 = [−0.5,−0.5]T , and covariance matrices Σ1 =

[
0.25 0.05
0.05 1/9

]
and Σ2 =[

0.0625 −0.05
−0.05 0.25

]
, respectively. We set ϵ = 0.5 and T = 1, and uniformly discretize [0, T ] with a step size

∆t = 0.01 to generate training data. For the inference, we set ∆τ = 0.001 when solving the controlled
SDE. Posterior samples of Yt for different values of Ys (where 0 ≤ t < s ≤ T ) are generated using both
the analytic-HJ-sampler and the SGM-HJ-sampler. The results from the SGM-HJ-sampler are displayed in
Figure 7, which show strong agreement between the posterior samples and the exact density functions. To
quantitatively assess the sample quality, we compute the sliced W1 distance between the posterior samples
and the exact distributions. The results, shown in Table 4, indicate that while both methods perform well,

18



(a) The exact posterior distribution.

(b) Posterior samples obtained from the SGM-HJ-sampler.

Figure 7: Heatmaps of the scaled 2D Brownian motion case with a Gaussian mixture prior. Posterior samples
of Yt given the value of Ys for 0 ≤ t < s ≤ T are compared to the exact posterior distribution (Gaussian
mixture). In (a), the exact posterior density functions are displayed for specific values of t, s, and Ys. In
(b), the corresponding posterior samples obtained from the SGM-HJ-sampler are presented as histograms.
The neural network in the SGM-HJ-sampler was trained on t ∈ [0, T ], with T = 1.

Y0.1 | Y0.9 = [−0.9, 0.9]T Y0.2 | Y0.7 = [0.7, 0.3]T Y0 | Y0.3 = [0.3,−0.4]T Y0.3 | Y0.8 = [−0.5, 0.3]T

analytic-HJ-sampler 0.0007 0.0007 0.0008 0.0007
SGM-HJ-sampler 0.0126 0.0056 0.0025 0.0031

Table 4: Sliced W1 errors for the scaled 2D Brownian motion case with a Gaussian mixture prior. For each
value of t, s, and yobs, the W1 error is computed between 1×106 samples from the exact posterior distribution
P (Yt | Ys = yobs) (Gaussian mixture) and the posterior samples generated using the proposed methods.

the analytic-HJ-sampler generally yields better results. The sliced W1 distance between two n-dimensional
distributions µ and ν is computed as:

Ed∼U(Sn−1) [W1 ((Pd)#µ, (Pd)#ν)] ,

where U(Sn−1) is the uniform distribution on the unit sphere, Pd is the projection along direction d (i.e.,
Pd(x) = ⟨d, x⟩), and (Pd)#µ and (Pd)#ν denote the push-forwards of the distributions µ and ν, respectively.
The W1 distance, W1((Pd)#µ, (Pd)#ν), is computed between samples of (Pd)#µ and (Pd)#ν. The sliced
W1 distance is then calculated by taking the expectation over random directions d sampled from U(Sn−1).
To compute this sliced W1 distance, we use a Monte Carlo approximation with 50 samples for d, utilizing
the Python Optimal Transport library [33].

4.2 Ornstein–Uhlenbeck process

In this section, we consider the OU process

dYt = −BYt dt+
√
ϵ dWt, (30)

where B ∈ Rn×n is a constant matrix whose eigenvalues have positive real parts, and Wt is a Brownian
motion in Rn. The prior distribution is assumed to be either Gaussian or a Gaussian mixture. This setup
is a specific instance of the process discussed in Section 3.2.1, where A(t) = −B and β(t) = 0. A more
general version of the OU process, such as dYt = (c− BYt) dt+

√
ϵ σ dWt, involving an additional constant

vector c ∈ Rn and a constant matrix σ ∈ Rn×n, can also be solved in a similar manner (as a special case
discussed in Appendix C.2). However, we focus on the simpler case here for illustrative purposes. Both
the Riccati-HJ-sampler and SGM-HJ-sampler can be applied to solve this problem. Additionally, in the 1D
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case, the viscous HJ PDE (15) has an analytical solution, enabling the use of the analytic-HJ-sampler for
comparison as a sanity check.

In this scenario, the functions q and r in the Riccati ODE (19) have analytical solutions, given by
q(t) = e−tBθP and r(t) = ϵ

2 log((2πϵ)
n det(Q(t))). The other function, Q, can be solved using an ODE

solver. Although the Riccati ODE method for solving the marginal density function of the OU process is
known in the literature (e.g., [57]), we extend this by connecting it to the viscous HJ PDE and control
problems via the log transform.

analytic-HJ-sampler Riccati-HJ-sampler SGM-HJ-sampler
0.0085± 0.0014 0.0086± 0.0013 0.0103± 0.0024

Table 5: Verification of the proposed methods for a 1D OU process with a Gaussian prior. W1 distances
are computed between the posterior samples of Y0 | YT = yobs obtained from three HJ-samplers and the
samples from the exact posterior distribution (Gaussian). We randomly draw 1, 000 samples of yobs from
P (YT ) (Gaussian) and present the mean and standard deviation of the W1 distances across these values of
yobs. The W1 distance is evaluated based on 1× 106 samples.

We first perform a sanity check for the presented algorithm by inferring the value of Y0 given YT = yobs
for a 1D OU process, dYt = −αYtdt +

√
ϵdWt, with α = 3 and ϵ = 1.5. The prior distribution is assumed

to be the standard Gaussian distribution N (0, 12), and we set T = 1. We apply the analytic-HJ-sampler,
Riccati-HJ-sampler, and SGM-HJ-sampler to obtain posterior samples of Y0. The forward Euler scheme
with a step size of 1× 10−4 is used to solve the Riccati ODE in the Riccati-HJ-sampler, while ∆τ = 0.01 is
employed in the inference stage of all three HJ-samplers to solve the controlled SDE. We sample 1,000 values
of yobs randomly from P (YT ) and compute the W1 distance between the posterior samples generated by the
HJ-samplers and the exact posterior distribution of Y0 | YT = yobs (Gaussian). The mean and standard
deviation of the W1 distances across different values of yobs are presented in Table 5, showing that all three
HJ-samplers perform well in producing posterior samples.

After this sanity check, in the following two sections, we demonstrate the ability of the proposed HJ-
samplers to handle model uncertainty and misspecification problems. In the first case (Section 4.2.1), we
examine a first-order linear ODE system with model uncertainty present in both equations. In the second
case (Section 4.2.2), we address a model misspecification problem where a second-order ODE is incorrectly
modeled as a second-order linear ODE. This misspecification is captured by the corresponding linear SDE.
By reformulating the SDE as a first-order linear system, only the second equation contains the white noise
term, illustrating the algorithm’s capability to handle partial uncertainty within a system. In both cases,
the SDE models yield an OU process, allowing us to apply the HJ-samplers developed for OU processes to
effectively solve these Bayesian inference problems.

4.2.1 The first case: model uncertainty in a first-order linear ODE system

In this section, we demonstrate how to apply the proposed method to handle model uncertainty. We consider
the first-order ODE system:

dy1
dt

= y2,

dy2
dt

= −y1 − y2.

(31)

Model uncertainty is introduced by adding white noise to the right-hand sides of the equations, leading to the

OU process (30) with n = 2 and B =

[
0 −1
1 1

]
∈ R2×2. Assume the prior distribution of Y0 is a mixture of

two Gaussians with means µ1 = [−0.7, 0]T and µ2 = [0.7, 0]T and covariance matrices Σ1 =

[
0.25 0.1
0.1 0.16

]
and

Σ2 =

[
0.25 −0.1
−0.1 0.16

]
, respectively, with equal weights. We set ϵ = 5 and T = 1, and discretize [0, T ] uniformly

with ∆t = 0.01 to generate the training data for the SGM-HJ-sampler. We apply both the Riccati-HJ-sampler
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(a) The Riccati-HJ-sampler.

(b) The SGM-HJ-sampler.

Figure 8: Histograms of posterior samples for the 2D OU process with a Gaussian mixture prior. We show
the posterior samples of Yt | Ys = yobs computed using the Riccati-HJ-sampler in (a) and SGM-HJ-sampler
in (b) for several values of yobs ∈ R2 and 0 ≤ t < s ≤ T .

and SGM-HJ-sampler to solve the Bayesian inverse problem, i.e., sampling from P (Yt | Ys = yobs), where
0 ≤ t < s ≤ T , for some specific values of yobs.

Since B is non-diagonal, the exact posterior cannot be derived analytically, and we do not have access
to the analytic-HJ-sampler in this case. Therefore, the Riccati-HJ-sampler is used as the reference method
to obtain posterior samples of Yt | Ys = yobs. We set ∆τ = 0.001 to solve the controlled SDE in both
HJ-samplers, and the forward Euler scheme with a step size of 1 × 10−5 is employed to solve the Riccati
ODE in the Riccati-HJ-sampler.

Results are presented in Figure 8, demonstrating that the SGM-HJ-sampler produces results that closely
align with those from the Riccati-HJ-sampler, validating the effectiveness of the SGM-HJ-sampler.

4.2.2 The second case: model misspecification of a second-order ODE

Figure 9: Quantifying model uncertainty in inferring the values of Y1(t) and Y2(t) for t ∈ [0, T ), based
on Y1(T ) and Y2(T ) at T = 5, under different ϵ values in (34). The observations Y1(T ) and Y2(T ), along
with the reference solutions (solid lines in each figure), are generated by the exact ODE system (32). The
parameter ϵ represents the uncertainty level in the misspecified model. The SGM-HJ-sampler is employed
to generate posterior samples, which are then used to compute the posterior means (dashed lines) and 2-
standard-deviation intervals (color-shaded regions) in the right three figures. Model uncertainty refers to the
uncertainty in the differential equation due to misspecification of a term on the right-hand side of (32b). The
leftmost figure illustrates the reference trajectories of y1 and y2 (solid lines, from the exact ODE system (32))
and the inferred y1 and y2 (dashed lines, from the misspecified ODE system (33)). The discrepancy between
the solid and dashed lines highlights the impact of model misspecification, emphasizing the need to account
for the associated uncertainty.

