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Qualifying Exam, Fall 2024

Numerical Analysis
DO NOT FORGET TO WRITE YOUR SID NO. ON YOUR EXAM.

There are 8 problems. Problems 1-4 are worth 5 points and problems 5-8 are worth
10 points. All problems will be graded and counted towards the final score.

You have to demonstrate a sufficient amount of work on both groups of problems
[1-4] and [5-8] to obtain a passing score.

[1] (5 Pts.) Consider numerically evaluating the soft-max function µ : Rd → Rd defined as(
µ(z)

)
i

=
ezi∑d
j=1 e

zj
for i = 1, . . . , d.

When the following pseudocode is evaluated

d = 5

z = [700, 800, 1000, 900, -40]

out = zeros(d)

S = 0

for i = 1,...,d

S += exp(z[i])

for i = 1,...,d

out[i] = exp(z[i])/S

an overflow error occurs. Why does this error occur? (Hint. Pay attention to the exponential.)
How can we fix this problem?

[2] (5 Pts.) Let a > 0. Consider the problem of computing
√
a with the Newton iteration

xn+1 = xn −
f(xn)

f ′(xn)

for n = 0, 1, . . . with f(x) = x2 − a and x0 > 0.

(a) Show that if x0 <
√
a, then x1 >

√
a.

(b) Show that if xn >
√
a, then

√
a < xn+1 < xn.

(c) Show that xn →
√
a.

[3] (5 Pts.) Assuming that f ∈ C4[a, b] is real, derive the error of approximation when the second
order derivative is substituted by the finite-difference formula

f ′′(x) ≈ f(x+ h)− 2 f(x) + f(x− h)

h2
,

where the parameter h is called the mesh size (assume that x, x+ h, x− h ∈ (a, b)).
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[4] (5 Pts.)
(a) Consider the linear system Ax = b in the unknown x, with x, b ∈ Rn and A = M −N ∈ Rn×n

is nonsingular. If M is nonsingular and if (M−1N)k → O as k → ∞, show that the iterates xk,
defined by

Mxk+1 = Nxk + b,

converge to x = A−1b for any starting vector x0. (b) Find a splitting A = M − N for the matrix

A =

(
10 −1
−1 10

)
, so that the iteration in (a) is convergent. Justify your answer.

[5] (10 Pts.) Consider the linear constant-coefficient system of ODEs

du

dt
= Au, u(0) = u0

for t ≥ 0, where u0 6= 0 and

A =

[
0 1
−1 0

]
.

(a) Show that ‖u(t)‖ = ‖u0‖ for all t ≥ 0.

(b) Consider finding an approximate solution of the ODE using the one-stage Runge–Kutta method
with Butcher tableau

0 0

1

with a sufficiently small time discretization h > 0. Show that ‖uk‖ → ∞.

(c) Consider finding an approximate solution of the ODE using the two-stage Runge–Kutta method
with Butcher tableau

0

1 1

1/2 1/2

with a sufficiently small time discretization h > 0. Show that ‖uk‖ → ∞.

(d) Consider finding an approximate solution of the ODE using the two-stage Runge–Kutta method
with Butcher tableau

0

1 1

0 1

with a sufficiently small time discretization h > 0. Show that ‖uk‖ → 0.
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Clarification. For an ODE y′ = f(t, y), an explicit s-stage Runge–Kutta method takes the form

yn+1 = yn + h

s∑
i=1

biki

k1 = f(tn, yn),

k2 = f(tn + c2h, yn + h(a21k1)),

k3 = f(tn + c3h, yn + h(a31k1 + a32k2)),

...

ki = f

(
tn + cih, yn + h

i−1∑
j=1

aijkj

)
.

The Butcher tableau puts the coefficients of the method in a table as:

c1 a11 a12 . . . a1s
c2 a21 a22 . . . a2s
...

...
...

. . .
...

cs as1 as2 . . . ass
b1 b2 . . . bs

[6] (10 Pts.) Consider the scalar initial/boundary value problem:

∂u

∂t
=

∂

∂x

(
a(x)

∂u

∂x

)
+ b cos (πx)

∂u

∂x

for 0 < x < 1, t > 0, u(x, 0) = u0(x), b is a nonzero constant, and a(x) smooth.

(a) If a(x) vanishes identically, what boundary conditions, if any, do we need at x = 0 and x = 1
to make the problem well posed?

(b) What conditions on a(x) guarantee well posedness in general if we assume periodic boundary
conditions?

(c) Write a convergent finite difference for the vanishing a(x) case.

Justify your answers.
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[7] (10 Pts.) Consider the equation

∂2u

∂t2
+ b

∂u

∂t
=
∂2u

∂x2

for b constant to be solved for t > 0, 0 < x < 1, with initial data u(x, 0) given and ∂u
∂y

(x, 0) given
and with periodic boundary conditions in x.

(a) Write a convergent finite difference approximation to this problem.

(b) How do you expect the solution to behave as t gets very large?

Justify your answers.

[8] (10 Pts.) Develop and describe the piecewise-linear Galerkin finite element approximation of

−4u+ u = f(x, y), (x, y) ∈ T,
u = g1(x), (x, y) ∈ T1,
u = g2(y), (x, y) ∈ T2,

∂u

∂~n
= h(x, y), (x, y) ∈ T3,

where

T = {(x, y)| x > 0, y > 0, x+ y < 1}
T1 = {(x, y)| y = 0, 0 < x < 1}
T2 = {(x, y)| x = 0, 0 < y < 1}
T3 = {(x, y)| x > 0, y > 0, x+ y = 1},

and ~n denotes the exterior unit normal to the boundary, ∂T .

(a) Derive the weak variational formulation of the problem.

(b) Give the necessary assumptions on the functions f , g1, g2, and h. and verify the assumptions
of the Lax-Milgram Lemma by analyzing the appropriate linear and bilinear forms.

(c) Develop and describe the piecewise linear Galerkin finite element approximation of the problem
and a set of basis functions such that the corresponding linear system is sparse. Show that this linear
system has a unique solution. Give a convergence estimate and quote the appropriate theorems for
convergence.
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