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Abstract. Sampling from a target distribution is a fundamental problem with wide-ranging4
applications in scientific computing and machine learning. Traditional Markov chain Monte Carlo5
(MCMC) algorithms, such as the unadjusted Langevin algorithm (ULA), derived from the over-6
damped Langevin dynamics, have been extensively studied. From an optimization perspective, the7
Kolmogorov forward equation of the overdamped Langevin dynamics can be treated as the gradient8
flow of the relative entropy in the space of probability densities embedded with Wasserstein-2 metrics.9
Several efforts have also been devoted to including momentum-based methods, such as underdamped10
Langevin dynamics for faster convergence of sampling algorithms. Recent advances in optimizations11
have demonstrated the effectiveness of primal-dual damping and Hessian-driven damping dynamics12
for achieving faster convergence in solving optimization problems. Motivated by these developments,13
we introduce a class of stochastic differential equations (SDEs) called gradient-adjusted underdamped14
Langevin dynamics (GAUL), which add stochastic perturbations in primal-dual damping dynamics15
and Hessian-driven damping dynamics from optimization. We prove that GAUL admits the correct16
stationary distribution, whose marginal is the target distribution. The proposed method outperforms17
overdamped and underdamped Langevin dynamics regarding convergence speed in the total varia-18
tion distance for Gaussian target distributions. Moreover, using the Euler-Maruyama discretization,19
we show that the mixing time towards a biased target distribution only depends on the square root20
of the condition number of the target covariance matrix. Numerical experiments for non-Gaussian21
target distributions, such as Bayesian regression problems and Bayesian neural networks, further il-22
lustrate the advantages of our approach over classical methods based on overdamped or underdamped23
Langevin dynamics.24
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1. Introduction. Sampling from a target distribution is a long-standing quest28

and has numerous applications in scientific computing, including Bayesian statistical29

inference [46, 53, 43, 31], Bayesian inverse problems [56, 35, 23, 29], as well as Bayesian30

neural networks [65, 2, 61, 36, 45, 51]. In this direction, various algorithms have31

been developed to sample a target distribution π ∝ exp(−f) for a given function32

f : Rd → R, where π is only known up to a normalization constant. In this area, a33

simple and popular algorithm is the unadjusted Langevin algorithm (ULA):34

(1.1) xk+1 = xk − h∇f(xk) +
√
2hzk ,35

where xk ∈ Rd, k is the iteration number, f is assumed to be a differentiable function,36

h > 0 is a step size, and zk is a d-dimensional random variable with independently37

and identically distributed (i.i.d) entries following standard Gaussian distributions.38

The ULA algorithm (1.1) comes from the forward Euler discretization of a stochastic39

differential equation (SDE) known as overdamped Langevin dynamics:40

(1.2) dxt = −∇f(xt)dt+
√
2dBt ,41
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2 X. ZUO, S. OSHER, AND W. LI

where xt ∈ Rd and Bt is a standard d-dimensional Brownian motion. Under some42

mild conditions on f , it has been shown that the SDE (2.15) has a unique strong43

solution {xt, t ≥ 0} that is a Markov process [54, 49]. Moreover, the distribution of44

xt converges to the invariant distribution π ∝ exp(−f) as t → ∞. The asymptotic45

convergence guarantees of (1.1) have been established decades ago [59, 30, 48]. In46

more recent years, non-asymptotic behaviors of (1.1) have also been explored by47

several works [19, 20, 26, 21, 15, 63].48

An important result by [37] states that the Kolmogorov forward equation of49

Langevin dynamics corresponds to the gradient flow of the relative entropy func-50

tional in the space of probability density functions with the Wasserstein-2 metric.51

This observation serves as a bridge between the sampling community and the opti-52

mization community by studying optimization problems in Wasserstein-2 space. In53

the field of optimization, Nesterov’s accelerated gradient [52] is a first order algorithm54

for finding the minimum of a convex/strongly convex objective function f . The in-55

tuition is that Nesterov’s method incorporates momentum into the updates. It is56

much faster than the traditional gradient descent method, in the sense that the con-57

vergence speed for convex functions is O( 1
k2 ) where k is the number of iterations58

compared to O( 1k ) for gradient descent. The convergence speed of Nesterov’s method59

for L-smooth, m-strongly convex functions is O
(
exp(−k/

√
κ)
)
where κ = L/m is the60

condition number of f compared to O
(
exp(−k/κ)

)
for gradient descent. By taking61

the step size to 0, one obtains a second-order ODE for Nesterov’s method called the62

Nesterov’s accelerated gradient flow or Nesterov’s ODE [57, 5]. In recent years, one63

extends the gradient flow of the relative entropy into Nesterov’s accelerated gradient64

flow [57], which is explored in [64, 58, 44] from different perspectives. For the opti-65

mization in Wasserstein-2 space perspective, [64, 58, 13] study a class of accelerated66

dynamics with depending on the score function, i.e., the gradient of logarithm of den-67

sity function. This results in the approximation of a non-linear partial differential68

equation, known as the damped Euler equation [10]. In this case, the optimal choices69

of parameters for sampling a target distribution share similarities with the classical70

Nesterov’s accelerated gradient flow. On the other hand, from a stochastic dynamics71

perspective, a line of research has been devoted to study the accelerated version of72

Langevin dynamics, known as the underdamped Langevin dynamics [9, 16, 44, 66].73

As explained later in Subsection 2.2, the underdamped Langevin dynamics consists74

of a deterministic component and a stochastic component. The deterministic compo-75

nent exactly corresponds to the Nesterov’s accelerated gradient flow. The marginal of76

invariant distribution in x-axis satisfies the target distribution. However, the optimal77

choice of parameters in underdamped Langevin dynamics might not directly follow78

the classical Nesterov’s method [16].79

Recently, [67] proposed to use the primal-dual hybrid gradient (PDHG) method
[12, 62] to solve unconstrained optimization problems. The original PDHG method
is designed for optimization problem with linear constraints. [67] formulated the
optimality condition ∇f(x) = 0 of a strongly convex function f into the solution of a
saddle point problem

inf
x∈Rd

sup
p∈Rd

⟨∇f(x),p⟩ − γ

2
∥p∥2 ,

where γ > 0 is a selected regularization parameter. They proceed by using the80

PDHG algorithm with appropriate preconditioners to solve the above saddle point81

problem. By taking the limit as the step size goes to zero, their algorithm yields a82

continuous-time flow, which is a second-order ordinary differential equation (ODE)83
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GAUL FOR SAMPLING 3

called the primal-dual damping (PDD) dynamics. In particular, the PDD dynamic84

contains Nesterov’s ODE [57]. In other words, Nesterov’s ODE is a special case85

of PDD dynamics. The PDD dynamics also shares similarities with the Hessian–86

driven damping dynamics that has been studied in recent years [5, 3, 4]. The main87

difference between the PDD dynamics and the Nesterov’s ODE is a second-order term88

∇2f(x)ẋ that appears in the former. This term is also presented in the Hessian driven89

damping dynamics. It has been observed that the PDD dynamics and the Hessian90

driven damping dynamics yield faster convergence towards the global minimum than91

the traditional gradient flow and Nesterov’s ODE. Therefore, it is natural to extend92

the PDD dynamics and Hessian driven damping dynamics to SDEs for sampling a93

target distribution.94

In this paper, we take inspirations from [67, 3] to design a system of SDE95

called gradient-adjusted underdamped Langevin dynamics (GAUL) that resembles96

the primal-dual damping dynamics and the Hessian driven damping dynamics. Con-97

sider98 (
dxt

dpt

)
=

(
−aC∇f(xt)dt+Cptdt
−∇f(xt)dt− γptdt

)
+

√(
2aC I−C
I−C 2γI

)(
dB

(1)
t

dB
(2)
t

)
,(1.3)99

for some constants a, γ > 0, whose detailed choices will be explained later. C is a100

preconditioner such that the diffusion matrix in front of the Brownian motion term is101

well-defined and positive semidefinite. And B
(i)
t is a standard Brownian motion in Rd102

for i = 1, 2. The supercript on Bt indicates that B
(1)
t and B

(2)
t are independent. We103

show that the stationary distribution GAUL (1.3) is the desired target distribution104

of the form 1
Z exp(−f(x) − ∥p∥2/2). Noticeably, the x-marginal distribution is the105

target distribution π. Additionally, we demonstrate that for a quadratic function f ,106

GAUL achieves the exponential convergence and outperforms both overdamped and107

underdamped Langevin dynamics. A series of numerical examples are provided to108

demonstrate the advantage of the proposed method.109

To illustrate the main idea, we summarize main theoretical results into the fol-110

lowing informal theorem.111

Theorem 1.1 (Informal). Suppose that f : Rd → Rd is given by f(x) = 1
2x

TΛx112

with a symmetric positive definite matrix Λ ∈ Rd×d with eigenvalues s1 ≥ s2 ≥ . . . ≥113

sd > 0. Let κ = s1/sd be the condition number of matrix Λ. And let C = I.114

(1) Denote by ρx(x, t) the law of xt driven by (1.3), and π(x) ∝ exp(−f(x))115

the target distribution. Let a > 0, γ = asd + 2
√
sd. Then it takes at most116

t = O(log(d/δ))/(asd+2
√
sd) for the total variation distance between ρx(x, t)117

and π(x) to decrease to δ.118

(2) Denote by ρ̃x(x, k) the law of x after k iterations of the Euler-Maruyama119

discretization of (1.3). Suppose
√
s1 −

√
sd ≥ 2, a = 1, γ = sd + 2

√
sd and120

consider the Euler-Maruyama discretization of (1.3) with step size h = 1/5s1.121

Then it takes at most N = O(log(d/δ)/(κ−1 + (κs1)
−1/2) iterations for the122

total variation distance between ρ̃x(x, k) and π̃(x) to decrease to δ, where123

π̃(x) is a biased target distribution given by Equation (B.24).124

(3) When taking a = 2√
s1−

√
sd
, γ = asd+2

√
sd and h = 1

2(as1+γ) , we can improve125

the number of iterations in (2) to N = O(
√
κ log(d/δ)).126

The detailed version of Theorem 1.1 is given in Theorem 3.9, Theorem 3.15 and The-127

orem 3.16. It is worth noting that GAUL (1.3) reduces to underdamped Langevin128

dynamics when a = 0 and C = I. Our theorem implies that in the Gaussian case,129
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4 X. ZUO, S. OSHER, AND W. LI

GAUL converges to the target measure faster than underdamped Langvein dynam-130

ics. In particular, we demonstrate that the Euler-Maruyama discretization admits a131

mixing time proportional to the square root of the condition number of covariance132

matrix. While this work primarily focuses on Gaussian distributions, our numerical133

experiments also explore non-log-concave target distributions in Bayesian linear re-134

gressions and Bayesian neural networks, which demonstrate potential advantages of135

GAUL over overdamped and underdamped Langevin dynamics. Extending these re-136

sults to more general distributions and discretization schemes is an important future137

research direction. The choice of preconditoner C is tricky as one needs to guaran-138

tee that the diffusion matrix in (1.3) is positive semidefinite. Therefore, we mainly139

focus on the case when C = I. We address on our results for C ̸= I in Remark 3.10140

and Remark 3.19. For C = I, [42] also explored dynamics (1.3), which they called141

Hessian-Free High-Resolution (HFHR) dynamics. For this closely related work, we142

provide some comparisons later in Remark 2.4.143

This paper is organized as follows. In Section 2, we review the connection between144

optimization methods and sampling dynamics, which leads to the construction of our145

proposed SDE called gradient-adjusted underdamped Langevin dynamics (GAUL).146

Our main results are presented in Section 3, where we prove the exponential conver-147

gence of GAUL to the target distribution when the target measure follows a Gaussian148

distribution. We also study the Euler-Maruyama discretization of GAUL and prove its149

linear convergence to a biased target distribution. Lastly, in Section 4, we present sev-150

eral numerical examples to compare GAUL with both overdamped and underdamped151

Langevin dynamics.152

2. Preliminaries. In this section, we briefly review the relation among Euclid-153

ean gradient flows, overdamped Langevin dynamics and Wasserstein gradient flows.154

We then draw the connection between the underdamped Langevin dynamics and Nes-155

terov’s ODEs. We next review primal-dual damping (PDD) flows [67] and Hessian156

driven damping dynamics. Finally, we introduce a new SDE called gradient-adjusted157

underdamped Langevin dynamics (GAUL) for sampling, which resembles the PDD158

flow and the Hessian-driven damping dynamics with designed stochastic perturbations159

in terms of Brownian motions.160

2.1. Gradient descent, unadjusted Langevin algorithms, and optimal161

transport gradient flows. Let f : Rd → R be a differentiable convex function with162

L-Lipschitz gradient. The classical gradient descent algorithm for finding the global163

minimum of f(x) is an iterative algorithm that reads:164

(2.1) xk+1 = xk − h∇f(xk) ,165

where h > 0 is the step size. When f is convex and the step size is not too large,166

this algorithm converges at a rate of O(k−1). When f is m-strongly convex, the same167

algorithm can be shown to converge at a rate of O
(
(1 − m/L)k

)
, if the step size is168

chosen appropriately. The gradient descent algorithm (2.1) can be understood as the169

forward Euler time discretization of the gradient flow170

(2.2) ẋ(t) = −∇f(x(t)) ,171

where x(t) describes a trajectory in Rd that travels in the direction of the steepest172

descent. Similar convergence results can be obtained for the gradient flow (2.2). When173

f is convex, the gradient flow (2.2) converges at a rate of O(t−1). When f is assumed174

to be m-strongly convex, the gradient flow (2.2) converges at a rate of O
(
exp(−mt)

)
.175
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GAUL FOR SAMPLING 5

While the goal of optimization is to find the global minimum of f , the goal of
sampling algorithm is to sample from a distribution of the form 1

Z1
exp(−f(x)), where

the normalization constant Z1 > 0 is assumed to be finite, i.e.,

Z1 =

∫
Rd

e−f(x)dx < +∞.