In this section, we illustrate how the proposed method addresses model misspecification. Consider an

21



exact but unknown ODE given by u′′(t) = −u(t)+u(t)2−u′(t), which is misspecified as ũ′′(t) = −ũ(t)−ũ′(t).
This discrepancy necessitates modeling the error and quantifying the uncertainty induced by the incorrect
model, as discussed in [115]. By defining y1(t) = u(t) and introducing the auxiliary variable y2(t) = u′(t),
the exact ODE transforms into:

dy1
dt

= y2, (32a)

dy2
dt

= −y1 + y21 − y2. (32b)

Similarly, letting ỹ1(t) = ũ(t) and ỹ2(t) = ũ′(t), the misspecified model becomes:

dỹ1
dt

= ỹ2, (33a)

dỹ2
dt

= −ỹ1 − ỹ2. (33b)

To account for the model uncertainty, we reformulate the misspecified ODE system (33) into the following
SDE:

dY1(t) = Y2(t) dt,

dY2(t) = (−Y1(t)− Y2(t)) dt+
√
ϵ dWt,

(34)

where we use capital letters Y1(t) and Y2(t) to denote random variables, which approximate the corresponding
deterministic values denoted by lowercase letters y1(t) and y2(t) from the exact ODE model (32). The capital
letters represent the stochastic versions of the corresponding lowercase variables, reflecting the uncertainty
in the misspecified model. Here, ϵ is a hyperparameter controlling the level of uncertainty in the system;
a larger ϵ corresponds to greater uncertainty in the model equations, while a smaller ϵ indicates higher
confidence in the misspecified ODE.

Our goal is to infer the values of Y1(t) and Y2(t) for t ∈ [0, T ) based on the values of Y1(T ) and Y2(T ),
with T = 5, while accounting for the model uncertainty in (34) using the SGM-HJ-sampler. Specifically,
the data for Y1(T ) and Y2(T ), which are based on the exact ODE solutions y1(T ) and y2(T ), as well as the
reference trajectories y1(t) and y2(t) for t ∈ [0, T ), are generated by numerically solving the exact nonlinear
ODE (32) with the initial conditions y1(0) = 0.2 and y2(0) = 0.1 using the SciPy odeint function [95]. We
consider three levels of uncertainty, ϵ = 1 × 10−3, 1 × 10−4, 1 × 10−5, and assume the prior distributions of
Y1(0) and Y2(0) are independent log-normal distributions, specifically LogNormal(−2, 0.52). Since the prior
distribution is neither Gaussian nor a Gaussian mixture, the Riccati-HJ-sampler is not applicable. Therefore,
we use the SGM-HJ-sampler with ∆τ = 0.001 to solve this problem.

We present the results in Figure 9, where each panel displays the reference trajectories y1(t) and y2(t) as
solid lines. In the leftmost panel, we show the inference of y1(t) and y2(t) for t ∈ [0, T ), based solely on y1(T )
and y2(T ), by solving the misspecified linear ODE (33) backward in time. The gap between the reference
trajectories (y1(t), y2(t)) and the inferred trajectories (ỹ1(t), ỹ2(t)) highlights the necessity of incorporating
model uncertainty when addressing model misspecification.

The remaining panels in Figure 9 show the results from the SGM-HJ-sampler, with each panel corre-
sponding to a different uncertainty level, ϵ. Specifically, after obtaining the posterior samples (1×103) using
the SGM-HJ-sampler, we compute the posterior means and standard deviations. The posterior means are
represented by dashed lines, while the 2-standard-deviation regions are shown in color, visualizing the un-
certainty in the inferred solutions. From these panels, we observe that the uncertainty in the inferred values
of Y1(t) and Y2(t) increases as ϵ increases. In practice, ϵ can be interpreted as a confidence hyperparameter
for the model (33b), where higher confidence corresponds to a smaller ϵ.

In this example, three distinct neural networks (sW ) were trained, one for each value of ϵ, leading to
three separate SGM-HJ-samplers. To enhance flexibility with respect to the confidence hyperparameter ϵ,
we could include ϵ as an input to the neural network, allowing it to adapt to different confidence levels
without requiring retraining. This example also highlights the capability of our method to handle partial
uncertainty, where only certain equations within the system are subject to uncertainty.
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(a) The exact model is g(y) = 3y2, misspecified as g̃(y) = y2.

(b) The exact model is g(y) = 1.5y(1− y), misspecified as g̃(y) = y2.

Figure 10: Quantifying model uncertainty in inferring y(t), t ∈ [0, T ), from y(T ) (T = 1) under different cases
of model misspecification. The leftmost panel shows the reference solution (exact ODE) and the inference
obtained by solving the misspecified ODE backward in time. The difference highlights the consequence of
model misspecification, emphasizing the need to quantify uncertainty. The right three panels display the
references (solid), posterior means (dashed), and 2-standard-deviation regions (colored) computed using the
SGM-HJ-sampler with varying uncertainty levels (ϵ).

4.3 Model misspecification for a nonlinear ODE

In this section, we demonstrate the effectiveness of the proposed approach in addressing model misspecifi-
cation in a nonlinear 1D ODE through a Bayesian inverse problem. Specifically, we consider the following
ODE:

dy(t)

dt
= f(t) + g(y(t)), t ∈ [0, T ],

y(0) = y0,
(35)

where y0 is the initial condition, f(t) = sin(4πt) is the known source term, and g(y(t)) is the term that is
misspecified as g̃(y(t)). Our objective is to infer the values of y(t) for t ∈ [0, T ), given the observed value
yobs = y(T ), while accounting for uncertainty due to the misspecification of g(y). To model this uncertainty,
we reformulate the ODE as the following SDE:

dYt = (f(t) + g̃(Yt))dt+
√
ϵdWt, (36)

where ϵ is a positive constant that controls the level of uncertainty. The parameter ϵ can be interpreted as
a confidence level: smaller values of ϵ indicate higher confidence in the model. The prior distribution of Y0

is assumed to be N (0, 0.12). We discretize the time domain [0, T ] uniformly with ∆t = 0.01 to generate the
training data.

We assume T = 1 and consider two distinct cases of model misspecification:

(a) The exact model is g(y) = 3y2, but it is misspecified as g̃(y) = y2.

(b) The exact model is g(y) = 1.5y(1− y), but it is misspecified as g̃(y) = y2.

In Case (a), the model form is correct but the coefficient is wrong, while in Case (b), the model g itself
is misspecified. The values of y(T ) and the reference solutions for y(t), for t ∈ [0, T ), are obtained by
numerically solving the correctly specified ODE with initial conditions y0 = 0.05 in (a) and y0 = −0.1 in (b).
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The results are presented in Figure 10, following a similar presentation style as Figure 9. The leftmost
panel shows the consequences of model misspecification, where the inferred solution is computed by solving
the misspecified ODE backward in time. The remaining three panels show the posterior mean (dashed lines)
and 2-standard-deviation regions (colored areas) computed from the posterior samples (1 × 105) generated
by the SGM-HJ-sampler, with different levels of uncertainty corresponding to ϵ = 1 × 10−3, 5 × 10−3, and
1× 10−2. We set ∆τ = 0.001 in solving the controlled SDE. The solid lines represent the reference solutions
for y(t) from the correctly specified ODE. These results show that as ϵ decreases, the uncertainty in the
inferred values of y(t) decreases accordingly. Overall, this example demonstrates the SGM-HJ-sampler’s
capability to effectively account for model misspecification in nonlinear systems.

4.4 A high-dimensional example

(a) Posterior samples of Yt, t ∈ [0, T ) given YT = y1.

(b) Posterior samples of Yt, t ∈ [0, T ) given YT = y2.

Figure 11: Results from the SGM-HJ-sampler used to infer Yt for t ∈ [0, T ) given YT = y1 or y2. Each figure
shows a snapshot at a different time t. The horizontal axis represents the spatial domain of the underlying
function ft, while the vertical axis represents the function’s value. Since Yt ∈ Rn with n = 100 denotes the
discretization of ft, we plot these values at the grid points in each figure. Figures (a) and (b) correspond
to the cases with observations YT = y1 and YT = y2, respectively, where y1 and y2 are vectors randomly
selected from the testing data of YT . The component values of y1 and y2 are marked as blue circles. The
red crosses represent the posterior means of the inferred Yt components, connected by red dots to illustrate
the inferred underlying function ft. The colored region (■) indicates the uncertainty, computed as the mean
± two standard deviations. In the rightmost figures, the black lines and crosses show the reference values
of f0, the underlying unknown function used to generate the observation data YT .

This section presents an example where the proposed algorithm is applied to a Bayesian inference problem
for a function ft defined on [0, 1]. The domain is discretized using a uniform grid, and we focus on the grid
points. The values of ft(xi) at each grid point xi can be represented as an n-dimensional vector, where
n is the number of grid points. We denote this vector, with components ft(x1), . . . , ft(xn), as Yt. The
underlying stochastic process for Yt is modeled as a scaled Brownian motion, dYt =

√
ϵdWt, t ∈ [0, T ]. The

objective is to solve the inverse problem of inferring the value of Yt, t ∈ [0, T ), given an observation of YT and
prior knowledge of Y0. This example also evaluates the algorithm’s capability to handle high-dimensional
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problems. The prior information assumes that Y0 corresponds to the grid values of the function f0 [69, 112]:

f0(x | ξ1, . . . , ξ8) =
1

16

8∑
j=1

ξj sin(jπx), x ∈ [0, 1], (37)

where ξj , j = 1, ..., 8 are i.i.d. random variables uniformly distributed on [1, 3).
We set n = 100, ϵ = 0.01, and T = 1. The SGM-HJ-sampler is used to solve the problem, utilizing

the sliced score matching loss function (26), which enhances scalability when direct computation of the
divergence in the loss (25) becomes inefficient. The training data for sW are generated by sampling Y0

from (37) and numerically discretizing the Brownian motion with ∆t = 0.02. The inference step is carried
out with ∆τ = 0.01. We generate posterior samples of Yt, t ∈ [0, T ), given two specific values of YT , randomly
selected from the test set. The results are shown in Figure 11, where we depict the posterior mean (red cross)
and uncertainty (two standard deviation intervals, colored areas) of Yt for certain t ∈ [0, T ), based on 1,000
posterior samples from the SGM-HJ-sampler. Unlike Figures 9 and 10, the x-axis in these figures represents
the spatial domain [0, 1] for the underlying function ft, rather than the temporal domain t ∈ [0, T ]. Each
figure is a snapshot for a specific t, and since Yt contains the grid values of an underlying 1D function,
we visualize the results by connecting the component values with lines to represent the reference, posterior
mean, and uncertainties.

