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Abstract. Uncertainty quantification (UQ) in scientific machine learning (SciML) combines the powerful pre-
dictive power of SciML with methods for quantifying the reliability of the learned models. However,
two major challenges remain: limited interpretability and expensive training procedures. We provide
a new interpretation for UQ problems by establishing a new theoretical connection between some
Bayesian inference problems arising in SciML and viscous Hamilton--Jacobi partial differential equa-
tions (HJ PDEs). Namely, we show that the posterior mean and covariance can be recovered from
the spatial gradient and Hessian of the solution to a viscous HJ PDE. As a first exploration of this
connection, we specialize in Bayesian inference problems with linear models, Gaussian likelihoods,
and Gaussian priors. In this case, the associated viscous HJ PDEs can be solved using Riccati ODEs,
and we develop a new Riccati-based methodology that provides computational advantages when con-
tinuously updating the model predictions. Specifically, our Riccati-based approach can efficiently
add or remove data points to the training set invariant to the order of the data and continuously tune
hyperparameters. Moreover, neither update requires retraining on or access to previously incorpo-
rated data. We provide several examples from SciML involving noisy data and epistemic uncertainty
to illustrate the potential advantages of our approach. In particular, this approach's amenability
to data streaming applications demonstrates its potential for real-time inferences, which, in turn,
allows for applications in which the predicted uncertainty is used to dynamically alter the learning
process.
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1166 ZOU, MENG, CHEN, DARBON, AND KARNIADAKIS

1. Introduction. Scientific machine learning (SciML) is a recent and evolving field
consisting of data-driven techniques for learning physics-based models [42, 21, 50, 11, 34, 40,
41, 56, 7, 47, 8, 58, 52, 30, 57] that finds applications in diverse areas [26, 3, 2, 46, 31, 24, 53, 55].
While deterministic SciML models demonstrate impressive predictive power, real-life appli-
cations often require quantitative metrics for the trustworthiness of learned models. To this
end, uncertainty quantification (UQ) [20, 38, 59] has been integrated with SciML to create
new learning approaches that produce quantifiably high-confidence models in the absence of
a ground truth and use these confidence metrics to help inform the learning process.

In this paper, we reinterpret certain Bayesian inference problems arising from SciML and
UQ using the framework of viscous Hamilton--Jacobi partial differential equations (HJ PDEs)
[13, 54, 14]. Specifically, we develop a new theoretical connection between these Bayesian
inference problems and multi-time viscous HJ PDEs that shows that the posterior mean and
covariance of the Bayesian model can be recovered from the spatial gradient and Hessian of
the solution to an associated viscous HJ PDE (section 2). This connection is summarized
in Figure 1. Our previous work in [6, 5] establishes similar theoretical connections between
deterministic SciML problems and inviscid HJ PDEs. As such, the methodology in [6, 5]
does not automatically extend to UQ. Meanwhile, the work in [12] establishes a similar link
between Bayesian inference and viscous HJ PDEs but develops this connection via the Cole--
Hopf transformation [13] and only considers the single-time case. In contrast, we do not rely
on the Cole--Hopf transformation and consider multi-time HJ PDEs to enable our connection
to SciML.

As a first exploration of this connection, we specialize in Bayesian inference problems
with linear models, Gaussian likelihoods, and Gaussian priors (section 3). In this case, the
corresponding viscous HJ PDE (and hence the Bayesian inference problem) can be solved
using Riccati ODEs [28]. The resulting Riccati-based methodology can then be leveraged to
efficiently update the model predictions (section 3.2) and continuously tune hyperparameters
(section 3.3). To illustrate the potential advantages of this approach, we apply this Riccati-
based methodology to several UQ-based examples from SciML (section 4). In particular, we
focus on noisy data cases and quantify epistemic uncertainty [20, 38, 59], which refers to the

Bayesian model, model parameters ∼ posterior ∝ prior × likelihood , noise ∼ Gaussian , N data points

solution Sϵ

to multi-time
viscous HJ PDE

= ϵ log

∫
term in the

initial condition
× exp

(
−
∑N

i=1 quadratic Hamiltonian
)

time
ϵ ×

spatial gradient of Sϵ = posterior mean,
Hessian of Sϵ =

1
ϵ (posterior covariance) ∝ ∝ variance = ϵ

time

Figure 1. (See section 2) Illustration of a connection between a Bayesian inference problem in scientific
machine learning (top) and the solution to a multi-time viscous HJ PDE (bottom). The colors indicate the
associated quantities between problems. This color scheme is reused in the subsequent illustrations of our con-
nection. The arrow labels describe how the boxed quantities are related. For example, the posterior mean in the
learning problem is equivalent to the spatial gradient of the solution to the multi-time viscous HJ PDE (red).
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VISCOUS HJ PDE FOR UQ IN SciML 1167

uncertainty associated with the model parameters. In section 4.1, we demonstrate the po-
tential computational advantages of our approach over more standard SciML/UQ techniques
when incrementally updating the model predictions. Namely, we show how our Riccati-based
approach naturally coincides with continual learning while inherently avoiding catastrophic
forgetting despite updating the model predictions without accessing the historical data (sec-
tion 4.1.1). We also show how solving the Riccati ODEs provides a continuous flow of solu-
tions with respect to the hyperparameters of the model, which allows the hyperparameters
to be tuned continuously (section 4.1.2). In section 4.2, we demonstrate the versatility of our
Riccati-based approach in handling different learning scenarios, e.g., big data (section 4.2.1)
and active learning (section 4.2.2) settings. In particular, these examples illustrate how un-
certainty metrics can be leveraged to inform how we learn. In section 4.3, we highlight the
invariance of our Riccati-based approach to the order of the data, which provides flexibility
in how the data is sampled.

The contributions of this work can be summarized as follows:
\bullet new mathematical theory connecting certain Bayesian inference problems arising from

SciML to viscous HJ PDEs,
\bullet new Riccati-based methodology for solving Bayesian inference problems with linear

models, Gaussian likelihoods, and Gaussian priors, and
\bullet detailed experimental demonstrations of the potential computational advantages of

this Riccati-based approach across a variety of learning applications.
This work presents exciting opportunities to advance the theoretical foundations of SciML
and thus to create new interpretable SciML methods. While we demonstrate promising results,
further research is needed to extend the work presented here to more general learning settings.
We discuss some possible future research directions of this work in section 5. Some additional
technical details and numerical results are provided in the appendices.

2. Connecting viscous HJ PDEs to Bayesian inference in machine learning. In this
section, we establish a new theoretical connection between viscous HJ PDEs and Bayesian
inference in machine learning (ML). Specifically, we formulate a general regression task in the
Bayesian framework and then connect it to a viscous HJ PDE with quadratic Hamiltonian.

2.1. Bayesian inference in machine learning. Bayesian inference is often adopted in ML
due to its effectiveness in integrating prior information, handling noisy data, providing UQ,
and hence in making quantifiably trustworthy predictions. Consider the following model [50]:

\bfity = u\bfittheta (\bfitz ) + \xi ,(2.1)

where \bfitz \in \BbbR \ell is the input, \bfity \in \BbbR m is the observed output, u\bfittheta : \BbbR \ell \rightarrow \BbbR m is the model
parameterized by \bfittheta \in \BbbR n, and \xi \in \BbbR m is additive noise. The goal is to learn u\bfittheta from data
\scrD = \{ (\bfitz i,\bfity i)\} Ni=1, where \bfitz i,\bfity i denote measurements of \bfitz ,\bfity , respectively. Specifically, we
learn the model u\bfittheta by estimating \bfittheta from the posterior distribution p(\bfittheta | \scrD ) (e.g., \bfittheta could
be the posterior mean estimator \BbbE \bfittheta \sim p(\cdot | \scrD )[\bfittheta ] or the maximum a posteriori (MAP) estimator
argmax\bfittheta p(\bfittheta | \scrD )). By Bayes' theorem, p(\bfittheta | \scrD ) can be computed as

p(\bfittheta | \scrD ) =
p(\scrD | \bfittheta )p(\bfittheta )

p(\scrD )
,(2.2)
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1168 ZOU, MENG, CHEN, DARBON, AND KARNIADAKIS

where p(\scrD | \bfittheta ) is the likelihood, p(\bfittheta ) is the prior, and p(\scrD ) =
\int 
\BbbR n p(\scrD | \bfittheta )p(\bfittheta )d\bfittheta is the marginal

likelihood, which is independent of \bfittheta and often treated as a normalizing constant. From these
distributions, we obtain quantities that can be used to statistically analyze and quantify the
uncertainty in the learned model arising from the noisy data and/or the prior on \bfittheta .

The posterior p(\bfittheta | \scrD ) often becomes analytically intractable [38, 59], particularly when
either the likelihood or the prior is complicated. In these scenarios, estimation techniques,
such as Markov chain Monte Carlo (MCMC) [32], are typically employed. Here we create
a new theoretical connection between HJ PDEs and Bayesian inference in ML that yields
opportunities for new HJ PDE-based methods for estimating \bfittheta and p(\bfittheta | \scrD ). As a first explo-
ration of this connection, we consider the case where the likelihood p(\scrD | \bfittheta ) follows a Gaussian
distribution and the model u\bfittheta depends linearly on \bfittheta . In other words, we consider the case
where the data is perturbed by additive white noise (i.e., \xi is Gaussian), and we learn the
model u\bfittheta (\bfitz ) = \Phi (\bfitz )\bfittheta , where \Phi : \BbbR \ell \rightarrow \BbbR m\times n. With some assumptions on the prior, this
scenario yields a connection to a viscous HJ PDE with a quadratic Hamiltonian.