The classical unadjusted Langevin algorithm (ULA) given in (1.1) is a simple modi-176

fication to the gradient descent method. Recall that ULA is given by177

(2.3) xk+1 = xk − h∇f(xk) +
√
2hzk ,178

where zk is a d-dimensional standard Gaussian random variable and h is the step179

size. We obtain (2.3) from (2.1) by adding a Gaussian noise term zk scaled by
√
2h.180

Similar to how (2.1) can be viewed as the Euler discretization of (2.2), ULA (2.3)181

represents the forward Euler discretization of the overdamped Langevin dynamics:182

(2.4) dxt = −∇f(xt)dt+
√
2dBt ,183

where Bt is a standard d-dimensional Brownian motion. Denote by ρ(x, t) the prob-184

ability density function for xt. Then the Kolmogorov forward equation (also known185

as the Fokker-Planck equation) of the overdamped Langevin dynamics (2.4) is given186

as187

(2.5)
∂ρ

∂t
= ∇ · (ρ∇f) + ∆ρ .188

Clearly, π(x) = 1
Z1

exp(−f(x)) is a stationary solution of the Fokker-Planck equation189

(2.5). In other words, note that ∇π = −π∇f , then190

0 = ∂tπ = ∇ · (π∇f) + ∆π = ∇ · ((π∇f +∇π)) .191

In the literature, one can also study the gradient drift Fokker-Planck equation192

(2.5) from a gradient flow point of view. This means that equation (2.5) is a gradient193

flow in the probability space embedded with a Wasserstein-2 metric. We review some194

facts on a formal manner; see rigorous treatment in [1].195

Define the probability space on Rd with finite second-order moment:196

P(Rd) =

{
ρ(·) ∈ C∞ :

∫
Rd

ρ(x)dx = 1,

∫
Rd

|x|2ρ(x) dx < ∞, ρ(·) ≥ 0

}
.197

We note that P(Rd) can be equipped with the L2–Wasserstein metric gW at each198

ρ ∈ P(Rd) to form a Riemannian manifold (P(Rd), gW ). Let F : P(Rd) → R be199

an energy functional on P(Rd). To be more precise, denote the Wassertein gradient200

operator of functional F(ρ) at the density function ρ ∈ P(Rd), such that201

gradWF(ρ) := −∇ ·
(
ρ∇ δ

δρ
F(ρ)

)
,202

where δ
δρ is the L2–first variation with respect to ρ. This yields that the gradient203

descent flow in the Wasserstein-2 space satsifies204

∂ρ

∂t
= −gradWF(ρ) = ∇ ·

(
ρ∇ δ

δρ
F(ρ)

)
.205
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6 X. ZUO, S. OSHER, AND W. LI

The above PDE is also named the Wasserstein gradient descent flow, in short Wasser-206

stein gradient flows, which depend on the choices of the energy functionals F(ρ).207

An important example observed by [37] is as follows. Consider the relative entropy208

functional, also named Kullback–Leibler(KL) divergence209

F(ρ) := DKL(ρ∥π) =
∫
Rd

ρ(x) log
( ρ(x)
π(x)

)
dx .210

One can show that the Fokker-Planck equation (2.5) is the gradient flow of the relative211

entropy in (P(Rd), gW ). Upon recognizing δ
δρDKL(ρ∥π) = log

(
ρ
π

)
+1, we obtain that212

(2.5) can be expressed as213

∂ρ

∂t
=− gradWDKL(ρ∥π) = ∇ ·

(
ρ∇ log

( ρ
π

))
=∇ · (ρ∇ log ρ)−∇ · (ρ∇ log π)

=∆ρ+∇ · (ρ∇f),

(2.6)214

where we use facts that ρ∇ log ρ = ∇ρ and ∇ log π = −∇f .215

We note that the gradient of the logarithm of the density function, i.e. ∇ log ρ,216

is often called the score function. The analysis of score functions are essential in217

understanding the convergence behavior of the Fokker-Planck equation (2.5) toward218

its invariant distribution; see related analytical studies in [28].219

2.2. Nesterov’s ODEs and underdamped Langevin dynamics. Consider220

the problem of minimizing f : Rd → R for some convex function f with L-Lipschitz221

gradient. [52] proposed the following iterations:222

xk+1 = pk − h∇f(pk)(2.7a)223

pk+1 = xk+1 + γk(xk+1 − xk) ,(2.7b)224

where γk = (k − 1)/(k − 2). [52] showed that the above method converges at a rate225

of O(k−2) instead of O(k−1) which is the convergence rate of the classical gradient226

descent method. If f is further assumed to be m-strongly convex, then taking h = 1/L227

and γk = 1−
√
κ

1+
√
κ
where κ = L/m, yields a convergence rate of O

(
exp(−k/

√
κ)
)
. This228

is also considerably faster than gradient descent, which is O
(
(1−κ−1)k

)
. [57] showed229

that the continuous-time limit of Nesterov’s accelerated gradient method [52] satisfies230

a second order ODE:231

(2.8) ẍ+ γtẋ+∇f(x) = 0 .232

If f is a convex function, then γt = 3/t; if f is a m-strongly convex function, then233

γt = γ = 2
√
m. As observed in [47], (2.8) can be formulated as a damped Hamiltonian234

system:235

(2.9)

(
ẋ
ṗ

)
=

(
0

−γtp

)
+

(
0 I
−I 0

)(
∇xH(x,p)
∇pH(x,p)

)
=

(
0 I
−I −γtI

)(
∇xH(x,p)
∇pH(x,p)

)
,236

where the Hamiltonian function is defined as H(x,p) = f(x) + ∥p∥2/2, p ∈ Rd.237

On the other hand, the underdamped Langevin dynamics for sampling Π(x,p) ∝238

exp(−f(x)− ∥p∥2/2) is given by the system of SDE:239

dxt = ptdt,240

dpt = −∇f(xt)dt− γtptdt+
√

2γtdBt,241
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where γt is some damping parameter, and Bt is a d-dimensional standard Brownian242

motion. This can be reformulated as243

(2.10)

(
dxt

dpt

)
=

(
0 I
−I −γtI

)(
∇xH(x,p)
∇pH(x,p)

)
dt+

(
0 0
0

√
2γtI

)
dBt ,244

where Bt is a 2d-dimensional standard Brownian motion. Observe that by adding245

a suitable Brownian motion term (the last term on the right hand side of (2.10)) to246

(2.9), Nesterov’s accelerated gradient method for convex optimization becomes an al-247

gorithm for sampling Π(x,p) = 1
Z exp(−f(x)−∥p∥2/2), where Z :=

∫
R2d exp(−f(x)−248

∥p∥2/2)dxdp < +∞ is a noramlization constant. Moreover, the x-marginal of Π(x,p)249

is simply π(x) = 1
Z1

exp(−f(x)) up to a normalizing constant Z1 :=
∫
R2d exp(−f(x)−250

∥p∥2/2)dxdp < +∞. Therefore, (2.10) can be used to sample distributions of the251

form exp(−f(x))/Z1. We postpone the proofs in terms of Fokker-Planck equations252

and there invariant distributions in Proposition 2.1 and 2.2.253

2.3. Primal-dual damping dynamics and Hessian driven damping dy-
namics. Recently, [67] proposed to solve an unconstrained strongly convex optimiza-
tion problem using the PDHG method by considering the saddle point problem

inf
x∈Rd

sup
p∈Rd

⟨∇f(x),p⟩ − γ

2
∥p∥2 ,

where γ is a damping parameter, and f : Rd → R is m-strongly convex. Note that254

the saddle point (x∗,p∗) for the above inf-sup problem satisfies ∇f(x∗) = p∗ = 0.255

Then the primal-dual damping (PDD) algorithm [67] admits the following iterations256

pk+1 =
1

1 + τ1γ
pk +

τ1
1 + τ1γ

∇f(xk) ,257

p̃k+1 = pk+1 + ω(pk+1 − pk) ,258

xk+1 = xk − τ2C(xk)p̃k+1 ,259

where τ1, τ2 > 0 are dual and primal step sizes, ω > 0 is an extrapolation parameter,260

and C ∈ Rd×d is a preconditioning positive definite matrix that could depend on xk261

and t. The continuous-time limit of the PDD algorithm can be obtained by letting262

τ1, τ2 → 0 while keeping τ1ω → a for some a > 0. This yields a second-order ODE263

called the PDD flow:264

(2.11) ẍ+
(
γ + aC∇2f(x)− ĊC−1

)
ẋ+C∇f(x) = 0 .265

In the case when C is constant, (2.11) reads266

(2.12) ẍ+
(
γ + aC∇2f(x)

)
ẋ+C∇f(x) = 0 .267

And when C = I, the PDD flow simplifies to268

(2.13) ẍ+ γẋ+ a∇2f(x)ẋ+∇f(x) = 0 .269

This corresponds to the Hessian driven damping dynamic [3] when γ = 2
√
m. The ter-270

minology ‘Hessian driven damping’ comes from the Hessian term ∇2f(x)ẋ in (2.13),271

which is controlled by a constant a ≥ 0. When a = 0, equation (2.13) reduces to272

Nesterov’s ODE (2.8). As in dynamics (2.9), we can express equation (2.11) as273

(2.14)

(
ẋ
ṗ

)
=

(
−aC C

(γa− 1)I −γI

)(
∇xH(x,p)
∇pH(x,p)

)
,274
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8 X. ZUO, S. OSHER, AND W. LI

where as before the Hamiltonian function is H(x,p) = f(x) + ∥p∥2/2. Note that275

one of the key differences between (2.9) and (2.14) is that the top left block of the276

preconditioner matrix is nonzero in (2.14), which gives rise to the Hessian damping277

term ∇2f(x)ẋ. Throughout this paper, we focus on the dynamical system (2.14).278

2.4. Gradient-adjusted underdamped Langevin dynamics. We design a279

sampling dynamics that resembles the PDD flow and the Hessian driven damping280

with stochastic perturbations by Brownian motions. Our goal is still to sample a281

distribution proportional to exp(−f(x)) for some f : Rd → R. Let H(x,p) = f(x) +282

∥p∥2 /2. And denote by X = (x,p) ∈ R2d. We consider the following SDE.283

(2.15) dXt = −Q∇H(Xt)dt+
√
2 sym(Q)dBt ,284

where Q ∈ R2d×2d is of the form285

(2.16) Q =

(
aC −C
I γI

)
,286

for some constant a, γ ∈ R, and symmetric positive definite C ∈ Rd×d. ∇H(Xt) =287

(∇xH(Xt),∇pH(Xt))
T . And sym(Q) = 1

2 (Q+QT ) is the symmetrization of Q. We288

assume that sym(Q) is positive semidefinite.289

Throughout this paper, we will limit our discussion to a, γ ≥ 0. Bt is a 2d-290

dimensional standard Brownian motion. Observe that when a = 0, (2.15) reduces291

to underdamped Langevin dynamics (2.10). When a > 0, (2.15) has an additional292

gradient term aC∇f(xt) in the dxt equation. Thus, we call (2.15) gradient-adjusted293

underdamped Langevin dynamics. Let us examine the probability density function294

ρ(X, t) of the diffusion governed by (2.15). This is described by the following Fokker-295

Planck equation:296

(2.17)
∂ρ

∂t
= ∇ · (Q∇Hρ) +

2d∑
i,j=1

∂2

∂Xi∂Xj
(Qijρ) .297

We assume that f is differentiable and ∇f is a smooth Lipschitz vector field. This298

ensures that the Fokker-Planck equation (2.17) has a smooth solution when t > 0 for299

a given initial condition, such that ρ(X, 0) ≥ 0 and
∫
R2d ρ(X, 0)dX = 1.300

Denote by Π(X) = 1
Z e−H(X), where Z is a normalization constant such that301

Π(X) integrates to one on R2d. We show that Π(X) is the stationary distribution of302

(2.17). First, we have the following decomposition for (2.17).303

Proposition 2.1 ([28] Proposition 1). The Fokker-Planck equation (2.17) can304

be decomposed as305

(2.18)
∂ρ

∂t
= ∇ ·

(
ρ sym(Q)∇ log

ρ

Π

)
+∇ · (ρΓ) ,306

where307

Γ(X) :=sym(Q)∇ log(Π(X)) +Q∇H(X)

=
1

2
(Q−QT )∇H(X) .

