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GRADIENT-ADJUSTED UNDERDAMPED LANGEVIN DYNAMICS
FOR SAMPLING*

XINZHE ZUOT, STANLEY OSHER', AND WUCHEN LI#

Abstract. Sampling from a target distribution is a fundamental problem with wide-ranging
applications in scientific computing and machine learning. Traditional Markov chain Monte Carlo
(MCMC) algorithms, such as the unadjusted Langevin algorithm (ULA), derived from the over-
damped Langevin dynamics, have been extensively studied. From an optimization perspective, the
Kolmogorov forward equation of the overdamped Langevin dynamics can be treated as the gradient
flow of the relative entropy in the space of probability densities embedded with Wasserstein-2 metrics.
Several efforts have also been devoted to including momentum-based methods, such as underdamped
Langevin dynamics for faster convergence of sampling algorithms. Recent advances in optimizations
have demonstrated the effectiveness of primal-dual damping and Hessian-driven damping dynamics
for achieving faster convergence in solving optimization problems. Motivated by these developments,
we introduce a class of stochastic differential equations (SDEs) called gradient-adjusted underdamped
Langevin dynamics (GAUL), which add stochastic perturbations in primal-dual damping dynamics
and Hessian-driven damping dynamics from optimization. We prove that GAUL admits the correct
stationary distribution, whose marginal is the target distribution. The proposed method outperforms
overdamped and underdamped Langevin dynamics regarding convergence speed in the total varia-
tion distance for Gaussian target distributions. Moreover, using the Euler-Maruyama discretization,
we show that the mixing time towards a biased target distribution only depends on the square root
of the condition number of the target covariance matrix. Numerical experiments for non-Gaussian
target distributions, such as Bayesian regression problems and Bayesian neural networks, further il-
lustrate the advantages of our approach over classical methods based on overdamped or underdamped
Langevin dynamics.

Key words. Hessian-driven damping dynamics; Primal-dual damping dynamics; Nesterov’s
method; Langevin dynamics; Optimal convergence rate.

MSC codes. 37TM25, 65C05, 82C31.

1. Introduction. Sampling from a target distribution is a long-standing quest
and has numerous applications in scientific computing, including Bayesian statistical
inference [46, 53, 43, 31], Bayesian inverse problems [56, 35, 23, 29], as well as Bayesian
neural networks [65, 2, 61, 36, 45, 51]. In this direction, various algorithms have
been developed to sample a target distribution m o exp(—f) for a given function
f :RY - R, where 7 is only known up to a normalization constant. In this area, a
simple and popular algorithm is the unadjusted Langevin algorithm (ULA):

(1.1) Tpr1 = xk — WV f(xg) + \/ﬁzk ,

where z;, € R?, k is the iteration number, f is assumed to be a differentiable function,
h > 0 is a step size, and zj is a d-dimensional random variable with independently
and identically distributed (i.i.d) entries following standard Gaussian distributions.
The ULA algorithm (1.1) comes from the forward Euler discretization of a stochastic
differential equation (SDE) known as overdamped Langevin dynamics:

(1.2) dx, = -V f(x,)dt + V2dBy ,
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2 X. ZUO, S. OSHER, AND W. LI

where x; € R? and B, is a standard d-dimensional Brownian motion. Under some
mild conditions on f, it has been shown that the SDE (2.15) has a unique strong
solution {x;,t > 0} that is a Markov process [54, 49]. Moreover, the distribution of
x; converges to the invariant distribution 7 o exp(—f) as t — oco. The asymptotic
convergence guarantees of (1.1) have been established decades ago [59, 30, 48]. In
more recent years, non-asymptotic behaviors of (1.1) have also been explored by
several works [19, 20, 26, 21, 15, 63].

An important result by [37] states that the Kolmogorov forward equation of
Langevin dynamics corresponds to the gradient flow of the relative entropy func-
tional in the space of probability density functions with the Wasserstein-2 metric.
This observation serves as a bridge between the sampling community and the opti-
mization community by studying optimization problems in Wasserstein-2 space. In
the field of optimization, Nesterov’s accelerated gradient [52] is a first order algorithm
for finding the minimum of a convex/strongly convex objective function f. The in-
tuition is that Nesterov’s method incorporates momentum into the updates. It is
much faster than the traditional gradient descent method, in the sense that the con-
vergence speed for convex functions is O(k%) where k is the number of iterations
compared to O(%) for gradient descent. The convergence speed of Nesterov’s method
for L-smooth, m-strongly convex functions is O(exp(—k/\/)) where k = L/m is the
condition number of f compared to O(exp(—k/ /{)) for gradient descent. By taking
the step size to 0, one obtains a second-order ODE for Nesterov’s method called the
Nesterov’s accelerated gradient flow or Nesterov’s ODE [57, 5]. In recent years, one
extends the gradient flow of the relative entropy into Nesterov’s accelerated gradient
flow [57], which is explored in [64, 58, 44] from different perspectives. For the opti-
mization in Wasserstein-2 space perspective, [64, 58, 13] study a class of accelerated
dynamics with depending on the score function, i.e., the gradient of logarithm of den-
sity function. This results in the approximation of a non-linear partial differential
equation, known as the damped Euler equation [10]. In this case, the optimal choices
of parameters for sampling a target distribution share similarities with the classical
Nesterov’s accelerated gradient flow. On the other hand, from a stochastic dynamics
perspective, a line of research has been devoted to study the accelerated version of
Langevin dynamics, known as the underdamped Langevin dynamics [9, 16, 44, 66].
As explained later in Subsection 2.2, the underdamped Langevin dynamics consists
of a deterministic component and a stochastic component. The deterministic compo-
nent exactly corresponds to the Nesterov’s accelerated gradient flow. The marginal of
invariant distribution in z-axis satisfies the target distribution. However, the optimal
choice of parameters in underdamped Langevin dynamics might not directly follow
the classical Nesterov’s method [16].

Recently, [67] proposed to use the primal-dual hybrid gradient (PDHG) method
[12, 62] to solve unconstrained optimization problems. The original PDHG method
is designed for optimization problem with linear constraints. [67] formulated the
optimality condition V f(x) = 0 of a strongly convex function f into the solution of a
saddle point problem

. i 2
f \Y% ) Y )
i, sup (Vi(@),p) = llpl

where v > 0 is a selected regularization parameter. They proceed by using the
PDHG algorithm with appropriate preconditioners to solve the above saddle point
problem. By taking the limit as the step size goes to zero, their algorithm yields a
continuous-time flow, which is a second-order ordinary differential equation (ODE)
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GAUL FOR SAMPLING 3

called the primal-dual damping (PDD) dynamics. In particular, the PDD dynamic
contains Nesterov’s ODE [57]. In other words, Nesterov’s ODE is a special case
of PDD dynamics. The PDD dynamics also shares similarities with the Hessian—
driven damping dynamics that has been studied in recent years [5, 3, 4]. The main
difference between the PDD dynamics and the Nesterov’s ODE is a second-order term
V2 f(x)x that appears in the former. This term is also presented in the Hessian driven
damping dynamics. It has been observed that the PDD dynamics and the Hessian
driven damping dynamics yield faster convergence towards the global minimum than
the traditional gradient flow and Nesterov’s ODE. Therefore, it is natural to extend
the PDD dynamics and Hessian driven damping dynamics to SDEs for sampling a
target distribution.

In this paper, we take inspirations from [67, 3] to design a system of SDE
called gradient-adjusted underdamped Langevin dynamics (GAUL) that resembles
the primal-dual damping dynamics and the Hessian driven damping dynamics. Con-
sider

13 <d:ct> _ <—aCV f(:ct)dt+Cptdt) N <2aC 1_c> aBY
' dpy =V f(z)dt — ypedt I-C 291 J\4B® )"

for some constants a,y > 0, whose detailed choices will be explained later. C' is a
preconditioner such that the diffusion matrix in front of the Brownian motion term is
well-defined and positive semidefinite. And Bfl) is a standard Brownian motion in R?
for 4 = 1,2. The supercript on B; indicates that B,gl) and BEQ) are independent. We
show that the stationary distribution GAUL (1.3) is the desired target distribution
of the form + exp(—f(z) — ||p[|?/2). Noticeably, the @-marginal distribution is the
target distribution 7. Additionally, we demonstrate that for a quadratic function f,
GAUL achieves the exponential convergence and outperforms both overdamped and
underdamped Langevin dynamics. A series of numerical examples are provided to
demonstrate the advantage of the proposed method.

To illustrate the main idea, we summarize main theoretical results into the fol-
lowing informal theorem.

THEOREM 1.1 (Informal). Suppose that f : R — R? is given by f(x) = %mTA:c
with a symmetric positive definite matriz A € R4 with eigenvalues s > sy > ... >
sqa > 0. Let k = s1/sq be the condition number of matriz A. And let C = L.

(1) Denote by p.(x,t) the law of x; driven by (1.3), and w(x) x exp(—f(x))

the target distribution. Let a > 0, v = asq + 2/5q4. Then it takes at most
t = O(log(d/d))/(asa+2y/5a) for the total variation distance between p,(x,t)
and w(x) to decrease to §.

(2) Denote by pr(x, k) the law of  after k iterations of the Fuler-Maruyama
discretization of (1.3). Suppose \/s1 — \/Sq > 2, a =1, v = 54 + 2,/54 and
consider the Euler-Maruyama discretization of (1.3) with step size h = 1/5s;.
Then it takes at most N = O(log(d/8)/(k~ + (ks1)~'/?) iterations for the
total variation distance between p,(x,k) and 7(x) to decrease to &, where
7(x) is a biased target distribution given by Equation (B.24).

(8) When taking a = ﬁ, v = asq+2./55 and h = m, we can improve
the number of iterations in (2) to N = O(y/klog(d/d)).

The detailed version of Theorem 1.1 is given in Theorem 3.9, Theorem 3.15 and The-
orem 3.16. It is worth noting that GAUL (1.3) reduces to underdamped Langevin
dynamics when @ = 0 and C' = I. Our theorem implies that in the Gaussian case,

This manuscript is for review purposes only.



130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

—_
ot
)

[
ot ot ot
[S2 BTNV

v v Ut Ut ¢

P iy
o 3 O

—

161
162
163
164

165

166
167
168
169
170

4 X. ZUO, S. OSHER, AND W. LI

GAUL converges to the target measure faster than underdamped Langvein dynam-
ics. In particular, we demonstrate that the Euler-Maruyama discretization admits a
mixing time proportional to the square root of the condition number of covariance
matrix. While this work primarily focuses on Gaussian distributions, our numerical
experiments also explore non-log-concave target distributions in Bayesian linear re-
gressions and Bayesian neural networks, which demonstrate potential advantages of
GAUL over overdamped and underdamped Langevin dynamics. Extending these re-
sults to more general distributions and discretization schemes is an important future
research direction. The choice of preconditoner C is tricky as one needs to guaran-
tee that the diffusion matrix in (1.3) is positive semidefinite. Therefore, we mainly
focus on the case when C' = I. We address on our results for C' # I in Remark 3.10
and Remark 3.19. For C = I, [42] also explored dynamics (1.3), which they called
Hessian-Free High-Resolution (HFHR) dynamics. For this closely related work, we
provide some comparisons later in Remark 2.4.