2.2. Connection to viscous HJ PDEs. In this section, we detail the connection between
certain Bayesian inference problems with Gaussian likelihood and viscous HJ PDEs with a
quadratic Hamiltonian. Specifically, we consider the case where we learn the model u\bfittheta (\bfitz ) =
\Phi (\bfitz )\bfittheta , where \Phi : \BbbR \ell \rightarrow \BbbR m\times n and the posterior of the parameter \bfittheta is estimated using the
Bayesian framework described in section 2.1. We assume that the likelihood is Gaussian given
by p(\scrD | \bfittheta ) \propto 

\prod N
i=1 exp( - 

1
2\sigma 2

i
\| \Phi (\bfitz i)\bfittheta  - \bfity i\| 2), where \sigma 2

i is the variance of the ith data point

(\bfitz i,\bfity i). We assume that the prior distribution is given by p(\bfittheta ) \propto exp( - 1
\epsilon ( - \langle \bfx ,\bfittheta \rangle + g(\bfittheta ))),

where \epsilon > 0 is a hyperparameter and g : \BbbR n \rightarrow \BbbR is such that \bfittheta \mapsto \rightarrow exp( - 1
\epsilon ( - \langle \bfx ,\bfittheta \rangle + g(\bfittheta )))

is integrable for every \bfx \in \BbbR n. Hence, if g is quadratic, then the prior distribution is also
Gaussian. Note that we use p(\bfittheta ) \propto f(\bfittheta ) to denote that the probability density function

p(\bfittheta ) is proportional to f(\bfittheta ) or, in other words, p(\bfittheta ) = f(\bfittheta )\int 
\BbbR n f(w)dw

. Similarly, for conditional

probabilities, p(\bfittheta | \scrD )\propto f(\bfittheta ,\scrD ) means that p(\bfittheta | \scrD ) = f(\bfittheta ,\scrD )\int 
\BbbR n f(w,\scrD )dw

.

Remark 2.1. The particular form of the likelihood that we consider corresponds to the
data \scrD being produced by \bfity i = u\bfittheta (\bfitz i)+\xi i, where \xi 1, . . . , \xi N are independent, each \xi i represents
Gaussian noise with zero mean and covariance matrix \sigma 2

i I (I is the m\times m identity matrix),
and u\bfittheta (\bfitz ) =\Phi (\bfitz )\bfittheta . The results in this paper have a straightforward generalization to the case
where \xi 1, . . . , \xi N are independent, each \xi i is a general Gaussian, and u\bfittheta (\bfitz ) = \Phi (\bfitz )\bfittheta + c(\bfitz ),
where c : \BbbR \ell \rightarrow \BbbR m is a function independent of \bfittheta . However, for simplicity, we only present
the case where c(\bfitz ) = 0.

First consider the case where we have N = 1 data point (\bfitz 1,\bfity 1). Denote \Phi 1 := \Phi (\bfitz 1).
Define a Hamiltonian H : \BbbR n \rightarrow \BbbR by H(\bfittheta ) = 1

2\| \Phi 1\bfittheta  - \bfity 1\| 2 and a function S\epsilon : \BbbR n\times [0,\infty )\rightarrow \BbbR 
by

S\epsilon (\bfx , t) = \epsilon log

\int 
\BbbR n

exp

\biggl( 
1

\epsilon 
(\langle \bfx ,\bfittheta \rangle  - tH(\bfittheta ) - g(\bfittheta ))

\biggr) 
d\bfittheta .(2.3)

Then S\epsilon satisfies the following viscous HJ PDE:\left\{   \partial tS\epsilon (\bfx , t) +
1

2
\| \Phi 1\nabla \bfx S\epsilon (\bfx , t) - \bfity 1\| 2 +

\epsilon 

2
\nabla \bfx \cdot (\Phi T

1 \Phi 1\nabla \bfx S\epsilon (\bfx , t)) = 0, \bfx \in \BbbR n, t > 0,

S\epsilon (\bfx ,0) = J(\bfx ), \bfx \in \BbbR n,
(2.4)
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VISCOUS HJ PDE FOR UQ IN SciML 1169

where the initial condition J is defined by

J(\bfx ) = \epsilon log

\int 
\BbbR n

exp

\biggl( 
1

\epsilon 
(\langle \bfx ,\bfittheta \rangle  - g(\bfittheta ))

\biggr) 
d\bfittheta .(2.5)

Using this HJ PDE framework, the posterior distribution p(\bfittheta | \scrD ) can be characterized by
p(\bfittheta | \scrD ) \propto exp (1\epsilon (\langle \bfx ,\bfittheta \rangle  - tH(\bfittheta )  - g(\bfittheta ))) by setting the variance of the noise to \sigma 2

1 = \epsilon 
t . By

straightforward computation, the derivatives of S\epsilon are given by

\partial tS\epsilon (\bfx , t) = - 
\int 
\BbbR n H(\bfittheta ) exp

\bigl( 
1
\epsilon (\langle \bfx ,\bfittheta \rangle  - tH(\bfittheta ) - g(\bfittheta ))

\bigr) 
d\bfittheta \int 

\BbbR n exp(
1
\epsilon (\langle \bfx ,\bfittheta \rangle  - tH(\bfittheta ) - g(\bfittheta )))d\bfittheta 

= - \BbbE \bfittheta \sim p(\cdot | \scrD )[H(\bfittheta )],

\nabla \bfx S\epsilon (\bfx , t) =

\int 
\BbbR n \bfittheta exp

\bigl( 
1
\epsilon (\langle \bfx ,\bfittheta \rangle  - tH(\bfittheta ) - g(\bfittheta ))

\bigr) 
d\bfittheta \int 

\BbbR n exp
\bigl( 
1
\epsilon (\langle \bfx ,\bfittheta \rangle  - tH(\bfittheta ) - g(\bfittheta ))

\bigr) 
d\bfittheta 

=\BbbE \bfittheta \sim p(\cdot | \scrD )[\bfittheta ],

\nabla 2
\bfx S\epsilon (\bfx , t) =

1

\epsilon 

\bigl( 
\BbbE \bfittheta \sim p(\cdot | \scrD )

\bigl[ 
\bfittheta \bfittheta T

\bigr] 
 - \BbbE \bfittheta \sim p(\cdot | \scrD )[\bfittheta ]\BbbE \bfittheta \sim p(\cdot | \scrD )[\bfittheta ]

T
\bigr) 
=

1

\epsilon 
Cov\bfittheta \sim p(\cdot | \scrD )[\bfittheta ],

(2.6)

all of which are related to the posterior expectation and posterior covariance. Namely, com-
puting the first and second derivatives of the solution to the viscous HJ PDE (2.4) is equivalent
(up to a multiplicative constant) to computing the first and second moments of the poste-
rior distribution, respectively, and the posterior mean estimator for \bfittheta can be computed as
\nabla \bfx S\epsilon (\bfx , t).

These connections can be easily generalized to the case with multiple data points (N > 1).
Denote \Phi i = \Phi (\bfitz i), and set \epsilon 

ti
= \sigma 2

i for each i = 1, . . . ,N . The posterior distribution then

becomes p(\bfittheta | \scrD )\propto exp(1\epsilon (\langle \bfx ,\bfittheta \rangle  - 
\sum N

i=1
ti
2 \| \Phi i\bfittheta  - \bfity i\| 2 - g(\bfittheta ))). This learning problem is related

to a multi-time viscous HJ PDE as follows. Define the ith Hamiltonian Hi : \BbbR n \rightarrow \BbbR by
Hi(\bfittheta ) =

1
2\| \Phi i\bfittheta  - \bfity i\| 2 and the function S\epsilon : \BbbR n \times [0,\infty )N \rightarrow \BbbR by

S\epsilon (\bfx , t1, . . . , tN ) = \epsilon log

\int 
\BbbR n

exp

\Biggl( 
1

\epsilon 

\Biggl( 
\langle \bfx ,\bfittheta \rangle  - 

N\sum 
i=1

ti
2
\| \Phi i\bfittheta  - \bfity i\| 2  - g(\bfittheta )

\Biggr) \Biggr) 
d\bfittheta .(2.7)

Then S\epsilon satisfies the following multi-time viscous HJ PDE:\left\{       
\partial tiS\epsilon (\bfx , t1, . . . , tN ) +

1

2
\| \Phi i\nabla \bfx S\epsilon (\bfx , t1, . . . , tN ) - \bfity i\| 2

+ \epsilon 
2\nabla \bfx \cdot (\Phi T

i \Phi i\nabla \bfx S\epsilon (\bfx , t1, . . . , tN )) = 0, \bfx \in \BbbR n, ti > 0, i= 1, . . . ,N,

S\epsilon (\bfx ,0, . . . ,0) = J(\bfx ), \bfx \in \BbbR n,

(2.8)

where the initial condition J is defined in (2.5). Using the notation of the Hamiltonians Hi,
the posterior distribution is also given by p(\bfittheta | \scrD )\propto exp(1\epsilon (\langle \bfx ,\bfittheta \rangle  - 

\sum N
i=1 tiHi(\bfittheta ) - g(\bfittheta ))). With

straightforward computation, the derivatives of S\epsilon are given by

\partial tiS\epsilon (\bfx , t1, . . . , tN ) = - 

\int 
\BbbR n Hi(\bfittheta ) exp

\Bigl( 
1
\epsilon (\langle \bfx ,\bfittheta \rangle  - 

\sum N
i=1 tiHi(\bfittheta ) - g(\bfittheta ))

\Bigr) 
d\bfittheta \int 

\BbbR n exp
\Bigl( 
1
\epsilon (\langle \bfx ,\bfittheta \rangle  - 

\sum N
i=1 tiHi(\bfittheta ) - g(\bfittheta ))

\Bigr) 
d\bfittheta 

= - \BbbE \bfittheta \sim p(\cdot | \scrD )[Hi(\bfittheta )],
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1170 ZOU, MENG, CHEN, DARBON, AND KARNIADAKIS

yi = Φ(zi)θ + ξi, θ ∼ p(θ|D) ∝ p(θ) p(D|θ) , ξi ∼ N(0, σ2
i I), i = 1, . . . , N

Sϵ(x, t1, . . . , tN ) = ϵ log

∫
Rn

exp
(
1
ϵ (⟨x,θ⟩ − g(θ))

)
exp

(
−
∑N

i=1
1
2∥Φ(zi)θ − yi∥2

)
ti
ϵ dθ

∇xSϵ = Eθ∼p(·|D)[θ],

∇2
xSϵ = 1

ϵCovθ∼p(·|D)[θ] ∝ ∝ = (·)−1

Figure 2. (See section 2) Mathematical formulation of the connection between a Bayesian inference problem
with a linear model and Gaussian likelihood (top) and the solution to a multi-time viscous HJ PDE with a
quadratic Hamiltonian (bottom). The content of this illustration matches that of Figure 1 by replacing each
term in Figure 1 with its corresponding mathematical expression. The colors indicate the associated quantities.
The arrow labels describe how the boxed quantities are related.