(2.19)308

In particular, the following equality holds:309

∇ · (Π(X)Γ(X)) = 0.310
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The proof is presented in Appendix C. Observe that the first term on the right-hand311

side of (2.18) is a Kullback–Leibler (KL) divergence functional that appears in a312

Fokker-Planck equation associated with the overdamped Langevin dynamics (2.5).313

The second term is due to the fact that the drift term −Q∇H in (2.15) is a non-314

gradient vector field.315

Proposition 2.2. Π(X) is a stationary distribution for (2.17).316

The proof is based on a straightforward calculation: When ρ = Π, we have∇·(ρΓ) = 0,317

and therefore ∂ρ
∂t = 0. For completeness, we have included this calculation in Appen-318

dix C. This shows that Π(X) is indeed the stationary distribution of (2.17). Like319

the underdamped Langevin dynamics, the x-marginal of the stationary distribution320

is exp(−f(x)) up to some normalization constant. Therefore, (2.15) can be used for321

sampling 1
Z1

exp(−f(x)) by first jointly sampling X = (x,p) and then taking out the322

x-marginal.323

Remark 2.3. GAUL can also be viewed as a preconditioned overdamped Langevin324

dynamics on the space of (x,p) ∈ R2d. Designing optimal preconditioning matrix325

and optimal diffusion matrix have been studied in literature; see [11, 6, 32, 39, 33,326

14, 41, 40]. In particular, [41] considered the necessary condition on the optimal327

diffusion coefficient by studying the spectral gap of the generator assosiated with the328

SDE, which requires the solution to an optimization subproblem. While the problem329

considered by [41] is more general, our diffusion matrix (2.16) is much simpler and330

does not require solving an optimization problem. Another closely related work is331

[40], which considered preconditioning of the form Q = I+ J . Here I is the identity332

matrix and J is skew-symmetric, i.e. J = −JT . [40] studied the optimal J when the333

potential f is a quadratic function, which is also the focus of this work.334

Remark 2.4. In [42], the authors also studied (1.3) with C = I which they called335

Hessian-Free High-Resolution (HFHR) dynamics. They considered potential functions336

f that are L-smooth and m-strongly convex. They proved a convergence rate of337 √
m

2
√
κ

in continuous time in terms of Wasserstein-2 distance between the target and338

sample measure. [42] used the randomized midpoint method [55] combined with as339

their discretization and showed an interation complexity of Õ(
√
d/ε). Specifically,340

[42] showed that for a two-dimensional Gaussian target measure, under the optimal341

choice of parameter (damping parameter γ and step size h) for underdamped Langevin342

dynamics with Euler-Maruyama discretization, the convergence rate is O
(
(1−κ−1)k

)
.343

This rate is recovered in Corollary 3.17. On the other hand, [42] showed that under344

their choice of parameter for HRHF, the convergence rate is O
(
(1−2κ−1)k

)
, which is345

a slight improvement compared with underdamped Langevin dynamics. In this work,346

we performed a detailed eigenvalue analysis of GAUL on Gaussian target measure.347

We showed that under our choice of parameters (γ, a, h), the convergence rate towards348

the biased target measure is O
(
(1− c

√
κ)k
)
for some constant c.349

3. Analysis of GAUL on quadratic potential functions. In this section,350

we establish the convergence rate for the proposed SDE (2.17) towards the target351

distribution following a Gaussian distribution.352

3.1. Problem set-up. In this subsection, we present the main problem ad-353

dressed in this paper. We are interested in sampling from a distribution whose prob-354

ability density function is proportional to exp(−f(x)) for f : Rd → R. In this paper,355

we focus on a concrete example in which the potential function f is quadratic, and356
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10 X. ZUO, S. OSHER, AND W. LI

thus the target distribution is a Gaussian distribution. Let357

(3.1) f(x) =
1

2
xTΣ−1

∗ x,358

where x ∈ Rd and Σ∗ ≻ 0 is a symmetric positive definite matrix in Rd×d. Define359

(3.2) Σ̃ =

(
Σ∗ 0
0 I

)
.360

As in the previous section, denote by X = (x,p) ∈ R2d. And H(X) = f(x)+∥p∥2/2.361

Then, we can write362

(3.3) H(X) =
1

2
XT

(
Σ−1

∗ 0
0 I

)
X :=

1

2
XT Σ̃−1X .363

Define the target density π : R2d → R to be364

(3.4) Π(X) =
1

Z
exp(−H(X)) ,365

where H(X) is given by (3.3) and Z =
∫
R2d exp(−H(X))dX is a normalization con-366

stant such that Π(X) integrates to one on R2d. We also define the x-marginal target367

density to be368

(3.5) π(x) =
1

Z1
exp(−f(x)) ,369

where f(x) is given by (3.1) and Z1 =
∫
Rd exp(−f(x))dx is a normalization constant.370

Remark 3.1. Note that for any symmetric positive definite Σ∗, we have that
Σ−1

∗ = PΛPT for some orthogonal matrix P and diagonal matrix Λ = diag(s1, . . . , sd)
with s1 ≥ · · · sd > 0. By a change of variable y = PTx, one can rewrite f(x) in terms
of y, such that

f(x) =
1

2
xTΣ−1

∗ x =
1

2
xTPΛPTx =

1

2
yTΛy.

For simplicity of notation, we assume that P = I and Σ−1
∗ = Λ is a diagonal matrix.371

We denote by κ = s1/sd the condition number of f . We will also assume that372

s1 > 1 > sd throughout this paper. Furthermore, to simplify our analysis, we consider373

C = diag(c1, . . . , cd).374

3.2. Continuous time analysis. In this subsection, we study the convergence375

of GAUL. In particular, we analyze the convergence of the Fokker-Planck equation376

(2.17) to the target density (3.4), (3.5) by directly studying an ODE system of the377

covariance of the distribution.378

Proposition 3.2. Let Xt be the solution of (2.15) where H(X) is given by (3.3),379

and X0 ∼ N (0, I2d×2d). Then Xt ∼ N (0,Σ(t)) where the covariance Σ(t) satisfies380

the following matrix ODE:381

(3.6) Σ̇(t) = 2 sym(Q(I− Σ̃−1Σ(t))) .382

Moreover, equation (3.6) is well-defined, and has a solution for all t ≥ 0, such that383

Σ(t) is symmetric semi-positive definite.384
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The proof is postponed in Appendix C. We denote by Σij(t) ∈ Rd×d the block com-
ponents of Σ(t) ∈ R2d×2d:

Σ(t) =

(
Σ11(t) Σ12(t)
ΣT

12(t) Σ22(t)

)
.

Then we can write (3.6) in terms of the block components.385

Corollary 3.3. The componentwise covariance matrix Σij(t) satisfies the fol-386

lowing ODE system387

Σ̇11 = −2a(sym(CΣ−1
∗ Σ11)−C) + 2 sym(CΣ12) ,(3.7a)388

Σ̇22 = −2 sym(Σ−1
∗ Σ12)− 2γ(Σ22 − I) ,(3.7b)389

Σ̇12 = −aCΣ−1
∗ Σ12 − (C −CΣ22) + (I− Σ11Σ

−1
∗ )− γΣ12 ,(3.7c)390

Moreover, with initial conditions Σ11(0) = Σ22(0) = I and Σ12(0) = 0, the stationary391

states of Σ11(t), Σ22(t) and Σ12(t) are given by Σ∗, I and 0 respectively.392

From now on, we consider C = I in our analysis. We address our results for C ̸= I393

in Remark 3.10 and Remark 3.19. Note that when C = I, we have Q = sym(Q)394

is always positive semidefinite for a, γ ≥ 0. Our next theorem makes sure that the395

stationary state of equation (3.6) is actually unique and characterizes the convergence396

speed of the convariance matrix towards its stationary state.397

Theorem 3.4. Let Xt be the solution of (2.15) where H(X) is given by (3.3),398

and X0 ∼ N (0, I2d×2d). Then Σ(t) converges to the unique stationary state Σ̃ given399

in (3.2). The optimal choice of γ is given by γ∗ = asd + 2
√
sd under which we have400

∥Σ11(t) − Σ∗∥F = O(te−(2asd+2
√
sd)t) and ∥Σ22(t) − I∥F = O(te−(2asd+2

√
sd)t) for401

t ≥ 1.402

Proof. As mentioned in Remark 3.1, we consider Σ−1
∗ = Λ. By our assumption403

on X0, (3.7) implies that Σ11(t), Σ22(t) and Σ12(t) will be diagonal matrices for all404

t > 0. This simplifies the ODE system (3.7). After some manipulation, we obtain405

(3.8)Σ̇11

Σ̇22

Σ̈22

 =

−2aCΣ−1
∗ −2γCΣ∗ −CΣ∗

0 0 I
2Σ−2

∗ 2(−1− aγ)CΣ−1
∗ − 2γ2I −3γI− aCΣ−1

∗


︸ ︷︷ ︸

D

Σ11

Σ22

Σ̇22

+T ,406

where

T =

 2aC + 2γCΣ∗
0

2aγΣ−1
∗ C + 2γ2I+ 2Σ−1

∗ C − 2Σ−1
∗

 ,

And C = I. We have already seen in Corollary 3.3 that the stationary state of Σ(t)407

is Σ̃ given in (3.2). To show uniqueness, we compute the eigenvalues of D:408

λ
(i)
0 = −asi − γ ,409

λ
(i)
1 = −asi − γ −

√
γ2 − 2aγsi + si(−4 + a2si) ,410

λ
(i)
2 = −asi − γ +

√
γ2 − 2aγsi + si(−4 + a2si) ,411

where si’s are the diagonal elements of Λ for i = 1, . . . , d. It is clear that 0 is not an
eigenvalue of D. Therefore, Σ̃ is the unique stationary state for Σ(t). The convergence
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12 X. ZUO, S. OSHER, AND W. LI

speed of (3.8) is essentially controlled by the largest real part of the eigenvalues of D.
Note that for all i,

ℜ(λ(i)
2 ) ≥ ℜ(λ(i)

0 ) ≥ ℜ(λ(i)
1 ) ,

where ℜ(z) denotes the real part of z ∈ C. Therefore, to characterize the convergence

speed of (3.8), it suffices to control maxi ℜ(λ(i)
2 ). By Lemma B.7, we know that for

any given a ≥ 0, the optimal choice of γ is

γ∗ = argmin
γ>0

max
i

ℜ(λ(i)
2 ) = asd + 2

√
sd .

With γ = γ∗, we get that

max
i,j

ℜ(λ(i)
j ) ≤ max

i
ℜ(λ(i)

2 ) ≤ −2asd − 2
√
sd .

This leads to412

(3.9)

∥∥∥∥∥∥
Σ11(t)− Σ∗

Σ22(t)− I

Σ̇22(t)

∥∥∥∥∥∥
F

≤ C1te
−(2asd+2

√
sd)t ,413

which is valid for t ≥ 1. The constant C1 depends on d, s1, s
−1
d at most polynomially

according to Lemma B.8. Note that the extra t dependence comes from the repeated

eigenvalue λ
(d)
0 = λ

(d)
1 = λ

(d)
2 when γ = γ∗. By a triangle inequality, we get

∥Σ11 − Σ∗∥F ≤

∥∥∥∥∥∥
Σ11(t)− Σ∗

Σ22(t)− I

Σ̇22(t)

∥∥∥∥∥∥
F

≤ C1te
−(2asd+2

√
sd)t .

And similarly,

∥Σ22 − I∥F ≤ C1te
−(2asd+2

√
sd)t .

Remark 3.5. The choice a = 0 corresponds to underdamped Langevin dynamics414

(UL). Taking a > 0 gives an extra factor of e−2asdt in terms of convergence.415

Definition 3.6 (Mixing time). The total variation between two probability mea-
sures P and Q over a measurable space (Rd,F) is

TV(P,Q) = sup
A∈F

|P(A)−Q(A)| .

Let Tp be an operator on the space of probability distributions. Assume that T k
p (ν0) →

ν as k → ∞ for some initial distribution ν0 and stationary distribution ν. The discrete
δ-mixing time (δ ∈ (0, 1)) is given by

tdismix(δ; ν0, ν) = min{k |TV(T k
p (ν0), ν) ≤ δ} .

Similarly, if Tp(t; ·) is an operator for each t ≥ 0 with Tp(0; ·) = id(·) and assume that
Tp(t; ν0) → ν as t → ∞. The continuous δ-mixing time (δ ∈ (0, 1)) is given by

tcontmix (δ; ν0, ν) = min{t |TV(Tp(t; ν0), ν) ≤ δ} .
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Theorem 3.7 ([24]). Let µ ∈ Rd, Σ1, Σ2 be two positive definite covariance ma-
trices, and λ1, . . . , λd denote the eigenvalues of Σ−1

1 Σ2 − I. Then the total variation
satisfies

TV(N (µ,Σ1),N (µ,Σ2)) ≤
3

2
min

1,

√√√√ d∑
i=1

λ2
i

 .

A straightforward corollary follows from Schur decomposition theorem.416

Corollary 3.8. We have

TV(N (µ,Σ1),N (µ,Σ2)) ≤
3

2
min

{
1, ∥Σ−1

1 Σ2 − I∥F
}
.

Using Theorem 3.4 and Corollary 3.8, we obtain the following mixing time theorem417

when the potential function f is quadratic.418

Theorem 3.9 (Continuous mixing time). Consider the same setting as in The-
orem 3.4. Consider 0 < δ ≪ 1. Then

tcontmix (δ; ν0, π) ≤
O(log(d) + log(κ)) + log(1/δ)

asd + 2
√
sd

.

Here ν0 is the distribution of x, which is N (0, Id×d). π is the target density in the x419

variable given in (3.5).420

Proof. We shall use Corollary 3.8 with

Σ1 = Σ∗ , Σ2 = Σ11(t) .

We have421

∥Σ−1
1 Σ2 − I∥F =

∥∥Σ−1
∗ (Σ11(t)− Σ∗)

∥∥
F

422

≤ C1te
−(2asd+2

√
sd)ts1 .423

By a direct computation, we get424

tcontmix (δ; ν0, π) ≤
log(C̃1/δ)

asd + 2
√
sd

,425

where C̃1 = 3
2C1s1. By Lemma B.8, we have that

tcontmix (δ; ν0, π) ≤
O(log(dκ)) + log(1/δ)

asd + 2
√
sd

.

