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Abstract

This paper investigates the relationship between two plasticity models: the
von Mises plasticity model with isotropic hardening and the GLD model,
situated within the class of generalized standard materials characterized by
a reversible elastic energy density and a dissipation potential. Our analysis
demonstrates that, within the linearized theory framework, the constitutive
equations of both plasticity models define generalized standard materials,
emphasizing the implications for the robustness of the projection algorithm
employed in the finite element implementation of these models. Addition-
ally, we discuss the practical ability of the GLD model to reproduce the frac-
ture behavior observed in a compact specimen subjected to a fracture test.
We further explore the integration of the Gurson-Leblond-Devaux (GLD)
damage model with the peridynamic framework to model ductile fracture,
a complex phenomenon influenced by microstructural features such as void
formation and growth. While the GLD model effectively captures damage
evolution through a damage variable accounting for voids in ductile materi-
als, the peridynamic theory provides a non-local approach to the continuum
mechanics that describe crack initiation and propagation. By combining
these methodologies, this work aims to enhance predictive capabilities for
material failure under various loading conditions, contributing to a deeper
understanding of the mathematical foundations and computational stability
of these models in numerical simulations.

Keywords: Generalized standard materials, von Mises model, Plasticity,
Projection problem
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1. Introduction

The formalism of generalized standard materials (GSM) was first intro-
duced by Halphen and Nguyen (1975) in the context of elasto-plasticity. In
short, the constitutive equations of GSM are described by the expressions
of the elastic energy density (also called reversible elastic potential) and the
dissipation potential. The elastic energy density, stored in the material by
its deformation under external stimuli, provides by derivation of the Cauchy
stress and the thermodynamics forces, while the dissipation potential, gives
rise to the evolution equations of the internal state variables. The formal-
ism GSM was developed within the framework of linearized theory and is
suitable for rate-independent materials. Although these two restrictions
may limit the use of this formalism to describe a vast majority of materials
and their behaviors under various external conditions, the success credited
to the GSM approach is tremendous in view of the nice local and global
stability properties it offers for robust numerical implementations in finite
element subroutines. Of course, for other materials, additional precautions
are required to guarantee local and global stabilities of numerical schemes,
since the tangent stiffness matrix can become non-invertible during nonlin-
ear analyses.

Initially developed in the context of small strain rate independent elasto-
plasticity by Halphen and Nguyen (1975) and later on reviewed by Ziegler
and Wehrli (1987), the GSM formalism was extended to finite strain elasto-
plasticity by Hackl (1997). The later extension was proposed as an alter-
native theoretical framework to overcome the usual problems encountered
in the use of classical finite elasto-plasticity models. These problems in-
clude arbitrariness in the choice of yield functions and flow rules, difficulty
to obtain a clear distinction between the concept of frame indifference and
material symmetry which is complicated by the unclear role played by the in-
troduction of the intermediate configuration1, and generally non-equivalence
between the yield functions obtained in the different configurations intro-
duced by the adoption of a multiplicative decomposition of the deformation
gradient, see Lee (1969). Once developed, the GSM framework has contin-

1Some authors may argue that the velocity gradient can be additively decomposed
into an elastic and plastic parts only in the intermediate configuration; however, from
the authors’ point of view, this can simply be a heuristic assumption from the beginning,
exactly as in the small strain formulation where the Eularian deformation rate is additively
decomposed into an elastic and a plastic part
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uously played a key role in the modeling of materials, see Fremond (2002),
Hackl (1997), Maugin (1992) among other authors, and ductile fracture in
porous solids, see Enakoutsa et al. (2007). The application of this formalism
to metal plasticity, whether governed by the classical von Mises model or
advanced models such as the GLD framework for ductile fracture, which
incorporates cavity shape effects under the linearized theory assumption, or
within the context of J2 plasticity, has been sparsely explored in the lit-
erature. The limited attention given to these formulations highlights the
need for further investigation into their thermodynamics consistency and
numerical implementation. This study aims to rigorously bridge this gap
by developing a comprehensive analysis of these models and their implica-
tions. In particular, we will analyze the relationship between the Generalized
Standard Materials (GSM) framework and metal plasticity models, focusing
on the von Mises yield criterion as a foundational case, and extending the
analysis to the more complex GLD model for ductile fracture, incorporat-
ing cavity shape effects. In addition, we present a comprehensive and ro-
bust integration of the Gurson-Leblond-Devaux (GLD) damage model with
the peridynamic framework to capture the highly intricate process of duc-
tile fracture, which is profoundly influenced by microstructural phenomena
such as void nucleation, growth, and coalescence. The GLD model excels
in accurately describing damage evolution by employing a damage variable
that meticulously accounts for void dynamics in ductile materials. Mean-
while, the peridynamic theory introduces a powerful non-local approach to
continuum mechanics, offering a sophisticated mechanism to model crack
initiation and propagation. By synergistically combining these advanced
methodologies, our work significantly enhances the predictive accuracy of
material failure across diverse loading conditions. This integrated frame-
work not only advances computational stability but also offers a profound
insight into the mathematical underpinnings of ductile fracture, marking a
pivotal contribution to numerical simulations in this domain. The outline
of the paper is as follows.