\nabla \bfx S\epsilon (\bfx , t1, . . . , tN ) =

\int 
\BbbR n \bfittheta exp

\Bigl( 
1
\epsilon (\langle \bfx ,\bfittheta \rangle  - 

\sum N
i=1 tiHi(\bfittheta ) - g(\bfittheta ))

\Bigr) 
d\bfittheta \int 

\BbbR n exp
\Bigl( 
1
\epsilon (\langle \bfx ,\bfittheta \rangle  - 

\sum N
i=1 tiHi(\bfittheta ) - g(\bfittheta ))

\Bigr) 
d\bfittheta 

=\BbbE \bfittheta \sim p(\cdot | \scrD )[\bfittheta ],

\nabla 2
\bfx S\epsilon (\bfx , t1, . . . , tN ) =

1

\epsilon 

\bigl( 
\BbbE \bfittheta \sim p(\cdot | \scrD )

\bigl[ 
\bfittheta \bfittheta T

\bigr] 
 - \BbbE \bfittheta \sim p(\cdot | \scrD )[\bfittheta ]\BbbE \bfittheta \sim p(\cdot | \scrD )[\bfittheta ]

T
\bigr) 
=

1

\epsilon 
Cov\bfittheta \sim p(\cdot | \scrD )[\bfittheta ].

(2.9)

As in the N = 1 case, \nabla \bfx S\epsilon (\bfx , t1, . . . , tN ) and \epsilon \nabla 2
\bfx S\epsilon (\bfx , t1, . . . , tN ) are equivalent to the pos-

terior expectation and posterior covariance matrix, respectively. These connections can then
be leveraged to compute the posterior mean estimator and to estimate the uncertainty in
the learned model. Figure 2 summarizes the connections established above between Bayesian
inference problems and multi-time viscous HJ PDEs.

3. Riccati-based methodology. In the previous section, we established a new theoretical
connection between Bayesian inference problems with linear models and additive Gaussian
noise and viscous HJ PDEs with quadratic Hamiltonians. In this section, we show how this
connection can be leveraged to reuse existing HJ PDE solvers to create new efficient training
methods for Bayesian inference. While the theoretical connection holds more generally in this
section, we focus on the case where the prior distribution is also Gaussian. In this case, the
corresponding viscous HJ PDEs can be solved using Riccati ODEs, which in turn can be used
to solve the original Bayesian inference problem of interest. Specifically, we develop a new
Riccati-based approach for solving these Bayesian inference problems that

1. can add and remove data points from the training dataset invariant to the order of
the data;

2. does not require retraining on or access to previously incorporated data to update
the learned model, which may provide computational benefits, particularly when the
posterior distribution must be recomputed many times; and

3. yields a continuous flow of solutions, which allows the hyperparameters in the learning
problem to be tuned continuously.
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VISCOUS HJ PDE FOR UQ IN SciML 1171

3.1. Connection using Gaussian prior to Riccati ODEs. In this section, we discuss the
special case where the prior distribution is Gaussian with mean \bfittheta 0 = \Lambda \bfx and covariance
matrix \epsilon \Lambda , where \Lambda \in \BbbR n\times n is symmetric positive definite. Note that this choice of mean and
covariance is not as restrictive as the notation suggests since we have freedom in picking \bfx \in \BbbR n

(picking a different \bfx corresponds to evaluating the associated viscous HJ PDE at a different
point in space); as long as \Lambda is invertible (i.e., the prior is a nondegenerate Gaussian), \bfittheta 0 can be
chosen to be any point in \BbbR n. This particular prior corresponds to setting g(\bfittheta ) = 1

2\langle \bfittheta ,\Lambda 
 - 1\bfittheta \rangle ,

and the initial condition (2.5) of the associated viscous HJ PDE becomes J(\bfx ) = 1
2\langle \bfx ,\Lambda \bfx \rangle +

\epsilon 
2 log det(\Lambda ) +

\epsilon n
2 log(2\pi \epsilon ). Since the viscous HJ PDE has a quadratic Hamiltonian and a

quadratic initial condition, its solution S\epsilon can be computed using Riccati ODEs as follows.
We first consider the single data point case (N = 1). In this case, the solution S\epsilon to the

viscous HJ PDE (2.4) is given by S\epsilon (\bfx , t) =
1
2\bfx 

TP (t)\bfx + \bfq (t)T\bfx + r(t), where P : [0,+\infty ) \rightarrow 
\BbbR n\times n, \bfq : [0,+\infty )\rightarrow \BbbR n, and r : [0,+\infty )\rightarrow \BbbR satisfy the following Riccati ODEs:

\left\{       
\.P (s) + P (s)\Phi T

1 \Phi 1P (s) = 0,

\.\bfq (s) + P (s)\Phi T
1 (\Phi 1\bfq (s) - \bfity 1) = 0,

\.r(s) +
1

2
\| \Phi 1\bfq (s) - \bfity 1\| 2 +

\epsilon 

2
Tr(\Phi T

1 \Phi 1P (s)) = 0,

\left\{       
P (0) = \Lambda ,

\bfq (0) = 0,

r(0) =
\epsilon 

2
logdet(\Lambda ) +

\epsilon n

2
log(2\pi \epsilon ).

(3.1)

The mean and covariance matrix of the posterior distribution are given by \BbbE \bfittheta \sim p(\cdot | \scrD )[\bfittheta ] =
\nabla \bfx S\epsilon (\bfx , t) = P (t)\bfx +\bfq (t) and Cov\bfittheta \sim p(\cdot | \scrD )[\bfittheta ] = \epsilon \nabla 2

\bfx S\epsilon (\bfx , t) = \epsilon P (t), respectively. Moreover, the
MAP estimator and posterior mean estimator are equivalent in this case (since the posterior
is Gaussian) and can be computed as \bfittheta =\nabla \bfx S\epsilon (\bfx , t) = P (t)\bfx + \bfq (t). Note that none of these
formulas involve r, and hence if we only care about solving the associated learning problem,
the ODE for r may be ignored. The ODE system (3.1) also has an analytical solution given
by P (s) = (\Lambda  - 1 + s\Phi T

1 \Phi 1)
 - 1, \bfq (s) = sP (s)\Phi T

1 \bfity 1, which can be computed directly when the
dimension n is small. However, when n is large, inverting an n\times n matrix becomes inefficient,
and using other numerical methods (e.g., the Runge--Kutta method, recursive least squares)
to solve the Riccati ODEs (3.1) may be preferable.

Now consider the case where we have N > 1 data points. Then the solution S\epsilon to the
multi-time viscous HJ PDE (2.8) satisfies S\epsilon (\bfx , t1, . . . , tN ) = 1

2\bfx 
TP (

\sum N
i=1 ti)\bfx +\bfq (

\sum N
i=1 ti)

T\bfx +

r(
\sum N

i=1 ti). Here P : [0,+\infty )\rightarrow \BbbR n\times n, \bfq : [0,+\infty )\rightarrow \BbbR n, and r : [0,+\infty )\rightarrow \BbbR are three contin-

uous functions that satisfy the following ODE system over the interval s \in [
\sum j - 1

i=1 ti,
\sum j

i=1 ti]
for each j = 1, . . . ,N :\left\{       

\.P (s) + P (s)\Phi T
j \Phi jP (s) = 0,

\.\bfq (s) + P (s)\Phi T
j (\Phi j\bfq (s) - \bfity j) = 0,

\.r(s) +
1

2
\| \Phi j\bfq (s) - \bfity j\| 2 +

\epsilon 

2
Tr(\Phi T

j \Phi jP (s)) = 0,

(3.2)

where the initial condition is the same as in (3.1). The posterior mean, posterior covariance,
and MAP/posterior mean estimator are computed identically as in the N = 1 case but with
t=
\sum N

i=1 ti. This ODE system also has an analytical solution: P (s) = (\Lambda  - 1 +
\sum j - 1

i=1 ti\Phi 
T
i \Phi i +

(s - 
\sum j - 1

i=1 ti)\Phi 
T
j \Phi j)

 - 1, \bfq (s) = P (s)(
\sum j - 1

i=1 ti\Phi 
T
i \bfity i+(s - 

\sum j - 1
i=1 ti)\Phi 

T
j \bfity j) for s\in [

\sum j - 1
i=1 ti,

\sum j
i=1 ti],
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1172 ZOU, MENG, CHEN, DARBON, AND KARNIADAKIS

and j = 1, . . . ,N . When n is relatively small and there are no computational restrictions on
accessing all N data points at once, these analytical formulas can be used to compute the
posterior mean and covariance. However, when the dimension n is large or there are computa-
tional restrictions on the storage of or access to the entire dataset, using numerical methods to
solve the Riccati ODEs (3.2) may be more advantageous than using the analytical formulas.
In particular, our Riccati-based approach provides potential benefits when incrementally up-
dating the learned models. Note that while incremental, online, or recursive Gaussian process
regression (GPR) techniques [10, 43, 19, 29, 9, 4, 33, 37, 45] could also be employed to se-
quentially update the learned models, such techniques only provide a discrete perspective for
these model updates. In contrast, our Riccati-based approach provides a continuous perspec-
tive that gives us access to a continuous flow of solutions that allows for the addition and
removal of data points as well as continuous hyperparameter tuning. Detailed discussions of
some potential computational advantages are presented in the remainder of section 3. The
theoretical connection using a Gaussian prior is summarized in Figure 3.