Remark 3.10. When C = diag(c1, . . . , cd) and sym(Q) ⪰ 0 in (2.16), our proof
can be easily adapted to show similar results in Theorem 3.9:

tcontmix (δ; ν0, π) ≤
O(log(d) + log(κ̂)) + log(1/δ)

aŝd + 2
√
ŝd

,

where ŝi is the i-th largest eigenvalue of matrix CΣ−1
∗ . And κ̂ = ŝ1/ŝd. In other426

words, the matrix C can be viewed as a preconditioner for the target covariance427

matrix in the sampling problem.428
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3.3. Discrete time analysis. To implement (2.15), we need to consider its time429

discretization. As discretization is not the focus of this paper, we will only analyze430

the simplest discretization using the Euler-Maruyama method in Appendix A.431

Let us first make a few observations regarding the discretization in Appendix A.432

After a straightforward computation, we obtain the following update rule.433

Proposition 3.11. The Euler-Maruyama discretization of (2.15) given in Ap-434

pendix A with step size h can be written in the following form435 (
xn+1

pn+1

)
= A

(
xn

pn

)
+Lz ,(3.10)436

where437

(3.11) A = I2d×2d − h

(
aΛ −Id×d

Λ γId×d

)
︸ ︷︷ ︸

G

, L =

(√
2ahI 0
0

√
2γhI

)
.438

And z is a 2d-dimensional Brownian motion, i.e., z ∼ N (0, I2d×2d).439

Using (3.10), we can derive the evolution of the mean and covariance at each time440

step. As before, let us denote by Xn = (xn,pn).441

Corollary 3.12. Suppose that E(x0) = E(p0) = 0. Then

cov(Xn+1,Xn+1) = Acov(Xn,Xn)A
T +LLT .

Proof. From (3.10), it is clear that E(xn) = E(pn) = 0 for all n ≥ 0. We calculate442

cov(Xn+1,Xn+1) = E
(
AXnX

T
n A

T +AXnz
TLT +LzXT

n A
T +LzzTLT

)
443

= Acov(Xn,Xn)A
T +LLT .444

Corollary 3.13. Denote by Y∗ a solution to the fixed point equation Y =
AY AT +LLT . And let Yn = cov(Xn,Xn)− Y ∗. Then

Yn+1 = AYnA
T .

Theorem 3.14. Suppose a ≥ 2√
s1−

√
sd

and the step size h satisfies 0 < h <

1/(as1 + γ) and γ = γ∗ = asd + 2
√
sd. Then there exists a unique Y ∗ satisfying

Y ∗ = AY ∗AT +LLT .

Moreover, the iteration Yk+1 = AYkA
T + LLT converges to Y ∗ linearly: ∥Yk −445

Y ∗∥F ≤ C̃h2k2(1− h
2 (asd +

√
sd))

2k−2, where the constant C̃ = d2 · O(poly(κ)).446

Proof. Existence: we directly compute this stationary point in Lemma B.17.447

Uniqueness: by Lemma B.14 and Corollary B.10 we see that Y ∗ is unique. The448

convergence rate is proved in Lemma B.14 and Theorem B.16.449

Theorem 3.15 (Discrete mixing time). Suppose
√
s1−

√
sd ≥ 2. We take a = 1,450

γ = γ∗ = sd + 2
√
sd, h = 1/5s1. If we use the Euler-Maruyama scheme for (2.15),451

then for 0 < δ ≪ 1,452

(3.12) tdismix(δ; ν0, π̃) = O

(
log(κ) + log(1/δ) + log(d)

1
κ + 1√

κs1

)
.453

Here ν0 is the distribution of x, which is N (0, Id×d). π̃ is the target density in the x454

variable which is a zero mean Gaussian distribution with a variance given by (B.24).455
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Proof. Note that from our previous notation, we have that

cov(xk,xk) =
(
Id×d 0

)
cov(Xk,Xk)

(
Id×d

0

)
=: Ỹk .

Moreover, let us define

Ỹ ∗ =
(
Id×d 0

)
Y ∗
(
Id×d

0

)
to be the limiting covariance in the x variable for the discretization (Y ∗ is defined in456

Theorem 3.14). Clearly, we have that457

(3.13) ∥Ỹk − Ỹ ∗∥F ≤ ∥Yk − Y ∗∥F ≤ C̃h2k2(1− h

2
(asd +

√
sd))

2k−2 .458

Using Corollary 3.8, we compute459

∥(Ỹ ∗)−1Ỹk − I∥F = ∥(Ỹ ∗)−1(Ỹk − Ỹ ∗)∥F460

≤ ∥(Ỹ ∗)−1∥F∥Ỹk − Ỹ ∗∥F .461

By Lemma B.17, Ỹ ∗ is a diagonal matrix. Therefore (Ỹ ∗)−1 is also a diagonal matrix.462

Moreover, from (B.24), we see that ∥(Ỹ ∗)−1∥F ≤
√
dO(poly(κ)). Therefore, we obtain463

∥(Ỹ ∗)−1Ỹk − I∥F ≤ d5/2 · O(poly(κ))h2k2(1− h

2
(sd +

√
sd))

2k−2
464

≤ d5/2 · O(poly(κ))h2k2e−(k−1)h(sd+
√
sd) ,465

where we used 1− x ≤ e−x for x ∈ R to get the second inequality. Letting h = 1/5s1
and taking logarithm on both hand sides, we conclude that

tdismix(δ; ν0, π̃) ≤
O(log(d)) +O(log(κ)) + log(1/δ)

1
10 (

1
κ + 1√

κs1
)

.

Theorem 3.16 (A better choice of a). The denominator of the mixing time given466

in Theorem 3.15 can be improved to κ−1/2 by choosing a = 2√
s1−

√
sd
, γ = asd +2

√
sd467

and h = 1
2(as1+γ) . To be more precise, we have468

(3.14) tdismix(δ; ν0, π̃) = O

(
log(κ) + log(1/δ) + log(d)

1√
κ

)
.469

Proof. The proof will be very similar to that of Theorem 3.15. We start with470

(3.13). And we can explicitly calculate471

1− h

2
(asd +

√
sd) = 1−

asd +
√
sd

4(as1 + asd + 2
√
sd)

472

= 1−
2sd +

√
sd(

√
s1 −

√
sd)

8(s1 + sd +
√
sd(

√
s1 −

√
sd))

473

= 1−
√
s1sd + sd

8(s1 +
√
s1sd)

474

≤ 1− 1

16
√
κ
.475

The rest of the proof is the same as the proof of Theorem 3.15 and we will suppress476

it for brevity.477
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The following corollary follows from Lemma B.15 and the proof of Theorem 3.15.478

Corollary 3.17 (Underdamped Langevin mixing time). Suppose a = 0, γ =479

2
√
sd, h =

√
sd/s1. If we use the Euler-Maruyama scheme for (2.15), then for 0 <480

δ ≪ 1,481

(3.15) tdismix(δ; ν0, π̃) = O
(
log(κ) + log(1/δ) + log(d)

1
κ

)
,482

ν0 is the distribution of x, which is N (0, Id×d). π̃ is the target density in the x483

variable which is a zero mean Gaussian with variance given by (B.24) with a = 0.484

Remark 3.18. a = 0 in (2.15) corresponds to the underdamped Langevin dynam-485

ics. In this case, we show in Lemma B.15 that to guarantee convergence (to a biased486

target) the step size restriction on h is more strict than when a = 1. In particular,487

when a = 0 it follows from Lemma B.15 that the choice h = 1/5s1 does not guarantee488

convergence if sd < 10−2. Comparing (3.14) and (3.15), we see that the mixing time489

for GAUL beats that of underdamped Langevin dynamics under the Euler-Maruyama490

discretization. We are aware that this does not imply the same result will hold when491

comparing the mixing time towards the true target distribution π(x) given in (3.5),492

due to the presence of bias in the Euler-Maruyama scheme. Designing better dis-493

cretization and reducing the bias in the stationary distribution is left as future works.494

Remark 3.19. When C = diag(c1, . . . , cd) and sym(Q) ⪰ 0 in (2.16), we also have495

a similar mixing time described in Theorem 3.16, which is496

O
(√

κ̂(log(κ̂) + log(1/δ) + log(d))
)
when a = 2√

ŝ1−
√
ŝd
, γ = aŝd + 2

√
ŝd and h =497

1
2(aŝ1+γ) . The notation ŝi and κ̂ are defined in Remark 3.10.498

Remark 3.20. When the target potential f is not a quadratic function, it is more499

technical in proving the convergence speed. A common technique to prove convergence500

in the Wasserstein-2 distance is by a coupling argument (see [16, 22]). [9] proved L2501

convergence under a Poincarè-type inequality using Bochner’s formula. In the L1502

distance and KL divergence, [28] design convergence analysis towards these problems.503

We leave the convergence analysis of general f with optimal choices of preconditioned504

matrices Q in future works.505

4. Numerical experiment. In this section, we implement several numerical506

examples to compare the proposed SDE with the overdamped (labeled ‘ol’) and un-507

derdamped (labeled ‘ul’) Langevin dynamics. We use the same step size for all three508

algorithms. Recall that ‘ol’ corresponds to the choice a = 1, γ = 0 and ‘ul’ corresponds509

to a = 0 in (2.15). We set C = I.510

4.1. Gaussian examples.511

4.1.1. One dimension. We begin with a simple example, a one dimensional512

Gaussian distribution with zero mean. In Figure 1, we consider two cases where the513

variances are given by 0.01 and 100 respectively. We first sample M = 105 particles514

from N (0, I2×2) (although our experiment is in one dimension, we need both x and p515

variables). When measuring the convergence speed, we use KL divergence in Gaussian516

distributions to measure the change of covariances. Note that we will only measure517

the KL divergence in the x variable, since we are primarily interested in sampling518

distribution of the form 1
Z e−f(x). In this experiment, we can make use of the fact519

that the sample distribution and the target distribution are both Gaussians. And the520
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KL divergence between two centered Gaussians has a closed form expression:521

(4.1) DKL(Σ(t), Σ̃) =
1

2

(
tr(Σ(t)Σ̃−1)− log det(Σ(t)Σ̃−1)− d

)
.522

In this one dimensional example, we study two cases where Σ̃ = 0.01 or 100.523

Σ(t) can be approximated by the unbiased sample variance. For Σ̃ = 0.01, we choose524

time step size h = 10−4, total number of steps N = 400, γul = 2Σ̃−1/2 = 20,525

γpdd = 2Σ̃−1/2 + Σ̃−1 = 120. For Σ̃ = 100, we choose the time step size h = 10−2,526

total number of steps N = 600, γul = 2Σ̃−1/2 = 0.2, γpdd = 2Σ̃−1/2 + Σ̃−1 = 0.21. In527

Figure 1, we observe that our proposed method outperforms both overdamped and528

underdamped Langevin dynamics in both cases.
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Fig. 1: Convergence and density comparisons of three methods. (a) and (c): KL di-
vergence between the sample and the target distribution, which is a one-dimensional
Gaussian with zero mean and variance 0.01 (a), 100 (c). ‘ol’ represents overdamped
Langevin dynamics; ‘ul’ represents underdamped Langevin dynamics. x-axis repre-
sents time and y-axis is in log10 scale. (b) and (d): density comparison at the end of
the experiment between the three methods and the true density.

529

4.1.2. 20 dimensions. Let the target distribution be a 20-dimensional Gaussian530

with zero mean and covariance given by a diagonal matrix with entries 0.05 + 5i for531

i = 0, . . . , 19. The last dimension has the largest variance, which is σ2
max = 95.05.532

Therefore, we choose a = 2

σ
−1/2
min −σ

−1/2
max

, γul = 2σ−1
max and γpdd = 2σ−1

max + aσ−2
max. In533

this experiment, we use (1) time step size h = 5 × 10−3 and run for 4000 steps; (2)534

time step size h = 5 × 10−2 and run for 400 steps. The KL divergence can still be535

computed using (4.1). To visualize the final distribution in a two-dimensional plane,536

we plot the scatter plot of the samples in the first and the last dimensions. All results537

are presented in Figure 2.538

4.2. Mixture of Gaussian.539

4.2.1. Strongly log-concave. Consider the problem of sampling from a mix-540

ture of Gaussian distributions N (α, I) and N (−α, I), whose density satisfies:541

p(x) =
1

2(2π)d/2

(
e−∥x−α∥2

2/2 + e−∥x+α∥2
2/2
)
.542

The corresponding potential is given as543

(4.2) f(x) =
1

2
∥x− α∥22 − log

(
1 + e−2x⊤α

)
,544
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Fig. 2: Convergence and scatter plots. (a)–(d): h = 0.005. (e)–(h): h = 0.05. (a) and
(e): KL divergence between the sample and target distribution. The x-axis represents
time and the y-axis is in log10 scale. Rest panels: scatter plot of the three methods
at the end of the experiment for different step sizes. Contours of the true density are
also provided for comparisons. In (g) there are no scatter points shown as ‘ul’ does
not converge for this choice of h.

545

(4.3) ∇f(x) = x− α+ 2α(1 + e2x
⊤α)−1.546

Following [27, 20], we set α = (1/2, 1/2) and d = 2. This choice of parameters547

yields strong convexity parameter m = 1/2 and Lipschitz constant L = 1. We choose548

a = 2√
L−

√
m
, γul = 2m1/2 and γpdd = 2m1/2 + am. Initially particles are sampled549

from N (0, I). We use time step h = 2× 10−4 and run for 2000 steps. We use 5× 105550

particles and n2 = 2500 bins to approximate the KL divergence between the sample551

points and the target distribution (see Remark 4.1). The results are shown in Figure 3.552

553

Remark 4.1. To compute the KL divergence between sample points and a non-554

Gaussian target distribution in two dimension, we first get the 2d histogram of the555

samples points using n2 bins (n in each dimension). We then use this 2d histogram as556

an approximation of the empirical distribution of the samples. Similarly, we can get557

a discretized target distribution by evaluating the target distribution at the center of558

each bins. Finally, we can compute the discrete KL divergence using n2 values from559

the histogram and the discretized target distribution.560

4.2.2. Non log-concave . We also consider the same example as in Subsec-561

tion 4.2.1 with α = (3, 3). As the distance between the two Gaussians increases, the562

target density is no longer log-concave. We use time step size h = 10−3 and run for563

2000 steps. We use a = 1, γul =
√
2, and γpdd =

√
2 + 1/2. We use 5× 105 particles564

and n2 = 2500 bins to evaluate the KL divergence. The results are demonstrated in565

Figure 4.566
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Fig. 3: Convergence and scatter plots. (a): KL divergence between the sample and
target distribution, which is a mixture of two unit variance Gaussians located at
(1/2, 1/2) and (−1/2,−1/2). x-axis represents time and y-axis is in log10 scale. (b)–
(d): scatter plot of the three methods a the end of the experiment. Contour of the
true density is also provided for comparison.
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Fig. 4: Convergence and scatter plots for mixture of Guassians centered at (3, 3) and
(−3,−3).