This paper is organized as follows. In Section 2, we review the connection between
optimization methods and sampling dynamics, which leads to the construction of our
proposed SDE called gradient-adjusted underdamped Langevin dynamics (GAUL).
Our main results are presented in Section 3, where we prove the exponential conver-
gence of GAUL to the target distribution when the target measure follows a Gaussian
distribution. We also study the Euler-Maruyama discretization of GAUL and prove its
linear convergence to a biased target distribution. Lastly, in Section 4, we present sev-
eral numerical examples to compare GAUL with both overdamped and underdamped
Langevin dynamics.

2. Preliminaries. In this section, we briefly review the relation among Euclid-
ean gradient flows, overdamped Langevin dynamics and Wasserstein gradient flows.
We then draw the connection between the underdamped Langevin dynamics and Nes-
terov’s ODEs. We next review primal-dual damping (PDD) flows [67] and Hessian
driven damping dynamics. Finally, we introduce a new SDE called gradient-adjusted
underdamped Langevin dynamics (GAUL) for sampling, which resembles the PDD
flow and the Hessian-driven damping dynamics with designed stochastic perturbations
in terms of Brownian motions.

2.1. Gradient descent, unadjusted Langevin algorithms, and optimal
transport gradient flows. Let f : R? — R be a differentiable convex function with
L-Lipschitz gradient. The classical gradient descent algorithm for finding the global
minimum of f(x) is an iterative algorithm that reads:

(2.1) Tpy1 = op — hV f(xp),

where h > 0 is the step size. When f is convex and the step size is not too large,
this algorithm converges at a rate of O(k~!). When f is m-strongly convex, the same
algorithm can be shown to converge at a rate of O((1 —m/L)*), if the step size is
chosen appropriately. The gradient descent algorithm (2.1) can be understood as the
forward Euler time discretization of the gradient flow

(2.2) a(t) = =V [f(x(t)),

where z(t) describes a trajectory in R? that travels in the direction of the steepest
descent. Similar convergence results can be obtained for the gradient flow (2.2). When
f is convex, the gradient flow (2.2) converges at a rate of O(t~!). When f is assumed
to be m-strongly convex, the gradient flow (2.2) converges at a rate of (9( exp(fmt)).
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GAUL FOR SAMPLING 5

While the goal of optimization is to find the global minimum of f, the goal of
sampling algorithm is to sample from a distribution of the form Z% exp(—f(x)), where
the normalization constant Z; > 0 is assumed to be finite, i.e.,

71 = / e @ dr < +oo.
Rd

The classical unadjusted Langevin algorithm (ULA) given in (1.1) is a simple modi-
fication to the gradient descent method. Recall that ULA is given by

(23) Tpy1 = T — th(a:k) + \/ﬁzk s

where zj is a d-dimensional standard Gaussian random variable and & is the step
size. We obtain (2.3) from (2.1) by adding a Gaussian noise term z;, scaled by v/2h.
Similar to how (2.1) can be viewed as the Euler discretization of (2.2), ULA (2.3)
represents the forward Euler discretization of the overdamped Langevin dynamics:

(2.4) dxy = =V f(x;)dt + V2dB; ,

where B, is a standard d-dimensional Brownian motion. Denote by p(x,t) the prob-
ability density function for x;. Then the Kolmogorov forward equation (also known
as the Fokker-Planck equation) of the overdamped Langevin dynamics (2.4) is given
as

9 _

(2.5) - =

V- (pVf)+ Ap.
Clearly, 7w(x) = Z% exp(—f(x)) is a stationary solution of the Fokker-Planck equation
(2.5). In other words, note that Vo = —7V f, then

0=0mr =V -@Vf)+ Ar =V - ((aVf+Vnr)).

In the literature, one can also study the gradient drift Fokker-Planck equation
(2.5) from a gradient flow point of view. This means that equation (2.5) is a gradient
flow in the probability space embedded with a Wasserstein-2 metric. We review some
facts on a formal manner; see rigorous treatment in [1].

Define the probability space on R? with finite second-order moment:

P = {srec=: [ paiw=1. [ laPoe) do <o o) 20}

We note that P(R?) can be equipped with the L,~Wasserstein metric gy at each
p € P(R?) to form a Riemannian manifold (P(R?),gw ). Let F : P(R?) — R be
an energy functional on P(R%). To be more precise, denote the Wassertein gradient
operator of functional F(p) at the density function p € P(R?), such that

1)
grady F(p) :== =V - (pvéfpf(M) ;
where % is the Lo—first variation with respect to p. This yields that the gradient
descent flow in the Wasserstein-2 space satsifies

ap 1)

o = —gradwF(p) =V (pV%f(p)) :
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6 X. ZUO, S. OSHER, AND W. LI

The above PDE is also named the Wasserstein gradient descent flow, in short Wasser-
stein gradient flows, which depend on the choices of the energy functionals F(p).

An important example observed by [37] is as follows. Consider the relative entropy
functional, also named Kullback—Leibler(KL) divergence

F(p) = Dslollr) = [ ota)og (X5 da

One can show that the Fokker-Planck equation (2.5) is the gradient flow of the relative
entropy in (P(R?), gw ). Upon recognizing (;(ipDKL (pl7) =log (£) +1, we obtain that
(2.5) can be expressed as
dp P
5 =~ eradwDie(plm) = V- (pV log (;))
=V (pVlogp) =V - (pVlogm)
=Ap+ V- (pV ),

where we use facts that pVlogp = Vp and Vlegm = -V f.

We note that the gradient of the logarithm of the density function, i.e. V log p,
is often called the score function. The analysis of score functions are essential in
understanding the convergence behavior of the Fokker-Planck equation (2.5) toward
its invariant distribution; see related analytical studies in [28].

(2.6)

2.2. Nesterov’s ODEs and underdamped Langevin dynamics. Consider
the problem of minimizing f : R* — R for some convex function f with L-Lipschitz
gradient. [52] proposed the following iterations:

(2.72) i1 =Pk — hV f(pr)
(2.7b) Dit1 = Tit1 + Vi (Tpg1 — Tp)

where v, = (k —1)/(k — 2). [52] showed that the above method converges at a rate
of O(k~2) instead of O(k~!) which is the convergence rate of the classical gradient

descent method. If f is further assumed to be m-strongly convex, then taking h = 1/L
1-vk
1+Vk
is also considerably faster than gradient descent, which is O((1—x~1)*). [57] showed
that the continuous-time limit of Nesterov’s accelerated gradient method [52] satisfies

a second order ODE:

and v, =

where £ = L/m, yields a convergence rate of O(exp(—k/y/k)). This

(2.8) @+ @+ Vi(z)=0.

If f is a convex function, then v, = 3/t; if f is a m-strongly convex function, then
¢ =7 = 2y/m. As observed in [47], (2.8) can be formulated as a damped Hamiltonian
system:

(2.9) T\ 0 n 0 I\ /(V,H(z,p)\ (0 I V.H(x,p)
' p — NP -1 0/ \V,H(z,p) -1 —%I)\V,H(z,p)) "
where the Hamiltonian function is defined as H(zx,p) = f(z) + |p|?/2, p € R™L

On the other hand, the underdamped Langevin dynamics for sampling II(x,p)
exp(—f(x) — ||p||?/2) is given by the system of SDE:

dwt = ptdtv
o, = )it updt + /B
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where 7; is some damping parameter, and B; is a d-dimensional standard Brownian
motion. This can be reformulated as

e ()= (5 LA )

where By is a 2d-dimensional standard Brownian motion. Observe that by adding
a suitable Brownian motion term (the last term on the right hand side of (2.10)) to
(2.9), Nesterov’s accelerated gradient method for convex optimization becomes an al-
gorithm for sampling I(z, p) = % exp(—f(x)—||p||*/2), where Z := [G., exp(—f (@) —
|lpl|?/2)dzdp < +00 is a noramlization constant. Moreover, the z-marginal of I1(z, p)
is simply 7(x) = Z% exp(—f(«)) up to a normalizing constant Z; := [;,, exp(—f(x)—
Ipl|?/2)dxdp < +oco. Therefore, (2.10) can be used to sample distributions of the
form exp(—f(x))/Z1. We postpone the proofs in terms of Fokker-Planck equations
and there invariant distributions in Proposition 2.1 and 2.2.

2.3. Primal-dual damping dynamics and Hessian driven damping dy-
namics. Recently, [67] proposed to solve an unconstrained strongly convex optimiza-
tion problem using the PDHG method by considering the saddle point problem

. i 2
f s \Y 5 Y ’
jat, s (V7(w).p) ol

where ~ is a damping parameter, and f : R — R is m-strongly convex. Note that
the saddle point (z*,p*) for the above inf-sup problem satisfies V f(x*) = p* = 0.
Then the primal-dual damping (PDD) algorithm [67] admits the following iterations

1 T1
+ Vf(x),
1+ Tlvpk 14+ 7y Flzx)

Drt1 = Prt1 + W(Pry1 — Pr)
Try1 = T — 2C(Tk)Prt1

Pk+1 =

where 71,79 > 0 are dual and primal step sizes, w > 0 is an extrapolation parameter,
and C € R%*? is a preconditioning positive definite matrix that could depend on
and t. The continuous-time limit of the PDD algorithm can be obtained by letting
71,70 — 0 while keeping 7w — a for some a > 0. This yields a second-order ODE
called the PDD flow:

(2.11) i+ (v +aCV(x) - CC")a + OV f(z) = 0.
In the case when C' is constant, (2.11) reads

(2.12) i+ (y+aCV3f(@) )i+ CVf(x) = 0.
And when C =1, the PDD flow simplifies to

(2.13) &+ & +aVif(z)t + Vf(x)=0.

This corresponds to the Hessian driven damping dynamic [3] when v = 2y/m. The ter-
minology ‘Hessian driven damping’ comes from the Hessian term V2 f(z)% in (2.13),
which is controlled by a constant @ > 0. When a = 0, equation (2.13) reduces to
Nesterov’s ODE (2.8). As in dynamics (2.9), we can express equation (2.11) as

(2.14) (;) = (waici)l —CyI) (giggiﬁo ’
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where as before the Hamiltonian function is H(z,p) = f(z) + ||p||*/2. Note that
one of the key differences between (2.9) and (2.14) is that the top left block of the
preconditioner matrix is nonzero in (2.14), which gives rise to the Hessian damping
term V2 f(x)&. Throughout this paper, we focus on the dynamical system (2.14).