3.2. Updating the likelihood. In this section, we discuss how the likelihood can be up-
dated efficiently using our Riccati-based methodology. Namely, we show how data points can
be added or removed from the learned model without retraining on or accessing the entire
previous training set and in a manner that is invariant to the order of the data points. We
also show how this Riccati-based framework naturally yields a continuous flow of solutions
that allows hyperparameters to be tuned continuously.

3.2.1. Adding and removing data points. First, consider adding a data point (\bfitz N+1,
\bfity N+1) to the training set \scrD . Recalling that we assume each data point is independent, the
posterior distribution after adding the (N + 1)th data point becomes

p(\bfittheta | \scrD , (\bfitz N+1,\bfity N+1))\propto p(\bfittheta | \scrD ) exp

\Biggl( 
 - 1

2\sigma 2
N+1

\| \Phi N+1\bfittheta  - \bfity N+1\| 2
\Biggr) 
,(3.3)

yi = Φ(zi)θ + ξi, θ ∼ p(θ|D) ∝ p(θ) p(D|θ) , p(θ) ∼ N(θ0, ϵΛ) , ξi ∼ N(0, σ2
i I), i = 1, . . . , N

Sϵ(x, t1, . . . , tN ) = ϵ log

∫
Rn

exp
(
1
ϵ

(
⟨x,θ⟩ − 1

2⟨θ,Λ
−1θ⟩

))
exp

(
−
∑N

i=1
1
2∥Φ(zi)θ − yi∥2

)
ti
ϵ dθ

∇xSϵ = Eθ∼p(·|D)[θ],

∇2
xSϵ = 1

ϵCovθ∼p(·|D)[θ] ∝

θ0 = Λx

∝ = (·)−1

Figure 3. (See section 3.1) Mathematical formulation of the connection between a Bayesian inference prob-
lem with a linear model, Gaussian likelihood, and a Gaussian prior (top) and the solution to a multi-time
viscous HJ PDE with a quadratic Hamiltonian and a quadratic initial condition (bottom). The content of this
illustration is a special case of the connection in Figure 2, where the prior is Gaussian (set g(\bfittheta ) = 1

2
\langle \bfittheta ,\Lambda  - 1\bfittheta \rangle 

in Figure 2). The colors indicate the associated quantities. The arrow labels describe how the boxed quantities
are related.
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VISCOUS HJ PDE FOR UQ IN SciML 1173

where \Phi N+1 = \Phi (\bfitz N+1). In the HJ PDE framework, this corresponds to augmenting the
multi-time system (2.8) with the following HJ PDE:

\partial tN+1S\epsilon (\bfx , t1, . . . , tN+1) +
1

2
\| \Phi N+1\nabla \bfx S\epsilon (\bfx , t1, . . . , tN+1) - \bfity N+1\| 2 +

\epsilon 

2
\nabla \bfx \cdot (\Phi T

N+1\Phi N+1\nabla \bfx S\epsilon (\bfx , t1, . . . , tN+1)) = 0.

(3.4)

Thus, adding an additional data point can be interpreted as evolving a new time variable
tN+1 from 0 to \epsilon 

\sigma 2
N+1

, where \sigma 2
N+1 denotes the variance of the (N +1)th data point. As such,

the new posterior mean

\BbbE \bfittheta \sim p(\cdot | \scrD ,(\bfitz N+1,\bfity N+1))
[\bfittheta ] = P

\Biggl( 
N+1\sum 
i=1

ti

\Biggr) 
\bfx + \bfq 

\Biggl( 
N+1\sum 
i=1

ti

\Biggr) 
(3.5)

and posterior covariance

Cov\bfittheta \sim p(\cdot | \scrD ,(\bfitz N+1,\bfity N+1))
[\bfittheta ] = \epsilon P

\Biggl( 
N+1\sum 
i=1

ti

\Biggr) 
(3.6)

can be computed by solving the Riccati ODE (3.2) (with index j =N+1) on (
\sum N

i=1 ti,
\sum N+1

i=1 ti)

with initial conditions P (
\sum N

i=1 ti) =
\Sigma N

\epsilon and \bfq (
\sum N

i=1 ti) = \mu N - 1
\epsilon \Sigma N\bfx , where \mu N :=\BbbE \bfittheta \sim p(\cdot | \scrD )[\bfittheta ]

and \Sigma N := Cov\bfittheta \sim p(\cdot | \scrD )[\bfittheta ] denote the original posterior mean and covariance, respectively.
Next, we discuss removing one data point (\bfitz k,\bfity k), k \in \{ 1, . . . ,N\} , from \scrD . In the HJ PDE

framework, removing the kth data point corresponds to evolving the time variable tk from \epsilon 
\sigma 2
k

to 0. Thus, the new posterior mean and covariance resulting from deleting the kth data point
can be computed as P (

\sum N
i=1 ti  - tk)\bfx + \bfq (

\sum N
i=1 ti  - tk) and \epsilon P (

\sum N
i=1 ti  - tk), respectively,

where P,\bfq are obtained by solving the Riccati ODE (3.2) (with index j = k) backwards on
(
\sum N

i=1 ti - tk,
\sum N

i=1 ti) with terminal conditions P (
\sum N

i=1 ti) =
\Sigma N

\epsilon and \bfq (
\sum N

i=1 ti) = \mu N - 1
\epsilon \Sigma N\bfx ,

where we again denote by \mu N ,\Sigma N the original posterior mean and covariance using all N data
points.

Note that when adding or removing a data point, we do not require access to the entire
previous dataset \scrD . Instead, we only require access to the previous posterior mean \mu N , the
previous posterior covariance \Sigma N , and the data point to be added or removed; all of the
information about the rest of the training data remains encoded in the solution to the HJ
PDE. As such, our Riccati-based approach provides potential computational and memory
advantages when adding or removing data points by allowing the posterior distribution to
be updated without having to retrain on the entire dataset. Additionally, note that, due to
our assumption of independent data, the posterior mean and covariance are invariant to the
order of the data points. As a result, adding or removing data points using our Riccati-based
approach is also invariant to the order of the data; i.e., the final learned model will be the
same regardless of the order in which data points are added or removed.

3.2.2. Tuning the variance. Tuning the variance \sigma 2
k of the kth data point can be done

using a similar methodology similar to that for adding or removing a data point. If we decrease
the hyperparameter from \sigma 2

k to \~\sigma 2
k, the new posterior mean and covariance can be computed

as P ( \epsilon 
\~\sigma 2
k
 - \epsilon 

\sigma 2
k
)\bfx +\bfq ( \epsilon 

\~\sigma 2
k
 - \epsilon 

\sigma 2
k
) and \epsilon P ( \epsilon 

\~\sigma 2
k
 - \epsilon 

\sigma 2
k
), respectively, where P,\bfq are obtained by solving
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1174 ZOU, MENG, CHEN, DARBON, AND KARNIADAKIS

the Riccati ODE (3.2) (with index j = k) forward from s = 0 to s = \epsilon 
\~\sigma 2
k
 - \epsilon 

\sigma 2
k
with initial

conditions P (0) = \Sigma 
\epsilon and \bfq (0) = \mu  - 1

\epsilon \Sigma \bfx , where we denote by \mu ,\Sigma the original posterior mean
and covariance computed using the original value of \sigma 2

k. Note that every s\in [0, \epsilon 
\~\sigma 2
k
 - \epsilon 

\sigma 2
k
] can be

written as \epsilon 
\^\sigma 2
k
 - \epsilon 

\sigma 2
k
for some \^\sigma 2

k \in [\~\sigma 2
k, \sigma 

2
k]. Hence, as we evolve the Riccati ODE from s= 0 to

s= \epsilon 
\~\sigma 2
k
 - \epsilon 

\sigma 2
k
, we simultaneously obtain a flow of solutions corresponding to each \^\sigma 2

k \in [\~\sigma 2
k, \sigma 

2
k],

or, in other words, we tune the variance continuously from \sigma 2
k to \~\sigma 2

k.
Similarly, if we increase the hyperparameter from \sigma 2

k to \~\sigma 2
k, the new posterior mean and

covariance can be computed as P (0)\bfx +\bfq (0) and \epsilon P (0), respectively, where P,\bfq are obtained
by solving the Riccati ODE (3.2) (with index j = k) backward from s = \epsilon 

\sigma 2
k
 - \epsilon 

\~\sigma 2
k
to s = 0

with terminal conditions P ( \epsilon 
\sigma 2
k
 - \epsilon 

\~\sigma 2
k
) = \Sigma 

\epsilon and \bfq ( \epsilon 
\sigma 2
k
 - \epsilon 

\~\sigma 2
k
) = \mu  - 1

\epsilon \Sigma \bfx . As in the previous case,

evolving the Riccati ODE from s= \epsilon 
\sigma 2
k
 - \epsilon 

\~\sigma 2
k
to s= 0 again corresponds to continuously tuning

the variance from \sigma 2
k to \~\sigma 2

k, and hence every value of P (s)\bfx + \bfq (s) and \epsilon P (s), s\in [0, \epsilon 
\sigma 2
k
 - \epsilon 

\~\sigma 2
k
]

corresponds to the posterior mean and covariance using a different variance for the kth data
point.