4.3. Quadratic cosine. Consider a potential function given by a quadratic
function and a cosine term:

f(x) =
1

2
xTB−1x− cos(cTx)

where B = P diag(1, 25)P T for an orthogonal matrix P and c =
√
0.95 (1, 1)T .567

Here P is generated by using torch.linalg.qr(torch.randn(d)) in Pytorch, where d = 2568

is the dimension. We set a = 1, γul = 2m1/2 and γpdd = 2m1/2 + m where we569

choose m = 1/25. We use time step size h = 10−2 and run for 1000 steps. We use570

5× 105 particles and n2 = 2500 bins to evaluate the KL divergence. The results are571

demonstrated in Figure 5.572

4.4. Bimodal. We consider a two-dimensional bimodal distribution studied in
[64] whose target density has the following form:

p(x) ∝ exp
(
− 2(∥x∥ − 3)2

)[
exp

(
− 2(x1 − 3)2

)
+ exp

(
− 2(x1 + 3)2

)]
.

The corresponding potential function is given by

f(x) = 2(∥x∥ − 3)2 − 2 log
[
exp

(
− 2(x1 − 3)2

)
+ exp

(
− 2(x1 + 3)2

)]
.
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Fig. 5: Convergence and scatter plots for the quadratic cosine example.
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Fig. 6: Convergence and scatter plots for the bimodal example.

The gradient is573

∇f(x) =
4(x1 − 3) exp

(
− 2(x1 − 3)2

)
+ 4(x1 + 3) exp

(
− 2(x1 + 3)2

)
exp

(
− 2(x1 − 3)2

)
+ exp

(
− 2(x1 + 3)2

) e1574

+ 4
(∥x∥ − 3)x

∥x∥
,575

where e1 = (1, 0)T is the first standard coordinate vector. We set γul = 2m1/2 and576

γpdd = 2m1/2 + m where we choose m = 1/2. We use time step size h = 10−3 and577

run for 500 iterations. We use 106 particles and n2 = 2500 bins to evaluate the KL578

divergence. The results are shown in Figure 6.579

4.5. Bayesian logistic regression. We consider the Bayesian logistic regres-580

sion problem studied in [27, 20, 60]. We give a brief description of the problem.581

Suppose we are given a feature matrix X ∈ Rn×d with rows xi ∈ Rd. Correspond-582

ingly we are given Y ∈ {0, 1}n the binary response vector for each of the covariates583

in our feature matrix. The logistic model for the probability of yi = 1 given xi ∈ Rd584

and a parameter θ ∈ Rd is585

(4.4) P(yi = 1|xi, θ) =
exp(θTxi)

1 + exp(θTxi)
.586

Suppose we impose a prior distribution on the parameter θ ∼ N (0,ΣX), where
ΣX = 1

nX
TX is the sample covariance of X. Then the posterior distribution for θ

can be calculated by

p(θ|X,Y ) ∝ exp
[
Y TXθ −

n∑
i=1

log
(
1 + exp(θTxi)

)
− α

2
θTΣXθ

]
,
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Fig. 7: Convergence and scatter plots for Bayesian logistic regression.

where α > 0 is a regularization parameter. The potential function is

f(θ) = −Y TXθ +

n∑
i=1

log
(
1 + exp(θTxi)

)
+

α

2
θTΣXθ .

Its gradient is

∇f(θ) = −XTY +

n∑
i=1

xi

1 + exp(−θTxi)
+ αΣXθ .

As shown in [27], the Hessian of f is upper bounded by L = (0.25n+α)λmax(ΣX) and587

lower bounded by m = αλmin. To generate X and Y , we set xi,j to be independent588

Rademacher random variables for each i and j. And each yi is generated according589

to (4.4) with θ = θ∗ = (1, 1)T . We set α = 0.5, d = 2, n = 50, γul = 2m1/2590

and γpdd = 2m1/2 + m. To sample the posterior distribution, we use time step591

size h = 10−3 and run for 400 iterations. The initial distribution of particles is592

N (0, L−1I). As for evaluation metric, we directly evaluate the KL divergence between593

the sampled posterior and the true posterior. We use 106 particles and n2 = 2500 bins594

to evaluate the KL divergence as before. This is different from the choice by [27] and595

[60], where [27] compared the samples with θ∗. [60] compared samples with the true596

minimizer of f(θ), i.e. the maximum a posteriori (MAP) estimate in the Bayesian597

optimization literature. We believe that directly measuring the KL divergence gives a598

better understanding of how ‘close’ our samples are to the true posterior distribution.599

The results are presented in Figure 7.600

4.6. Bayesian neural network. In this section, we compare GAUL with over-601

damped (‘ol’) and underdamped Langevin (‘ul’) dynamics in training Bayesian neural602

network. We test a one-hidden-layer fully connected neural network with 50 hidden603

neurons and ReLU activation function on the UCI concrete dataset. We use h = 10−3,604

a = 0.1, γ = 0.5. For each method, we sample M = 20 particles (each particle corre-605

sponds to a neural network) and take the average output as the final output. Figure 8a606

and Table 1 show the rMSE averaged over 10 experiments. We see that ‘ul’ can achieve607

smaller training and validation error than ‘ol’. However, ‘ul’ also exhibits a slow start608

and an oscillatory behavior at the beginning of training as is commonly seen in ac-609

celeration methods in optimization. GAUL can get rid of the oscillation and achieve610

a even smaller training and validation error as is demonstrated in Table 1. We have611

also tested out the three methods using the Combined Cycle Power Plant (CCPP)612

dataset. We choose the same parameter as the concrete experiment. The results are613

presented in Figure 8b and Table 1.614

This manuscript is for review purposes only.



22 X. ZUO, S. OSHER, AND W. LI

0 100 200 300 400 500

6

8

10

12

14

16
ol_tr
ol_val
ul_tr
ul_val
ours_tr
ours_val

(a) Concrete dataset

0 10 20 30 40 50
4

6

8

10

12

14

16

18 ol_tr
ol_val
ul_tr
ul_val
ours_tr
ours_val

(b) CCPP dataset

Fig. 8: Convergence comparison. x-axis represents number of epochs. y-axis repre-
sents rMSE averaged over 10 experiments.

ol ul gaul

concrete tr err 6.39± 0.44 6.23± 0.15 5.74± 0.06
concrete val err 6.76± 0.49 6.28± 0.24 5.90± 0.14

ccpp tr err 4.84± 0.22 4.48± 0.11 4.28± 0.03
ccpp val err 4.63± 0.25 4.25± 0.11 4.04± 0.04

Table 1: Training and validation rmse.

5. Conclusions. In this work, we introduced gradient-adjusted underdamped615

Langevin dynamics (GAUL) inspired by primal-dual damping dynamics and Hessian-616

driven damping dynamics. We demonstrated that GAUL admitted the correct sta-617

tionary target distribution π ∝ exp(−f) under appropriate conditions and achieves618

exponential convergence for quadratic functions, outperforming both the overdamped619

and underdamped Langevin dynamics in terms of convergence speed. Our numerical620

experiments further illustrate the practical advantages of GAUL, showcasing faster621

convergence and more efficient sampling compared to classical methods, such as over-622

damped and underdamped Langevin dynamics.623

We also note a connection between the primal-dual damping dynamics and GAUL.624

A key challenge in the primal-dual damping algorithm is the design of preconditioner625

matrices, which can accelerate the algorithm’s convergence compared to the gradient626

descent method. In the context of solving a linear problem where f is a quadratic627

function and the diffusion constant is zero, [67] demonstrates that the convergence628

rate depends on the square root of the smallest eigenvalue. In this paper, we extend629

the study from a sampling perspective, where f is also a quadratic function but the630

diffusion is non-zero. Towards a Gaussian target distribution, GAUL converges to a631

biased target distribution with the mixing time depending on
√
κ. This is in contrast632

with overdamped and underdamped Langevin sampling algorithms.633

Several possible future directions are worth exploring. First, can we show that634

GAUL converges faster than overdamped and underdamped Langevin dynamics for635

more general potentials, which is beyond the current study of Gaussian distributions?636
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One common assumption is that the potential f is strongly log-concave [8, 17, 18,637

19, 25, 27, 34, 38, 42]. Recently, [9] proved that for a class of distributions that638

satisfy a Poincaré-type inequality, underdamped Langevin dynamics converges in L2639

with rate exp(−
√
mt) where m is the Poincaré constant. Then it is interesting to640

study for the same class of distributions, whether GAUL could converge at an even641

faster rate. Another direction is to study the convergence of GAUL under different642

metrics. From a more practical perspective, designing new time discretization schemes643

[55, 16, 50, 60, 42] for implementing GAUL is also an important direction. We proved644

that using the Euler-Maruyama discretization, GAUL will converge to a biased target645

distribution, which is not surprising since ULA is also biased. Therefore, another646

promising direction could be to combine GAUL with MCMC methods [7, 27], such as647

Metropolis-Hastings algorithms, to design a hybrid method with accept/reject options648

so that the algorithm converges to the correct target distribution in the discrete-649

time update. Finally, choosing the preconditioner C to accelerate convergence is an650

important topic. The difficulty of picking C arises from the positive semidefinite651

constraint on sym(Q) in (2.16), which we should explore in future work.652

Appendix A. Euler-Maruyama Discretization. The Euler-Maruyama653

scheme of (2.15) with step size h and C = I reads654

xt+1 = xt − a∇f(xt)h+ pth+
√
2ahz(1) ,(A.1a)655

pt+1 = pt −∇f(xt)h− γpth+
√

2γhz(2) .(A.1b)656

z(i) is a standard Gaussian random variable for i = 1, 2.657

Appendix B. A matrix lemma. Let a ≥ 0, s > 0, γ > 0, and consider the658

3× 3 matrix659

(B.1) D =

−2as −2γs−1 −s−1

0 0 1
2s2 2(−1− aγ)s−1 − 2γ2 −3γ − as

 .660

A direct calculation shows that the eigenvalues are given by661

λ0(a, γ, s) = −as− γ ,(B.2a)662

λ−(a, γ, s) = −as− γ −
√
γ2 − 2aγs+ s(−4 + a2s) ,(B.2b)663

λ+(a, γ, s) = −as− γ +
√
γ2 − 2aγs+ s(−4 + a2s) .(B.2c)664

We have the following lemmas regarding the eigenvalues given by (B.2).665

Lemma B.1. Let D be as (B.1). If a = 0, then

argmin
γ>0

ℜ
(
λ+(0, γ, s)

)
= 2

√
s .

Proof. We have that λ+(0, γ, s) =
1
2

(
−γ +

√
γ2 − 4s

)
. If γ ≤ 2

√
s, then ℜ

(
λ+(0, γ, s)

)
≥666

−
√
s. When γ ≥ 2

√
s, we have that ℜ

(
λ+(0, γ, s)

)
= λ+(0, γ, s). And ∂

∂γλ+(0, γ, s) ≥667

0. Therefore, the minimum of ℜ
(
λ+(0, γ, s)

)
takes place at γ = 2

√
s.668

Lemma B.2. Let D be as (B.1). Let γ > 0 be fixed. Then669

(B.3) argmin
a>0

ℜ
(
λ+(a, γ, s)

)
=

γ

s
+

2√
s
.670
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Proof. Let us define ∆(a) = γ2 − 2aγs + s(a2s − 4). It can be seen that ∆ is a
quadratic function of a. The two roots of ∆ are given by

a± =
γ

s
± 2√

s
.

When a ∈ [a−, a+], ∆(a) ≤ 0 and

ℜ
(
λ+(a, γ, s)

)
=

1

2
(−γ − as) ≥ 1

2
(−γ − a+s) = ℜ

(
λ+(a+, γ, s)

)
= −γ −

√
s .

When a < a−, we can calculate that

∂

∂a
λ+(a, γ, s) = −s+

−γs+ as2√
∆

< 0 .

This implies that λ+(a− − ε, γ, s) > λ+(a−, γ, s) for any ε > 0. Similarly, when671

a > a+, we have that
∂
∂aλ+(a, γ, s) > 0. Thus, λ+(a+ + ε, γ, s) > λ+(a−, γ, s) for any672

ε > 0. Combining the above results, we conclude our proof.673

Lemma B.3. Let D be as (B.1). Let a > 0 be fixed. Then674

(B.4) argmin
γ>0

ℜ
(
λ+(a, γ, s)

)
= as+ 2

√
s .675

Proof. The proof will be similar to that of Lemma B.2. This time we define
∆(γ) = γ2 − 2aγs+ s(a2s− 4). It can be seen that ∆(γ) is a quadratic function of γ.
The two roots of ∆(γ) are given by

γ± = as± 2
√
s .

When γ ∈ [γ−, γ+],∆(γ) < 0 and

ℜ
(
λ+(a, γ, s)

)
=

1

2
(−γ − as) ≥ 1

2
(−γ+ − as) = ℜ

(
λ+(a, γ+, s)

)
= −as−

√
s .