2.4. Gradient-adjusted underdamped Langevin dynamics. We design a
sampling dynamics that resembles the PDD flow and the Hessian driven damping
with stochastic perturbations by Brownian motions. Our goal is still to sample a
distribution proportional to exp(—f(z)) for some f: R? — R. Let H(x,p) = f(x) +
Ipl” /2. And denote by X = (x, p) € R2. We consider the following SDE.

(2.15) dX, = -QVH(X,)dt ++/2sym(Q)dB,,
where Q € R24%24 is of the form

aC -C
(2.16) Q:<I 71>’

for some constant a,y € R, and symmetric positive definite C € R¥*?¢, VH(X;) =
(VoH(X:),V,H(X,))T. And sym(Q) = 1(Q+ QT) is the symmetrization of Q. We
assume that sym(Q) is positive semidefinite.

Throughout this paper, we will limit our discussion to a,v > 0. By is a 2d-
dimensional standard Brownian motion. Observe that when a = 0, (2.15) reduces
to underdamped Langevin dynamics (2.10). When a > 0, (2.15) has an additional
gradient term aC'V f(x;) in the de; equation. Thus, we call (2.15) gradient-adjusted
underdamped Langevin dynamics. Let us examine the probability density function
p(X,t) of the diffusion governed by (2.15). This is described by the following Fokker-
Planck equation:

0 2 2
5 =V (QVHD) + 3 oo (Qup).
-

(2.17) Y aye

)

We assume that f is differentiable and V f is a smooth Lipschitz vector field. This
ensures that the Fokker-Planck equation (2.17) has a smooth solution when ¢ > 0 for
a given initial condition, such that p(X,0) >0 and [p.. p(X,0)dX = 1.

Denote by II(X) = %e‘H(X), where Z is a normalization constant such that
II(X) integrates to one on R?¢. We show that II(X) is the stationary distribution of
(2.17). First, we have the following decomposition for (2.17).

PROPOSITION 2.1 ([28] Proposition 1). The Fokker-Planck equation (2.17) can
be decomposed as

(2.18) P -9 (pym@Viog 2) + 7 (1)
where

I'(X) :=sym(Q)V log(II( X)) + QVH(X)
(2.19)

1
=5 (Q - Q")VH(X).
In particular, the following equality holds:

V- (II(X)T(X)) = 0.
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The proof is presented in Appendix C. Observe that the first term on the right-hand
side of (2.18) is a Kullback-Leibler (KL) divergence functional that appears in a
Fokker-Planck equation associated with the overdamped Langevin dynamics (2.5).
The second term is due to the fact that the drift term —QVH in (2.15) is a non-
gradient vector field.

PROPOSITION 2.2. TI(X) is a stationary distribution for (2.17).

The proof is based on a straightforward calculation: When p = II, we have V-(pI') = 0,
and therefore % = 0. For completeness, we have included this calculation in Appen-
dix C. This shows that II(X) is indeed the stationary distribution of (2.17). Like
the underdamped Langevin dynamics, the x-marginal of the stationary distribution
is exp(—f(x)) up to some normalization constant. Therefore, (2.15) can be used for
sampling Z% exp(—f(x)) by first jointly sampling X = (z, p) and then taking out the
x-marginal.

Remark 2.3. GAUL can also be viewed as a preconditioned overdamped Langevin
dynamics on the space of (z,p) € R?. Designing optimal preconditioning matrix
and optimal diffusion matrix have been studied in literature; see [11, 6, 32, 39, 33,
14, 41, 40]. In particular, [41] considered the necessary condition on the optimal
diffusion coefficient by studying the spectral gap of the generator assosiated with the
SDE, which requires the solution to an optimization subproblem. While the problem
considered by [41] is more general, our diffusion matrix (2.16) is much simpler and
does not require solving an optimization problem. Another closely related work is
[40], which considered preconditioning of the form Q = I+ J. Here I is the identity
matrix and J is skew-symmetric, i.e. J = —JT. [40] studied the optimal J when the
potential f is a quadratic function, which is also the focus of this work.

Remark 2.4. In [42], the authors also studied (1.3) with C = I which they called
Hessian-Free High-Resolution (HFHR) dynamics. They considered potential functions
f that are L-smooth and m-strongly convex. They proved a convergence rate of
% in continuous time in terms of Wasserstein-2 distance between the target and
sample measure. [42] used the randomized midpoint method [55] combined with as
their discretization and showed an interation complexity of (5(\/3/5) Specifically,
[42] showed that for a two-dimensional Gaussian target measure, under the optimal
choice of parameter (damping parameter v and step size h) for underdamped Langevin
dynamics with Euler-Maruyama discretization, the convergence rate is (’)((1 — /{fl)k).
This rate is recovered in Corollary 3.17. On the other hand, [42] showed that under
their choice of parameter for HRHF, the convergence rate is O((1 —2x7')*), which is
a slight improvement compared with underdamped Langevin dynamics. In this work,
we performed a detailed eigenvalue analysis of GAUL on Gaussian target measure.
We showed that under our choice of parameters (v, a, h), the convergence rate towards
the biased target measure is O((l - c\/E)k) for some constant c.

3. Analysis of GAUL on quadratic potential functions. In this section,
we establish the convergence rate for the proposed SDE (2.17) towards the target
distribution following a Gaussian distribution.

3.1. Problem set-up. In this subsection, we present the main problem ad-
dressed in this paper. We are interested in sampling from a distribution whose prob-
ability density function is proportional to exp(—f(x)) for f : R — R. In this paper,
we focus on a concrete example in which the potential function f is quadratic, and
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10 X. ZUO, S. OSHER, AND W. LI

thus the target distribution is a Gaussian distribution. Let

(3.1) f(x) = %mTE,,flm,

where € R? and 3, > 0 is a symmetric positive definite matrix in R4*¢. Define

(3.2) S = (% 2) .

As in the previous section, denote by X = (z,p) € R?. And H(X) = f(x)+||p||*/2.
Then, we can write

1o (300 0\ Iyrsa
(3.3) H(X)_§X ( 0 I)X'_QX X
Define the target density 7 : R?* — R to be
1
(3.4) II(X) = — exp(—H (X)),

Z

where H(X) is given by (3.3) and Z = [g,, exp(—H(X))dX is a normalization con-
stant such that I1(X) integrates to one on R2¢. We also define the x-marginal target
density to be

(3.5) () = Zi exp(—f(@)),

where f(x) is given by (3.1) and Z; = [, exp(—f(x))dx is a normalization constant.
Remark 3.1. Note that for any symmetric positive definite ¥,, we have that
¥, 1 = PAPT for some orthogonal matrix P and diagonal matrix A = diag(si, ..., s4)

with s; > ---s4 > 0. By a change of variable y = Pz, one can rewrite f(z) in terms
of y, such that

1 1 1
flx) =2’y e = —a"PAP Tz = —y" Ay.
2 2 2
For simplicity of notation, we assume that P =T and ¥ = A is a diagonal matrix.
We denote by k = s1/sq the condition number of f. We will also assume that

s1 > 1 > s4 throughout this paper. Furthermore, to simplify our analysis, we consider
C = diag(cy, ..., cq).

3.2. Continuous time analysis. In this subsection, we study the convergence
of GAUL. In particular, we analyze the convergence of the Fokker-Planck equation
(2.17) to the target density (3.4), (3.5) by directly studying an ODE system of the
covariance of the distribution.

PROPOSITION 3.2. Let X; be the solution of (2.15) where H(X) is given by (3.3),
and Xo ~ N(0, Lax2q). Then X; ~ N(0,%(t)) where the covariance X(t) satisfies
the following matriz ODE:

(3.6) () = 2sym(Q(I— X71%(1))).

Moreover, equation (3.6) is well-defined, and has a solution for all t > 0, such that
3(t) is symmetric semi-positive definite.
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GAUL FOR SAMPLING 11

The proof is postponed in Appendix C. We denote by %;;(t) € R4*? the block com-
ponents of %(t) € R24x24;

Y11(t)  Xi2(t)
Z“>:(zﬁa> Em@D'

Then we can write (3.6) in terms of the block components.

COROLLARY 3.3. The componentwise covariance matriz X,;(t) satisfies the fol-
lowing ODE system

(37&) 211 = —2a(sym(CZ;1Eu) - C) + 2sym(CElg) ;
(37b) 222 =-2 sym(Eglzlg) — 2’}/(222 — I) y
(37C) 212 = —aCZ;lzlz — (C — 0222) + (I— 2112*_1) — ’7212 y

Moreover, with initial conditions ¥11(0) = X22(0) = I and ¥12(0) = 0, the stationary
states of ¥11(t), Xaa(t) and E12(t) are given by 3., I and 0 respectively.

From now on, we consider C' = I in our analysis. We address our results for C # I
in Remark 3.10 and Remark 3.19. Note that when C' = I, we have Q = sym(Q)
is always positive semidefinite for a,~v > 0. Our next theorem makes sure that the
stationary state of equation (3.6) is actually unique and characterizes the convergence
speed of the convariance matrix towards its stationary state.

THEOREM 3.4. Let X; be the solution of (2.15) where H(X) is given by (3.3),
and Xy ~ N(0, Laxaq). Then S(t) converges to the unique stationary state S given
in (3.2). The optimal choice of v is given by v* = asq + 2+/5q under which we have
IS01(t) — Sallr = O(teCost2VaDt) and |[Sya(t) — Il = Ote=Cosat2V5Dt) for
t>1.

Proof. As mentioned in Remark 3.1, we consider ¥ = A. By our assumption
on Xy, (3.7) implies that X1 (t), ¥22(¢) and X;2(t) will be diagonal matrices for all

t > 0. This simplifies the ODE system (3.7). After some manipulation, we obtain
(3.8)

X —2aCY! —-27C%, -Cx, 211
222 = 0 0 I 222 + T,
I 2572 2(-1—ay)CE' =291 =371 —-aCE]!) \ Sy
D
where
2aC + 27yC%,
T= 0

20vX;1C + 2721+ 28 1C - 2%t

And C = 1. We have already seen in Corollary 3.3 that the stationary state of X(¢)
is 3 given in (3.2). To show uniqueness, we compute the eigenvalues of D:

)‘E)z) = —as; =7,

)\gi) =—as; —y — /72 — 2ays; + si(—4 +a?s;) ,

)\éi) = —asi — v + /72 — 2ays; + 5;(—4 + a2s;)

where s;’s are the diagonal elements of A for 7 =1,...,d. It is clear that 0 is not an
eigenvalue of D. Therefore, ¥ is the unique stationary state for X(¢). The convergence

This manuscript is for review purposes only.