• Section 2 gives an overview of some of the work of Halphen and Nguyen
(1975) and Nguyen (1977) on generalized standard materials.

• Section 3 demonstrates how the constitutive relations of the classical
small strain the von Mises model with isotropic hardening defines a
generalized standard material. In addition, we discuss the benefits of
this property on the numerical implementation of von Mises model into
a numerical subroutine using the well-known projection algorithm.
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• Section 4 offers a thorough analysis of the interaction between the
Generalized Standard Materials (GSM) framework and the constitu-
tive equations of the GLD model for ductile fracture, with a partic-
ular emphasis on the mathematical formulation of cavity shape ef-
fects. Additionally, we address the projection problem that arises in
the numerical implementation of the model within a finite element
framework. We establish that, under the assumptions of fixed poros-
ity and a constant cavity shape factor, the projection problem results
in a unique solution, thereby ensuring numerical stability and conver-
gence. Furthermore, as a practical application of the GLD model, we
present simulations of the fracture behavior of a Compact Test speci-
men subjected to tensile loading. These simulations align closely with
experimental data for the 16 MND Steel.

• Section 5 introduces the peridynamic framework, a non-local approach
to continuum mechanics, and integrates it with the Gurson-Leblond-
Devaux (GLD) damage model to tackle the complexities of ductile
fracture. While the GLD model captures damage evolution through
a void-based damage variable, peridynamics offers a robust method
for describing crack initiation and propagation. This combination
strengthens the predictive accuracy for material failure under various
loading conditions and deepens our understanding of the computa-
tional and mathematical foundations governing these models.

2. Overview of the formalism of GSM

In this section, we give a brief summary of some aspects of the works
of Halphen and Nguyen (1975) and Nguyen (1977) on GSM. The theory is
applicable only in the context of linearized theory.

The constitutive law of a generalized standard material is described by
two thermodynamic potentials. The first one is the free energy ψ(ϵ,α),
which is a function of the strain tensor ϵ and a family of internal variables
collectively denoted α. This function must be convex with respect to both
the variables ϵ and α taken separately. (Convexity with respect to the global
variable (ϵ,α) is not required). The stress tensor σ and the thermodynamic
force F associated to α are then given by

σ ≡ ∂ψ

∂ϵ
(ϵ,α) ; F ≡ −∂ψ

∂α
(ϵ,α). (1)

The second thermodynamic potential is the dissipation potential ϕ(α̇).
This function must be convex, non-negative, and zero for α̇ = 0. It gov-
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erns the evolution equations of the internal variables through the equivalent
equations

F ∈ ∂ϕ(α̇) ⇔ α̇ ∈ ∂ϕ̃(F) (2)

where ϕ̃ denotes the Legendre-Fenchel transform of ϕ, and ∂ϕ and ∂ϕ̃ the
sub-differentials of ϕ and ϕ̃. In the case of a time-independent behavior, as
considered in this paper, ϕ is a positively homogeneous function of degree 1
of α̇. Its Legendre-Fenchel transform ϕ̃ is then the indicator function of a
closed convex set C (the reversibility domain) in the space of thermodynamic
forces F. This set is defined by an inequality of the type Φ(F) ≤ 0 for some
function Φ, the sub-differential ∂ϕ̃(F) consists of the sole vector 0 if F lies
in the interior of C, of the half-straight line {η(∂Φ/∂F)(F), η ≥ 0} if F lies
on the boundary of C, and is empty if F lies outside C. The evolution law
(2)2 of α may thus be re-written in the equivalent form

α̇ = η
∂Φ

∂F
(F) , η

{
= 0 if Φ(F) < 0
≥ 0 if Φ(F) = 0.