The results indicate that when t is close to T , such as t = 0.9, the uncertainty is small, and the posterior
mean of Yt is close to the observed value YT . As t decreases, the posterior mean becomes smoother. In
both cases, when t = 0, the reference values (black lines and crosses) lie within the two-standard-deviation
regions around the posterior mean, demonstrating the effectiveness of the SGM-HJ-sampler in quantifying
uncertainty for this high-dimensional problem.

5 Summary

In this paper, we leverage the log transform to establish connections between certain Bayesian inference
problems, stochastic optimal control, and diffusion models. Building on this connection, we propose the
HJ-sampler, an algorithm designed to sample from the posterior distribution of inverse problems involving
SDE processes. We have developed three specific HJ-samplers: the analytic-HJ-sampler, Riccati-HJ-sampler,
and SGM-HJ-sampler, applying them to various SDEs and different prior distributions of the initial condi-
tion. Notably, we have demonstrated the potential of these algorithms in addressing (1) uncertainty induced
by model misspecification [115] in nonlinear ODEs, (2) mixtures of certainty and uncertainty in ODE sys-
tems, and (3) high dimensionality. The results showcase the accuracy, flexibility, and generalizability of
our approach, highlighting new avenues for solving such inverse problems by utilizing techniques originally
developed for control problems and diffusion models. Despite these advancements, several open problems
and extensions remain to be explored.

There are multiple ways to generalize the current method. First, although the method is initially applied
to a single observational data point, it can be extended sequentially to handle multiple observations. After
obtaining posterior samples from several observation points, the prior distribution can be updated, and the
HJ-sampler can be reapplied to the updated prior as new observations become available. When employing
the machine learning-based version of the HJ-sampler, this process can be integrated with operator learning
to potentially eliminate the need for retraining neural networks, enabling more efficient updates. Second,
while the HJ-sampler is tailored for cases where Yt is governed by an SDE, the underlying log transform
framework is applicable to any process with a well-defined infinitesimal generator. The SDE case represents
a specific instance, and future research will focus on extending the numerical implementation of the HJ-
sampler to more general processes. This broader perspective also hints at potential extensions of diffusion
models to handle non-continuous distributions or processes driven by more complex noise structures.

Beyond generalization, several improvements to the current HJ-sampler method are possible. For in-
stance, alternative numerical methods for solving viscous HJ PDEs or stochastic optimal control problems
could be incorporated, leading to new variants of the HJ-sampler. Additionally, various machine learning
techniques could be integrated with the HJ-sampler to enhance efficiency and accuracy. This could involve
the development of novel loss functions or improved strategies for generating training data. Moreover, in
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cases where certain parts of the model are poorly understood or lack sufficient information, neural network
surrogate models could be used to shift from a model-driven to a data-driven approach. For example, if the
underlying process is not well-characterized, NeuralODE [18], NeuralSDE [54, 65], or reinforcement learning
methods could be employed to approximate the dynamics.
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A Log transform applied to a general SDE

We consider the stochastic process Xt, represented as an SDE in Rn, defined by dXt = b(Xt, t)dt +√
ϵσ(Xt, t)dWt. Here, Wt denotes a Brownian motion in Rm. The functions b : Rn × [0, T ] → Rn and

σ : Rn × [0, T ] → Rn×m ensure the SDE’s proper formulation. We introduce D : Rn × [0, T ] → Rn×n defined
by D(x, t) = σ(x, t)σ(x, t)T for any x ∈ Rn and t ∈ [0, T ]. The constant ϵ in the SDE is a positive value
that indicates the level of stochasticity and corresponds to the hyperparameter ϵ in the general definition of
the operator Aϵ,t in Section 2. The specific formulation of Aϵ,t in this SDE context and its adjoint A∗

ϵ,t are
described by the equations:

Aϵ,tf = b(x, t) · ∇xf +
ϵ

2
Tr(D(x, t)∇2

xf), A∗
ϵ,tf = −∇x · (b(x, t)f) + ϵ

2

n∑
i,j=1

∂2(Dij(x, t)f)

∂xi∂xj
, (38)

with Dij(x, t) representing the (i, j)-th component of the matrix D(x, t). In this appendix, if the variables
in a function or a formula are not explicitly specified, they default to (x, t).

The KBE and KFE in (1) are given by:

∂tµ = b(x, T − t) · ∇xµ+
ϵ

2
Tr(D(x, T − t)∇2

xµ), ∂tν = −∇x · (b(x, t)ν) + ϵ

2

n∑
i,j=1

∂2(Dij(x, t)ν)

∂xi∂xj
, (39)

with all calculations based on the variables (x, t). The coupled nonlinear differential equations in (4) are:
∂tρ+∇x · ((b(x, t) +D(x, t)∇xS)ρ) =

ϵ

2

n∑
i,j=1

∂xi
∂xj

(ρDij(x, t)),

∂tS + b(x, t) · ∇xS +
1

2
(∇xS)

TD(x, t)∇xS +
ϵ

2
Tr(D(x, t)∇2

xS) = 0,

(40)

where calculations and functions are evaluated at (x, t).
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With terminal condition −J on S and initial condition δz0 on ρ, these equations form the first order
conditions for optimality in the following stochastic optimal control problem:

min

{
E

[∫ T

0

1

2
vTs D(Zs, s)

−1vsds+ J(ZT )

]
: dZs = (b(Zs, s) + vs)ds+

√
ϵσ(Zs, s)dWs, Z0 = z0

}
, (41)

whose value equals −S(z0, 0). Alterations in initial or terminal conditions for ρ and S relate these differ-
ential equations to specific MFGs or SOT problems, as discussed previously in Example 2.1. Details of the
computations are provided in the following section.

A.1 Computational details

By the definition of Aϵ,t, we have

e−
S
ϵ Aϵ,te

S
ϵ = e−

S
ϵ

b(x, t) · ∇xe
S
ϵ +

ϵ

2

n∑
i,j=1

Dij(x, t)∂xi
∂xj

e
S
ϵ


= e−

S
ϵ

e
S
ϵ

ϵ
b(x, t) · ∇xS +

ϵ

2

n∑
i,j=1

Dij(x, t)e
S
ϵ

(
(∂xi

S)(∂xj
S)

ϵ2
+

∂xi
∂xj

S

ϵ

)
=

b(x, t) · ∇xS

ϵ
+

1

2ϵ

n∑
i,j=1

Dij(x, t)(∂xi
S)(∂xj

S) +
1

2

n∑
i,j=1

Dij(x, t)(∂xi
∂xj

S)

=
b(x, t) · ∇xS

ϵ
+

1

2ϵ
(∇xS)

TD(x, t)∇xS +
1

2
Tr(D(x, t)∇2

xS).

(42)

Therefore, the HJ equation in (4) becomes

0 = ∂tS + ϵe−
S
ϵ Aϵ,te

S
ϵ = ∂tS + b(x, t) · ∇xS +

1

2
(∇xS)

TD(x, t)∇xS +
ϵ

2
Tr(D(x, t)∇2

xS). (43)

Similarly, according to the formula for A∗
ϵ,t, we get

e
S
ϵ A∗

ϵ,t(ρe
−S

ϵ ) = e
S
ϵ

−∇x · (b(x, t)ρe−S
ϵ ) +

ϵ

2

n∑
i,j=1

∂2(Dij(x, t)ρe
−S

ϵ )

∂xi∂xj


= e

S
ϵ

(
− e−

S
ϵ ∇x · (b(x, t)ρ) + ρe−

S
ϵ b(x, t) · ∇xS

ϵ
+

ϵ

2

n∑
i,j=1

(
e−

S
ϵ ∂xi

∂xj
(ρDij(x, t))

− 2

ϵ
e−

S
ϵ (∂xi

S)(∂xj
(ρDij(x, t))) + ρDij(x, t)e

−S
ϵ

( (∂xi
S)(∂xj

S)

ϵ2
−

∂xi
∂xj

S

ϵ

)))

= −∇x · (b(x, t)ρ) + ρb(x, t) · ∇xS

ϵ
+

ϵ

2

n∑
i,j=1

(
∂xi∂xj (ρDij(x, t))

− 2

ϵ
(∂xi

S)(∂xj
(ρDij(x, t))) + ρDij(x, t)

( (∂xiS)(∂xjS)

ϵ2
−

∂xi∂xjS

ϵ

))
.

(44)
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Then, we have

ρe−
S
ϵ Aϵ,te

S
ϵ − e

S
ϵ A∗

ϵ,t(ρe
−S

ϵ ) =
ρb(x, t) · ∇xS

ϵ
+

ρ

2ϵ
(∇xS)

TD(x, t)∇xS +
ρ

2
Tr(D(x, t)∇2

xS) +∇x · (b(x, t)ρ)

− ρb(x, t) · ∇xS

ϵ
− ϵ

2

n∑
i,j=1

(
∂xi∂xj (ρDij(x, t))−

2

ϵ
(∂xiS)(∂xj (ρDij(x, t)))

+ ρDij(x, t)
( (∂xiS)(∂xjS)

ϵ2
−

∂xi∂xjS

ϵ

))
= ρTr(D(x, t)∇2

xS) +∇x · (b(x, t)ρ)− ϵ

2

n∑
i,j=1

∂xi
∂xj

(ρDij(x, t)) +
n∑

i,j=1

(∂xi
S)(∂xj

(ρDij(x, t)))

= ∇x · ((b(x, t) +D(x, t)∇xS)ρ)−
ϵ

2

n∑
i,j=1

∂xi
∂xj

(ρDij(x, t)).