412

413

414
415

12 X. ZUO, S. OSHER, AND W. LI

speed of (3.8) is essentially controlled by the largest real part of the eigenvalues of D.
Note that for all i,

RO > RO = R,

where R(z) denotes the real part of z € C. Therefore, to characterize the convergence

speed of (3.8), it suffices to control max; %(AS)). By Lemma B.7, we know that for
any given a > 0, the optimal choice of 7 is

~* = arg min max %()\gi)) =asq+2y/5q.
v>0 g

With v = ~*, we get that

max §R()\( )) < max R(A (Z)) < —2asq — 24/54 -

4,J

This leads to

Y (t E*
(3.9) 222 < Oyte~(Fasat2y/sat 0
E22

F

which is valid for ¢ > 1. The constant C; depends on d, s1, sgl at most polynomially
according to Lemma B.8. Note that the extra ¢t dependence comes from the repeated
eigenvalue )\éd) = )\gd) = )\;d) when v = v*. By a triangle inequality, we get

Y11(t) — 2s
111 — Zs]lr < Taa(t) — 1 < Cyte~(Rasar2/sat
Loa(t) P

And similarly,
S22 — I||p < Chte~(Rasat2vsa)t

Remark 3.5. The choice a = 0 corresponds to underdamped Langevin dynamics
(UL). Taking a > 0 gives an extra factor of e=2?%¢! in terms of convergence.

DEFINITION 3.6 (Mixing time). The total variation between two probability mea-
sures P and Q over a measurable space (R, F) is

V(P, Q) = sup [P(4) — Q(4)].

AceF

Let T, be an operator on the space of probability distributions. Assume that 7;’“ (vo) —
v as k — oo for some initial distribution vy and stationary distribution v. The discrete
d-mizing time (6 € (0,1)) is given by

4 (5; 19, v) = min{k | TV(’];k(l/o),V) < d}.

mix

Simalarly, if T,(t;-) is an operator for each t > 0 with T,(0;-) =id(-) and assume that
Tp(t;v9) = v ast — co. The continuous 6-mizing time (6 € (0,1)) is given by

o (85 19, v) = min{t | TV(T,(t; v0),v) < 6} .

mix
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GAUL FOR SAMPLING 13
THEOREM 3.7 ([24]). Let u € R, Xy, 3y be two positive definite covariance ma-
trices, and A1, ..., Aq denote the eigenvalues of 21_122 — I. Then the total variation
satisfies
3
TV(N(#,ED,N(H,EQ)) < 5111111 1,

d
>
=1

A straightforward corollary follows from Schur decomposition theorem.

COROLLARY 3.8. We have
3 . _
TV (2 20), N (12, %) < 5 min {1 1275 — Jlle } -

Using Theorem 3.4 and Corollary 3.8, we obtain the following mixing time theorem
when the potential function f is quadratic.

THEOREM 3.9 (Continuous mixing time). Consider the same setting as in The-
orem 3.4. Consider 0 < § < 1. Then

tco‘nt((s. v 7T) < O(log(d) + IOg(li)) + 10g(1/6) .
mix AT T = asq +2./sq

Here vg is the distribution of @, which is N'(0, Ijxq). 7 is the target density in the x
variable given in (3.5).

Proof. We shall use Corollary 3.8 with

Y1 =%, Yo =%11(t).
We have

157182 = Ilp = ||=7 1 (S11(8) — 24) ||
< Oyte~(2asat2ysa)tg

By a direct computation, we get

10%(01/5)

tcont 5 <
( 7V077T)— an+2\/§,

mix

where C} = %Clsl. By Lemma B.8, we have that

O(log(dk)) + log(1/4)
asq+ 2+/sq '

Remark 3.10. When C = diag(cy,...,¢q) and sym(Q) = 0 in (2.16), our proof
can be easily adapted to show similar results in Theorem 3.9:

O(log(d) + log(k)) + log(1/0)
adq + 2v/54 ’
where §; is the i-th largest eigenvalue of matrix CX;'. And & = 3;/34. In other

words, the matrix C can be viewed as a preconditioner for the target covariance
matrix in the sampling problem.

tcont (5; o, 71') S

mix

tcont((s; 0, 77) <

mix
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3.3. Discrete time analysis. To implement (2.15), we need to consider its time
discretization. As discretization is not the focus of this paper, we will only analyze
the simplest discretization using the Euler-Maruyama method in Appendix A.

Let us first make a few observations regarding the discretization in Appendix A.
After a straightforward computation, we obtain the following update rule.

PROPOSITION 3.11. The Euler-Maruyama discretization of (2.15) given in Ap-
pendiz A with step size h can be written in the following form

(3.10) (”””“) —A (‘”") + Lz,
Pn+1 Pn

where
aN —Ijvq vV2ahI 0
11 A=1T — L = .
(3.11) 2dx2d h(A 7Idxd> ; ( 0 th[)

G
And z is a 2d-dimensional Brownian motion, i.e., z ~ N (0, Igxaq)-

Using (3.10), we can derive the evolution of the mean and covariance at each time
step. As before, let us denote by X,, = (x,, pn)-

COROLLARY 3.12. Suppose that E(xg) = E(pg) = 0. Then
cov(Xpi1, Xpny1) = Acov(X,, X,)AT + LL" .

Proof. From (3.10), it is clear that E(x,,) = E(p,) = 0 for all n > 0. We calculate
cov(Xni1, Xnt1) = E(AX, X AT + AX,2"L" + L2 X AT + Lz2"L")

= Acov(X,, X, )AT + LLT . 0
COROLLARY 3.13. Denote by Y* a solution to the fired point equation Y =

AY AT + LLT. And let Y, = cov(X,, X,) —Y*. Then
Y, .1 = AY, AT

THEOREM 3.14. Suppose a > ﬁ and the step size h satisfies 0 < h <

1/(as1 +7) and v =" = asq+ 2/54. Then there exists a unique Y* satisfying
Y*=AY*AT + LL".
Moreover,~ the iteration Yiy1 = AY,, AT + LLT convergea;to Y* linearly: ||Y: —
Y*|lp < Ch2k*(1 — L(asa + v/32))* =2, where the constant C = d? - O(poly(k)).
Proof. Existence: we directly compute this stationary point in Lemma B.17.

Uniqueness: by Lemma B.14 and Corollary B.10 we see that Y™* is unique. The
convergence rate is proved in Lemma B.14 and Theorem B.16.

THEOREM 3.15 (Discrete mixing time). Suppose \/s1—/54 > 2. We take a =1,
v =7" = 8a+2y/5a, h = 1/5s1. If we use the Euler-Maruyama scheme for (2.15),
then for 0 < 6 < 1,

; 1 log(1/6) + log(d
(3.12) 15 (800, 7) = O ( 08(r) + Jog(1/9)  log )> .
* T T
Here vy is the distribution of x, which is N'(0, Ijx4). T is the target density in the x
variable which is a zero mean Gaussian distribution with a variance given by (B.24).

This manuscript is for review purposes only.



459

460

461

462
463

464

465

466
467

168

469

473

474

475

476

A77

GAUL FOR SAMPLING 15

Proof. Note that from our previous notation, we have that

I -
cov(@y, @) = (Iaxa 0) cov(Xi, Xi) ( dOXd> =Y.

Moreover, let us define
- * I
Y =Iaxa 0)Y ( doxd)

to be the limiting covariance in the @ variable for the discretization (Y * is defined in
Theorem 3.14). Clearly, we have that

_ - . h
(3.13) Vi = Y*||p < ||¥e — Y|l < CR2E*(1 — 5 (asa+ Vsa))k 2.
Using Corollary 3.8, we compute
1Y)~ Y = Tlp = [(Y*) 7 (¥ = Y)|r
< 1Y) HlellYe = Y lr-
By Lemma B.17, Y* is a diagonal matrix. Therefore (Y*)~Lis also a diagonal matrix.
Moreover, from (B.24), we see that ||(Y*)~!||r < VdO(poly(k)). Therefore, we obtain
. h
1Y) Y5 = I|[e < %2 - O(poly(k))h?K?(1 — o (sa+ V/5a))
< d°/? . O(poly(k))h2k2e~ (k= Dh(satv/5a) u|

where we used 1 — 2z < e™® for x € R to get the second inequality. Letting h = 1/5s;
and taking logarithm on both hand sides, we conclude that

O(log(d)) + O(log(k)) + log(1/4)

11 1 :
E(E+m)

tdis (61 o, ﬁ-) <

mix

THEOREM 3.16 (A better choice of a). The denominator of the mixing time given
in Theorem 3.15 can be improved to k=2 by choosing a = ﬁ, v = asq+2./84

and h = m To be more precise, we have
i 1 log(1/9) + log(d
(3.14) 158 (5500, 7) = O ( og() + log(1/9) + log >> |
VE

Proof. The proof will be very similar to that of Theorem 3.15. We start with
(3.13). And we can explicitly calculate

asd ++/sa
asy + asq + 2./54q)
254+ /5a(/51 — V/3d)
8(s1 + 54+ v/5a(y/51 — 5a)
/8184 + S84
8(s1 + +/5154)
1
<1-— .
- 16+/K
The rest of the proof is the same as the proof of Theorem 3.15 and we will suppress
it for brevity. O

1—g(asd+\/§)=1—4(
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The following corollary follows from Lemma B.15 and the proof of Theorem 3.15.

COROLLARY 3.17 (Underdamped Langevin mixing time). Suppose a = 0, v =
2\/sa,h = \/54/s1. If we use the Euler-Maruyama scheme for (2.15), then for 0 <
<1,

(3.15) i (5100, 7) = O (log(ﬁ) +log(1/9) + log(d)> |

1
K

vo is the distribution of x, which is N(0,Izjxq). 7 is the target density in the x
variable which is a zero mean Gaussian with variance given by (B.24) with a = 0.

Remark 3.18. a =0 in (2.15) corresponds to the underdamped Langevin dynam-
ics. In this case, we show in Lemma B.15 that to guarantee convergence (to a biased
target) the step size restriction on h is more strict than when ¢ = 1. In particular,
when a = 0 it follows from Lemma B.15 that the choice h = 1/5s; does not guarantee
convergence if s4 < 1072, Comparing (3.14) and (3.15), we see that the mixing time
for GAUL beats that of underdamped Langevin dynamics under the Euler-Maruyama
discretization. We are aware that this does not imply the same result will hold when
comparing the mixing time towards the true target distribution 7 (x) given in (3.5),
due to the presence of bias in the Euler-Maruyama scheme. Designing better dis-
cretization and reducing the bias in the stationary distribution is left as future works.

Remark 3.19. When C = diag(cy, ..., cq) and sym(Q) = 0in (2.16), we also have
a similar mixing time described in Theorem 3.16, which is
O (Vi(log(k) + log(1/6) + log(d))) when a = &% v = adq + 2v/34 and h =

54"
m. The notation §; and & are defined in Remark 3.10.