(3)

This means that the evolution of α obeys a kind of “generalized normality
property”.

Generalized standard materials obey several nice properties. The first
one is that the evolution equation (2)2 of α automatically warrants non-
negativeness of the dissipation D, and thus thermodynamic consistency of
the model.

The second property is given as follows. Let quantities at time t be
denoted with an upper index 0 and quantities at t+∆t without any special
symbol. Then, provided that the evolution equation (2) of α is discretized in
time with an implicit scheme, the determination of the value ofα ≡ α(t+∆t)
from those of ϵ0 ≡ ϵ(t), α0 ≡ ϵ(t) and ∆ϵ ≡ ϵ(t + ∆t) − ϵ(t) ≡ ϵ − ϵ0

(projection problem) is equivalent to minimizing the function

χ(e,a0,∆a) ≡ ψ(e,a0 +∆a) + ϕ(∆a) (4)

with respect to ∆α.
The third property which is a consequence of the second one, is that of

symmetry of the tangent matrix of the global elasto-plastic iterations.
The proofs of the three previous properties were widely discussed in

Enakoutsa et al. (2007) in the context of ductile fracture of porous solids
and are not repeated here.
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3. Example 01: von Mises model and the class of GSM

The objective of this section is to demonstrate that the constitutive
relations of the von Mises plasticity model with isotropic hardening define
a generalized standard material. We begin by recalling the constitutive
equations of this model which consist of several elements.

• The first element, the von Mises yield criterion with isotropic harden-
ing, reads

σeq ≡
[
3

2
σ′ijσ

′
ij

] 1
2

≤ σ(εeq) = σ̄. (5)

In this equation σeq denotes the “von Mises equivalent stress”, σ′ is
the deviatoric stress tensor, and σ(εeq) represents the yield stress in
simple tension which depends on the “von Mises cumulative equivalent
plastic strain” εeq defined by:

εeq ≡
∫ t

0
ε̇eq(r)dr , ε̇eq ≡

[
2

3
ε̇ij ε̇ij

] 1
2

(6)

where ε̇eq is the “von Mises equivalent plastic strain rate”. The param-
eter σ(εeq) is usually determined experimentally by means of simple
tension tests. For the sake of simplicity, we idealize this function by a
linear formula in the form:

σ(εeq) = σ0 + hεeq (7)

where σ0 represents the initial (obtained before the appearance of any
strain hardening) yield stress in simple tension tests, and H is a posi-
tive hardening slope.

• The second element is the Prandlt-Reuss flow rule which obeys the
“normality rule” and is defined as:

ε̇p =
3

2

ε̇eq
σeq

σ′, ε̇eq


= 0 if σeq < σ(εeq)

≥ 0 if σeq = σ(εeq).
(8)

We shall now show that these equations satisfy the required properties to
fit in the class of generalized standard materials. To that end, we must first
define the state variables and the free energy or the elastic potential of the
material, then check that the latter meets the required properties defined in
Section 2.
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3.1. SGM of the von Mises Model

The state of the material is described by the following variables: the
components of the total strain ε and a set of internal variables including the
components of the plastic deformation εp and the mean equivalent plastic
strain. The free energy is defined as an elastic deformation energy plus a
“blocked” strain hardening energy

ψ(ε, εp, εeq) =
1

2
(ε− εp) : C : (ε− εp) +

∫ εeq

0
σ(ε)dε (9)

where C is the fourth-rank elastic stiffness matrix and σ(εeq) is the yield
stress which depends upon the cumulative plastic strain.

With this definition, it is obvious that the free energy ψ is strictly con-
vex with respect to the internal variable ε, the quadratic form defined by C
being positive-definite. The free energy is also strictly convex with respect
to εp for the same reason, as previously invoked. Thanks to the fact that
the hardening slope is positive, the free energy is also strictly convex with
respect to the variable εeq. Furthermore, the free energy is the sum of two
strictly convex functions depending upon εp and εeq; consequently, the free
energy is strictly convex with respect to the global variable (εp, εeq) as de-
sired.