(45)
Therefore, the Fokker-Planck equation in (4) becomes

0 = ∂tρ+ρe−
S
ϵ Aϵ,te

S
ϵ −e

S
ϵ A∗

ϵ,t(ρe
−S

ϵ ) = ∂tρ+∇x ·((b(x, t)+D(x, t)∇xS)ρ)−
ϵ

2

n∑
i,j=1

∂xi∂xj (ρDij(x, t)). (46)

B The log transform for a one-dimensional scaled Poisson process

In this section, we consider a stochastic process defined as a one-dimensional scaled Poisson process, namely
Xt = ϵN(t), where N(t) denotes a Poisson process with a rate of λ = 1

ϵ . Similar to the approach in
Section 2.1, we define the linear operator Aϵ,t as the infinitesimal generator of Xt. Consequently, the
operator Aϵ,t and its adjoint, A∗

ϵ,t, are represented by:

Aϵ,tf =
f(x+ ϵ, t)− f(x, t)

ϵ
, A∗

ϵ,tf =
f(x− ϵ, t)− f(x, t)

ϵ
.

This results in specific adaptations of the general coupled linear system (1) and the general coupled nonlinear
system (4) to the case of the scaled Poisson process, represented by the following equations:

∂tµ(x, t) =
µ(x+ ϵ, t)− µ(x, t)

ϵ
, ∂tν(x, t) =

ν(x− ϵ, t)− ν(x, t)

ϵ
, (47)

for the linear system, and
0 = ∂tρ+ ρe−

S
ϵ Aϵ,te

S
ϵ − e

S
ϵ A∗

ϵ,t(ρe
−S

ϵ ) = ∂tρ(x, t) +
1

ϵ

(
e

S(x+ϵ,t)−S(x,t)
ϵ ρ(x, t)− ρ(x− ϵ, t)e

S(x,t)−S(x−ϵ,t)
ϵ

)
,

0 = ∂tS + ϵe−
S
ϵ Aϵ,te

S
ϵ = ∂tS(x, t) + exp

(
S(x+ ϵ, t)− S(x, t)

ϵ

)
− 1,

(48)
for the nonlinear system.

With the terminal condition −J on S and the initial condition δz0 on ρ, these PDEs serve as the first
order optimality conditions for the subsequent stochastic optimal control problem:

min

{∫ T

0

∫
R
(g(x, s) log g(x, s)− g(x, s) + 1) ρ(x, s)dxds+

∫
R
J(x)ρ(x, T )dx :

∂tρ(x, t) =
g(x− ϵ, t)ρ(x− ϵ, t)− g(x, t)ρ(x, s)

ϵ
, ρ(x, 0) = δz0(x)

}
.

(49)

The optimal control function g satisfies the relation g(x, t) = exp(S(x+ϵ,t)−S(x,t)
ϵ ). This represents a stochastic

optimal control scenario where the control influences the jump rate of a process through the function g, and
the running loss is derived from the entropy function of the rate g. As in the SDE context, varying the initial
and terminal conditions on ρ and S associates these two PDEs with specific MFGs and Schrödinger bridge
problems, where the underlying stochastic process is a controlled jump process, given Xt is a jump process.
We defer exploration of more complicated jump processes to future research.
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C HJ-sampler for SDE cases

In this section, we focus on the scenario where the stochastic process Yt is described by the general SDE
dYt = b(Yt, t) dt+

√
ϵσ(Yt, t) dWt, where Wt is an m-dimensional Brownian motion. Here, b : Rn×[0, T ] → Rn

and σ : Rn × [0, T ] → Rn×m are functions ensuring that the SDE is well-defined. We define D(x, t) =
σ(x, t)σ(x, t)T . Unless specified otherwise, the input variables in this appendix are assumed to be (x, t). The
constant ϵ in the SDE corresponds to the hyperparameter ϵ in the general definition of the operator Aϵ,T−t

in Section 2. In this case, the infinitesimal generator of Yt is defined as f 7→ b(x, t) ·∇xf +
ϵ
2 Tr(D(x, t)∇2f).

Consequently, the linear operators Aϵ,T−t and its adjoint A∗
ϵ,T−t are defined by

Aϵ,T−tf = −∇x · (b(x, t)f) + ϵ

2

n∑
i,j=1

∂2(Dij(x, t)f)

∂xi∂xj
, A∗

ϵ,T−tf = b(x, t) · ∇xf +
ϵ

2
Tr(D(x, t)∇2

xf), (50)

where Dij(x, t) denotes the (i, j)-th element of the matrix D(x, t). The HJ equation (13) becomes

∂tS − b(x, T − t) · ∇xS + ϵ

n∑
i,j=1

(∂xi
S)(∂xj

Dij(x, T − t)) +
1

2
(∇xS)

TD(x, T − t)∇xS

+
ϵ

2
Tr(D(x, T − t)∇2

xS) +
ϵ2

2

n∑
i,j=1

∂xi
∂xj

Dij(x, T − t)− ϵ∇x · b(x, T − t) = 0,

S(x, T ) = ϵ logPprior(x),

(51)

which is a traditional viscous HJ PDE. The Fokker-Planck equation in (14) becomes

∂tρ−∇x · (b(x, T − t)ρ) +

n∑
i,j=1

∂xi

(
ρ(Dij(x, T − t)∂xj

S + ϵ∂xj
Dij(x, T − t))

)
− ϵ

2

n∑
i,j=1

∂xi
∂xj

(Dij(x, T − t)ρ) = 0,

ρ(x, 0) = δyobs
(x).

(52)

Similar to the case in Appendix A, these two PDEs are related to the following stochastic optimal control
problem:

min

{
E

[∫ T

0

(
1

2
vTs DT−s(Zs)

−1vs + ϵ∇x · bT−s(Zs)−
ϵ2

2

n∑
i,j=1

∂xi∂xjDij,T−s(Zs)

)
ds− ϵ logPprior(ZT )

]
:

dZs = (−b(Zs, T − s) + ϵ∇x ·D(Zs, T − s) + vs)ds+
√
ϵσ(Zs, T − s)dWs, Z0 = yobs

}
,

(53)

where ∇x ·D(x, t) represents a vector-valued function whose i-th component is ∇x ·Di(x, t), with Di(x, t)
being the i-th column of D(x, t). To simplify notation, we denote b(x, t) and Dij(x, t) by bt(x) and Dij,t(x),
respectively. In the scenario where D is non-invertible, the following optimal control problem arises:

min

{
E

[∫ T

0

(
1

2
uT
s DT−s(Zs)us + ϵ∇x · bT−s(Zs)−

ϵ2

2

n∑
i,j=1

∂xi
∂xj

Dij,T−s(Zs)

)
ds− ϵ logPprior(ZT )

]
:

dZs = (−bT−s(Zs) + ϵ∇x ·D(Zs, T − s) +DT−s(Zs)us)ds+
√
ϵσT−s(Zs)dWs, Z0 = yobs

}
.

(54)

The proposed HJ-sampler algorithm consists of two main steps:
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1. Numerically solve the viscous HJ PDE (51) to obtain S;

2. Generate samples from ρ, which satisfies (52), by sampling from the controlled SDE given below:

dZt =

D(Zt, T − t)∇xS(Zt, t)− b(Zt, T − t) + ϵ

n∑
j=1

∂xj
Dj(Zt, T − t)

 dt+
√
ϵσ(Zt, T − t)dWt,

Z0 = yobs,

(55)

whereDj(x, t) denotes the j-th column of the matrixD(x, t). In practice, the Euler–Maruyama method
is employed to discretize this SDE as follows:

Zk+1 = Zk +

D(Zk, T − tk)∇xS(Zk, tk)− b(Zk, T − tk) + ϵ

n∑
j=1

∂xjDj(Zk, T − tk)

∆t+
√
ϵ∆tσ(Zk, T − tk)ξk,

Z0 = yobs,

(56)
where ξ0, . . . , ξnt−1 are i.i.d. samples drawn from the m-dimensional standard normal distribution.

The obtained samples for Zk provide an approximation to the posterior samples of YT−k∆t given YT =
yobs. Computational details are presented in the subsequent section.

C.1 Computational details

In this section, we provide the computational details for the results provided in Section 3.2. By the definition
of Aϵ,T−t, we have

e−
S
ϵ Aϵ,te

S
ϵ = e−

S
ϵ

−∇x · (b(x, T − t)e
S
ϵ ) +

ϵ

2

n∑
i,j=1

∂xi
∂xj

(Dij(x, T − t)e
S
ϵ )


= e−

S
ϵ

(
− e

S
ϵ ∇x · b(x, T − t)− e

S
ϵ b(x, T − t) · ∇xS

ϵ
+

ϵ

2

n∑
i,j=1

(
e

S
ϵ (∂xi

∂xj
Dij(x, T − t))

+
2

ϵ
e

S
ϵ (∂xi

S)(∂xj
Dij(x, T − t)) +Dij(x, T − t)e

S
ϵ

( (∂xi
S)(∂xj

S)

ϵ2
+

∂xi
∂xj

S

ϵ

)))

= −∇x · b(x, T − t)− b(x, T − t) · ∇xS

ϵ
+

ϵ

2

n∑
i,j=1

(
∂xi∂xjDij(x, T − t)

+
2

ϵ
(∂xi

S)(∂xj
Dij(x, T − t)) +Dij(x, T − t)

( (∂xi
S)(∂xj

S)

ϵ2
+

∂xi
∂xj

S

ϵ

))
= −∇x · b(x, T − t)− b(x, T − t) · ∇xS

ϵ
+

ϵ

2

n∑
i,j=1

∂xi
∂xj

Dij(x, T − t)

+

n∑
i,j=1

(∂xi
S)(∂xj

Dij(x, T − t)) +
1

2ϵ
(∇xS)

TD(x, T − t)∇xS +
1

2
Tr(D(x, T − t)∇2

xS).

(57)

Therefore, the HJ equation in (4) becomes

0 = ∂tS + ϵe−
S
ϵ Aϵ,te

S
ϵ

= ∂tS − b(x, T − t) · ∇xS + ϵ

n∑
i,j=1

(∂xi
S)(∂xj

Dij(x, T − t)) +
1

2
(∇xS)

TD(x, T − t)∇xS

+
ϵ

2
Tr(D(x, T − t)∇2

xS) +
ϵ2

2

n∑
i,j=1

∂xi
∂xj

Dij(x, T − t)− ϵ∇x · b(x, T − t).