3.3. Updating the prior: Tuning hyperparameters. In this section, we discuss how our
Riccati-based approach can be used to update the mean and covariance of the Gaussian prior.
Tuning these hyperparameters may improve the inference accuracy of the learned model by
updating the prior as new information becomes available.

Changing the prior mean \bfittheta 0 simply requires evaluating the solution to the corresponding
HJ PDE at a different point \bfx = \Lambda  - 1\bfittheta 0 in space, which, in turn, only requires the posterior
mean to be updated with the new \bfx -value using some matrix-vector multiplications and ad-
dition, while the posterior covariance remains unchanged. Hence, tuning the prior mean is
relatively cheap computationally.

Consider changing the prior covariance from \epsilon \Lambda to \epsilon \~\Lambda . Originally, the prior covariance
appears in the initial condition of the sequence of Riccati ODEs (3.2). However, we do not
have to re-solve the entire sequence of Riccati ODEs in order to update the prior covariance.
Instead, we reinterpret the prior covariance as part of a Hamiltonian of the corresponding
multi-time HJ PDE, which allows it to be tuned using only the results of training with the
original prior. Denote the original posterior mean and covariance (computed using the original
prior) by \mu pos and \Sigma pos, respectively. Then the new posterior mean \~\mu pos and covariance \~\Sigma pos

using the new prior covariance \epsilon \~\Lambda can be obtained using Riccati ODEs as follows. First, solve
the Riccati ODE (3.2) forward from s = 0 to s = 1 with \Phi j = \~\Lambda  - 1/2, \bfity j = 0, and initial

conditions P (0) = \Sigma pos

\epsilon and \bfq (0) = \mu pos  - 1
\epsilon \Sigma pos\bfx . This step incorporates information about

the new prior covariance into the model and yields solutions P (1) and \bfq (1). Next, solve the
Riccati ODE (3.2) backward from s = 1 to s = 0 with \Phi j = \Lambda  - 1/2, \bfity j = 0, and terminal

conditions \~P (1) = P (1) and \~\bfq (1) = \bfq (1), where P (1),\bfq (1) are the solutions from the previous
step. This step removes information about the old prior covariance from the model and yields
the solution \~P (0) and \~\bfq (0). Finally, the new posterior mean and covariance are computed as
\~\mu pos = \~P (0)\bfx + \~\bfq (0) and \~\Sigma pos = \epsilon \~P (0), respectively.

When the new prior covariance \epsilon \~\Lambda is a scaling of the original prior covariance \epsilon \Lambda (i.e.,
\~\Lambda = \alpha \Lambda for some \alpha > 0), the posterior can be updated by solving only one Riccati ODE
instead of two. Again denote the original posterior mean and covariance computed using the
original prior by \mu pos and \Sigma pos. If \alpha > 1, then the new posterior mean and covariance can
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VISCOUS HJ PDE FOR UQ IN SciML 1175

be computed as P ( 1\alpha ) + \bfq ( 1\alpha )\bfx and \epsilon P ( 1\alpha ), respectively, where P,\bfq are obtained by solving

the Riccati ODE (3.2) backward from s = 1 to s = 1
\alpha with \Phi j = \Lambda  - 1/2, \bfity j = 0, and terminal

conditions P (1) = \Sigma pos

\epsilon and \bfq (1) = \mu pos  - 1
\epsilon \Sigma pos\bfx . Similarly, if \alpha \in (0,1), then the new

posterior mean and covariance can be computed as P ( 1\alpha ) + \bfq ( 1\alpha )\bfx and \epsilon P ( 1\alpha ), respectively,
where P,\bfq are obtained by solving the Riccati ODE (3.2) forward from s = 1 to s = 1

\alpha with

\Phi j =\Lambda  - 1/2, \bfity j = 0, and initial conditions P (1) = \Sigma pos

\epsilon and \bfq (1) = \mu pos - 1
\epsilon \Sigma pos\bfx . In both cases,

evolving the Riccati ODE yields a continuous flow of solutions corresponding to tuning the
hyperparameter \alpha continuously; namely, every s between 1 and 1/\alpha corresponds to another
solution with a different prior covariance \epsilon 

s\Lambda .

4. Examples in scientific machine learning. In this section, we apply our methodology to
three examples from SciML, in which ML tools are employed to solve ODEs or PDEs [42, 21].
In each example, we learn the solution u : \BbbR \ell \rightarrow \BbbR m and the source term f : \BbbR \ell \rightarrow \BbbR m of a
differential equation \Biggl\{ 

\scrF [u] = f in \Omega ,

\scrB [u] = b on \partial \Omega 
(4.1)

using noisy data and quantify corresponding epistemic uncertainties [20, 38, 59]. In the
differential equation above, \scrF and \scrB represent linear differential and boundary operators,
respectively. Following the framework in section 2.1, we estimate u using the linear model
u\bfittheta =\Phi (\cdot )\bfittheta , where \Phi :\BbbR \ell \rightarrow \BbbR m\times n is the matrix whose columns are the basis functions \phi i :\BbbR \ell \rightarrow 
\BbbR m, i= 1, . . . , n. As a result, we also estimate f using a linear model f\bfittheta =\scrF [u\bfittheta ](\cdot ) =\scrF [\Phi ](\cdot )\bfittheta .

We use the predicted mean associated with our learned models as our prediction of the
quantities of interest; i.e., our prediction for u is \BbbE [u\bfittheta | \scrD ] = \Phi \BbbE [\bfittheta | \scrD ] and our prediction
for f is \BbbE [f\bfittheta | \scrD ] = \scrF [\Phi ]\BbbE [\bfittheta | \scrD ]. Note that considering the predicted mean of our learned
models is equivalent to taking \bfittheta to be the posterior mean estimate. We compute the pre-
dicted uncertainty of our learned models as their covariances: Cov[u\bfittheta | \scrD ] = \Phi Cov[\bfittheta | \scrD ]\Phi T

and Cov[f\bfittheta | \scrD ] = \scrF [\Phi ]Cov[\bfittheta | \scrD ]\scrF [\Phi ]T . The predicted uncertainty can then be used to help
inform the learning process (e.g., by providing a metric for determining when to stop learn-
ing or where more data may be needed). When m = 1, the covariance is scalar-valued and
we can take twice its square root (i.e., twice the posterior standard deviation) as the pre-
dicted uncertainty. In each example, we assume Gaussian likelihood and a Gaussian prior
and apply the Riccati-based methodology from section 3 to compute the posterior mean and
covariance. For demonstration purposes, we use the 4th-order Runge--Kutta (RK4) method to
numerically solve the corresponding Riccati ODEs, although any other appropriate numerical
method could be used instead. Details for the choice of hyperparameters in each example
can be found in Appendix A. Code for all of the examples will be made publicly available at
https://github.com/ZongrenZou/HJPDE4UQSciML after the paper is published.

4.1. Solving a boundary-value ODE problem. Consider the following boundary value
problem: \left\{   \kappa 

d4u

dt4
(\tau ) + \beta 

d2u

dt2
(\tau ) + u(\tau ) = f(\tau ), \tau \in (0,1),

u(0) = u0, u(T ) = uT , u
\prime (0) = u\prime 0, u

\prime (T ) = u\prime T ,
(4.2)
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where \kappa = 0.0001, \beta = 0.01 are known constants. In this example, we solve (4.2) using noisy
measurements of u0, uT , u

\prime 
0, u

\prime 
T and noisy measurements of the source term f at different

times \tau , which we denote by \{ (\tau i, fi)\} Nf

i=1. To demonstrate the capabilities and potential
computational advantages of our Riccati-based approach, we consider the following three
learning scenarios:

A. Continual learning: stream data of f sequentially in \tau (section 4.1.1),
B. Hyperparameter tuning: continuously tune the standard deviation of the prior (sec-

tion 4.1.2),
C. Outlier removal: remove excessively noisy data from the learned model (Appendix B).

In each scenario, we use the truncated Karhunen-Lo\`eve (KL) expansion of a Gaussian process
as our linear model. Specifically, we use the leading n= 30 terms of the KL expansion:

u\bfittheta (\tau ) =

n\sum 
k=1

\theta k
\surd 
\alpha k

\~\phi k(\tau ),(4.3)

where \~\phi k, \alpha k are the eigenfunctions and eigenvalues of the kernel

k(x1, x2) = exp

\biggl( 
 - | x1  - x2| 

0.05

\biggr) 
\forall x1, x2 \in [ - 10,10].(4.4)

In other words, we use the basis functions \{ \phi k(\tau ) =
\surd 
\alpha k

\~\phi k(\tau ), k = 1, . . . , n\} [52]. For more
details, the analytic expansion can be found in [15, 51]. Unless otherwise specified, we also
assume that the prior on \bfittheta is standard independent Gaussian, i.e., \bfittheta \sim N(0, I), where I is
the n\times n identity matrix. The exact solution is assumed to be u(\tau ) = exp( - 2\tau ) sin(15\tau ) (but
treated as unknown a priori), and we set T = 1. The data of u0, uT (u\prime 0, u

\prime 
T , respectively)

are corrupted by additive Gaussian noise with mean zero and standard deviation 0.01 (0.001,
respectively).