Remark 3.20. When the target potential f is not a quadratic function, it is more
technical in proving the convergence speed. A common technique to prove convergence
in the Wasserstein-2 distance is by a coupling argument (see [16, 22]). [9] proved Lo
convergence under a Poincare-type inequality using Bochner’s formula. In the L
distance and KL divergence, [28] design convergence analysis towards these problems.
We leave the convergence analysis of general f with optimal choices of preconditioned
matrices Q in future works.

4. Numerical experiment. In this section, we implement several numerical
examples to compare the proposed SDE with the overdamped (labeled ‘ol’) and un-
derdamped (labeled ‘ul’) Langevin dynamics. We use the same step size for all three
algorithms. Recall that ‘ol’ corresponds to the choice a = 1,4 = 0 and ‘ul’ corresponds
to a =0 in (2.15). We set C =1.

4.1. Gaussian examples.

4.1.1. One dimension. We begin with a simple example, a one dimensional
Gaussian distribution with zero mean. In Figure 1, we consider two cases where the
variances are given by 0.01 and 100 respectively. We first sample M = 10° particles
from N (0,I2x2) (although our experiment is in one dimension, we need both & and p
variables). When measuring the convergence speed, we use KL divergence in Gaussian
distributions to measure the change of covariances. Note that we will only measure
the KL divergence in the x variable, since we are primarily interested in sampling
distribution of the form %e’f () In this experiment, we can make use of the fact
that the sample distribution and the target distribution are both Gaussians. And the
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KL divergence between two centered Gaussians has a closed form expression:

(4.1) Dic.(5(1), ) = 5 ()5 ~ logdet(S()5 ) —d)

In this one dimensional example, we study two cases where Y = 0.01 or 100.
Y (t) can be approximated by the unbiased sample variance. For ¥ = 0.01, we choose
time step size h = 1074, total number of steps N = 400, v = 2%-1/2 = 20,
Ypad = 25712 4 571 = 120. For ¥ = 100, we choose the time step size h = 1072,
total number of steps N = 600, v, = 2:-1/2 = 0.2, Ypda = 25 -1/2 1 -1 = 0.21. In
Figure 1, we observe that our proposed method outperforms both overdamped and
underdamped Langevin dynamics in both cases.

4.0

— true pdf 02
— ol 010
—ul
— ours 00 0.08

00 05 10 15 20 25 30 35 40
s -64  -02 00 02 04 [ 1 2 3 2 H 3 -20 -1o 0 10 20

(a) KL decay (b) Density (c¢) KL decay (d) Density

Fig. 1: Convergence and density comparisons of three methods. (a) and (c): KL di-
vergence between the sample and the target distribution, which is a one-dimensional
Gaussian with zero mean and variance 0.01 (a), 100 (c). ‘ol’ represents overdamped
Langevin dynamics; ‘ul’ represents underdamped Langevin dynamics. x-axis repre-
sents time and y-axis is in log;, scale. (b) and (d): density comparison at the end of
the experiment between the three methods and the true density.

4.1.2. 20 dimensions. Let the target distribution be a 20-dimensional Gaussian
with zero mean and covariance given by a diagonal matrix with entries 0.05 + 5¢ for

i =0,...,19. The last dimension has the largest variance, which is 02, = 95.05.
_ 2 _ 9. —1 —9.—1 —2
Therefore, we choose a = —z=iyes Yul = 20 ax and Ypaa = 20, +aop .. In

this experiment, we use (1) time step size h = 5 x 1073 and run for 4000 steps; (2)
time step size h = 5 x 1072 and run for 400 steps. The KL divergence can still be
computed using (4.1). To visualize the final distribution in a two-dimensional plane,
we plot the scatter plot of the samples in the first and the last dimensions. All results
are presented in Figure 2.

4.2. Mixture of Gaussian.

4.2.1. Strongly log-concave. Consider the problem of sampling from a mix-
ture of Gaussian distributions N (a, I) and N (—a,I), whose density satisfies:

1

L (a3 el
P(®@) = Samin (¢ Yot ).

The corresponding potential is given as

(12) F(@) = 5o — ol ~log (1+727%).
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(a) KL decay (b) ol (c) ul (d) gaul
(e) KL decay (f) ol (g) ul (h) gaul

Fig. 2: Convergence and scatter plots. (a)—(d): h = 0.005. (e)—(h): h = 0.05. (a) and
(e): KL divergence between the sample and target distribution. The x-axis represents
time and the y-axis is in log;, scale. Rest panels: scatter plot of the three methods
at the end of the experiment for different step sizes. Contours of the true density are
also provided for comparisons. In (g) there are no scatter points shown as ‘ul’ does
not converge for this choice of h.

(4.3) Vi(@) =z —a+2a(l+e2® @)L

Following [27, 20], we set a = (1/2,1/2) and d = 2. This choice of parameters
yields strong convexity parameter m = 1/2 and Lipschitz constant L = 1. We choose
a = ﬁ%\/ﬁ’ Yui = 2m*/? and Vpdd = 2m'/? + am. Initially particles are sampled

from N(0,I). We use time step h = 2 x 10~* and run for 2000 steps. We use 5 x 10°
particles and n? = 2500 bins to approximate the KL divergence between the sample
points and the target distribution (see Remark 4.1). The results are shown in Figure 3.

Remark 4.1. To compute the KL divergence between sample points and a non-
Gaussian target distribution in two dimension, we first get the 2d histogram of the
samples points using n? bins (n in each dimension). We then use this 2d histogram as
an approximation of the empirical distribution of the samples. Similarly, we can get
a discretized target distribution by evaluating the target distribution at the center of
each bins. Finally, we can compute the discrete KL divergence using n? values from
the histogram and the discretized target distribution.

4.2.2. Non log-concave . We also consider the same example as in Subsec-
tion 4.2.1 with a = (3,3). As the distance between the two Gaussians increases, the
target density is no longer log-concave. We use time step size h = 1072 and run for
2000 steps. We use a = 1, v, = v/2, and Vpdd = V2 + 1/2. We use 5 x 10° particles
and n2 = 2500 bins to evaluate the KL divergence. The results are demonstrated in
Figure 4.
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000 004 008 012 016 020

(a) KL decay (b) ol (c) ul (d) gaul

Fig. 3: Convergence and scatter plots. (a): KL divergence between the sample and
target distribution, which is a mixture of two unit variance Gaussians located at
(1/2,1/2) and (—1/2,—1/2). x-axis represents time and y-axis is in log;, scale. (b)—
(d): scatter plot of the three methods a the end of the experiment. Contour of the
true density is also provided for comparison.

05
0.0
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@& ] | @
| (@ 1 @ - :

-15
-20

-25

0.00 0.25 050 0.75 1.00 1.25 1.50 1.75 2.00

(a) KL decay (b) ol (c) ul (d) gaul

Fig. 4: Convergence and scatter plots for mixture of Guassians centered at (3,3) and
(—3,-3).

4.3. Quadratic cosine. Consider a potential function given by a quadratic
function and a cosine term:

1
flx) = §wTB_133 — cos(c’'x)
567 where B = Pdiag(1,25) PT for an orthogonal matrix P and ¢ = v/0.95(1,1)T.

568 Here P is generated by using torch.linalg.qr(torch.randn(d)) in Pytorch, where d = 2
569 is the dimension. We set a = 1, v, = 2mt/? and Ypdd = 2m/? + m where we

570 choose m = 1/25. We use time step size h = 1072 and run for 1000 steps. We use
571 5 x 10 particles and n? = 2500 bins to evaluate the KL divergence. The results are
572 demonstrated in Figure 5.

4.4. Bimodal. We consider a two-dimensional bimodal distribution studied in
[64] whose target density has the following form:

p(zx) oc exp (— 2(||z|| — 3)?) [exp (—2(z1 —3)%) +exp (—2(z1 + 3)2)} .
The corresponding potential function is given by

f(@) = 2(|la| - 3) ~ 21og [exp ( — 2(a1 — 3)2) +exp (— 2(a1 +3)?) .
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Fig. 6: Convergence and scatter plots for the bimodal example.

573 The gradient is

4z — 3)exp (— 2(z1 — 3)?) + 4(21 + 3) exp (— 2(21 + 3)?)

574 Vix) = e
o f(@) exp ( —2(zy — 3)2) + exp ( —2(z1 + 3)2) !
-3

. 4l =32

[l
576 where e; = (1,0)7 is the first standard coordinate vector. We set v,; = 2m'/? and
577 “Ypdd = 2m!'/2 + m where we choose m = 1/2. We use time step size h = 1073 and
578 run for 500 iterations. We use 10 particles and n? = 2500 bins to evaluate the KL
579 divergence. The results are shown in Figure 6.
580 4.5. Bayesian logistic regression. We consider the Bayesian logistic regres-

581 sion problem studied in [27, 20, 60]. We give a brief description of the problem.
582  Suppose we are given a feature matrix X € R™*¢ with rows z; € R?. Correspond-
583 ingly we are given Y € {0,1}" the binary response vector for each of the covariates
584 in our feature matrix. The logistic model for the probability of y; = 1 given z; € R?
585 and a parameter § € R? is

. exp(0Tz;)
556 (4.4) Py = 1|z, 0) = T+ exp(07z)

Suppose we impose a prior distribution on the parameter 8 ~ N(0,Xx), where
Yx = %X T X is the sample covariance of X. Then the posterior distribution for 6
can be calculated by

p(0]X,Y) o exp [YTXH - Zlog (14 exp(07z;)) — %GTEXH} ,
i=1
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Fig. 7: Convergence and scatter plots for Bayesian logistic regression.

where a > 0 is a regularization parameter. The potential function is

f(0) = -YTXx0+ Z log (1 + exp(@Txi)) + %QTEXH .
i=1

Its gradient is

_ _xT - Li
Vi) =-X Y+;1+exp(_9%) +aXxd.

As shown in [27], the Hessian of f is upper bounded by L = (0.25n+ @) Amax(Xx ) and
lower bounded by m = aAnin. To generate X and Y, we set ; ; to be independent
Rademacher random variables for each i and j. And each y; is generated according
o (44) with @ = 6* = (1,1)T. Weset a = 0.5, d = 2, n = 50, v, = 2m'/?
and Ypaq = 2m'/2 + m. To sample the posterior distribution, we use time step
size h = 1072 and run for 400 iterations. The initial distribution of particles is
N(0, L7T). As for evaluation metric, we directly evaluate the KL divergence between
the sampled posterior and the true posterior. We use 108 particles and n? = 2500 bins
to evaluate the KL divergence as before. This is different from the choice by [27] and
[60], where [27] compared the samples with 6*. [60] compared samples with the true
minimizer of f(#), i.e. the maximum a posteriori (MAP) estimate in the Bayesian
optimization literature. We believe that directly measuring the KL divergence gives a
better understanding of how ‘close’ our samples are to the true posterior distribution.
The results are presented in Figure 7.