(58)
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Similarly, according to the formula of A∗
ϵ,t, we obtain

e
S
ϵ A∗

ϵ,t(ρe
−S

ϵ ) = e
S
ϵ

b(x, T − t) · ∇x(ρe
−S

ϵ ) +
ϵ

2

n∑
i,j=1

Dij(x, T − t)∂xi
∂xj

(ρe−
S
ϵ )


= e

S
ϵ

(
− e−

S
ϵ ρb(x, T − t) · ∇xS

ϵ
+ e−

S
ϵ b(x, T − t) · ∇xρ+

ϵ

2

n∑
i,j=1

(
e−

S
ϵ Dij(x, T − t)∂xi

∂xj
ρ

− 2

ϵ
e−

S
ϵ Dij(x, T − t)(∂xiS)(∂xjρ) + ρDij(x, T − t)e−

S
ϵ

( (∂xi
S)(∂xj

S)

ϵ2
−

∂xi
∂xj

S

ϵ

)))

= −ρb(x, T − t) · ∇xS

ϵ
+ b(x, T − t) · ∇xρ+

ϵ

2

n∑
i,j=1

(
Dij(x, T − t)∂xi∂xjρ

− 2

ϵ
Dij(x, T − t)(∂xi

S)(∂xj
ρ) + ρDij(x, T − t)

( (∂xi
S)(∂xj

S)

ϵ2
−

∂xi
∂xj

S

ϵ

))
.

(59)

Then, we have

ρe−
S
ϵ Aϵ,te

S
ϵ − e

S
ϵ A∗

ϵ,t(ρe
−S

ϵ ) = −ρ∇x · b(x, T − t)− ρb(x, T − t) · ∇xS

ϵ
+

ϵρ

2

n∑
i,j=1

∂xi
∂xj

Dij(x, T − t)

+ ρ
n∑

i,j=1

(∂xi
S)(∂xj

Dij(x, T − t)) +
ρ

2ϵ
(∇xS)

TD(x, T − t)∇xS +
ρ

2
Tr(D(x, T − t)∇2

xS)

+ ρb(x, T − t) · ∇xS

ϵ
− b(x, T − t) · ∇xρ−

ϵ

2

n∑
i,j=1

(
Dij(x, T − t)∂xi

∂xj
ρ

− 2

ϵ
Dij(x, T − t)(∂xiS)(∂xjρ) + ρDij(x, T − t)

( (∂xi
S)(∂xj

S)

ϵ2
−

∂xi
∂xj

S

ϵ

))
= −ρ∇x · b(x, T − t)− b(x, T − t) · ∇xρ+

ϵρ

2

n∑
i,j=1

∂xi
∂xj

Dij(x, T − t)− ϵ

2

n∑
i,j=1

Dij(x, T − t)∂xi
∂xj

ρ

+ ρ
n∑

i,j=1

(∂xi
S)(∂xj

Dij(x, T − t)) + ρTr(D(x, T − t)∇2
xS) +

n∑
i,j=1

Dij(x, T − t)(∂xi
S)(∂xj

ρ)

= −∇x · (b(x, T − t)ρ) +
ϵρ

2

n∑
i,j=1

∂xi
∂xj

Dij(x, T − t)− ϵ

2

n∑
i,j=1

Dij(x, T − t)∂xi
∂xj

ρ

+∇x · (ρD(x, T − t)∇xS)

= −∇x · ((b(x, T − t)−D(x, T − t)∇xS)ρ)−
ϵ

2

n∑
i,j=1

∂xi∂xj (Dij(x, T − t)ρ) + ϵρ

n∑
i,j=1

∂xi∂xjDij(x, T − t)

+ ϵ

n∑
i,j=1

(∂xiDij(x, T − t))(∂xjρ)

= −∇x · (b(x, T − t)ρ) +
n∑

i,j=1

∂xi

(
ρ(Dij(x, T − t)∂xj

S + ϵ∂xj
Dij(x, T − t))

)
− ϵ

2

n∑
i,j=1

∂xi
∂xj

(Dij(x, T − t)ρ).

(60)
Therefore, the Fokker-Planck equation in (4) becomes

0 = ∂tρ+ ρe−
S
ϵ Aϵ,te

S
ϵ − e

S
ϵ A∗

ϵ,t(ρe
−S

ϵ )

= ∂tρ−∇x · (b(x, T − t)ρ) +

n∑
i,j=1

∂xi

(
ρ(Dij(x, T − t)∂xj

S + ϵ∂xj
Dij(x, T − t))

)
− ϵ

2

n∑
i,j=1

∂xi
∂xj

(Dij(x, T − t)ρ).

(61)
After specifying the terminal condition −J for S and the initial condition δz0 for ρ, the two PDEs relate
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to the following stochastic optimal control problem:

min

{
E

[∫ T

0

1

2
vTs D(Zs, T − s)−1vs −

ϵ2

2

n∑
i,j=1

∂xi∂xjDij(Zs, T − s) + ϵ∇x · b(Zs, T − s)ds+ J(ZT )

]
:

dZs =
(
vs − b(Zs, T − s) + ϵ

n∑
j=1

∂xjDj(Zs, T − s)
)
ds+

√
ϵσ(Zs, T − s)dWs, Z0 = z0

}
,

(62)

whose value is equal to −S(z0, 0). With different initial and terminal conditions on S and ρ, these two PDEs
relate to certain MFGs or SOT problems, similar to what was discussed in Example 2.1 and Section A.

C.2 Numerical solvers for the viscous HJ PDE (51)

In the proposed HJ-sampler algorithm, a numerical solver is required to address the viscous HJ PDE (51)
in this general case. Similar to the approaches discussed in Sections 3.2.1 and 3.2.2, we will describe the
Riccati method and the SGM method in the following sections.

C.2.1 Riccati method

The Riccati method can be applied in cases where the function b(x, t) depends linearly on x, σ(x, t) depends
only on t, and the prior distribution is Gaussian. This version of the HJ-sampler is called the Riccati-HJ-
sampler. Specifically, we assume that b takes the form b(x, t) = Atx+ βt, where At ∈ Rn×n and βt ∈ Rn for
any t ∈ [0, T ]. We also assume that the matrix D(x, t) = σ(x, t)σ(x, t)T depends only on t. Additionally, the
prior distribution is assumed to be Pprior(θ) ∝ exp

(
− 1

2 (θ − θ0)TΣ−1(θ − θ0)
)
. Under these assumptions,

the viscous HJ PDE (51) in the first step of the Riccati-HJ-sampler can be solved using Riccati ODEs,
following a similar approach to that in Section 3.2.1. For simplicity, in this section, we will interchangeably
use both Dt and D(x, t), as well as Dt,ij and Dij(x, t), as needed.

Let S̃(x, t) = −S(x, T − t), where S is the solution to (51). Then, S̃ satisfies

∂tS̃ + b(x, t) · ∇xS̃ − ϵ

n∑
i,j=1

(∂xi S̃)(∂xjDij(x, t)) +
1

2
(∇xS̃)

TD(x, t)∇xS̃

− ϵ

2
Tr(D(x, t)∇2

xS̃) +
ϵ2

2

n∑
i,j=1

∂xi∂xjDij(x, t)− ϵ∇x · b(x, t) = 0,

S̃(x, 0) = −ϵ logPprior(x).

(63)

Under the assumptions on b, D, and Pprior, this PDE simplifies to
∂tS̃ + (Atx+ βt)

T∇xS̃ +
1

2
(∇xS̃)

TDt∇xS̃ − ϵ

2
Tr(Dt∇2

xS̃)− ϵTr(At) = 0,

S̃(x, 0) =
ϵ

2
(x− θ0)TΣ−1(x− θ0) +

nϵ

2
log(2π) +

ϵ

2
log det(Σ).

(64)

In this viscous HJ PDE, both the Hamiltonian and the initial condition are quadratic, allowing the equation
to be solved using Riccati ODEs. Specifically, the solution is given by S̃(x, t) = 1

2 (x − q(t))TQ(t)−1(x −
q(t)) + r(t), where Q : [0, T ] → Sn

++, q : [0, T ] → Rn, and r : [0, T ] → R satisfy the following Riccati ODE
system: 

Q̇(t) = Dt +Q(t)AT
t +AtQ(t),

q̇(t) = Atq(t) + βt,

ṙ(t) =
ϵ

2
Tr(2At +DtQ(t)−1),


Q(0) =

1

ϵ
Σ,

q(0) = θ0,

r(0) =
nϵ

2
log(2π) +

ϵ

2
log det(Σ).

(65)

Since sampling only requires ∇xS(x, t), it suffices to solve for Q and q, and then obtain

∇xS(x, t) = −∇xS̃(x, T − t) = −Q(T − t)−1(x− q(T − t)). (66)
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Beyond the Gaussian prior, we can also handle Gaussian mixture prior distributions. Similar to the
approach in Section 3.2.1, we first solve the Riccati ODE for each Gaussian component and then compute
∇xS using (23).

C.2.2 SGM method

For more general cases, we can approximate the score function using a neural network trained on samples of Yt

via the SGM method, similar to the approach in Section 3.2.2. This approach is called the SGM-HJ-sampler.
In this case, the training data are sampled from the discretized SDE as follows:

Yk+1,j = Yk,j + b(Yk,j , tk)∆t+
√
ϵ∆tσ(Yk,j , tk)ξk,j . (67)

The neural network can also be trained using the loss functions (25) and (26). After training, the term
∇xS(Zk, tk) in the sampling step can be approximated by the pretrained model ϵsW (Zk, T − tk).

There are alternative choices for the loss function in the training of diffusion models. A popular choice
is:

nt∑
k=1

N∑
j=1

λk∥sW (Yk,j , tk)−∇yk
logP (Ytk = Yk,j |Y0 = Y0,j)∥2, (68)

where λk are positive weighting terms, and various methods for selecting them in diffusion models are
discussed in [92, 52].

In our case, when the model for Yt is complicated, we do not have an analytical formula for logP (Ytk |Y0).
However, using a similar derivation, we can employ the following loss instead:

nt∑
k=1

N∑
j=1

λk∥sW (Yk,j , tk)−∇yk
logP (Ytk = Yk,j |Ytk−1

= Yk−1,j)∥2

≈
nt∑
k=1

N∑
j=1

λk

∥∥∥∥sW (Yk,j , tk) +
1

ϵ∆t
D(Yk−1,j , tk−1)

−1(Yk,j − Yk−1,j − b(Yk−1,j , tk−1)∆t)

∥∥∥∥2 .
(69)

In this scenario, the conditional distribution P (Ytk |Ytk−1
) does not have an analytical formula, so we ap-

proximate it using the conditional distribution from the discretized process in (67). Note that this loss
function requires the matrix D(y, t) to be invertible for all y = Yk,j and t = tk. The equivalence of these loss

functions, including the original score matching loss
∑nt

k=1

∑N
j=1 λk∥sW (Yk,j , tk)−∇yk

logP (Ytk = Yk,j)∥2,
is discussed in [94].