4.1.1. Case A: Continual learning. In this scenario, we learn u and f using continual
learning [35, 49] to demonstrate the potential of our Riccati-based approach for real-time
inferences. Continual learning refers to learning scenarios in which data is accessed in a
stream and learned models are updated incrementally as new data becomes available. In
some cases, the historical data is also assumed to become inaccessible after it is incorporated
into the learned model, which often leads to catastrophic forgetting [23, 35], i.e., the abrupt
degradation in the performance of learned models on previous tasks upon training on new
tasks. Here we assume that measurements of f are streamed sequentially in \tau (assume that
one measurement of f becomes available every \Delta \tau = T

200) and that the previous data cannot
be accessed again after a new measurement arrives. As such, we want to update our learned
models as soon as new data becomes available. We also assume that the measurements of f
are corrupted by additive Gaussian noise with mean zero and standard deviation 0.2, so that a
Bayesian approach may be useful. We apply the Riccati-based methodology from section 3.2.1,
which is naturally amenable to data streaming. In particular, this Riccati-based approach
provides computational advantages over more standard SciML and UQ techniques in continual
learning settings by using only information of the newly available data to update the learned
model instead of retraining on the entire dataset. These computational advantages become
more significant in long-term integration problems, in which retraining on and storage of
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VISCOUS HJ PDE FOR UQ IN SciML 1177

(a) Inferences of u with UQ.

(b) Inferences/fitting of f with UQ.

Figure 4. Results of solving (4.2) using continual learning and our Riccati-based approach. (a) and (b) show
the predicted mean and uncertainty of u and f , respectively, after the 101th, 151th, and 201th noisy data points
of f become available. Our Riccati-based approach naturally coincides with the continual learning framework
while inherently avoiding catastrophic forgetting. Our approach allows us to incrementally update the learned
models without accessing the historical data ( ), while also providing a quantitative metric for our confidence
in the learned models in the form of the predicted uncertainties ( ). We observe that regions of low predicted
uncertainty generally coincide with regions of high inference accuracy, which implies that this confidence metric
is a good indicator of the reliability of the model.

the historical data becomes considerably more expensive. Furthermore, although our Riccati-
based approach does not rely on historical data, it does not suffer from catastrophic forgetting,
as all of the information from the previous data remains intrinsically encoded in the solution
to the corresponding HJ PDE.

Figure 4 displays the predicted means and uncertainties of u and f after the 101th, 151th,
and 201th noisy measurements of f become available. We see that as more data points of f are
incorporated into the learned models, the predicted means of both u and f more closely match
their exact values and the predicted uncertainties shrink. Moreover, we see that regions of high
predicted uncertainty generally coincide with low inference accuracy, which shows that our
confidence in the learned models is correlated with their reliability. We also observe that the
predicted uncertainty of u does not develop in the same way as that of f . While the predicted
uncertainty of f is generally uniformly small on (0, \tau \ast ) and large on [\tau \ast , T ), where \tau \ast denotes
the \tau -coordinate of the currently available data point, u can often still have relatively large
predicted uncertainty on (0, \tau \ast ) since we do not learn u directly. Note that u always has
low predicted uncertainty on the boundaries as the boundary data were incorporated into the
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1178 ZOU, MENG, CHEN, DARBON, AND KARNIADAKIS

Table 1
Relative L2 errors of the predicted means of u and f when using continual learning and our Riccati-based

approach to solve (4.2) after different amounts of noisy measurements of f are incorporated into the learned
models. We achieve high accuracy inferences after all the data is incorporated.

After the 101th data point After the 151th data point After the 201th data point

Error of u 41.77\% 6.79\% 3.88\%
Error of f 217.27\% 24.48\% 3.39\%

(a) Validation error. (b) Predicted mean of u at different τ as the function of σ.

Figure 5. Results of tuning the standard deviation \sigma of the prior using our Riccati-based approach to solve
(4.2). (a) shows how the validation error changes as \sigma is tuned. (b) shows the flow with respect to \sigma of
the predicted mean of u at different times (\tau = 0.25,0.5,0.75). The black dot represents the value using the
original choice of \sigma = 1, and the arrows represent the direction of the flow of solutions as we increase \sigma from
1 (red; i.e., we evolve the corresponding Riccati ODE backward) or decrease \sigma from 1 (blue; i.e., we evolve the
corresponding Riccati ODE forward). In contrast to conventional ML approaches, our Riccati-based approach
allows the hyperparameter to be tuned continuously without retraining on or access to the training data.

learned models at the beginning of the training. Table 1 presents the relative L2 errors of the
predicted means, which show that we achieve high inference accuracy after all the data has
been incorporated. We compute the L2 errors using the trapezoidal rule with a uniform grid
of size 1001 over the whole domain [0, T ].

4.1.2. Case B: Tuning the standard deviation of the prior. In the previous case, the
prior distribution was set to be independent standard Gaussian, i.e., \bfittheta \sim N(0, \sigma 2I), which is
the usual choice for KL expansions of Gaussian processes [50]. However, this choice may not be
appropriate for every problem, and tuning the hyperparameters of the prior may yield better
results. In this section, we demonstrate how the Riccati-based approach from section 3.3 can
be used to tune the standard deviation \sigma of the prior continuously. In this case, the training
data consists of the same measurements of u and u\prime used in Case A and 41 measurements of f
sampled equidistantly on [0, T ]. The validation data consists of 10 measurements of f sampled
randomly on [0, T ] following a uniform distribution. Both the training and the validation data
are corrupted by additive Gaussian noise with mean zero and standard deviation 0.2.

Figure 5 shows how the validation error and predicted mean of u develop as \sigma is tuned.
Figure 5(b) shows that the predicted mean of u varies as \sigma changes, and Figure 5(a) shows that
the lowest validation error is not achieved with the original choice of \sigma = 1, which highlights
the importance of hyperparameter tuning. Recall that tuning \sigma corresponds to evolving a
Riccati ODE in time. Hence, tuning \sigma can be done continuously and results in a continuous
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VISCOUS HJ PDE FOR UQ IN SciML 1179

flow of solutions, where each solution corresponds to a different choice of \sigma . This flow of
solutions is obtained numerically via the intermediary steps of RK4 and is represented by
the arrows in Figure 5. In Figure 5(a), tuning \sigma results in a continuous flow of validation
errors, and in Figure 5(b), it results in a continuous flow of inferences of u. Our Riccati-
based approach allows hyperparameter values to be explored flexibly and continuously and,
in contrast to more standard ML techniques, does not require retraining on or access to the
training dataset during the tuning process.

4.2. Solving the 1D steady-state advection-diffusion equation. Consider the following
steady-state advection-diffusion equation with Dirichlet boundary conditions:\left\{   D

\partial 2u

\partial x2
(x) + \kappa 

\partial u

\partial x
(x) = f(x), x\in (0,1),

u(0) = u(1) = 0,
(4.5)

where D = 0.001 and \kappa = 0.1. The exact solution to this equation is chosen as u(x) =
sin(6\pi x) cos2(4\pi x). We solve (4.5) using noisy measurements of f at different x, which we de-
note by \{ (xi, fi)\} Ni=1. To demonstrate the versatility of our Riccati-based approach in handling
different learning settings, we consider the following two cases:

A. The data of f are corrupted by large-scale noise but are cheap to obtain (section 4.2.1),
B. The data of f are corrupted by small-scale noise but are expensive to obtain (sec-

tion 4.2.2).
Case A uses a large-scale problem with a huge amount of data to show that we can achieve
high accuracy despite a large amount of noise, while case B uses active learning [44] to search
for where new measurements are needed. In both cases, we use the truncated KL expansion
of the Brownian bridge to model u. Specifically, we use the leading n = 50 terms of the KL
expansion [15]:

u\bfittheta (x) =

n\sum 
k=1

\theta k

\surd 
2 sin(k\pi x)

k\pi 
.(4.6)

Note that this choice of basis functions automatically enforces the Dirichlet boundary condi-
tions. We take the prior to be independent standard Gaussian, i.e., \bfittheta \sim N(0, I).

4.2.1. Case A: Large-scale data with high noise level. In this case, we demonstrate the
computational efficiency of our Riccati-based approach on a large-scale problem. Specifically,
we assume that measurements of f are corrupted by a large amount of noise but are cheap
to acquire. Thus, to obtain accurate predictions and compensate for the high noise level, we
need a lot of data. Working with such a large dataset in its entirety would be extremely
expensive in terms of both computations and memory. Instead, we apply our Riccati-based
approach from section 3.2.1 to continuously learn our model without have to train on or store
the entire dataset. In this case, the measurements of f are sampled uniformly randomly on
[0,1] and corrupted by additive Gaussian noise with mean zero and standard deviation 2
(e.g., see Figure 6(b)). We keep sampling f until a satisfactory result is obtained (i.e., until
the predicted uncertainty is sufficiently low).

Figure 6 shows inferences of u and f after 1,000, 5,000, and 100,000 data points of f are
incorporated into the learned models. Note that the predicted uncertainty at the boundary
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1180 ZOU, MENG, CHEN, DARBON, AND KARNIADAKIS

(a) Inferences of u with UQ.

(b) Inferences/fitting of f .