4.6. Bayesian neural network. In this section, we compare GAUL with over-
damped (‘ol’) and underdamped Langevin (‘ul’) dynamics in training Bayesian neural
network. We test a one-hidden-layer fully connected neural network with 50 hidden
neurons and ReLU activation function on the UCI concrete dataset. We use h = 1073,
a = 0.1, v = 0.5. For each method, we sample M = 20 particles (each particle corre-
sponds to a neural network) and take the average output as the final output. Figure 8a
and Table 1 show the rMSE averaged over 10 experiments. We see that ‘ul’ can achieve
smaller training and validation error than ‘ol’. However, ‘ul’” also exhibits a slow start
and an oscillatory behavior at the beginning of training as is commonly seen in ac-
celeration methods in optimization. GAUL can get rid of the oscillation and achieve
a even smaller training and validation error as is demonstrated in Table 1. We have
also tested out the three methods using the Combined Cycle Power Plant (CCPP)
dataset. We choose the same parameter as the concrete experiment. The results are
presented in Figure 8b and Table 1.
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Fig. 8: Convergence comparison. x-axis represents number of epochs. y-axis repre-
sents rTMSE averaged over 10 experiments.

’ \ ol \ ul \ gaul ‘
concrete tr err | 6.39 +£0.44 | 6.234+0.15 | 5.74 4+ 0.06
concrete val err | 6.76 £0.49 | 6.28 20.24 | 5.90 £+ 0.14

ccpp tr err 4.84+0.22 | 448 +0.11 | 4.28 £0.03
ccpp val err 4.634+0.25 | 4.25+£0.11 | 4.04 £ 0.04

Table 1: Training and validation rmse.

5. Conclusions. In this work, we introduced gradient-adjusted underdamped
Langevin dynamics (GAUL) inspired by primal-dual damping dynamics and Hessian-
driven damping dynamics. We demonstrated that GAUL admitted the correct sta-
tionary target distribution 7 o« exp(—f) under appropriate conditions and achieves
exponential convergence for quadratic functions, outperforming both the overdamped
and underdamped Langevin dynamics in terms of convergence speed. Our numerical
experiments further illustrate the practical advantages of GAUL, showcasing faster
convergence and more efficient sampling compared to classical methods, such as over-
damped and underdamped Langevin dynamics.

We also note a connection between the primal-dual damping dynamics and GAUL.
A key challenge in the primal-dual damping algorithm is the design of preconditioner
matrices, which can accelerate the algorithm’s convergence compared to the gradient
descent method. In the context of solving a linear problem where f is a quadratic
function and the diffusion constant is zero, [67] demonstrates that the convergence
rate depends on the square root of the smallest eigenvalue. In this paper, we extend
the study from a sampling perspective, where f is also a quadratic function but the
diffusion is non-zero. Towards a Gaussian target distribution, GAUL converges to a
biased target distribution with the mixing time depending on /k. This is in contrast
with overdamped and underdamped Langevin sampling algorithms.

Several possible future directions are worth exploring. First, can we show that
GAUL converges faster than overdamped and underdamped Langevin dynamics for
more general potentials, which is beyond the current study of Gaussian distributions?
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637  One common assumption is that the potential f is strongly log-concave [8, 17, 18,
638 19, 25, 27, 34, 38, 42]. Recently, [9] proved that for a class of distributions that
639 satisfy a Poincaré-type inequality, underdamped Langevin dynamics converges in Lo
640 with rate exp(—y/mt) where m is the Poincaré constant. Then it is interesting to
641 study for the same class of distributions, whether GAUL could converge at an even
642 faster rate. Another direction is to study the convergence of GAUL under different
643 metrics. From a more practical perspective, designing new time discretization schemes
644 [55, 16, 50, 60, 42] for implementing GAUL is also an important direction. We proved
645 that using the Euler-Maruyama discretization, GAUL will converge to a biased target
646  distribution, which is not surprising since ULA is also biased. Therefore, another
647 promising direction could be to combine GAUL with MCMC methods [7, 27], such as
648 Metropolis-Hastings algorithms, to design a hybrid method with accept/reject options
649 so that the algorithm converges to the correct target distribution in the discrete-
650 time update. Finally, choosing the preconditioner C to accelerate convergence is an
651 important topic. The difficulty of picking C' arises from the positive semidefinite
652  constraint on sym(Q) in (2.16), which we should explore in future work.

653 Appendix A. Euler-Maruyama Discretization. The Euler-Maruyama
654 scheme of (2.15) with step size h and C' =1 reads

655 (A.la) ®ii1 = xp — aV f(x)h + ph + V2ahzW |
656 (A.1b) Pir1 = pt — Vf(x)h — ypeh + V/2vhz?)

657 2 is a standard Gaussian random variable for i = 1, 2.

658 Appendix B. A matrix lemma. Let a > 0, s > 0, v > 0, and consider the
659 3 x 3 matrix
—2as —2ys~ ! —s71
660 (B.1) D= 0 0 1
252 2(=1—ay)s -2y —3y—as
661 A direct calculation shows that the eigenvalues are given by
662 (B.2a) Xo(a,v,s) =—as —,
663 (B.2b) A_(a,v,8) = —as — v — /72 — 2ays + s(—4 + a?s),
664 (B.2c) Ai(a,v,s) = —as — v+ /72 — 2ays + s(—4 + a2s) .

665 We have the following lemmas regarding the eigenvalues given by (B.2).
LEMMA B.1. Let D be as (B.1). If a =0, then

argmin R(A4(0,7,s)) =2v/s.

v>0
666 Proof. We have that Ay (0,7,s) = 1 (—’y +/72 - 48). If v < 24/s, then R(A4(0,7, s)) ZI
667 —+/s. When v > 2/s, we have that (A4 (0,7,5)) = A+(0,7,s). And 6%/\4_(077, s) >
668 0. Therefore, the minimum of 3%()\+(0, ~, s)) takes place at v = 24/s. d
669 LEMMA B.2. Let D be as (B.1). Let v > 0 be fized. Then
670 (B.3) argmin R(Ay(a,7,s)) = Ty 2
S0 +\& ), s \/g
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Proof. Let us define A(a) = 72 — 2a7ys + s(a?s — 4). It can be seen that A is a
quadratic function of a. The two roots of A are given by

When a € [a_,a4], A(a) <0 and

(=7 —ats) = R(A(ay,7,8) = =7 — V5.

N | =

1
R(Ai(a,7,8)) = 5(—’7 —as) >
When a < a_, we can calculate that

—ys + as?
VA

This implies that Ay(a— — &,7v,8) > Ai(a—,v,s) for any ¢ > 0. Similarly, when
a > a4, we have that %)\+(a,7, s) > 0. Thus, A\ (ay +¢&,7,8) > Ay(a_,~,s) for any

0
—Ai(a,y,8) = —s+ <0.

da

€ > 0. Combining the above results, we conclude our proof. 0
LEMMA B.3. Let D be as (B.1). Let a > 0 be fizred. Then
(B.4) argmin R(A;(a,7,s)) = as+2V/s.
>0

Proof. The proof will be similar to that of Lemma B.2. This time we define
A(y) = v2 — 2arys + s(a?s — 4). Tt can be seen that A(7) is a quadratic function of ~.
The two roots of A(v) are given by

Vi =as£2/s.
When 7 € [y-,74], A(y) <0 and
1 1
RO\ (0,7,5) = 5(=7 = as) = S(=74 — as) = R\ (,74,5)) = —as = V5.
When v < v_, we have
0 v —as
—Ai(a,v,8) = -1+
0y +@7,9) (y—as)? —4s
<-1<0,
since 7 —as < 0. When v > v, we have
0 v —as
—Ai(a,v,8)=—-1+
0y +(@,7,9) (v —as)? —4s
>-1+1=0.
Combining the above arguments, we conclude that the optimal v is . 0

We now turn to a more general setting. Let ¢ > 0, v > 0 and define

—2aS —2v8~1 8!
(B.5) D= 0 0 I :
282 2(-1—ay)S™'—29*1 —-3+4I—aS

where now S is a diagonal matrix whose diagonal is given by s; > s9 > ... > sq4 > 0.
And T is the identity matrix. Just like Lemma B.1, Lemma B.2, and Lemma B.7 we
want to characterize the eigenvalues of D. In particular, we would like to characterize
the largest real part of the eigenvalue of D in terms of a and 7.
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ProprosITION B.4. The eigenvalues for D are given by

(B.6a) )\,(Ji)(am, S) =—as; — 7,
(B.6b) )\(j)(%% S) = —as; — v — \/7* — 2aysi + si(—4 + as;)
(B.6¢) )\Sf)(a, v,8) = —as; — v+ /72 — 2aysi + si(—4 + a2s;)
fori =1,...,d. The corresponding eigenvectors are sparse and take the following
form. (Here we only write out the non-zero part of the eigenvectors)
; -1
B.7a 10—
( ) 0, S; (’7 + ClSZ')
; ~1
B.7b @ .=
( ) Y0,i+d N+ as;’
(B.7¢) Votsza =1,
Iy — 2 2ans; (a2s; — 4) — 2(v*+sitaysi)
(i) v \/’Y aysi + s (CL 5 ) ’y+asi+\/'yz—2a'ysi+s7¢(a237¢—4)
(B.8a) v, = 542 ,
S
i -1
(B.sb) o', =

v+ asi + /72— 2avsi + si(as; —4)
(B.8¢) v(_Z?H_Qd =1,

2 2 2aqvs; + s;(aZs; — 4) — 2(y*+si+aysi)
W v+ \/7 ays; + si(a’s ) y+as;—\/12—2avsitsi(ats;—4)
(B.9a) [A—
i 2s? ’
i -1
(B.9b) ', =

v+ asi — /72 = 2avsi + si(a®s; —4)

(B.9¢) o), =1.
(i)

*,J
the eigenvalue )\SZ), where x € {0,4, —}.

Moreover, when v is chosen according to Lemma B.7, we have a defective eigen-

In the above, v, . represents the j-th component of the eigenvector corresponding to

value )\(()d) = )\f ) = —asq — 7y, which is accompanied with two generalized eigenvectors

n, & that satisfy (D — /\(()d))n = U(()d), (D — )\éd))ﬁ = v(()d). In details, the nonzero

components of v(()d), n and & are given by

-1
B.10a S ———
( ) 04 sq(y + asq)
-1
B.10b I ———
( ) 024 = 2 asg
(B.10c) v =1,
¥ —as
B.11 -
( a) Td 283 y
(B.11b) n3a =1,
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_*—(14ay)sq
S

)

(B.12a) €a
(B.12b) g =1.

Proof. One can directly verify that the above computation gives an eigensystem
for D. |

(ij ) (()j ), we immediately have the following corol-

From the sparsity structure of v}’ and v

lary.