C.3 Error estimation for HJ-sampler

In this section, we present a simple error estimation for the HJ-sampler. The total error in the HJ-sampler
arises from two main sources: the numerical error in solving the viscous HJ PDE during the first step, and
the sampling error in the second step. Here, we focus on analyzing the impact of the first error.

Let ρ(x, t|yobs) or ρyobs
(x, t) denote the density of the stochastic process described in (55), and let

ρ̃(x, t|yobs) or ρ̃yobs
(x, t) represent the density of the following stochastic process:

dZτ =

D(Zτ , T − τ)α(Zτ , τ)− b(Zτ , T − τ) + ϵ

n∑
j=1

∂xjDj(Zτ , T − τ)

 dτ +
√
ϵσ(Zτ , T − τ)dWτ ,

Z0 = yobs,

(70)

where α is an approximation of the control ∇xS. We compare the error between the true distribution
ρyobs

(·, t) and its numerical approximation ρ̃yobs
(·, t), measured by the Wasserstein-2 distance, denoted as

W2(ρyobs
(·, t), ρ̃yobs

(·, t)).
In the case of the Riccati-HJ-sampler, α can be considered as an interpolation of the spatial gradient of

the Riccati solution at temporal grid points tk. For the SGM-HJ-sampler, the function α(x, t) is given by
the pretrained neural network ϵsW (x, T − t).
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Following the proof in [58], we adapt the methodology to our setup. We provide an informal error
estimation, focusing on the essential ideas while simplifying the analysis by omitting some technical details.
We assume sufficient regularity of the functions so that the Fokker-Planck equations have smooth solutions
ρyobs

(x, t) and ρ̃yobs
(x, t) for any yobs, x ∈ Rn, and t ∈ (0, T ]. Additionally, we assume that the functions

b and α are Lipschitz continuous with Lipschitz constants Lb and Lα, respectively. We further assume
that D(x, t) depends only on t and is bounded by CD(t)I, meaning that CD(t)I −D(x, t) is positive semi-

definite. We assume that CD(t) and exp
(
−2Lbt− 2Lα

∫ t

0
CD(T − τ)dτ

)
CD(T −t)2 are both integrable over

t ∈ [0, T ]. Moreover, we assume that the optimal transport map from ρyobs
(·, t) to ρ̃yobs

(·, t) is given by ∇ϕ,
the gradient of a convex, second-order differentiable function ϕ with invertible Hessian matrices. Note that
the function ϕ may vary with t, but we omit this time dependence for simplicity of notation.

Under these assumptions, the function ρyobs
satisfies the following equation:

0 = ∂tρyobs
−∇x · (b(x, T − t)ρyobs

) +

n∑
i,j=1

∂xi

(
ρyobs

Dij(T − t)∂xj
S
)
− ϵ

2

n∑
i,j=1

∂xi
∂xj

(Dij(T − t)ρyobs
)

= ∂tρyobs
+

n∑
i=1

∂xi

ρyobs

−bi(x, T − t) +

n∑
j=1

(
Dij(T − t)∂xjS −

ϵDij(T − t)∂xj
ρyobs

2ρyobs

) .

(71)

Thus, ρyobs
(·, t) is also the marginal density of the ODE ẋt = v(xt, t|ρyobs

), where v is given by:

v(x, t|ρyobs
) = −b(x, T − t) +D(T − t)∇xS(x, t)−

ϵD(T − t)∇xρyobs

2ρyobs

. (72)

Similarly, the function ρ̃yobs
(·, t) is the marginal density of the ODE ẋt = ṽ(xt, t|ρ̃yobs

), where ṽ is given by:

ṽ(x, t|ρ̃yobs
) = −b(x, T − t) +D(T − t)α(x, t)− ϵD(T − t)∇xρ̃yobs

2ρ̃yobs

. (73)

According to [83, Cor.5.25], the Wasserstein distance between ρyobs
(·, t) and ρ̃yobs

(·, t), denoted by t 7→
W2(ρyobs

, ρ̃yobs
)(t) = W2(ρyobs

(·, t), ρ̃yobs
(·, t)), satisfies

1

2

d

dt
W2(ρyobs

, ρ̃yobs
)2 = Eπ(x,y)[(x− y)T (v(x, t|ρyobs

)− ṽ(y, t|ρ̃yobs
))], (74)

where π is the optimal transport plan between ρyobs
and ρ̃yobs

. For simplicity, we omit the variable t in the
density functions.

Next, we will bound the right-hand side of (74). Through straightforward computation, we obtain

Eπ(x,y)[(x− y)T (v(x, t|ρyobs
)− ṽ(y, t|ρ̃yobs

))] = Eπ(x,y)[(x− y)T (−b(x, T − t) + b(y, T − t))]

+ Eπ(x,y)

[
(x− y)TD(T − t)(∇xS(x, t)− α(y, t))

]
− ϵ

2
Eπ(x,y)

[
(x− y)TD(T − t)

(
∇xρyobs

(x, t)

ρyobs
(x, t)

− ∇yρ̃yobs
(y, t)

ρ̃yobs
(y, t)

)]
.

(75)

Since the function b is Lipschitz continuous with respect to x, with uniform Lipschitz constant Lb, the first
term on the right-hand side of (75) is bounded above by LbW2(ρyobs

, ρ̃yobs
)2. Furthermore, since the matrix

D(t) is bounded above by CD(t)I and the function α is Lipschitz with respect to x with constant Lα, the
second term on the right-hand side of (75) is estimated by

Eπ(x,y)

[
(x− y)TD(T − t)(∇xS(x, t)− α(y, t))

]
≤CD(T − t)Eπ(x,y)

[
(x− y)T (∇xS(x, t)− α(y, t))

]
=CD(T − t)Eπ(x,y)

[
(x− y)T (∇xS(x, t)− α(x, t))

]
+ CD(T − t)Eπ(x,y)

[
(x− y)T (α(x, t)− α(y, t))

]
≤CD(T − t)W2(ρyobs

, ρ̃yobs
)
(
Eπ(x,y)

[
∥∇xS(x, t)− α(x, t)∥2

])1/2
+ CD(T − t)LαW2(ρyobs

, ρ̃yobs
)2

=CD(T − t)W2(ρyobs
, ρ̃yobs

)
(
Eρyobs

[
∥∇xS(·, t)− α(·, t)∥2

])1/2
+ CD(T − t)LαW2(ρyobs

, ρ̃yobs
)2.

(76)
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According to optimal transport theory, there exists a convex function ϕ such that the optimal transport
plan π is given by (Id,∇ϕ)#ρyobs

, which denotes the push-forward of ρyobs
by (Id,∇ϕ) (where Id denotes the

identity map x 7→ x). Denote by ϕ∗ the Fenchel-Legendre transform of ϕ. Then, π can also be represented
by (∇ϕ∗, Id)#ρ̃yobs

. The expectation in the last term on the right-hand side of (75) simplifies as follows:

Eπ(x,y)

[
(x− y)TD(T − t)

(
∇xρyobs

(x, t))

ρyobs
(x, t)

− ∇yρ̃yobs
(y, t))

ρ̃yobs
(y, t)

)]
=Eρyobs

[
(x−∇ϕ(x))TD(T − t)∇xρyobs

(x, t)

ρyobs
(x, t)

]
− Eρ̃yobs

[
(∇ϕ∗(y)− y)TD(T − t)∇yρ̃yobs

(y, t)

ρ̃yobs
(y, t)

]
=

∫
(x−∇ϕ(x))TD(T − t)∇xρyobs

(x, t)dx−
∫
(∇ϕ∗(y)− y)TD(T − t)∇yρ̃yobs

(y, t)dy

= −
∫

Tr
(
(I −∇2ϕ(x))D(T − t)

)
ρyobs

(x, t)dx+

∫
Tr
(
(∇2ϕ∗(y)− I)D(T − t)

)
ρ̃yobs

(y, t)dy

= − Eρyobs

[
Tr(D(T − t)(I −∇2ϕ))

]
+ Eρ̃yobs

[
Tr(D(T − t)(∇2ϕ∗ − I))

]
= − Eρyobs

[
Tr(D(T − t)(I −∇2ϕ))

]
+ Eρyobs

[
Tr(D(T − t)((∇2ϕ)−1 − I))

]
=Eρyobs

[
Tr
(
D(T − t)(∇2ϕ(x) + (∇2ϕ(x))−1 − 2I)

)]
=Eρyobs

[
Tr
(
D(T − t)(∇2ϕ(x))−1(∇2ϕ(x)− I)2

)]
≥ 0,

(77)

where the last term is non-negative because the matrix D(T − t)(∇2ϕ(x))−1(∇2ϕ(x)− I)2 is positive semi-
definite for any t ∈ [0, T ].

