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ADE Exam, Fall 2024
Department of Mathematics, UCLA

1. Consider the following initial value problem for θ(t) ∈ T (The one dimensional torus, i.e.
[0, 2π) with periodic boundary conditions) given by

θ′′ + αθ′ +
g

ℓ
sin θ(t) = 0

θ(0) = θ0

θ′(0) = ω0,

where α, g, ℓ > 0 are positive constants such that α2ℓ < 4g.

(a) Re-write this as a first order system in (θ, θ′) ∈ T× R.
(b) Find all of the equilibrium points, compute the linearizations, and classify the equilibria

as linearly stable, linearly unstable, or linear centers.

(c) Prove that H = 1
2θ

′2 − g
ℓ cos θ is a Lyapunov function.

(d) Prove directly (i.e. don’t just quote a theorem) that the origin is an asymptotically
stable fixed point for the nonlinear problem (you don’t have to use H).

2. (a) Derive power-series representations of the two linearly independent solutions of the dif-
ferential equation

x2 d
2y

dx2
+ x

dy

dx
+
(
x2 − ν2

)
y = 0 (1)

for x > 0, with ν a non-integer, non-zero real number (assume wlog that ν > 0).

(b) When ν is a non-zero integer, explain how to derive the second solution and obtain a
recurrence relation for the coefficients of this solution. (You do not need to solve for the
coefficients.)

3. Consider the differential equation

ut = −µ∆u−∆2u

on T2, the periodic 2-torus [0, 2π)2. (a) if µ = 2 find a solution whose amplitude increases
as t increases. (b) Find a value of µ0 so that the solution is globally bounded in time for all
µ < µ0.
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4. Let D be a bounded bomain in R3 with smooth boundary ∂D. Show that a solution of the
boundary value problem

∆2u = f in D, u = ∆u = 0 on ∂D

must be unique.

5. Given a function f ∈ H2(TN ) (TN is the N -torus, periodic in N dimensions), and a smooth
function G : R → R, consider the energy

E(u) =

∫
TN

G(∆u) + λ

∫
TN

(f − u)2.

(a) Derive the Euler-Langrange equation for extrema of E both in (i) weak form (u ∈ H2(TN ))
and in (ii) strong form (assuming u is smooth).

(b) Show that E(u) is strictly convex if G is a strictly convex function on the line.

6. Let

Φ(x, t) =
1√
4παt

exp

(
− x2

4αt

)
, x ∈ R , t > 0 (2)

be the fundamental solution of the one-dimensional diffusion equation

ut = α∆u . (3)

Consider

u(x, t) =

{∫∞
−∞ Φ(x− y)g(y) dy , t > 0

g(x) , t = 0 ,
(4)

where g(x) is a bounded, continuous, integrable function on R.

Prove that u(x, t) is a C∞ solution of (3) on {(x, t)|t > 0}. Additionally, show that

lim
t→0

u(x, t) = g(x) (5)

for all x ∈ R.

7. Consider the equation

ux1ux2 = u on Ω = {(x1, x2)|x1 > 0]} , with u(0, x2) = x2
2 . (6)
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(a) Provide an argument for why the solution should be a polynomial that is homogeneous
of degree two.

(b) Solve the equation with the given boundary condition using either the method of char-
acteristics or by using the structure of the solution that you argued in part (a).

8. (a) Determine the solution u(x, t) of

utt − 9uxx =
18

t2 + 1
, x ∈ R , t ∈ R ,

u(x, 0) = x2 , ut(x, 0) = 9x . (7)

(b) Suppose that (7) is satisfied only for x ∈ (0, 6). In what region is u(x, t) uniquely defined?
Draw this region in the (x, t) plane.
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