Figure 6. Results of solving (4.5) using large-scale data with a high noise level and our Riccati-based ap-
proach. (a) shows the corresponding predicted mean and uncertainty ( ) of u. (b) shows the inference/fitting
of f using 1,000, 5,000, and 100,000 noisy data points. Note that we do not show the predicted uncertainty
of f for clarity of presentation. Our Riccati-based approach updates the learned models incrementally using
information from one data point ( ) at a time, which provides significant computational and memory savings
in big data regimes.

points is always zero because our choice of basis functions automatically enforces the boundary
conditions. Due to the high noise level, the inferences of u and f are inaccurate when only 1,000
data points are used. Additionally, the predicted uncertainty of u is relatively large, which
indicates that the learned models are low confidence. As we incorporate more measurements of
f into the learning process, the inferences become more accurate and the predicted uncertainty
of u decreases. Once the predicted uncertainty is small enough, we determine that we are
confident in our learned model and can stop collecting data. For example, in Figure 6(a),
we see that the predicted uncertainty of u is significantly and sufficiently reduced after using
100,000 data points, and we stop learning. In Table 2, we observe that the relative L2 errors
of our inferences are also significantly reduced, confirming that our confidence in the model
is a reasonable indicator of its accuracy. The L2 errors are computed using the trapezoidal
rule with a uniform grid of size 1001 over the domain [0,1]. We again note that by using
the Riccati-based methodology from section 3.2.1, we avoid having to retrain every time we
acquire new data points and never have to work with all 100,000 data points at once. Instead,
our Riccati-based approach only requires information about one data point at a time, which
provides significant computational and memory advantages in these big data regimes.
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VISCOUS HJ PDE FOR UQ IN SciML 1181

Table 2
Relative L2 errors of the predicted means of u and f using different amounts of noisy measurements of f

to solve (4.5). Our Riccati-based approach updates the learned models without requiring retraining when new
data becomes available or storing and processing large datasets in their entirety.

1,000 data points 5,000 data points 100,000 data points

Error of u 44.44\% 17.19\% 9.49\%
Error of f 41.89\% 16.72\% 3.81\%

(a) Inferences/fitting of f with UQ. (b) Inferences of u with UQ.

Figure 7. Intermediate result for adding the 46th data point when using active learning and our Riccati-
based approach to solve (4.5). The left side of (a) and (b) shows the inferences of f and u, respectively, before
the placement of the new sensor and incorporation of the 46th data point. The right side of (a) and (b) shows
the updates to f and u after these actions. The vertical black dashed line represents the location where the
46th sensor will be placed. Note that we zoom in on the region around the new sensor instead of showing the
full domain for clarity of comparison. Following an active learning framework, we repeat the following steps:
compute the predicted mean and uncertainty of u and f , place a new sensor at the location of the largest predicted
uncertainty ( ) of f , and obtain a new measurement of f ( ) at the new sensor location. Our Riccati-based
approach naturally complements this framework, as it can efficiently perform repeated updates of the predicted
mean and uncertainty.

4.2.2. Case B: Expensive data with low noise level. In this case, we demonstrate the
versatility of our Riccati-based methodology by showing how it naturally complements an
active learning approach. Active learning refers to the ML paradigm where the training data
are sampled dynamically until a desired result is achieved (e.g., low generalization error)
[48, 44, 25]. In this section, we focus on uncertainty-based active learning [25, 16, 36], in
which we choose the new data point to be sampled from the location where the predicted
uncertainty is largest. Assume that we have access to high quality data with low-level noise
(here we use additive Gaussian noise with mean zero and standard deviation 0.1) but that
the data are expensive to collect. For example, consider the scenario where high precision
but expensive sensors are deployed to measure the value of f at particular locations x. As
a result, we have limited access to data and must carefully select where sensors should be
placed in order to obtain reliable inferences. Assume the potential locations for sensors form
a 101-point uniform grid on [0,1]. We use the predicted uncertainty of f to determine where
the next sensor should be placed. Note that although we could have instead used the predicted
uncertainty of u to choose the sensor location, using the predicted uncertainty of f is more
consistent with the fact that we collect measurements of f . Following the active learning
framework [44, 39, 36], we start with an empty dataset \scrD and index i = 0 and then do the
following:
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1182 ZOU, MENG, CHEN, DARBON, AND KARNIADAKIS

1. Compute the posterior p(\bfittheta | \scrD ) based on the current dataset \scrD as well as the predicted
mean and uncertainty of u and f at all potential sensor locations. If the predicted
uncertainty is sufficiently low, then terminate the procedure.

2. Identify the location where the predicted uncertainty of f is highest out of all remaining
potential locations. Label this location as xi, and place a sensor there to measure f
(denote these measurements by fi).

3. Update the current dataset \scrD to \scrD \cup \{ (xi, fi)\} and the index i to i+ 1. Go back to
step 1.

To perform steps 1 and 2, we employ the Riccati-based approach from section 3.2.1, in which
the models and their predicted uncertainty are updated incrementally as new data become
available. Note that the Riccati-based approach performs these updates without using histor-
ical data.

Figure 7 displays a zoom in of the intermediate result when adding the 46th measurement
of f . The vertical black dashed line indicates where the predicted uncertainty of f is the
highest (i.e., where the new sensor is placed). While the addition of the sensor significantly
reduces the predicted uncertainty of f around that point, it only mildly reduces the predicted
uncertainty of u since we do not learn u directly. Figure 13 in Appendix C displays inter-
mediate results when adding the 47th sensor, which more dramatically reduces the predicted
uncertainty of u. These results demonstrate how our Riccati-based approach can be seam-
lessly integrated into an active learning framework by allowing for continual updates of the
models and uncertainty metrics that can be leveraged to interactively improve the learning
process.

4.3. Solving the 2D Helmholtz equation. In this example, we solve the 2D Helmholtz
equation with Dirichlet boundary conditions\Biggl\{ 

(\kappa 2  - \Delta )u(x, y) = f(x, y), x, y \in [0,2\pi ],

u(x,0) = u(x,2\pi ) = u(0, y) = u(2\pi , y) = 0, x, y \in [0,2\pi ],
(4.7)

where \kappa 2 = 1 is the Helmholtz constant and \Delta is the Laplacian operator. We consider the
scenario where we have large-scale, noisy data of f but assume that computational limitations
prevent us from being able to process or store all of the data at once. We use this example
to show how our Riccati-based approach naturally overcomes these computational limita-
tions. Specifically, we decompose the domain into multiple smaller subdomains and update
our learned model on each piece one-by-one using continual learning and the Riccati-based
methodology from section 3.2. Note that since the Riccati-based approach is invariant to the
order of the data points, it does not require a specific method for decomposing the domain.
To illustrate the flexibility of our approach, we decompose the domain [0,2\pi ]2 uniformly into
7\times 7 equal subdomains and consider the following two patterns for traversing the subdomains:

A. A sequential pattern (section 4.3.1; e.g., see Figure 8(a)),
B. A multilevel order of traversal (section 4.3.2; e.g., see Figure 10).

In both cases, we employ a linear model u\bfittheta (x, y) =
\sum n

k=1 \theta k\phi k(x, y), where \{ (x, y) \mapsto \rightarrow 
\phi k(x, y)\} nk=1 = \{ (x, y) \mapsto \rightarrow 

\surd 
2L \mathrm{s}\mathrm{i}\mathrm{n}( j\pi x

L
)

j\pi 

\surd 
2L \mathrm{s}\mathrm{i}\mathrm{n}( k\pi y

L
)

k\pi \} 
\surd 
n

j,k=1, n = 225, and L = 2\pi . Note that these
basis functions automatically enforce the boundary conditions. We learn the model using
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VISCOUS HJ PDE FOR UQ IN SciML 1183

(a) Domain. (b) Absolute error of the inference.

(c) Slices of the inference of u with UQ. (d) Slices of the inference/fitting of f with UQ.

Figure 8. Results of solving (4.7) with noisy data of f using our Riccati-based approach while traversing the
domain sequentially. (a) displays the 7\times 7 uniform domain decomposition and the sequential order of integration
of the domain. (b) shows the absolute errors of the predicted means of u and f after all 49 subdomains have been
visited. (c) and (d) show 1D slices of the inferences and predicted uncertainties ( ) of u and f , respectively.
These results show how our Riccati-based approach can naturally be extended to solve higher-dimensional prob-
lems. Namely, by leveraging data streaming, our Riccati-based approach is able to overcome the computational
and memory challenges related to the higher dimension of the PDE and subsequently increased dataset size.

measurements of f that are corrupted by additive Gaussian noise with mean 0 and standard
deviation 0.5. We define f by

f(x, y) = sin(6x) sin(4y) - 0.8 sin(5x) sin(7y),(4.8)

and the solution to (4.7) can be analytically derived accordingly. To compute the accuracy
of learned models, we evaluate our inferences of u and f on a uniform grid of size 450\times 450
over the domain. To learn \bfittheta , we take noisy measurements of f at each of the 200,704 interior
points of that grid. Hence, each subdomain contains 4,096 measurements of f .

4.3.1. Case A: Sequential domain decomposition. In this case, we traverse the sub-
domains sequentially using the snaking pattern shown in Figure 8(a). This decomposition
pattern naturally extends the sequential data streaming pattern used for the 1D problem in
section 4.2.1 to the 2D problem considered here. As such, this traversal pattern intuitively
coincides with the Riccati-based methodology for adding data points in section 3.2.1.

In Figure 8, we see that we learn u and f fairly well, but the accuracy of the predicted
means of u and f remains compromised by the large amount of noise in the data. In particular,
Figures 8(c)--(d) show that the exact values are still within the predicted uncertainty intervals
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1184 ZOU, MENG, CHEN, DARBON, AND KARNIADAKIS

Table 3
Relative L2 errors of the predicted means of u and f when solving (4.7) using our Riccati-based approach

and the sequential order of integration shown in Figure 8(a). The errors significantly reduce as more subdomains
are visited but remain slightly high after all of the data is incorporated due to the high level of noise in the data.

25 subdomains 40 subdomains 44 subdomains 49 subdomains (all)

Error of u 897.75\% 231.56\% 93.19\% 9.73\%
Error of f 178.51\% 62.74\% 20.38\% 2.32\%

(a) Absolute error of the inference of u.

(b) Absolute error of the inference/fitting of f .