COROLLARY B.5. U,Ej) is orthogonal to vﬁk) for x,x € {0,4+, -} if j # k.

LEMMA B.6. Let D be as (B.5). If a =0, then

(B.13) argirginmjax%(/\g)((),fy,S)) =2/54.
v

Proof. Plugging a = 0 into (B.6) we have

; 1
)\Sﬁ)(0777‘5’) = 5 (_7"_ \/72 _4Sj> :

We first note that since sg < sq_1 < ... < s, if v < 2,/54 then %()\Eg)((),'y, S)) =
—~/2 for all 1 < j < d. In particular, this implies that

arg min max%(/\g)(O,fy,S)) =2/54.
0<y<2y5q J

We then need to show that if v > 2,/s4, max; ?R()\(f)(o,'y, S)) > —/54. This will be
very similar to the argument in the proof of Lemma B.1. Now consider v > 2,/s4.

We showed in the proof of Lemma B.1 that R(A”(0,7,8)) = A{"(0,7,5). And
%)\T)(O,% S) > 0. Hence, we have

max RO (0,7, 8)) > RAL (0,7, 8) = A7(0,7,8) 2 A (0,2V54, 8) = —v/5a.

This concludes our proof. 0

LEMMA B.7. Let D be as (B.5). Let a > 0. Then

(B.14) arg>ngin max %(Ag) (a,7,8)) = asq + 2+/54 -
8!

Proof. Let us define A(v, s) = v2—2ays+s(a?s—4). A straightforward calculation
shows that the two roots of A(v,s;) (when viewing A as a function of ) are given by

V) = as; 25 .
We have shown in Lemma B.3 that

arg min 3‘%()\@ (a,7,S)) = asq+ 24/54 .
>0
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31 Denote by v*(a) = asq + 2/54. Let us consider § > sq4. If A(y*(a),5) < 0, then we
32 have

~

733 R (ffy* (a) — a3 + \/v*(a)? — 2ay*(a)5 + 5(a25 — 4)) =—"(a) — as
734 < —v*(a) — asq
55 (B.15) =R\ (a.7%(a), 9)),

736 where the last line follows from A(y*(a), s4) = 0 by definition of v*(a). If A(y*(a), 5) >}}
737 0, we compute

9
0Os
739 (B.16) =—a+

738 (—'y*(a) —as+ /7" (a)? — 2a7*(a)s + s(a2s — 4)) |s=3
—ay*(a) + a3 — 2
V(@) = 2ay*(a)3 + 3(a?5 — 4)
We now verify that the above derivative is indeed positive. First observe that given

§ > s4, the two roots for A(v, §) are

>0.

Yy =ai+2V5.

740 Clearly, 4+ > v*(a). Hence, A(v*(a), §) > 0 implies that v*(a) < 4_, or equivalently
741§ > 84+ (2y/34 + 2V/3)/a. This further implies v/3 > 2/a. Therefore,

742 —av*(a) + a?5 — 2 > a®(sq + (2y/54 + 2V3) /a) — av*(a) — 2
743 =2aV/5 -2

2
744 >2a-—-2>0.

a

Knowing that the numerator in the second term of (B.16) is positive, we know that
(B.16) is positive if and only if

(—ay*(a) + a%5 — 2)? > a*(v*(a)? — 2av*(a)§ + 5(a5 — 4)),

745 which can be verified by expanding the square on the left hand side and comparing
746 with the right hand side directly.
747 Since the derivative in (B.16) is positive, let us examine the limit

748 lim —y*(a) — as + /7*(a)? — 2a7*(a)s + s(a?s — 4)
Ede el
749 = lim —v*(a) — as + s\/7*(a)2s~2 — 2a7*(a)s~L + a2 — 451
55— 00
2
750 = lim —y*(a) —as +as — (v*(a) + =)+ O(s7)
§—00 a
2
751 =—2v"(a) — —
5 7 (@) -~
2
752 (B.17) =~ 2(asq +2V50) ~ - < R (a,7*(a), 5)). 0

Combining (B.15), (B.16) and (B.17), we obtain that for 1 < j <d

R (a,77(a), 8)) < AP (a,7*(a), 8) = R (0,7 (a), S)) .
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which implies

min max R (0,7, 5)) < max R (a,77(a), §)) = RO (a,7"(a), 5))
J

¥>0 g

Finally, by Lemma B.3 again, we have

min max %(Af)(a,'y, S)) > min ?R()\(f)(a,% S)) = ?R()\(f)(a,w*(a), S)).

>0 g ~v>0

We now conclude that

arg min max %(Ag)(a, 7,8)) =v"(a).
>0 J

LEMMA B.8. The constant Cy in Equation (3.9) depends at most polynomially on
d, s1, 1/s4, i.e. C1 = poly(d,sl,sgl) < poly(d, k).

Proof. First, we show that C7 depends linearly on the dimension d. Let us recall
the following fact from linear ODE: if # = Ax for some constant matrix A € R¥*?,
with eigenvalues \1,..., Ay and eigenvectors vi,...,vq, then the solution is of the
form z(t) = >, a;e*'v;. In case there are repeated eigenvalues (e.g. ;) and gen-
eralized eigenvectors, the corresponding term in the sum will be replaced with some
Zj bjtk_je’\itvi where the sum is over j = 1,...,k and k is the dimension of the
generalized eigenspace associated with A;. Let D and T be as defined in (3.8). By our
choice of v, we know that eigenvalues of D are nonzero. Therefore, D is invertible.
Denote by

Y11(t)
Y(t) = 222 (t) + DT,
Yoo(t)
Then (3.8) reads
d
(B.18) SY=DY.

We follow the notation in Proposition B.4 and use ()\Sf), vf)) to represent an eigenvalue
eigenvector pair of D, for i = 1,...,d, and * € {0,+,—}. Note that for our choice
of v = asq + 2,/54, we have )\éd) = /\(id ). Correspondingly, there will be generalized
eigenvectors. Following the notation in Proposition B.4, we use v(()d) to represent the
eigenvector associated with )\éd); and we use 1 and £ to represent the generalized
eigenvectors associated with )\(()d). We have already shown in Proposition B.4 that
both 7 and £ are generalized eigenvector of rank 2. Therefore, the solution to (B.18)
takes the form

d—1
Y(t) = Z Z an)e“%’”vﬁ“ n a(()d)eAéd’tU[()d) + a(jl)eAgd)t(tv(()d) + 1)
i=1 %€{0,4,~}
(B.19) +al DX (1D +g)
where the constants a(*i) are to be determined by Y (0). By Lemma B.7 and our choice
of v, we have that

ROADY = A D — 945, — 2./54.
B iy RO = A7 = s 2
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Without loss of generality, consider ¢ > 1. We have

Y @®l* =

(B.20)

d—1

|| Z Z ozgf)e)‘&”tvil) JrOé(d) D¢ (()d) +Ol(_d)6)\(()d>t(t1}(()d) +n)
i=1 xe{0,+,—}

2

+ a(d) A (tvéd) +&)

2

d—1
i (d) (d)
=S T el +H (DAt (D 1 (DA (1D 1)

i=1 ||xc{0,+,~}
2
a(d)e)“(’d)t(tv(()d) + f)H

<Z Z 3H (D) AL (1)

i=1 xe{0,+,—

2
+3 Haf)e)‘o )t(tv(()d) + 5)”

<3t2e”3d)t[ Z Z ‘

i=1 x€{0,

2
+3H () MGV (d)H +?)H (@) Ay (d)“ﬂH

(1,

_'_H (d)H (d))2+2(a£)) + 2o (d)))

+ 20l (@) + 2 [l¢]* (o )21

. 112 2
o) [of]]” ()2 + (@92 + (afy?)

cwenit| (L % |

#€{0,+,—

+linl* (@) + (1€ (@ )]

. 112 2 2 2
O )« (o o o)

SGthZABd)t[ Z > ’

=1 %€{0,+,—
LT WfH
1€112 ]2
2
[°]

(d)
<ezen” |14 2Ly Hv H Z >
- €112 ’

2
il = cfom

2 2 2
ol | ol + o]

2
d—1

YOI =3 50 all) + o +an+ale]"

i=1 || xe{0.+,~}
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Denote by Y (0)(®) the projection of Y (0) onto the subspace ®; = Span({v(()i), vg_i), ’U(_Z)})I
And accordingly, 4 = Span({véd),n,f}). By Corollary B.5, we know that ®; is or-
thogonal to ®; for ¢ # j. Therefore, |a,(ki)| depends on the inverse of the Gram
matrix of {v(()i),vg),v(_i)} as well as [[Y(0)®|. This inverse Gram matrix can be
computed analytically since it is a 3 by 3 matrix for each 1 < i < d. However,

the exact computation does not add more insights to the proof and we will not in-
clude the computation. Since each eigenvector and generalized eigenvector depends on

{s1,.-- Sd; sfl, . 351} polynomially, we know that the inverse of the Gram matrix
also also depends on {s1,... 4,57 ",... s; '} polynomially. From (B.20), we conclude
that

1Y ()2 = 0222”2 - poly(sy, 57")) = O (122" 1d? - poly (k) .

LEMMA B.9. Suppose X € S" satisfies X = AXAT for some A € R™. If all
eigenvalues of A has absolute value less than 1, then X is the zero matriz.

Proof. Let us first assume that A7 is diagonalizable: AT = QDQ ™', where D
is a diagonal matrix of eigenvalues di,...,d,, and the columns of () contains the
eigenvectors qi, ..., q,. Then it follows that

¢! Xqj| = |did;||a} Xqj|.

This implies |¢gf Xq;| = 0 for all 1 < 4,5 < n, since |d;d;| < 1 by assumption.
Now suppose that A has some generalized eigenvalues. Without loss of generality,
assume that d,,_; is a generalized eigenvalue such that AT¢,_1 = dp_1¢n_1 and
ATq, = dp_1¢n + gn_1. Let ¢; be an eigenvector. Then we still have qiTXanl =0as
before. And

a7 Xqn| = |didn-1] Xqn + dig] Xqn—1| = |didp—1q] Xqn| = |didn—1]|q Xqn|.

Again this implies |¢ X¢,| = 0. The case where d,_; has algebraic multiplicity
greater than 2 or ¢; is a generalized eigenvector can be proved in a similar fashion.
Therefore, we have shown that if A has Jordan decomposition A = PJP~!, then
' X ¢; = 0 where ¢; and g; are the i-th and j-th column of P. Equivalently, we have
PTXP = 0. This proves that X = 0. ]

COROLLARY B.10. Suppose X,Y € S™ satisfy X = AXAT + B, Y = AYAT + B
for some B € S™. If all eigenvalues of A have absolute value less than 1, then X =Y.

Proof. The proof follows by Lemma B.9 and that X — Y = A(X — YV)AT. |

Taking inspiration from system of linear ODE, we have the following lemma regarding
the solution to the iteration X1 = AX,A”.