Combining all the estimates, we have

1

2

d

dt
W2(ρyobs

, ρ̃yobs
)2 ≤ C1(t)W2(ρyobs

, ρ̃yobs
)2 + CD(T − t)W2(ρyobs

, ρ̃yobs
)
(
Eρyobs

[
∥∇xS(·, t)− α(·, t)∥2

])1/2
,

(78)
where C1(t) = Lb + CD(T − t)Lα is a function of t. Next, we take the expectation with respect to yobs ∼
P (yobs) = µ(yobs, T ) and obtain

1

2

d

dt
EP (yobs)

[
W2(ρyobs

, ρ̃yobs
)2
]

≤C1(t)EP (yobs)

[
W2(ρyobs

, ρ̃yobs
)2
]
+ CD(T − t)EP (yobs)

[
W2(ρyobs

, ρ̃yobs
)
(
Eρyobs

[
∥∇xS(·, t)− α(·, t)∥2

])1/2]
≤C1(t)EP (yobs)

[
W2(ρyobs

, ρ̃yobs
)2
]
+ CD(T − t)

(
EP (yobs)

[
W2(ρyobs

, ρ̃yobs
)2
])1/2 (EP (yobs)Eρyobs

[
∥∇xS(·, t)− α(·, t)∥2

])1/2
≤C1(t)EP (yobs)

[
W2(ρyobs

, ρ̃yobs
)2
]
+ CD(T − t)

(
EP (yobs)

[
W2(ρyobs

, ρ̃yobs
)2
])1/2 (E [∥∇xS(YT−t, t)− α(YT−t, t)∥2

])1/2
,

(79)
where the second inequality follows from the Cauchy-Schwarz inequality, and the last one holds because
P (yobs)ρyobs

(x, t) = P (YT,1 = yobs)P (YT−t = x|YT,1 = yobs) = P (YT−t = x, YT,1 = yobs) following (12). Let

L(t) =
(
EP (yobs)

[
W2(ρyobs

, ρ̃yobs
)2
])1/2

. We obtain

dL(t)
dt

=
1
2

d
dtEP (yobs)

[
W2(ρyobs

, ρ̃yobs
)2
]

L(t)
≤ C1(t)L(t) + CD(T − t)

(
E
[
∥∇xS(YT−t, t)− α(YT−t, t)∥2

])1/2
.

(80)

Moreover, we have L(0) =
(
EP (yobs)

[
W2(ρyobs

(·, 0), ρ̃yobs
(·, 0))2

])1/2
=
(
EP (yobs)

[
W2(δyobs

, δyobs
)2
])1/2

= 0.
Then, by a similar argument as in Appendix A1 of [58], we conclude that

L(t) ≤ 1

I(t)

∫ t

0

I(τ)CD(T − τ)
(
E
[
∥∇xS(YT−τ , τ)− α(YT−τ , τ)∥2

])1/2
dτ, (81)

where the function I is defined by I(t) = exp(−
∫ t

0
C1(τ)dτ).

Note that L(t)2 is the expected squared Wasserstein-2 error of the posterior distribution with respect
to the observation yobs. According to Markov’s inequality, the probability of the error exceeding e can be
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bounded as follows:

P (W2(ρyobs
(·, t), ρ̃yobs

(·, t)) ≥ e) ≤
EP (yobs)

[
W2(ρyobs

, ρ̃yobs
)2
]

e2
=

L(t)2

e2

≤ 1

e2

(
1

I(t)

∫ t

0

I(τ)CD(T − τ)
(
E
[
∥∇xS(YT−τ , τ)− α(YT−τ , τ)∥2

])1/2
dτ

)2

.

(82)

Remark C.1 In the error estimation above, beyond the regularity assumptions, one restrictive assumption
is that the function D depends only on t. This excludes SDEs where the diffusion coefficient has x depen-
dence. This assumption is primarily utilized in the estimation in (77). Other parts of the proof can be
straightforwardly generalized to cases where D depends on x. However, if D does depend on x, the term
estimated in (77) may become negative. If this term can be appropriately bounded, the proof could be extended
to more general cases.

Remark C.2 In the error analysis above, we examined how the numerical error from the first step of the
HJ-sampler affects the continuous sampling process. The key term in the upper bound is the expectation
E
[
∥∇xS(YT−τ , τ)− α(YT−τ , τ)∥2

]
. For the Riccati-HJ-sampler, this term can be calculated based on the

errors in the solutions Q and q to the Riccati ODE system. For the SGM-HJ-sampler, this term is related
to the loss function and can be bounded by quantities derived from the loss value.

The overall error of the sampling algorithm consists of two parts: the error from the first step and the
discretization error from the second step. The error in the first step, as estimated in our analysis, can guide
the choice of the numerical solver for the viscous HJ PDE, including decisions on the temporal discretization
size for traditional methods or the data size and neural network size for AI-based methods. The second step’s
error, resulting from the SDE discretization scheme, can guide the selection of the sampling method and its
temporal discretization size. Balancing these two sources of error, along with considering the computational
efficiency of different methods, is crucial for achieving optimal performance.

The error analysis for the second step follows directly from the established analysis of SDE discretization
schemes, so we omit the details here. In this paper, we use Euler–Maruyama discretization in the second
step, yielding an order of 0.5 in the strong sense and order 1 in the weak sense. If higher accuracy is needed,
higher-order schemes such as the Runge-Kutta method could be considered.

D Neural network training details for numerical examples

This section provides the details of the neural network sW used in the SGM-HJ-sampler for obtaining
posterior samples, as well as the specifics of the training procedure. Across all numerical examples, sW is
implemented with the tanh activation function for the nonlinear hidden layers, and the Adam optimizer [55]
is employed with a learning rate of 1× 10−4, unless stated otherwise.

In Section 4.1, we explore three 1D cases with varying prior distributions and one 2D case. For the 1D
Gaussian prior case, a fully-connected neural network (FNN) with two hidden layers of 50 neurons each is
utilized. The training of sW involves 1, 000, 000 sample paths of Yt over t ∈ [0, T ], using mini-batch training
with a batch size of 1, 000 for 3, 000 epochs. For the 1D Gaussian mixture case, the 1D mixture of uniform
distributions case, and the 2D Gaussian mixture case, an FNN with three hidden layers and 50 neurons per
layer is employed. The network is trained on 1, 000, 000 sample paths of Yt over t ∈ [0, T ] for 5, 000 epochs
with a batch size of 1, 000.

In Section 4.2, the examples include one 1D case and two 2D cases. For the 1D case, an FNN with two
hidden layers of 50 neurons each is trained on 1, 000, 000 sample paths of Yt over t ∈ [0, T ] for 3, 000 epochs,
using a batch size of 1, 000 and a learning rate of 1×10−4. For the 2D Gaussian mixture prior case, an FNN
with three hidden layers of 50 neurons each is trained on 1, 000, 000 sample paths of Yt over t ∈ [0, T ] for
5, 000 epochs with a batch size of 1, 000. For the 2D case with a LogNormal prior, which considers model
misspecification, an FNN with three hidden layers of 50 neurons each is trained separately for each value of
ϵ. Each network is trained on 100, 000 sample paths of Yt over t ∈ [0, T ] for 5, 000 epochs, using a batch size
of 1, 000 and a learning rate of 1× 10−3.

In Section 4.3, for each value of ϵ, an FNN with three hidden layers and 50 neurons per layer is trained
on 100, 000 sample paths of Yt over t ∈ [0, T ] for 5, 000 epochs with a batch size of 1, 000. In Section 4.4, an
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FNN with three hidden layers and 200 neurons per layer is used, trained on 100, 000 sample paths of Yt over
t ∈ [0, T ] for 3, 000 epochs with a batch size of 1, 000 and a learning rate of 1× 10−3.

In the first three sections, the loss function (25) is used with a weight of λk = 1 for training. In the final
section, the sliced version (26) is used with a weight of λk = 1 and a sample size Nv = 1.

E Details of analytical formulas used in numerical results

E.1 Brownian motion

In this section, we focus on cases involving Brownian motion. Specifically, we assume the process Yt is
governed by the SDE dYt =

√
ϵdWt, where ϵ > 0 is a hyperparameter, and Wt is standard Brownian motion,

with different prior distributions for Y0.

E.1.1 One-dimensional uniform prior

Here, we provide the computational details for a one-dimensional uniform prior and a mixture of uniform
priors. The generalization to higher-dimensional box-shaped domains is straightforward and therefore omit-
ted.

First, assume the prior is a uniform distribution on [a, b]. The marginal distribution for Yt is given by:

P (Yt = y) =

∫
P (Yt = y|Y0 = x)P (Y0 = x)dx =

1

b− a

∫ b

a

1√
2πϵt

exp

(
− 1

2ϵt
|y − x|2

)
dx

=
1

b− a

∫ y−a√
ϵt

y−b√
ϵt

1√
(2π)n

exp

(
−1

2
x2

)
dx =

1

b− a

(
Φ

(
y − a√

ϵt

)
− Φ

(
y − b√

ϵt

))
,

(83)

where Φ is the cumulative distribution function of the standard one-dimensional Gaussian distribution. The
solution to the viscous HJ PDE (15) is:

S(x, T − t) = ϵ logP (Yt = x) = ϵ log

(
Φ

(
x− a√

ϵt

)
− Φ

(
x− b√

ϵt

))
− ϵ log(b− a). (84)

The inference process, as described in (18), becomes:

Zk+1 = Zk + ∂xS(Zk, tk)∆t+
√
ϵ∆tξk

= Zk + ϵ

1√
ϵ(T−tk)

(
Φ′
(

Zk−a√
ϵ(T−tk)

)
− Φ′

(
Zk−b√
ϵ(T−tk)

))
Φ

(
Zk−a√
ϵ(T−tk)

)
− Φ

(
Zk−b√
ϵ(T−tk)

) ∆t+
√
ϵ∆tξk

= Zk +

√
ϵ

2π(T − tk)

exp
(
− 1

2ϵ(T−tk)
|Zk − a|2

)
− exp

(
− 1

2ϵ(T−tk)
|Zk − b|2

)
Φ

(
Zk−a√
ϵ(T−tk)

)
− Φ

(
Zk−b√
ϵ(T−tk)

) ∆t+
√
ϵ∆tξk.

(85)

The posterior distribution of Yt given YT = yobs for t ∈ (0, T ) is:

P (Yt = θ|YT = yobs) =
P (Yt = θ)P (YT = yobs|Yt = θ)

P (YT = yobs)
=

(
Φ
(

θ−a√
ϵt

)
− Φ

(
θ−b√

ϵt

))
1√

2πϵ(T−t)
exp

(
− 1

2ϵ(T−t) |θ − yobs|2
)

Φ
(

yobs−a√
ϵT

)
− Φ

(
yobs−b√

ϵT

) .

(86)
When t = 0, the posterior distribution is:

P (Y0 = θ|YT = yobs) =
P (Y0 = θ)P (YT = yobs|Y0 = θ)

P (YT = yobs)
=

1√
2πϵT

exp
(
− 1

2ϵT |θ − yobs|2
)

Φ
(

yobs−a√
ϵT

)
− Φ

(
yobs−b√

ϵT

) χ[a,b](θ), (87)
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where χ[a,b] is the indicator function that takes the value 1 on [a, b] and 0 otherwise.