The derivative of ψ with respect to ε is equal to σ, as also desired,
and the thermodynamic forces Fεp and F εeq , associated with the internal
variables εp and εeq, are given by

Fεp = − ∂ψ

∂εp
= C : (ε− εp) = σ

F εeq = − ∂ψ

∂εeq
= −σ(εeq) ≡ σ

(10)

( by definition of the current yield stress σ̄.) In addition, the derivative of ψ

with respect to ε gives σ, as required. Indeed, we have
∂ψ

∂ε
= C : (ε−εp) =

σ. The thermodynamic forces associated with the internal variable εp are

given by F ≡ − ∂ψ

∂εp
= C : (ε− εp)− cεp = σ −α, α = cεp, as also desired.

The next task to complete is to check that the reversibility domain de-
fined by von Mises yield criterion with isotropic hardening in the space of
thermodynamic forces (by expressing von Mises yield function as a function
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of the variables Fεp and F εeq , instead of the variables σ and σ) is convex.
The transformation of the variables (σ, σ) to (Fεp , F εeq) = (σ,−σ) being
linear, it suffices to show that the reversibility domain in the space of the
first variables, C ≡ {(σ, σ); Φ(σ, σ) ≤ 0}, is convex. This is obvious due to
the fact that von Mises yield function Φ 2 is a convex function with respect
to the global variable (σ, σ). Indeed,

Φ(σ, σ̄) = Φ(Fεp ,Fεeq) = σeq − σ̄ = ||Fεp′ ||+ Fεeq (11)

where the symbol ||.|| denotes the Eucludian norm. It follows that von Mises
yield function Φ is convex; hence, by the linearity of the transformation
of the variables (σ, σ̄) to (Fεp , Fεeq)=(σ,−σ̄), the reversibility domain is
convex with respect to the global variable (σ, σ̄).

The last thing to check is that the evolution equations associated to
the internal variables εp and εeq satisfy the “generalized normality rule”
with respect to the von Mises yield function, expressed as a function of the
thermodynamic forces, i.e.:

ε̇p = η
∂Φ

∂Fεp
≡ η

∂Φ

∂σ

ε̇eq = η
∂Φ

∂F εeq
≡ −η∂Φ

∂σ

(12)

Note that the evolution equation (12)1 is equivalent to the flow rule as-
sociated with the yield criterion by the normality property. It suffices, to
complete the verification, to check that the evolution equation (12)2 is sat-
isfied. And yet

Φ(σ, σ) = σeq − σ ⇒ ∂Φ

∂σij
=

3

2

σij
′

σeq
and

∂Φ

∂σ
= −1.

The relation (12)1 then gives

ε̇pij = η
3

2

σ′ij
σeq

. (13)

Taking the magnitude of both sides of Eq.(13), we get

η = ε̇eq,

2The expression of the yield criterion (5) allows to define such a function
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which is precisely the value of η given by Eq.(12)2. Hence, the “generalized
normality rule” with respect to the global variable (ε, εeq) is satisfied. This
proves that the small strain von Mises plasticity model with isotropic hard-
ening can be described within the context of generalized standard materials,
which guarantees that this model is automatically thermodynically consis-
tent. From the numerical point of view, the generalized standard character of
von Mises model ensures that the tangent matrix associated with the global
elasto-plastic iterations is symmetric; this should avoid spurious problems of
non-invertible matrix arising during nonlinear analyses. The property also
warrants that the problem of projection of the elastically computed stress
tensor onto the yield locus (plastic correction of the elastic predictor) admits
a unique solution, provided that the equations of this problem are obtained
through implicit time-discretization with respect to the components of the
plastic strain and the hardening parameter.
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3.2. Implications in terms of Numerical implementation of the von Mises
Model into a Finite Element Code

3.3. Description of the algorithm

The implementation of the global step may introduce complexities; how-
ever, this is not a concern when integrating a new plasticity model into a
computational code, as the global step is entirely independent of the dis-
cretization (mesh) used. The primary focus should be on the local step,
which requires careful attention. Specifically, only the material points (in-
tegration points) where the elastic and plastic strain increments, as well as
the associated stress and strain tensors, are computed will be considered.

In practice, all Gauss points across the structure are processed sequen-
tially, but this is handled automatically by the software, so there is no need
for concern. The emphasis will remain on the local step. Quantities denoted
by (0) correspond to time t, while those without indices represent time t+∆t.

Known quantities include σ(0), ε
(0)
eq , and ∆ε (the total strain increment be-

tween time t and t+∆t). The uniform application of the following formula
is then carried out

σ∗ = σ(0) + λ (tr(∆ε)) I+ 2µ∆ε

where σ∗ is called the ”elastically computed stress” or ”elastic predictor”;
it represents the final value of the stress, assuming that the total strain in-
crement is purely elastic.

