Numerical Analysis

INSTRUCTIONS FOR QUALIFYING EXAMS

Start each problem on a new sheet of paper. Write your university identification number at the top of each sheet of paper. **DO NOT WRITE YOUR NAME!**

Complete this sheet and staple to your answers. Read the directions of the exam carefully.

STUDENT ID NUMBER: __

DATE: where \overline{a}

EXAMINEES: DO NOT WRITE BELOW THIS LINE **

Pass/fail recommend on this form.

Total score: ____________________

Qualifying Exam, Fall 2024

Numerical Analysis

DO NOT FORGET TO WRITE YOUR SID NO. ON YOUR EXAM.

There are 8 problems. Problems 1-4 are worth 5 points and problems 5-8 are worth 10 points. All problems will be graded and counted towards the final score.

You have to demonstrate a sufficient amount of work on both groups of problems [1-4] and [5-8] to obtain a passing score.

[1] (5 Pts.) Consider numerically evaluating the soft-max function $\mu: \mathbb{R}^d \to \mathbb{R}^d$ defined as

$$
(\mu(z))_i = \frac{e^{z_i}}{\sum_{j=1}^d e^{z_j}}
$$
 for $i = 1, ..., d$.

When the following pseudocode is evaluated

```
d = 5z = [700, 800, 1000, 900, -40]out = zeros(d)S = 0for i = 1, \ldots, dS += exp(z[i])for i = 1, \ldots, dout[i] = exp(z[i])/S
```
an overflow error occurs. Why does this error occur? (Hint. Pay attention to the exponential.) How can we fix this problem?

[2] (5 Pts.) Let $a > 0$. Consider the problem of computing \sqrt{a} with the Newton iteration

$$
x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}
$$

for $n = 0, 1, ...$ with $f(x) = x^2 - a$ and $x_0 > 0$.

- (a) Show that if x_0 < √ \overline{a} , then $x_1 >$ √ \overline{a} .
- (b) Show that if $x_n >$ \sqrt{a} , then $\sqrt{a} < x_{n+1} < x_n$.
- (c) Show that $x_n \rightarrow$ √ \overline{a} .

[3] (5 Pts.) Assuming that $f \in C^4[a, b]$ is real, derive the error of approximation when the second order derivative is substituted by the finite-difference formula

$$
f''(x) \approx \frac{f(x+h) - 2 f(x) + f(x-h)}{h^2},
$$

where the parameter h is called the mesh size (assume that $x, x + h, x - h \in (a, b)$).

Qualifying Exam, Fall 2024 NUMERICAL ANALYSIS

[4] (5 Pts.)

(a) Consider the linear system $Ax = b$ in the unknown x, with $x, b \in \mathbb{R}^n$ and $A = M - N \in \mathbb{R}^{n \times n}$ is nonsingular. If M is nonsingular and if $(M^{-1}N)^k \to O$ as $k \to \infty$, show that the iterates x_k , defined by

$$
Mx_{k+1} = Nx_k + b,
$$

converge to $x = A^{-1}b$ for any starting vector x_0 . (b) Find a splitting $A = M - N$ for the matrix $A =$ $\begin{pmatrix} 10 & -1 \\ -1 & 10 \end{pmatrix}$, so that the iteration in (a) is convergent. Justify your answer.

[5] (10 Pts.) Consider the linear constant-coefficient system of ODEs

$$
\frac{du}{dt} = Au, \qquad u(0) = u_0
$$

for $t \geq 0$, where $u_0 \neq 0$ and

$$
A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}.
$$

(a) Show that $||u(t)|| = ||u_0||$ for all $t \geq 0$.

(b) Consider finding an approximate solution of the ODE using the one-stage Runge–Kutta method with Butcher tableau

$$
\begin{array}{c|c} 0 & 0 \\ \hline & 1 \end{array}
$$

with a sufficiently small time discretization $h > 0$. Show that $||u^k|| \to \infty$.

(c) Consider finding an approximate solution of the ODE using the two-stage Runge–Kutta method with Butcher tableau \sim

$$
\begin{array}{c|cc}\n0 & & \\
1 & 1 & \\
\hline\n & 1/2 & 1/2\n\end{array}
$$

with a sufficiently small time discretization $h > 0$. Show that $||u^k|| \to \infty$.