When γ < γ−, we have676

∂

∂γ
λ+(a, γ, s) = −1 +

γ − as√
(γ − as)2 − 4s

677

≤ −1 < 0 ,678

since γ − as < 0. When γ > γ+, we have679

∂

∂γ
λ+(a, γ, s) = −1 +

γ − as√
(γ − as)2 − 4s

680

≥ −1 + 1 = 0 .681

Combining the above arguments, we conclude that the optimal γ is γ+.682

We now turn to a more general setting. Let a ≥ 0, γ > 0 and define683

(B.5) D =

−2aS −2γS−1 −S−1

0 0 I
2S2 2(−1− aγ)S−1 − 2γ2I −3γI− aS

 ,684

where now S is a diagonal matrix whose diagonal is given by s1 ≥ s2 ≥ . . . ≥ sd > 0.685

And I is the identity matrix. Just like Lemma B.1, Lemma B.2, and Lemma B.7 we686

want to characterize the eigenvalues of D. In particular, we would like to characterize687

the largest real part of the eigenvalue of D in terms of a and γ.688
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Proposition B.4. The eigenvalues for D are given by689

λ
(i)
0 (a, γ,S) = −asi − γ ,(B.6a)690

λ
(i)
− (a, γ,S) = −asi − γ −

√
γ2 − 2aγsi + si(−4 + a2si) ,(B.6b)691

λ
(i)
+ (a, γ,S) = −asi − γ +

√
γ2 − 2aγsi + si(−4 + a2si) ,(B.6c)692

for i = 1, . . . , d. The corresponding eigenvectors are sparse and take the following693

form. (Here we only write out the non-zero part of the eigenvectors)694

v
(i)
0,i =

−1

si(γ + asi)
,(B.7a)695

v
(i)
0,i+d =

−1

γ + asi
,(B.7b)696

v
(i)
0,i+2d = 1 ,(B.7c)697

698

v
(i)
−,i =

2γ −
√
γ2 − 2aγsi + si(a2si − 4)− 2(γ2+si+aγsi)

γ+asi+
√

γ2−2aγsi+si(a2si−4)

2s2i
,(B.8a)699

v
(i)
−,i+d =

−1

γ + asi +
√
γ2 − 2aγsi + si(a2si − 4)

,(B.8b)700

v
(i)
−,i+2d = 1 ,(B.8c)701

702

v
(i)
+,i =

2γ +
√

γ2 − 2aγsi + si(a2si − 4)− 2(γ2+si+aγsi)

γ+asi−
√

γ2−2aγsi+si(a2si−4)

2s2i
,(B.9a)703

v
(i)
+,i+d =

−1

γ + asi −
√
γ2 − 2aγsi + si(a2si − 4)

,(B.9b)704

v
(i)
+,i+2d = 1 .(B.9c)705

In the above, v
(i)
∗,j represents the j-th component of the eigenvector corresponding to706

the eigenvalue λ
(i)
∗ , where ∗ ∈ {0,+,−}.707

Moreover, when γ is chosen according to Lemma B.7, we have a defective eigen-708

value λ
(d)
0 = λ

(d)
± = −asd − γ, which is accompanied with two generalized eigenvectors709

η, ξ that satisfy (D − λ
(d)
0 )η = v

(d)
0 , (D − λ

(d)
0 )ξ = v

(d)
0 . In details, the nonzero710

components of v
(d)
0 , η and ξ are given by711

v
(d)
0,d =

−1

sd(γ + asd)
,(B.10a)712

v
(d)
0,2d =

−1

γ + asd
,(B.10b)713

v
(d)
0,3d = 1 ,(B.10c)714

715

ηd =
γ − as

2s2d
,(B.11a)716

η3d = 1 ,(B.11b)717
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718

ξd =
γ2 − (1 + aγ)sd

s2d
,(B.12a)719

ξ2d = 1 .(B.12b)720

Proof. One can directly verify that the above computation gives an eigensystem721

for D.722

From the sparsity structure of v
(j)
± and v

(j)
0 , we immediately have the following corol-723

lary.724

Corollary B.5. v
(j)
∗ is orthogonal to v

(k)
⋆ for ∗, ⋆ ∈ {0,+,−} if j ̸= k.725

Lemma B.6. Let D be as (B.5). If a = 0, then726

(B.13) argmin
γ>0

max
j

ℜ(λ(j)
+ (0, γ,S)) = 2

√
sd .727

Proof. Plugging a = 0 into (B.6) we have

λ
(j)
+ (0, γ,S) =

1

2

(
−γ +

√
γ2 − 4sj

)
.

We first note that since sd ≤ sd−1 ≤ . . . ≤ s1, if γ ≤ 2
√
sd then ℜ(λ(j)

+ (0, γ,S)) =
−γ/2 for all 1 ≤ j ≤ d. In particular, this implies that

argmin
0<γ≤2

√
sd

max
j

ℜ(λ(j)
+ (0, γ,S)) = 2

√
sd .

We then need to show that if γ > 2
√
sd, maxj ℜ(λ(j)

+ (0, γ,S)) > −√
sd. This will be

very similar to the argument in the proof of Lemma B.1. Now consider γ > 2
√
sd.

We showed in the proof of Lemma B.1 that ℜ
(
λ
(n)
+ (0, γ,S)

)
= λ

(n)
+ (0, γ,S). And

∂
∂γλ

(n)
+ (0, γ,S) ≥ 0. Hence, we have

max
j

ℜ(λ(j)
+ (0, γ,S)) > ℜ(λ(n)

+ (0, γ,S)) = λ
(n)
+ (0, γ,S) ≥ λ

(n)
+ (0, 2

√
sd,S) = −

√
sd .

This concludes our proof.728

Lemma B.7. Let D be as (B.5). Let a > 0. Then729

(B.14) argmin
γ>0

max
j

ℜ(λ(j)
+ (a, γ,S)) = asd + 2

√
sd .730

Proof. Let us define ∆(γ, s) = γ2−2aγs+s(a2s−4). A straightforward calculation
shows that the two roots of ∆(γ, sj) (when viewing ∆ as a function of γ) are given by

γ
(j)
± = asj ± 2

√
sj .

We have shown in Lemma B.3 that

argmin
γ>0

ℜ(λ(d)
+ (a, γ,S)) = asd + 2

√
sd .
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Denote by γ∗(a) = asd + 2
√
sd. Let us consider s̃ > sd. If ∆(γ∗(a), s̃) ≤ 0, then we731

have732

ℜ
(
−γ∗(a)− as̃+

√
γ∗(a)2 − 2aγ∗(a)s̃+ s̃(a2s̃− 4)

)
= −γ∗(a)− as̃733

≤ −γ∗(a)− asd734

= ℜ(λ(d)
+ (a, γ∗(a),S)) ,(B.15)735

where the last line follows from ∆(γ∗(a), sd) = 0 by definition of γ∗(a). If ∆(γ∗(a), s̃) >736

0, we compute737

∂

∂s

(
−γ∗(a)− as+

√
γ∗(a)2 − 2aγ∗(a)s+ s(a2s− 4)

)
|s=s̃738

= −a+
−aγ∗(a) + a2s̃− 2√

γ∗(a)2 − 2aγ∗(a)s̃+ s̃(a2s̃− 4)
> 0 .(B.16)739

We now verify that the above derivative is indeed positive. First observe that given
s̃ > sd, the two roots for ∆(γ, s̃) are

γ̃± = as̃± 2
√
s̃ .

Clearly, γ̃+ > γ∗(a). Hence, ∆(γ∗(a), s̃) > 0 implies that γ∗(a) < γ̃−, or equivalently740

s̃ > sd + (2
√
sd + 2

√
s̃)/a. This further implies

√
s̃ > 2/a. Therefore,741

−aγ∗(a) + a2s̃− 2 > a2(sd + (2
√
sd + 2

√
s̃)/a)− aγ∗(a)− 2742

= 2a
√
s̃− 2743

> 2a
2

a
− 2 > 0 .744

Knowing that the numerator in the second term of (B.16) is positive, we know that
(B.16) is positive if and only if

(−aγ∗(a) + a2s̃− 2)2 > a2(γ∗(a)2 − 2aγ∗(a)s̃+ s̃(a2s̃− 4)) ,

which can be verified by expanding the square on the left hand side and comparing745

with the right hand side directly.746

Since the derivative in (B.16) is positive, let us examine the limit747

lim
s→∞

−γ∗(a)− as+
√
γ∗(a)2 − 2aγ∗(a)s+ s(a2s− 4)748

= lim
s→∞

−γ∗(a)− as+ s
√

γ∗(a)2s−2 − 2aγ∗(a)s−1 + a2 − 4s−1749

= lim
s→∞

−γ∗(a)− as+ as− (γ∗(a) +
2

a
) +O(s−1)750

=− 2γ∗(a)− 2

a
751

=− 2(asd + 2
√
sd)−

2

a
< ℜ(λ(d)

+ (a, γ∗(a),S)) .(B.17)752

Combining (B.15), (B.16) and (B.17), we obtain that for 1 ≤ j ≤ d

ℜ(λ(j)
+ (a, γ∗(a),S)) ≤ λ

(d)
+ (a, γ∗(a),S) = ℜ(λ(d)

+ (a, γ∗(a),S)) ,
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which implies

min
γ>0

max
j

ℜ(λ(j)
+ (a, γ,S)) ≤ max

j
ℜ(λ(j)

+ (a, γ∗(a),S)) = ℜ(λ(d)
+ (a, γ∗(a),S)) .

Finally, by Lemma B.3 again, we have

min
γ>0

max
j

ℜ(λ(j)
+ (a, γ,S)) ≥ min

γ>0
ℜ(λ(d)

+ (a, γ,S)) = ℜ(λ(d)
+ (a, γ∗(a),S)) .

We now conclude that

argmin
γ>0

max
j

ℜ(λ(j)
+ (a, γ,S)) = γ∗(a) .

Lemma B.8. The constant C1 in Equation (3.9) depends at most polynomially on753

d, s1, 1/sd, i.e. C1 = poly(d, s1, s
−1
d ) ≤ poly(d, κ).754

Proof. First, we show that C1 depends linearly on the dimension d. Let us recall
the following fact from linear ODE: if ẋ = Ax for some constant matrix A ∈ Rd×d,
with eigenvalues λ1, . . . , λd and eigenvectors v1, . . . , vd, then the solution is of the
form x(t) =

∑
i aie

λitvi. In case there are repeated eigenvalues (e.g. λi) and gen-
eralized eigenvectors, the corresponding term in the sum will be replaced with some∑

j bjt
k−jeλitvi where the sum is over j = 1, . . . , k and k is the dimension of the

generalized eigenspace associated with λi. Let D and T be as defined in (3.8). By our
choice of γ, we know that eigenvalues of D are nonzero. Therefore, D is invertible.
Denote by

Y(t) =

Σ11(t)
Σ22(t)

Σ̇22(t)

+D−1T .

Then (3.8) reads755

(B.18)
d

dt
Y = DY .756

We follow the notation in Proposition B.4 and use (λ
(i)
∗ , v

(i)
∗ ) to represent an eigenvalue757

eigenvector pair of D, for i = 1, . . . , d, and ∗ ∈ {0,+,−}. Note that for our choice758

of γ = asd + 2
√
sd, we have λ

(d)
0 = λ

(d)
± . Correspondingly, there will be generalized759

eigenvectors. Following the notation in Proposition B.4, we use v
(d)
0 to represent the760

eigenvector associated with λ
(d)
0 ; and we use η and ξ to represent the generalized761

eigenvectors associated with λ
(d)
0 . We have already shown in Proposition B.4 that762

both η and ξ are generalized eigenvector of rank 2. Therefore, the solution to (B.18)763

takes the form764

Y(t) =

d−1∑
i=1

∑
∗∈{0,+,−}

α
(i)
∗ eλ

(i)
∗ tv

(i)
∗

+ α
(d)
0 eλ

(d)
0 tv

(d)
0 + α

(d)
− eλ

(d)
0 t(tv

(d)
0 + η)765

+ α
(d)
+ eλ

(d)
0 t(tv

(d)
0 + ξ) ,(B.19)766

where the constants α
(i)
∗ are to be determined by Y(0). By Lemma B.7 and our choice

of γ, we have that

max
i≤d

max
∗∈{0,+,−}

ℜ(λ(i)
∗ ) = λ

(d)
0 = −2asd − 2

√
sd .
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Without loss of generality, consider t ≥ 1. We have767

∥Y(t)∥2 =

∥∥∥∥∥
d−1∑

i=1

∑
∗∈{0,+,−}

α
(i)
∗ eλ

(i)
∗ tv

(i)
∗

+ α
(d)
0 eλ

(d)
0 tv

(d)
0 + α

(d)
− eλ

(d)
0 t(tv

(d)
0 + η)768

+ α
(d)
+ eλ

(d)
0 t(tv

(d)
0 + ξ)

∥∥∥∥∥
2

769

=

d−1∑
i=1

∥∥∥∥∥∥
∑

∗∈{0,+,−}

α
(i)
∗ eλ

(i)
∗ tv

(i)
∗

∥∥∥∥∥∥
2

+
∥∥∥α(d)

0 eλ
(d)
0 tv

(d)
0 + α

(d)
− eλ

(d)
0 t(tv

(d)
0 + η)770

+ α
(d)
+ eλ

(d)
0 t(tv

(d)
0 + ξ)

∥∥∥2771

≤
d−1∑
i=1

∑
∗∈{0,+,−}

3
∥∥∥α(i)

∗ eλ
(i)
∗ tv

(i)
∗

∥∥∥2 + 3
∥∥∥α(d)

0 eλ
(d)
0 tv

(d)
0

∥∥∥2 + 3
∥∥∥α(d)

− eλ
(d)
0 t(tv

(d)
0 + η)

∥∥∥2772

+ 3
∥∥∥α(d)

+ eλ
(d)
0 t(tv

(d)
0 + ξ)

∥∥∥2773

≤ 3t2e2λ
(d)
0 t

[d−1∑
i=1

∑
∗∈{0,+,−}

∥∥∥α(i)
∗ v

(i)
∗

∥∥∥2
+

∥∥∥v(d)0

∥∥∥2 ((α(d)
0 )2 + 2(α

(d)
− )2 + 2(α

(d)
+ )2

)
774

+ 2 ∥η∥2 (α(d)
− )2 + 2 ∥ξ∥2 (α(d)

+ )2

]
775

≤ 6t2e2λ
(d)
0 t

[d−1∑
i=1

∑
∗∈{0,+,−}

∥∥∥α(i)
∗ v

(i)
∗

∥∥∥2
+

∥∥∥v(d)0

∥∥∥2 ((α(d)
0 )2 + (α

(d)
− )2 + (α

(d)
+ )2

)
776

+ ∥η∥2 (α(d)
− )2 + ∥ξ∥2 (α(d)

+ )2

]
777

≤ 6t2e2λ
(d)
0 t

[d−1∑
i=1

∑
∗∈{0,+,−}

∥∥∥α(i)
∗ v

(i)
∗

∥∥∥2
+

(∥∥∥α(d)
+ v

(d)
0

∥∥∥2 + ∥∥∥α(d)
− η

∥∥∥2 + ∥∥∥α(d)
+ ξ
∥∥∥2 )778

1 +

∥∥∥v(d)0

∥∥∥2
∥ξ∥2

+

∥∥∥v(d)0

∥∥∥2
∥η∥2

]779

≤ 6t2e2λ
(d)
0 t

1 +

∥∥∥v(d)0

∥∥∥2
∥ξ∥2

+

∥∥∥v(d)0

∥∥∥2
∥η∥2

[ d−1∑
i=1

∑
∗∈{0,+,−}

∥∥∥α(i)
∗ v

(i)
∗

∥∥∥2780

+
∥∥∥α(d)

+ v
(d)
0

∥∥∥2 + ∥∥∥α(d)
− η

∥∥∥2 + ∥∥∥α(d)
+ ξ
∥∥∥2 ] .