Figure 9. Intermediate results of solving (4.7) using our Riccati-based approach while traversing the domain
sequentially. We collect data from each subdomain sequentially following the pattern in Figure 8(a). (a) and (b)
shows the absolute errors of the inferences of u and f , respectively. The white crosses indicate the subdomains
that have already been visited. Our Riccati-based approach incrementally updates our predictions as we traverse
the domain, which provides computational and memory advantages over having to process or store all of the
data from the entire domain at once.

around our predicted means, which indicates that our inferences are still reliable. In Figure 9
and Table 3, we present intermediate results for the errors of our inferences after the domain
has been partially traversed. In Figure 9, we observe that the absolute error of the inference
of f vanishes on each of the visited subdomains, whereas the absolute error of the inference of
u is reduced on the visited subdomains but not necessarily eliminated. This behavior is due
to the fact that we do not learn u directly and instead learn u from data of f and information
from the PDE. In Table 3, we again see that the errors significantly reduce as we traverse
domain, but the final error of our inference of u remains somewhat high due to the high noise
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VISCOUS HJ PDE FOR UQ IN SciML 1185

Figure 10. Domain decomposition with a multilevel subdomain traversal. The level one subdomain is
marked in red, the level two subdomains are marked in blue numbers, the level three subdomains are marked in
green numbers, and the level four subdomains are marked in black.

level of the data. Since our Riccati-based approach incrementally updates our inferences with
one data point at a time, it does not suffer from any computational or memory scaling issues
related to the large dataset size but does still depend on the numerical precision of the ODE
solver.

4.3.2. Case B: Multilevel domain decomposition. In this section, we follow a multilevel
order of a subdomain traversal inspired by multigrid methods [17, 27] to highlight the in-
variance of our Riccati-based approach to the order of the data. In the previous case, we
incorporated the data sequentially. However, this order is not required, as our Riccati-based
approach can incrementally incorporate the data into the learned models in any order. Specif-
ically, we consider the multilevel traversal order shown in Figure 10. Level one consists of the
center subdomain. Level two consists of the eight subdomains roughly centered around the
level one subdomain. Level three consists of 16 subdomains, each corresponding to one corner
of each of the level two subdomains. Level four consists of the remaining 24 subdomains.
Using this type of multilevel order has the potential to allow the learning process to stop
earlier (and hence use less data) because each level captures information across the entire
domain. As a result, the error of the inferences is more likely to reduce uniformly across the
domain. In contrast, the sequential traversal pattern used in section 4.3.1 is more likely to
learn accurate predictions on the bottom half of the domain before learning any reasonably
reliable prediction on the top half of the domain.

Figure 11 shows the intermediate results using this multilevel approach. As in the previous
case, we see that the errors generally improve in/near the subdomains we have visited. The end
result (not shown) after all of the subdomains have been visited is identical to Figures 8(b)--(d)
with 9.73\% relative L2 error for u and 2.32\% relative L2 error for f , which demonstrates the
invariance of our Riccati-based approach to the order of the data points.

5. Summary. In this paper, we established a new theoretical connection between Bayesian
inference problems with linear models and Gaussian likelihoods and viscous HJ PDEs with
quadratic Hamiltonians. As a first exploration of this connection, we specialized in Gaussian
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1186 ZOU, MENG, CHEN, DARBON, AND KARNIADAKIS

(a) Absolute error of the inference of u.

(b) Absolute error of the inference/fitting of f .

Figure 11. Intermediate results of solving (4.7) using our Riccati-based approach while traversing the domain
using the multilevel order in Figure 10. (a) and (b) show the absolute errors of the inferences of u and f ,
respectively. The level one subdomain is marked by the white cross, the level two subdomains are marked by white
stars, and the level three subdomains are marked by white circles. Our Riccati-based approach incrementally
incorporates data points into the predictions invariant to the order of the data. As such, the end result after
all the data is incorporated is identical to Figures 8(b)--(d), despite the intermediate results differing.

priors and leveraged the result to develop a new Riccati-based methodology for efficiently
updating the predicted models. We then demonstrated some potential computational advan-
tages of this Riccati-based approach by applying it to several UQ-based examples from SciML
[21, 38, 59]. In particular, these examples illustrate that this approach naturally coincides with
data streaming applications [35, 49, 48, 44]. As such, this Riccati-based approach is amenable
to memory-limited hardware architectures, such as FPGAs [22], which opens possibilities for
real-time applications requiring embedded implementations.

Some other possible future directions for this work are as follows. Currently, our theo-
retical connection requires a linear model, Gaussian likelihood, and particular assumptions
on the prior. In the Gaussian setting, it would be interesting to explore how incremental or
online GPR techniques [10, 43, 19, 29, 9, 4, 33, 37, 45] could be integrated into our Riccati-
based framework to approximate the solutions when the Riccati ODEs are difficult to solve
directly using numerical ODE solvers, particularly in big data regimes. To consider a wider
range of applications, more research is needed to extend this connection to nonlinear mod-
els, non-Gaussian likelihoods, and more general priors, including the development of new
and efficient numerical algorithms for these settings in high dimensions. Specifically, the link
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Table 4
Step size h of RK4 when tuning \sigma in the hyperparameter tuning example in section 4.1.2. \sigma 0 \rightarrow \sigma 1 denotes

the case where \sigma is tuned from \sigma 0 to \sigma 1.

\sigma 1\rightarrow 0.5 1\rightarrow 2 2\rightarrow 5 5\rightarrow 10 10\rightarrow 20
h 10 - 5 10 - 5 10 - 6 10 - 7 10 - 7

between Bayesian inference and viscous HJ PDEs no longer holds when the Hamiltonian is
nonquadratic. Moreover, the Riccati-based methodology in section 3 further restricts the
prior to be Gaussian. As such, more work is needed to explore how this connection could be
leveraged to create efficient numerical methods for more general learning settings. Another
natural extension of this work would be to investigate how this connection could be leveraged
to reuse existing efficient ML algorithms to solve high-dimensional HJ PDEs. So far, this
work only considers the opposite direction but opens opportunities for new ML-based solvers
for fields related to HJ PDEs (e.g., stochastic optimal control [54, 14]).

Appendix A. Details of the hyperparameters in the numerical examples. In section 4,
we use RK4 to numerically solve the Riccati ODEs, where the step size h of RK4 is chosen to
achieve a balance between high accuracy and stable, efficient computations. We use Python,
the NumPy library [18], the JAX library [1], and double precision in all numerical examples.
An NVIDIA A100 GPU is used to accelerate computations.

In section 4.1.1, we use h = 5\times 10 - 5. In section 4.1.2, the baseline solution using \sigma = 1
is computed using the method of least squares. Then \sigma is tuned using the values of \sigma and
h shown in Table 4. In Appendix B, the baseline solution using the entire training set is
computed using the method of least squares, and we use RK4 with step size h = 1 \times 10 - 5

to delete each outlier. In section 4.2.1, we use h = 1 \times 10 - 1, and in section 4.2.2 we use
h= 1\times 10 - 2. In section 4.3, we use h= 2\times 10 - 6 for both domain decomposition patterns.

Appendix B. Additional results for example 1. In this section, we present the results of
removing outliers from the trained model when solving (4.2) using our Riccati-based method-
ology from section 3.2.1. Specifically, we first train the model with the entire noisy training
set and then remove the effect of identified outliers from the learned model. Figure 12 shows
the results of the initial training and the subsequent sequential removal of two outliers. As ex-
pected, removing the outliers improves the model prediction accuracy. After both outliers are
removed, the exact values now lie within the uncertainty band around the predicted means,
which indicates that our models have become more reliable. Recall that the outliers are re-
moved by solving one step of Riccati ODEs backward in time. As such, we do not require
retraining on or access to the entire remaining dataset, which provides potential computational
savings.

Appendix C. Additional results for example 2. In this section, we present additional
results for Case B of example 2. Recall that in section 4.2.2, we consider the scenario where
we have access to high quality data with low-level noise but sensors are expensive to deploy.
As such, the location of new data measurements must be chosen carefully. Following an active
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1188 ZOU, MENG, CHEN, DARBON, AND KARNIADAKIS

(a) Inference of u.

(b) Inference/fitting of f .

Figure 12. Deleting two outliers (\times ) sequentially from the trained model using our Riccati-based approach
to solve (4.2). The left column of (a) and (b) shows the inferences of u and f , respectively, after the initial
training with all data points. The middle column shows the inferences after the first outlier is deleted, and
the right column shows the inferences after two outliers are deleted. The outliers are deleted by solving the
associated Riccati ODEs backward in time. This process only uses the results of the previous training step and
information of the point to be deleted, which provides potential computational advantages over more standard
SciML approaches that would otherwise require retraining on the entire remaining dataset.

(a) Inferences of f . (b) Inferences of u.

Figure 13. Intermediate result for adding the 47th data point when using active learning and our Riccati-
based approach to solve (4.5). The left side of (a) and (b) shows the inferences of f and u, respectively, before
the placement of the new sensor and incorporation of the 47th data point. The right side of (a) and (b) shows
the updates to f and u after these actions. The vertical black dashed line represents the location (x= 0) where
the 47th sensor will be placed. Note that we zoom in on the region around the new sensor instead of showing the
full domain for clarity of comparison. Our Riccati-based approach naturally complements this active learning
framework, as it can efficiently perform repeated updates of the predicted mean and uncertainty.

learning framework [44], we choose the location of the next sensor to be where the predicted
uncertainty is the highest. In Figure 13, we show the intermediate results when adding the 47th
sensor. In this case, the predicted uncertainty of u more dramatically reduces. This example
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demonstrates how the potential of our Riccati-based approach for real-time inferences allows
it to be seamlessly integrated into active learning applications.
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