(d) Consider finding an approximate solution of the ODE using the two-stage Runge–Kutta method with Butcher tableau

with a sufficiently small time discretization $h > 0$. Show that $||u^k|| \to 0$.

Qualifying Exam, Fall 2024 NUMERICAL ANALYSIS

Clarification. For an ODE $y' = f(t, y)$, an explicit s-stage Runge–Kutta method takes the form

$$
y_{n+1} = y_n + h \sum_{i=1}^{s} b_i k_i
$$

\n
$$
k_1 = f(t_n, y_n),
$$

\n
$$
k_2 = f(t_n + c_2 h, y_n + h(a_{21}k_1)),
$$

\n
$$
k_3 = f(t_n + c_3 h, y_n + h(a_{31}k_1 + a_{32}k_2)),
$$

\n
$$
\vdots
$$

\n
$$
k_i = f\left(t_n + c_i h, y_n + h \sum_{j=1}^{i-1} a_{ij}k_j\right).
$$

The *Butcher tableau* puts the coefficients of the method in a table as:

$$
\begin{array}{c|cccc}\nc_1 & a_{11} & a_{12} & \dots & a_{1s} \\
c_2 & a_{21} & a_{22} & \dots & a_{2s} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
c_s & a_{s1} & a_{s2} & \dots & a_{ss} \\
b_1 & b_2 & \dots & b_s\n\end{array}
$$

[6] (10 Pts.) Consider the scalar initial/boundary value problem:

$$
\frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left(a(x) \frac{\partial u}{\partial x} \right) + b \cos(\pi x) \frac{\partial u}{\partial x}
$$

for $0 < x < 1$, $t > 0$, $u(x, 0) = u_0(x)$, b is a nonzero constant, and $a(x)$ smooth.

(a) If $a(x)$ vanishes identically, what boundary conditions, if any, do we need at $x = 0$ and $x = 1$ to make the problem well posed?

(b) What conditions on $a(x)$ guarantee well posedness in general if we assume periodic boundary conditions?

(c) Write a convergent finite difference for the vanishing $a(x)$ case.

Justify your answers.

Qualifying Exam, Fall 2024 NUMERICAL ANALYSIS

[7] (10 Pts.) Consider the equation

$$
\frac{\partial^2 u}{\partial t^2} + b \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}
$$

for b constant to be solved for $t > 0$, $0 < x < 1$, with initial data $u(x, 0)$ given and $\frac{\partial u}{\partial y}(x, 0)$ given and with periodic boundary conditions in x .

(a) Write a convergent finite difference approximation to this problem.

(b) How do you expect the solution to behave as t gets very large?

Justify your answers.

[8] (10 Pts.) Develop and describe the piecewise-linear Galerkin finite element approximation of

$$
-\triangle u + u = f(x, y), (x, y) \in T,
$$

\n
$$
u = g_1(x), (x, y) \in T_1,
$$

\n
$$
u = g_2(y), (x, y) \in T_2,
$$

\n
$$
\frac{\partial u}{\partial \vec{n}} = h(x, y), (x, y) \in T_3,
$$

where

$$
T = \{(x, y) | x > 0, y > 0, x + y < 1\}
$$

\n
$$
T_1 = \{(x, y) | y = 0, 0 < x < 1\}
$$

\n
$$
T_2 = \{(x, y) | x = 0, 0 < y < 1\}
$$

\n
$$
T_3 = \{(x, y) | x > 0, y > 0, x + y = 1\},
$$

and \vec{n} denotes the exterior unit normal to the boundary, ∂T .

(a) Derive the weak variational formulation of the problem.

(b) Give the necessary assumptions on the functions f, g_1, g_2 , and h. and verify the assumptions of the Lax-Milgram Lemma by analyzing the appropriate linear and bilinear forms.

(c) Develop and describe the piecewise linear Galerkin finite element approximation of the problem and a set of basis functions such that the corresponding linear system is sparse. Show that this linear system has a unique solution. Give a convergence estimate and quote the appropriate theorems for convergence.