(B.20)

781

∥Y(0)∥2 =

d−1∑
i=1

∥∥∥∥∥∥
∑

∗∈{0,+,−}

α
(i)
∗ v

(i)
∗

∥∥∥∥∥∥
2

+
∥∥∥α(d)

0 v
(d)
0 + α

(d)
− η + α

(d)
+ ξ
∥∥∥2 .
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Denote byY(0)(i) the projection ofY(0) onto the subspace Φi = Span({v(i)0 , v
(i)
+ , v

(i)
− }).

And accordingly, Φd = Span({v(d)0 , η, ξ}). By Corollary B.5, we know that Φi is or-

thogonal to Φj for i ̸= j. Therefore, |α(i)
∗ | depends on the inverse of the Gram

matrix of {v(i)0 , v
(i)
+ , v

(i)
− } as well as ∥Y(0)(i)∥. This inverse Gram matrix can be

computed analytically since it is a 3 by 3 matrix for each 1 ≤ i ≤ d. However,
the exact computation does not add more insights to the proof and we will not in-
clude the computation. Since each eigenvector and generalized eigenvector depends on
{s1, . . . sd, s−1

1 , . . . s−1
d } polynomially, we know that the inverse of the Gram matrix

also also depends on {s1, . . . sd, s−1
1 , . . . s−1

d } polynomially. From (B.20), we conclude
that

∥Y(t)∥2 = O
(
t2e2λ

(d)
0 td2 · poly(s1, s−1

d )
)
= O

(
t2e2λ

(d)
0 td2 · poly(κ)

)
.

Lemma B.9. Suppose X ∈ Sn satisfies X = AXAT for some A ∈ Rn. If all782

eigenvalues of A has absolute value less than 1, then X is the zero matrix.783

Proof. Let us first assume that AT is diagonalizable: AT = QDQ−1, where D
is a diagonal matrix of eigenvalues d1, . . . , dn, and the columns of Q contains the
eigenvectors q1, . . . , qn. Then it follows that

|qTi Xqj | = |didj ||qTi Xqj | .

This implies |qTi Xqj | = 0 for all 1 ≤ i, j ≤ n, since |didj | < 1 by assumption.
Now suppose that A has some generalized eigenvalues. Without loss of generality,
assume that dn−1 is a generalized eigenvalue such that AT qn−1 = dn−1qn−1 and
AT qn = dn−1qn + qn−1. Let qi be an eigenvector. Then we still have qTi Xqn−1 = 0 as
before. And

|qTi Xqn| = |didn−1q
T
i Xqn + diq

T
i Xqn−1| = |didn−1q

T
i Xqn| = |didn−1| |qTi Xqn| .

Again this implies |qTi Xqn| = 0. The case where dn−1 has algebraic multiplicity784

greater than 2 or qi is a generalized eigenvector can be proved in a similar fashion.785

Therefore, we have shown that if A has Jordan decomposition A = PJP−1, then786

qTi Xqj = 0 where qi and qj are the i-th and j-th column of P . Equivalently, we have787

PTXP = 0. This proves that X = 0.788

Corollary B.10. Suppose X,Y ∈ Sn satisfy X = AXAT +B, Y = AY AT +B789

for some B ∈ Sn. If all eigenvalues of A have absolute value less than 1, then X = Y .790

Proof. The proof follows by Lemma B.9 and that X − Y = A(X − Y )AT .791

Taking inspiration from system of linear ODE, we have the following lemma regarding792

the solution to the iteration Xk+1 = AXkA
T .793

Lemma B.11. Let A ∈ Rn×n be given by A = I − hG̃ for some G̃ ∈ Rn×n,794

h > 0. Suppose G̃ has Jordan decomposition G̃ = PJP−1. And consider the iteration795

Xk+1 = AXkA
T . If qi is an eigenvector of G̃ with associated eigenvalue di and796

X0 = qiq
T
i , then Xk = (1 − hdi)

2kX0. Moreover, if qi is a generalized eigenvector797

of G̃ of algebraic multiplicity 2, i.e. G̃qi = djqi + qj for some eigenvector qj and798

eigenvalue dj, and X0 = qiq
T
i , then Xk =

(
(1 − hdj)

kqi − kh(1 − hdj)
k−1qj

)(
(1 −799

hdj)
kqi − kh(1− hdj)

k−1qj
)T

800

Lemma B.12. The eigenvalues of G in (3.11) are given by the following801

λ̃
(i)
± = h

(asi + γ)±
√
(asi − γ)2 − 4si
2

.(B.21)802

This manuscript is for review purposes only.



GAUL FOR SAMPLING 31

Proof. The proof follows by a direct computation.803

Lemma B.13. Consider γ = γ∗ = asd + 2
√
sd. Let s > sd. Then a ≤ 2√

s−√
sd

if804

and only if (as− γ∗)2 − 4s ≤ 0.805

Proof. Multiplying by s− sd, we obtain

a ≤ 2√
s−√

sd
⇐⇒ a(s− sd) ≤ 2

√
s+ 2

√
sd ⇐⇒ as− 2

√
s ≤ γ∗ .

And it is straightforward to verify that 2
√
s > −as + γ∗ always holds. Squaring on806

both hand sides completes the proof.807

Lemma B.14. Consider λ̃
(i)
± given by (B.21). Suppose a ≥ 2√

s1−
√
sd
. If the step

size h satisfies 0 < h ≤ 1/(as1 + γ), and γ = γ∗ = asd + 2
√
sd, then

max
i

|1− λ̃
(i)
± | ≤ 1− h

2
(asd +

√
sd) .

Proof. Observe that the eigenvalues given in (B.21) is almost the same as the
eigenvalues given in (B.6) except for an extra factor of h/2. This allows us to use
previous lemma regarding the eigenvalues from (B.6). We consider two cases. Define

j = inf

{
n : a ≤ 2

√
sn −√

sd

}
.

Case 1: Consider i ≤ j−1 (if j = 1, we directly consider Case 2). Then a ≥ 2√
si−

√
sd
.808

By Lemma B.13 and our assumption on a, we have (asi − γ∗)2 − 4si ≥ 0. Then, one809

can verify that 0 < h ≤ 1
as1+γ∗ is a sufficient condition for 1 − λ̃

(i)
± > 0. Indeed, we810

compute811

λ̃
(i)
± ≤ 1

as1 + γ∗
(asi + γ∗) +

√
(asi − γ∗)2 − 4si
2

812

≤ 1

as1 + γ∗
(asi + γ∗) +

√
(asi + γ∗)2

2
813

=
asi + γ∗

as1 + γ∗814

≤ 1 .(B.22)815

Moreover, we clearly have λ̃
(i)
± > 0. Therefore, |1− λ̃

(i)
± | ≤ 1. On the other hand, by816

(B.16) and (B.17), we have that817

λ̃
(i)
± ≥ lim

s→∞

h

2

(
(as+ γ∗) +

√
(as− γ∗)2 − 4s

)
818

=
h

2

(
2γ∗ +

2

a

)
819

≥ hγ∗ .820

Therefore,

max
i≤j−1

|1− λ̃
(i)
± | ≤ 1− h(asd + 2

√
sd) .
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Case 2: Consider i ≥ j. Note that for a complex number z = z1 + iz2 and h > 0, we
have that

|1− hz|2 = (1− hz1)
2 + h2z22 ≤ 1− hz1 ≤ (1− hz1/2)

2 ,

where the first inequality holds if and only if h ≤ z1/(z
2
1 + z22). Therefore, we have821

|1− λ̃
(i)
± |2 ≤

(
1−

ℜ(λ̃(i)
± )

2

)2
,822

if

h ≤ 2(asi + γ∗)

(asi + γ∗)2 + 4si − (asi − γ∗)2
=

asi + γ∗

2asiγ∗ + 2si
.

We now verify that h ≤ 1/(as1 + γ∗) is a sufficient condition. We have

1

as1 + γ∗ ≤ asi + γ∗

2asiγ∗ + 2si
⇐⇒ a2s1si + γ∗as1 + (γ∗)2 ≥ asiγ

∗ + 2si .

By Lemma B.13, we have that823

a2s21 + (γ∗)2 − 2as1γ
∗ ≥ 4s1824

a2s1 +
(γ∗)2

s1
− 2aγ∗ ≥ 4825

a2s1 ≥ 4 + 2aγ∗ − (γ∗)2

s1
.826

Then827

a2s1si + γ∗as1 + (γ∗)2 ≥ si

(
4 + 2aγ∗ − (γ∗)2

s1

)
+ γ∗as1 + (γ∗)2828

= 4si + 2aγ∗si −
si(γ

∗)2

s1
+ γ∗as1 + (γ∗)2829

≥ 4si + 2aγ∗si + γ∗as1830

> asiγ
∗ + 2si .831

This shows that h ≤ 1/(as1 + γ∗) is sufficient. By Lemma B.7 and our choice of h,
we obtain that

max
i≥j

|1− λ̃
(i)
± | < max

i
1−

ℜ(λ̃(i)
± )

2
≤ 1− h

2
(asd +

√
sd) .

Combining the two cases, we complete the proof.832

Lemma B.15. Consider λ̃
(i)
± given by (B.21). Suppose a = 0 and γ = γ∗ = 2

√
sd.

Then
max

i
|1− λ̃

(i)
± | ≤ 1 ,

if and only if h ≤ 2
√
sd/s1.833

Proof. We directly compute834

|1− λ̃
(i)
± |2 ≤ 1 ⇐⇒ |1− h

√
sd ∓ h

√
sd − si|2 ≤ 1835

⇐⇒ 1− 2h
√
sd + h2si ≤ 1836

⇐⇒ h ≤ 2
√
sd/s1 .837
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Theorem B.16. Consider the iteration given in Corollary 3.13. Suppose a ≥838
2√

s1−
√
sd
. We choose γ = γ∗ = asd + 2

√
sd and 0 < h ≤ 1/(as1 + γ∗). Then839

for k ≥ 1/h we have ∥Yk∥F ≤ C̃h2k2(1 − h
2 (asd +

√
sd)

2k−2, where the constant840

C̃ = d2 · O(poly(κ)).841

Proof. Let us denote by A = PJP−1 the Jordan decomposition of A. Then
we know from (B.21) that A has precisely 2d − 1 eigenvectors and one generalized

eigenvector of algebraic multiplicity 2. Let q
(i)
± , . . . , q

(d−1)
± be the eigenvectors with

associated eigenvalues λ
(i)
± = 1 − λ̃

(i)
± , where λ̃

(i)
± are from (B.21). With γ = γ∗,

one has that λ̃
(d)
+ = λ̃

(d)
− is a generalized eigenvalue. Abusing notation, let us use

q
(d)
+ to represent the eigenvector and q

(d)
− to represent the generalized eigenvector of

λ
(d)
− = λ

(d)
+ . This means

Aq
(d)
+ = λ

(d)
+ q

(d)
+ , Aq

(d)
− = λ

(d)
− q

(d)
− + q

(d)
+ .

We can express Y0 by a basis representation

Y0 =
∑

⋆,⋄∈{±}

∑
i,j≤d

αi,j
⋆,⋄ q

(i)
⋆ (q

(j)
⋄ )T .