LEMMA B.11. Let A € R™" be given by A = I — hG for some G € R" ",
h > 0. Suppose G has Jordan decomposition G = PJP~'. And consider the iteration
Xpp1 = AXRAT. If q; is an eigenvector of G with associated eigenvalue d; and
Xo = qiqiT, then X = (1 — hdi)%Xo.~ Moreover, if q; is a generalized eigenvector
of G of algebraic multiplicity 2, i.e. Ggq; = djq; + q; for some eigenvector q; and
eigenvalue d;, and Xo = q¢;q! , then X}, = ((1 — hd;)*q; — kh(1 — hdj)kflqj)((l —
hd;)*q; — kh(1 — hd;)*~1q;)"

LEMMA B.12. The eigenvalues of G in (3.11) are given by the following

(as; +7) + /(as; —7)? — 4s;

(B.21) D = p 5
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Proof. The proof follows by a direct computation. ]

LEMMA B.13. Consider v = v* = asq + 2./54. Let s > sq. Then a < \/5*2\/5 if
and only if (as —v*)? — 45 < 0.

Proof. Multiplying by s — s4, we obtain

2
<— = - <2 2 = as—2y/s <"
af\[_\/5 a(s — sq) < 2v/s+2/sq as —2y/s <

And it is straightforward to verify that 2/s > —as + v* always holds. Squaring on
both hand sides completes the proof. 0

LEMMA B.14. Consider 5\2? given by (B.21). Suppose a > ﬁ%\/ﬁ If the step
size h satisfies 0 < h < 1/(as1 + ), and v = v* = asq + 2,/54, then

i h
max |1 — A <1— §(asd—|—\/@).

Proof. Observe that the eigenvalues given in (B.21) is almost the same as the
eigenvalues given in (B.6) except for an extra factor of h/2. This allows us to use
previous lemma regarding the eigenvalues from (B.6). We consider two cases. Define

2
j=inf{n:a < ——— .
J { _vsn_vsd}

Case 1: Consider i < j—1 (if j = 1, we directly consider Case 2). Then a > ﬁ
By Lemma B.13 and our assumption on a, we have (as; — v*)? — 4s; > 0. Then, one

can verify that 0 < h < asﬁw*
compute

is a sufficient condition for 1 — /N\(iz) > 0. Indeed, we

1 (asi +7%) + /(asi — )2 — 4s;
asi + v* 2
1 (asi+97) + /(@5 £ 1)
asy + v* 2
_asit7"
=ty
(B.22) <1.

3

IN

IN

Moreover, we clearly have 5\&) > 0. Therefore, |1 — X$)| < 1. On the other hand, by
(B.16) and (B.17), we have that

~(i)> : ﬁ * _Ak)2
AL _Slingo2((as+7)+ (as — %) 45)

h 2
2(’7 +a

> hy*.
Therefore,

max |1 — AP | <1 - h(asq+2y/50) .

i<j—1
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Case 2: Consider 7 > j. Note that for a complex number z = z; + iz and h > 0, we
have that
1 —hz|> =1 —hz)? +h?22 <1 —hz < (1 —hz/2)?,

821 where the first inequality holds if and only if h < 21/(2% + 23). Therefore, we have

. R 2
822 |17/\$)|2§(177(2i)) ,

if
2(as; + %) as; +v*

(asi +~*)2 +4s; — (as; — )2 2as;v* +2s;

We now verify that h < 1/(as; ++*) is a sufficient condition. We have

1 < as; +~v*

2 * *\2 *
< a“s1s; + v as; + > as;y" + 2s; .
asi +v* T 2as;7* + 2s; 1siH7as+ ()7 2 asiy i

823 By Lemma B.13, we have that

824 a’s? + (v*)? — 2as,7* > 45,
*\2
825 a’sy + () —2av* > 4
S1
*) 2
826 a’sy >4+ 2ay* — ) .
S1
827 Then
2 * *\2 * (7*)2 * *\2
828 a’s1s; + v asy + (7%) Zsi<4—|—2cw - )+7a51—|—(’y)
1
(Ax)2
829 =4s; + 2av"s; — s +v*as; + (v*)?
S1
830 > 4s; +2av*s; + v asy
831 > as;y" + 2s; .

This shows that h < 1/(as; + +*) is sufficient. By Lemma B.7 and our choice of h,
we obtain that

<0 RAL)
max |l — AY| <max1— <1— —(asq+ /54) -
i>j i 2 2
832 Combining the two cases, we complete the proof. 0
LEMMA B.15. Consider ;\i) giwven by (B.21). Suppose a =0 and v = v* = 2,/54.

Then .
max |1 - A <1,

833 if and only if h < 2,/5q/s1.

834 Proof. We directly compute
835 1-APP <l l-hy/saFhv/sa—si> <1
836 = 1—2hy/s4+ h%s; <1

837 <« h <2\sq/51. a
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838 THEOREM B.16. Consider the iteration given in Corollary 3.13. Suppose a >
839 # We choose v = v* = asq + 2\/5q and 0 < h < 1/(asy +v*). Then
8§10 for k > 1/h we have ||Yillp < Ch2k2(1 — Blasa + /30)* 72, where the constant
841 C =d?- O(poly(k)).

Proof. Let us denote by A = PJP~! the Jordan decomposition of A. Then
we know from (B.21) that A has precisely 2d — 1 eigenvectors and one generalized

eigenvector of algebraic multiplicity 2. Let qg), e ,qf Y be the eigenvectors with

associated eigenvalues )\i) =1- 5\@, where S\(il) are from (B.21). With v = ~*,

one has that /N\f) = 5\(_(1) is a generalized eigenvalue. Abusing notation, let us use

qsrd) to represent the eigenvector and q(_d) to represent the generalized eigenvector of
)\(j) = )\Srd). This means

Aqg_d) = )\f)qg_d) , Aq(_d) = )\(_d)q(_d) + qf) .

We can express Yy by a basis representation

= > > k@)

*,0€{£}1,j<d

842 Then using Lemma B.11, we have that for k£ > 1/h,

843 Yille < 4d2h2k? max A 22 max |a24]]|gt" ¢8|
% 1,J,%,0
h 2k—2 o
s (B.23) <4dWK (1— 2<a3d+m>> max o} [l a5 [
1,J,%,0 ’

845 The second inequality is due to Lemma B.14. The maximum in the above is over
8§16 1 <4,j < dand x,0 € {£}. Tt remains to show that max; ;.. |’ |||q*) 2 IIe

847 O(poly()). Note that A in Corollary 3.13 can be written as A = I — hG where G
848 does not depend on h when taking the first order approximation as in Lemma B.12.
849  The rest of the argument is very similar to the proof of Lemma B.8 which we will not
850 present due to brevity. We conclude that

2k—2
851 Velle < d*h2k? (1 - g(asd + @)) O(poly(k))
N L 2%—2
852 = Oh%k? (1 — §(asd + @)) : 0

LEMMA B.17. A solution to the fized point equation Y* = AY* AT + LLT where
A and L are given in Proposition 3.11, is given by

YiooYe
y* = (11 1*2) ,
(Yu Yoo
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where Y} € R? are diagonal matrices. And the diagonal elements of Y;: are given by

1
B.24) Y{i.= 1-—
( ) 11,2 s ( (

i

hsi(4+ (h+ a(hy — 2))(hs; — v + asi(hy — 1))) )
hs; — v+ as;(hy — 1))(4 + h(hs; — 2y + as;(hy — 2)))/’
2h(as; —7)
(hsi — v+ as;(hy — 1))(4 + h(hs; — 2y + asi(hy — 2)))’
—4v — 2as;(2 + h(hs; — 3y + as;(hy — 1)))
(hsi — v+ as;(hy — 1))(4 + h(hs; — 2y + as;(hy — 2)))

(B-25) Y1*2,z' =

(B.26) Y2*2,z' =

Appendix C. Postponed proofs.

proof of Proposition 2.1. We directly plug (2.19) into (2.18) and verify that we
recover (2.17).

V- (psym(QViog £ ) + 7 - (plsym(Q)V log(IT) + QVH))
=sym(Q) : VZp+ Vpsym(Q)VH + psym(Q) : VZH + Vpsym(Q)V log(IT)
+ psym(Q) : V2 1og(Il) + V- (pQVH)

=sym(Q): V’p+ V- (pQVH)
2d 62

=V (QVHp) + Y

—

by

OX,0X, (Qijp) »

where we denote by A : B Z?f;:l Ai;B;j for A,B € R¥4 We have used

Vlog(ll) = —VH and V?log(Il) = —V2H to get the second equality. O

proof of Proposition 2.2. We just need to verify that when p(X,t) = II(X), we

have % = 0. It is clear that when p(X,t) = II(X), the first term on the right hand

side of (2.18) is 0, since V1og(#) = 0. For the second term, let us use (2.19) to get

V. (IIl') = V- (IQVH — IIsym(Q)V log(II))
= VIIQVH +TIQ : V?H + VIIsym(Q)V log(I) + Msym(Q) : V2 log(IT)
= -NIIVHQVH +1IQ : V2H + TIVHsym(Q)VH + ITsym(Q) : V*log(II)
=1Q : V2H + Isym(Q) : V?log(I)
=TIQ: V*H —TIsym(Q) : V2H
=0, 0
We have used VII = —IIVH to get the third equality. And we used V?log(Il) =
—V2H to get the fifth equality. This proves that when p = II, we indeed have
dp

I
Ot lp=11 =V (Hsym(Q)Vlogﬁ) +V-(IIl)=0+0=0.

proof of Proposition 3.2. With our choice of H, (2.15) is a multidimensional OU
process. And since X, follows a Gaussian distribution, it shows that X; will also be
a Gaussian distribution. It is well known that the solution to (2.15) with H given by
(3.3) is

- t -
X, = 18 1X0+/ e~ =2 Heym(Q) dB; .
0
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The mean of X; is given by
EX, = e ' EX, = 0.

We can compute the covariance ¥(t) of X;. Since X; has zero mean, we obtain the
following using Ito’s isometry

t - =_\T
(C.1) X2(t) =EX,X] =2 / e~ (=MRE v (Q) (e*@*ﬂQE ) dr + EXoXJ .
0

From the above expression, X(t) is clearly well-defined, symmetric, positive definite
for all ¢ > 0. We proceed by differentiating ()

3 d ! —(t—-7)Q%~ —(t—7)Q%~ T
Y (¢) :2£/ e (t-TQE 1sym(Q)(e (t=m)Q% 1) dr
0

t d (4 -1 (4 S—1 T
= 2sym(Q) +/ %e (t-7)Q% sym(Q) (6 (t—-7)Q% ) dr
0

=2sym(Q) — QS 'S(t) - R(H)E QT
=2sym(Q(I—27'%)).

This finishes the proof. ]
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