There are several technical reasons for considering σ⋆ instead of handling
σ0 and ∆ε separately. One key reason is that in the absence of plastic de-
formation between times t and t+∆t, the final stress σ simply equals σ⋆.

(Note that if plasticity is involved, σ⋆ will not converge to σ at the end
of the iterative process, as σ⋆ represents the stress assuming purely elastic
behavior, which is not applicable in the presence of plasticity.)

The task is to compute the elastic and plastic strain increments (∆εe +∆εp),
the equivalent strain increment ∆εeq, and the final stress. We first employ
the elasticity constitutive law:

εe =
1 + ν

E
σ − ν

E
(tr(σ)) I
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and the assumption of the additivity of the deformation.

σ = σ(0) + λ (tr (∆εe)) I+ 2µ∆εe

= σ(0) + λ (tr (∆ε−∆εp)) I+ 2µ (∆ε−∆εp)

= σ(0) + λ (tr (∆ε)) I+ 2µ∆ε− (λ tr (∆εp) I+ 2µ∆εp)

= σ(0) + λ (tr (∆ε)) I+ 2µ∆ε− 2µ∆εp

= σ⋆ − 2µ∆εp

(14)

The term 2µ∆εp is referred to as the ”plastic correction.” This correc-
tion is applied to the elastic predictor to obtain the final stress value.

Secondly, the plastic flow rule will be used, discretized with an implicit
scheme (note that σeq and s are evaluated at time t+∆t):

∆εp =
3

2

(
∆εeq
σeq

)
s;

∆εeq =
2

3

(
∆εpij∆ε

p
ij

)
The last equation represents one of the von Mises criteria, evaluated at

time t+∆t.

σeq = σy (εeq) = σy

(
ε(0)eq +∆εeq

)
= σy

(
ε(0)eq

)
+ h∆εeq

in other words,

σy

(
ε(0)eq +∆εeq

)
= σy

(
ε(0)eq

)
+ σy (∆εeq)

The equations for this phase to consider are therefore as follows:

S :


σ = σ⋆ − 2µ∆εp

∆εp =
3

2

∆εeq
σeq

s

σeq = σy

(
ε(0)eq

)
+ h∆εeq

Of course, the previous equations help to better understand the mean-

ing of this section. The algorithm is implicit due to ∆εp =
3

2

∆εeq
σeq

s, which
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involves an implicit scheme.

The elastically computed stresses, denoted as σ⋆, are projected onto the
von Mises criterion. Specifically, the final stresses σ are derived from the
elastically computed stresses σ⋆ by subtracting 2µ∆εp, which is collinear
with σ and thus orthogonal to the yield surface defined by the von Mises
criterion at the stress point σ.

Let us now solve the system (S). By differentiating the first equation of
the system and combining it with the second equation, we obtain:

s = s⋆ − 2µ∆εp

= s⋆ − 2µ

(
3

2

∆εeq
σeq

)
s

= s⋆ − 3µ
∆εeq
σeq

s ⇒ s⋆ =

(
1 + 3µ

∆εeq
σeq

)
s

where s represents the derivative of the elastically computed stress ten-
sor. The equation illustrates a fundamental characteristic of the implicit
algorithm and its projection onto the criterion: the derivative of the final
stress tensor is positively collinear with σ. This property significantly sim-
plifies the solution process, as it reduces the problem to iteratively solving
a scalar equation for the unknown ∆εeq. This simplification is not generally
available with other types of plasticity criteria, nor with explicit algorithmic
approaches.

For example, if we were to explicitly write out the time discretization of
the flow rule (i.e., using an explicit scheme for the time discretization of the
flow rule), we would have

∆εp =
3

2

∆εeq

σ
(0)
eq

s(0)

which would have implied

s = s⋆ − 3µ
∆εeq

σ
(0)
eq

s(0)

and we would have lost the collinearity of s and s⋆.
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Taking the von Mises norm of the expression s⋆ =

(
µ+ 3µ

∆εeq
σeq

)
s, we

get (
3

2

)1/2

(s⋆ : s⋆)1/2 =

(
1 + 3µ

∆εeq
σeq

)(
3

2
sijsij

)1/2

σ⋆eq =

(
1 + 3µ

∆εeq
σeq

)
σeq

= σeq + 3µ∆εeq.