Then using Lemma B.11, we have that for k ≥ 1/h,842

∥Yk∥F ≤ 4d2h2k2 max
i

|λ(i)
± |2k−2 max

i,j,⋆,⋄
|αi,j

⋆,⋄|∥q
(i)
⋆ q

(j)
⋄ ∥F843

≤ 4d2h2k2
(
1− h

2
(asd +

√
sd)

)2k−2

max
i,j,⋆,⋄

|αi,j
⋆,⋄|∥q

(i)
⋆ q

(j)
⋄ ∥F .(B.23)844

The second inequality is due to Lemma B.14. The maximum in the above is over845

1 ≤ i, j ≤ d and ⋆, ⋄ ∈ {±}. It remains to show that maxi,j,⋆,⋄ |αi,j
⋆,⋄|∥q(i)⋆ q

(j)
⋄ ∥F =846

O(poly(κ)). Note that A in Corollary 3.13 can be written as A = I − hG̃ where G̃847

does not depend on h when taking the first order approximation as in Lemma B.12.848

The rest of the argument is very similar to the proof of Lemma B.8 which we will not849

present due to brevity. We conclude that850

∥Yk∥F ≤ d2h2k2
(
1− h

2
(asd +

√
sd)

)2k−2

O(poly(κ))851

= C̃h2k2
(
1− h

2
(asd +

√
sd)

)2k−2

.852

Lemma B.17. A solution to the fixed point equation Y ∗ = AY ∗AT +LLT where
A and L are given in Proposition 3.11, is given by

Y ∗ =

(
Y ∗
11 Y ∗

12

Y ∗
12 Y ∗

22

)
,
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where Y ∗
ij ∈ Rd are diagonal matrices. And the diagonal elements of Y ∗

ij are given by853

Y ∗
11,i =

1

si

(
1− hsi(4 + (h+ a(hγ − 2))(hsi − γ + asi(hγ − 1)))

(hsi − γ + asi(hγ − 1))(4 + h(hsi − 2γ + asi(hγ − 2)))

)
,(B.24)854

Y ∗
12,i =

2h(asi − γ)

(hsi − γ + asi(hγ − 1))(4 + h(hsi − 2γ + asi(hγ − 2)))
,(B.25)855

Y ∗
22,i =

−4γ − 2asi(2 + h(hsi − 3γ + asi(hγ − 1)))

(hsi − γ + asi(hγ − 1))(4 + h(hsi − 2γ + asi(hγ − 2)))
.(B.26)856

Appendix C. Postponed proofs.857

proof of Proposition 2.1. We directly plug (2.19) into (2.18) and verify that we858

recover (2.17).859

∇ ·
(
ρ sym(Q)∇ log

ρ

Π

)
+∇ ·

(
ρ(sym(Q)∇ log(Π) +Q∇H)

)
860

= sym(Q) : ∇2ρ+∇ρ sym(Q)∇H + ρ sym(Q) : ∇2H +∇ρ sym(Q)∇ log(Π)861

+ ρ sym(Q) : ∇2 log(Π) +∇ ·
(
ρQ∇H

)
862

= sym(Q) : ∇2ρ+∇ ·
(
ρQ∇H

)
863

= ∇ · (Q∇Hρ) +

2d∑
i,j=1

∂2

∂Xi∂Xj
(Qijρ) ,864

where we denote by A : B =
∑2d

i,j=1 AijBij for A,B ∈ Rd×d. We have used865

∇ log(Π) = −∇H and ∇2 log(Π) = −∇2H to get the second equality.866

proof of Proposition 2.2. We just need to verify that when ρ(X, t) = Π(X), we867

have ∂ρ
∂t = 0. It is clear that when ρ(X, t) = Π(X), the first term on the right hand868

side of (2.18) is 0, since ∇ log( ρ
Π ) = 0. For the second term, let us use (2.19) to get869

∇ · (ΠΓ) = ∇ ·
(
ΠQ∇H −Πsym(Q)∇ log(Π)

)
870

= ∇ΠQ∇H +ΠQ : ∇2H +∇Πsym(Q)∇ log(Π) + Π sym(Q) : ∇2 log(Π)871

= −Π∇HQ∇H +ΠQ : ∇2H +Π∇Hsym(Q)∇H +Πsym(Q) : ∇2 log(Π)872

= ΠQ : ∇2H +Πsym(Q) : ∇2 log(Π)873

= ΠQ : ∇2H −Πsym(Q) : ∇2H874

= 0 ,875

We have used ∇Π = −Π∇H to get the third equality. And we used ∇2 log(Π) =
−∇2H to get the fifth equality. This proves that when ρ = Π, we indeed have

∂ρ

∂t

∣∣∣
ρ=Π

= ∇ ·
(
Πsym(Q)∇ log

Π

Π

)
+∇ · (ΠΓ) = 0 + 0 = 0 .

proof of Proposition 3.2. With our choice of H, (2.15) is a multidimensional OU
process. And since X0 follows a Gaussian distribution, it shows that Xt will also be
a Gaussian distribution. It is well known that the solution to (2.15) with H given by
(3.3) is

Xt = e−tQΣ̃−1

X0 +

∫ t

0

e−(t−τ)QΣ̃−1√
2 sym(Q) dBτ .

This manuscript is for review purposes only.



GAUL FOR SAMPLING 35

The mean of Xt is given by

EXt = e−tQΣ̃−1

EX0 = 0.

We can compute the covariance Σ(t) of Xt. Since Xt has zero mean, we obtain the876

following using Ito’s isometry877

Σ(t) = EXtX
T
t = 2

∫ t

0

e−(t−τ)QΣ̃−1

sym(Q)
(
e−(t−τ)QΣ̃−1

)T
dτ + EX0X

T
0 .(C.1)878

From the above expression, Σ(t) is clearly well-defined, symmetric, positive definite879

for all t > 0. We proceed by differentiating Σ(t)880

Σ̇(t) = 2
d

dt

∫ t

0

e−(t−τ)QΣ̃−1

sym(Q)
(
e−(t−τ)QΣ̃−1

)T
dτ881

= 2 sym(Q) +

∫ t

0

d

dt
e−(t−τ)QΣ̃−1

sym(Q)
(
e−(t−τ)QΣ̃−1

)T
dτ882

= 2 sym(Q)−QΣ̃−1Σ(t)− Σ(t)Σ̃−1QT
883

= 2 sym(Q(I− Σ̃−1Σ)) .884

This finishes the proof.885
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[1] L. Ambrosio, N. Gigli, and G. Savaré, Gradient flows: in metric spaces and in the space of892
probability measures, Springer Science & Business Media, 2008.893

[2] C. Andrieu, N. De Freitas, A. Doucet, and M. I. Jordan, An introduction to MCMC for894
machine learning, Machine learning, 50 (2003), pp. 5–43.895

[3] H. Attouch, Z. Chbani, J. Fadili, and H. Riahi, First-order optimization algorithms via896
inertial systems with Hessian driven damping, Mathematical Programming, (2020), pp. 1–897
43.898

[4] H. Attouch, Z. Chbani, J. Fadili, and H. Riahi, Convergence of iterates for first-order899
optimization algorithms with inertia and Hessian driven damping, Optimization, (2021),900
pp. 1–40.901

[5] H. Attouch, Z. Chbani, and H. Riahi, Fast proximal methods via time scaling of damped902
inertial dynamics, SIAM Journal on Optimization, 29 (2019), pp. 2227–2256.903

[6] C. H. Bennett, Mass tensor molecular dynamics, Journal of Computational Physics, 19 (1975),904
pp. 267–279.905

[7] J. Besag, Comments on “Representations of knowledge in complex systems” by U. Grenander906
and MI Miller, J. Roy. Statist. Soc. Ser. B, 56 (1994), p. 4.907

[8] Y. Cao, J. Lu, and L. Wang, Complexity of randomized algorithms for underdamped Langevin908
dynamics, arXiv preprint arXiv:2003.09906, (2020).909

[9] Y. Cao, J. Lu, and L. Wang, On explicit L2-convergence rate estimate for underdamped910
Langevin dynamics, Archive for Rational Mechanics and Analysis, 247 (2023), p. 90.911

[10] J. A. Carrillo, Y.-P. Choi, and O. Tse, Convergence to Equilibrium in Wasserstein Distance912
for Damped Euler Equations with Interaction Forces, Communications in Mathematical913
Physics, 365 (2019), pp. 329–361.914

[11] F. Casas, J. M. Sanz-Serna, and L. Shaw, Split hamiltonian monte carlo revisited, Statistics915
and Computing, 32 (2022), p. 86.916

This manuscript is for review purposes only.



36 X. ZUO, S. OSHER, AND W. LI

[12] A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with917
applications to imaging, Journal of mathematical imaging and vision, 40 (2011), pp. 120–918
145.919

[13] S. Chen, Q. Li, O. Tse, and S. J. Wright, Accelerating optimization over the space of920
probability measures, arXiv preprint arXiv:2310.04006, (2023).921

[14] Y. Chen, D. Z. Huang, J. Huang, S. Reich, and A. M. Stuart, Gradient flows for sam-922
pling: mean-field models, gaussian approximations and affine invariance, arXiv preprint923
arXiv:2302.11024, (2023).924

[15] X. Cheng and P. Bartlett, Convergence of Langevin MCMC in KL-divergence, in Algorith-925
mic Learning Theory, PMLR, 2018, pp. 186–211.926

[16] X. Cheng, N. S. Chatterji, P. L. Bartlett, and M. I. Jordan, Underdamped Langevin927
MCMC: A non-asymptotic analysis, in Conference on learning theory, PMLR, 2018,928
pp. 300–323.929

[17] S. Chewi, P. R. Gerber, C. Lu, T. Le Gouic, and P. Rigollet, The query complexity930
of sampling from strongly log-concave distributions in one dimension, in Conference on931
Learning Theory, PMLR, 2022, pp. 2041–2059.932

[18] S. Chewi, C. Lu, K. Ahn, X. Cheng, T. Le Gouic, and P. Rigollet, Optimal dimension933
dependence of the Metropolis-adjusted Langevin algorithm, in Conference on Learning The-934
ory, PMLR, 2021, pp. 1260–1300.935

[19] A. Dalalyan, Further and stronger analogy between sampling and optimization: Langevin936
Monte Carlo and gradient descent, in Conference on Learning Theory, PMLR, 2017,937
pp. 678–689.938

[20] A. S. Dalalyan, Theoretical guarantees for approximate sampling from smooth and log-concave939
densities, Journal of the Royal Statistical Society Series B: Statistical Methodology, 79940
(2017), pp. 651–676.941

[21] A. S. Dalalyan and A. Karagulyan, User-friendly guarantees for the Langevin Monte Carlo942
with inaccurate gradient, Stochastic Processes and their Applications, 129 (2019), pp. 5278–943
5311.944

[22] A. S. Dalalyan and L. Riou-Durand, On sampling from a log-concave density using kinetic945
Langevin diffusions, Bernoulli, 26 (2020), pp. 1956–1988.946

[23] M. Dashti and A. M. Stuart, The Bayesian approach to inverse problems, arXiv preprint947
arXiv:1302.6989, (2013).948

[24] L. Devroye, A. Mehrabian, and T. Reddad, The total variation distance between high-949
dimensional Gaussians with the same mean, arXiv preprint arXiv:1810.08693, (2018).950

[25] A. Durmus, S. Majewski, and B. Miasojedow, Analysis of Langevin Monte Carlo via convex951
optimization, Journal of Machine Learning Research, 20 (2019), pp. 1–46.952

[26] A. Durmus and E. Moulines, Nonasymptotic convergence analysis for the unadjusted953
Langevin algorithm, Annals of Applied Probability, 27 (2017), pp. 1551–1587.954

[27] R. Dwivedi, Y. Chen, M. J. Wainwright, and B. Yu, Log-concave sampling: Metropolis-955
Hastings algorithms are fast, Journal of Machine Learning Research, 20 (2019), pp. 1–42.956

[28] Q. Feng, X. Zuo, and W. Li, Fisher information dissipation for time inhomogeneous stochas-957
tic differential equations, arXiv preprint arXiv:2402.01036, (2024).958

[29] A. Garbuno-Inigo, F. Hoffmann, W. Li, and A. M. Stuart, Interacting langevin diffusions:959
Gradient structure and ensemble kalman sampler, SIAM Journal on Applied Dynamical960
Systems, 19 (2020), pp. 412–441.961

[30] S. B. Gelfand and S. K. Mitter, Simulated annealing type algorithms for multivariate opti-962
mization, Algorithmica, 6 (1991), pp. 419–436.963

[31] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin, Bayesian data analysis, Chapman964
and Hall/CRC, 1995.965

[32] M. Girolami and B. Calderhead, Riemann manifold langevin and hamiltonian monte carlo966
methods, Journal of the Royal Statistical Society Series B: Statistical Methodology, 73967
(2011), pp. 123–214.968

[33] J. Goodman and J. Weare, Ensemble samplers with affine invariance, Communications in969
applied mathematics and computational science, 5 (2010), pp. 65–80.970

[34] Y. He, K. Balasubramanian, and M. A. Erdogdu, On the ergodicity, bias and asymptotic971
normality of randomized midpoint sampling method, Advances in Neural Information Pro-972
cessing Systems, 33 (2020), pp. 7366–7376.973

[35] J. Idier, Bayesian approach to inverse problems, John Wiley & Sons, 2013.974
[36] P. Izmailov, S. Vikram, M. D. Hoffman, and A. G. Wilson, What are Bayesian neural975

network posteriors really like?, in International conference on machine learning, PMLR,976
2021, pp. 4629–4640.977

[37] R. Jordan, D. Kinderlehrer, and F. Otto, The variational formulation of the Fokker–978

This manuscript is for review purposes only.



GAUL FOR SAMPLING 37

Planck equation, SIAM journal on mathematical analysis, 29 (1998), pp. 1–17.979
[38] Y. T. Lee, R. Shen, and K. Tian, Logsmooth gradient concentration and tighter runtimes for980

Metropolized Hamiltonian Monte Carlo, in Conference on learning theory, PMLR, 2020,981
pp. 2565–2597.982

[39] B. Leimkuhler, C. Matthews, and J. Weare, Ensemble preconditioning for markov chain983
monte carlo simulation, Statistics and Computing, 28 (2018), pp. 277–290.984

[40] T. Lelievre, F. Nier, and G. A. Pavliotis, Optimal non-reversible linear drift for the conver-985
gence to equilibrium of a diffusion, Journal of Statistical Physics, 152 (2013), pp. 237–274.986
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