Next, consider the prior to be a mixture of uniform distributions: Pprior(x) =
∑M

j=1
wj

bj−aj
χ[aj ,bj ](x),

where the weights wj satisfy
∑M

j=1 wj = 1. Following the same process as above, the marginal distribution
for Yt is:

P (Yt = y) =

M∑
j=1

wj

bj − aj

(
Φ

(
y − aj√

ϵt

)
− Φ

(
y − bj√

ϵt

))
. (88)

The solution to the viscous HJ PDE (15) is:

S(x, T − t) = ϵ logP (Yt = x) = ϵ log

 M∑
j=1

wj

bj − aj

(
Φ

(
x− aj√

ϵt

)
− Φ

(
x− bj√

ϵt

)) . (89)

The inference process, as described in (18), becomes:

Zk+1 = Zk + ∂xS(Zk, tk)∆t+
√
ϵ∆tξk

= Zk + ϵ

1√
ϵ(T−tk)

(∑M
j=1

wj

bj−aj

(
Φ′
(

Zk−aj√
ϵ(T−tk)

)
− Φ′

(
Zk−bj√
ϵ(T−tk)

)))
∑M

j=1
wj

bj−aj

(
Φ

(
Zk−aj√
ϵ(T−tk)

)
− Φ

(
Zk−bj√
ϵ(T−tk)

)) ∆t+
√
ϵ∆tξk

= Zk +

√
ϵ

2π(T − tk)

∑M
j=1

wj

bj−aj

(
exp

(
− 1

2ϵ(T−tk)
|Zk − aj |2

)
− exp

(
− 1

2ϵ(T−tk)
|Zk − bj |2

))
∑M

j=1
wj

bj−aj

(
Φ

(
Zk−aj√
ϵ(T−tk)

)
− Φ

(
Zk−bj√
ϵ(T−tk)

)) ∆t+
√
ϵ∆tξk.

(90)

The posterior distribution of Yt given YT = yobs for t ∈ (0, T ) is:

P (Yt = θ|YT = yobs) =
P (Yt = θ)P (YT = yobs|Yt = θ)

P (YT = yobs)
=

(∑M
j=1

wj

bj−aj

(
Φ
(

θ−aj√
ϵt

)
− Φ

(
θ−bj√

ϵt

)))
1√

2πϵ(T−t)
exp

(
− 1

2ϵ(T−t) |θ − yobs|2
)

∑M
j=1

wj

bj−aj

(
Φ
(

yobs−aj√
ϵT

)
− Φ

(
yobs−bj√

ϵT

)) .

(91)
The posterior distribution of Y0 given YT = yobs is:

P (Y0 = θ|YT = yobs) =
P (Y0 = θ)P (YT = yobs|Y0 = θ)

P (YT = yobs)
=

(∑M
j=1

wj

bj−aj
χ[aj ,bj ](θ)

)
1√

2πϵT
exp(− 1

2ϵT |θ − yobs|2)∑M
j=1

wj

bj−aj

(
Φ
(

yobs−aj√
ϵT

)
− Φ

(
yobs−bj√

ϵT

)) .

(92)

E.1.2 n-dimensional Gaussian mixture prior

We consider the n-dimensional Brownian motion problem with a Gaussian mixture prior. Let the prior be
Pprior as given in (21), and let the process be governed by dYt =

√
ϵdWt. The marginal distribution is

P (Yt = x) =

M∑
i=1

wi

Ci(t)
exp

(
−1

2
(x− θi)

T (Σi + ϵtI)−1(x− θi)

)
, (93)

where Ci(t) =
√
(2π)n det(Σi + ϵtI) is the normalization constant.

The solution to the viscous HJ PDE (15) is

S(x, T − t) = ϵ log

(
M∑
i=1

wi

Ci(t)
exp

(
−1

2
(x− θi)

T (Σi + ϵtI)−1(x− θi)

))
. (94)
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The inference process, as described in (18), becomes

Zk+1 = Zk + (∇xS(Zk, tk))∆t+
√
ϵ∆tξk

= Zk − ϵ

∑M
i=1

wi

Ci(T−tk)
(Σi + ϵ(T − tk)I)

−1(Zk − θi) exp
(
− 1

2 (Zk − θi)
T (Σi + ϵ(T − tk)I)

−1(Zk − θi)
)∑M

i=1
wi

Ci(T−tk)
exp

(
− 1

2 (Zk − θi)T (Σi + ϵ(T − tk)I)−1(Zk − θi)
) ∆t+

√
ϵ∆tξk.

(95)
The posterior distribution of Yt given YT = yobs for t ∈ [0, T ) is

P (Yt = θ|YT = yobs) =
P (Yt = θ)P (YT = yobs|Yt = θ)

P (YT = yobs)

=

(∑M
i=1

wi

Ci(t)
exp

(
− 1

2 (θ − θi)
T (Σi + ϵtI)−1(θ − θi)

))
1√

(2πϵ(T−t))n
exp

(
− 1

2ϵ(T−t)∥yobs − θ∥2
)

∑M
i=1

wi

Ci(T ) exp
(
− 1

2 (yobs − θi)T (Σi + ϵTI)−1(yobs − θi)
)

=
M∑
i=1

w̃i√
(2π)n det(Mi)

exp

(
−1

2
(θ − vi)

TM−1
i (θ − vi)

)
,

(96)

which is a Gaussian mixture, where the i-th Gaussian has covariance matrixMi =
(
(Σi + ϵtI)−1 + I

ϵ(T−t)

)−1

and mean vi = Mi

(
(Σi + ϵtI)−1θi +

yobs

ϵ(T−t)

)
. The weight w̃i is

w̃i =

wi

Ci(T ) exp
(
− 1

2 (yobs − θi)
T (Σi + ϵTI)−1(yobs − θi)

)∑M
j=1

wj

Cj(T ) exp
(
− 1

2 (yobs − θj)T (Σj + ϵTI)−1(yobs − θj)
) . (97)

E.2 OU process

In general, if the matrix B in the OU process is not diagonal, neither the posterior density function nor
the sampling SDE (18) have analytical solutions. However, analytical formulas can be derived when B is
a diagonal matrix and the prior is a Gaussian mixture where each component has a diagonal covariance
matrix.

Specifically, for one-dimensional cases, the analytical solutions can be obtained for the OU process with a
Gaussian priorN (θP , σ2). Note that in this case, the matrix B reduces to a scalar. The solution to the Riccati

ODE system is given by Q(t) = e−2Btσ2

ϵ + 1−e−2Bt

2B , q(t) = e−BtθP , and r(t) = ϵ
2 log(2πe

−2Btσ2+ πϵ(1−e−2Bt)
B ).

The solution to the viscous HJ PDE (15) is

S(x, T − t) = − 1
2 (x− q(t))TQ(t)−1(x− q(t))− r(t) = − |x−e−BtθP |2

2e−2Btσ2

ϵ + 1−e−2Bt

B

− ϵ
2 log

(
2πe−2Btσ2 + πϵ(1−e−2Bt)

B

)
.

(98)
The inference process, as described in (18), becomes

Zk+1 = Zk + (∂xS(Zk, tk))∆t+
√
ϵ∆tξk = Zk − Zk − e−B(T−tk)θP

e−2B(T−tk)σ2

ϵ + 1−e−2B(T−tk)

2B

∆t+
√
ϵ∆tξk. (99)

For any 0 < t < s < T , the process satisfies Ys = e−B(s−t)Yt +

√
ϵ(1−e−2B(s−t))

2B ξ, where ξ is a standard
Gaussian random variable independent of Yt. The marginal distribution of Yt is

P (Yt = x) =
1√

2πe−2Btσ2 + πϵ(1−e−2Bt)
B

exp

(
− 1

2e−2Btσ2 + ϵ(1−e−2Bt)
B

|x− e−BtθP |2
)
. (100)

The conditional distribution of YT given Yt is

P (YT = y|Yt = θ) =

√
B

ϵπ(1− e−2B(T−t))
exp

(
− B

ϵ(1− e−2B(T−t))

∣∣∣y − e−B(T−t)θ
∣∣∣2) . (101)
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The posterior distribution of Yt given YT = yobs for any t ∈ [0, T ) is

P (Yt = θ|YT = yobs) =
P (Yt = θ)P (YT = yobs|Yt = θ)

P (YT = yobs)

=

1√
2πe−2Btσ2+

πϵ(1−e−2Bt)
B

exp

(
− 1

2e−2Btσ2+
ϵ(1−e−2Bt)

B

|θ − e−BtθP |2
)√

B
ϵπ(1−e−2B(T−t))

exp
(
− B

ϵ(1−e−2B(T−t))
|yobs − e−B(T−t)θ|2

)
1√

2πe−2BTσ2+
πϵ(1−e−2BT )

B

exp

(
− 1

2e−2BTσ2+
ϵ(1−e−2BT )

B

|yobs − e−BT θP |2
) .

(102)
After simplification, this posterior distribution is Gaussian, with mean and variance given by:

E[Yt|YT = yobs] =
ϵ(e−Bt − eB(t−2T ))θP + 2Bσ2e−B(T+t)yobs + ϵ(e−B(T−t) − e−B(T+t))yobs

ϵ(1− e−2BT ) + 2Bσ2e−2BT
,

Var[Yt|YT = yobs] =
ϵ
(
σ2e−2Bt + ϵ(1−e−2Bt)

2B

)
(1− e−2B(T−t))

ϵ(1− e−2BT ) + 2Bσ2e−2BT
.

(103)

F Supplementary results for the 1D Brownian motion example

(a) The analytic-HJ-sampler.

(b) The SGM-HJ-sampler.

Figure 12: Histograms depicting the distribution of posterior samples for the scaled 1D Brownian motion
case with a Gaussian prior, across different observation values yobs. The SGM-HJ-sampler employs a neural
network trained on t ∈ [0, T ] with T = 1. The black dashed lines represent the exact posterior density
functions (Gaussian). Each histogram is generated from 1× 106 samples.

In this section, we provide supplementary results for the 1D Brownian motion example in Section 4.1.1,
illustrating the inference of Y0 given the observation of YT using both the analytic-HJ-sampler and the SGM-
HJ-sampler. Figure 12 displays histograms of the posterior samples. For quantitative comparison, please
refer to Table 2 in the main content.
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