Using the expression:

σeq = σy

(
ε(0)eq

)
+ h∆εeq

we get

σ⋆eq = σy

(
ε(0)eq

)
+ h∆εeq + 3µ∆εeq

= σeq

(
ε(0)eq

)
+ (h+ 3µ)∆εeq

which implies that

∆εeq =
σ⋆eq − σeq

(
ε
(0)
eq

)
h+ 3µ

.

When ∆εeq is known, εeq is immediately incremented as:

εeq = ε(0)eq +∆εeq.

Similarly ∆εp is given by

∆εp =
3

2

∆εeq
σeq

s

s⋆ =

(
1 + 3µ

∆εeq
σeq

)
s

which implies

s =

 1

1 + 3µ
∆εeq
σeq

 s⋆.
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From there we have

∆εp =
3

2

∆εeq
σ⋆eq

s⋆.

From the equation

σ = σ⋆ − 2µ∆εp (15)

we deduce the value of σ.

In fact, the preceding analysis only accounts for the scenario where plas-
ticity occurs within the interval [t, t+∆t]. This happens when the equivalent

stress is slightly below the threshold (σ⋆eq − σ
(0)
y ).

More precisely, this implies that the equivalent stress at [t, t+∆t], com-
puted under the assumption of purely elastic behavior, exceeds the yield

strength for the current value of the accumulated strain ε
(0)
eq .

There may be cases where the stress is marginally below the threshold
tr ≤ 0, indicating the absence of plastic deformation between t and t+∆t

In such situations, we impose
(
∆εeq = 0; εeq = ε

(0)
eq and σ = σ⋆

)
.

Thus, it follows that ∆εeq = 0, εeq = ε
(0)
eq and σ = σ⋆.

It is important to note that the algorithm remains agnostic as to whether
the material exhibits plastic behavior at time t. Indeed, it only evaluates
the von Mises yield criterion at t+∆t, rather than at the initial time t.

The algorithm is applied without modification, even if the material is
elastic at time t and becomes plastic at time t+∆t, such that t′ ∈ [t, t+∆t].

3.4. Implications on the Numerical Implementation into a Finite Element
Code

As established in Section 4, the von Mises model characterizes a gen-
eralized standard material, incorporating plastic strain as an internal state
variable. This formulation guarantees the existence and uniqueness of the
solution to the associated projection problem, provided the evolution equa-
tions governing plastic strain is temporally discretized using an implicit in-
tegration scheme. However, the analysis presented in Section 4 is restricted
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to the context of a linearized kinematic framework, which can be overly sim-
plistic for plasticity simulations involving large deformations. By extending
the approach of Enakoutsa et al. (2007) , it is possible to remove the lim-
itations imposed by the linearized theory, allowing for the investigation of
how large deformation gradients, including both displacements and strains,
affect the numerical stability and accuracy of the implementation:

• At time step t+∆t, the equilibrium equations must be solved by up-
dating the configuration of the geometry at this instant. This update
is performed exclusively at the beginning of each outer elasto-plastic
iteration, ensuring that the geometry remains fixed during the reso-
lution of the subsequent projection problem. As a result, the projec-
tion problem is formulated with a frozen geometry, ensuring that the
mathematical properties, such as existence, uniqueness, and stability
of the solution, remain invariant under the geometric update at t+∆t

• For large strains and displacements, the classical elasticity law must be
replaced by a hypoelastic formulation, utilizing an objective stress rate
such as the Jaumann derivative. This objective derivative accounts
not only for the conventional material time derivative but also incor-
porates non-trivial contributions involving the Cauchy stress tensor,
the deformation gradient, and the velocity gradient. As demonstrated
by Enakoutsa et al. (2007) , discretizing these additional terms us-
ing an explicit time-stepping scheme introduces known quantities that
remain fixed throughout each global elasto-plastic iteration. These
terms effectively serve as corrective modifications to the elastic stress
predictor and do not impact the mathematical properties, such as the
existence or uniqueness, of the local projection problem.

3.5. Uniqueness of the Return Mapping Solution

To prove the uniqueness of the solution in the return mapping algorithm,
we rely on the following points:

3.5.1. Convexity of the Return Map

The plastic potential f(σ, σY ) is convex meaning that when the trial
stress violates the yield condition, there is a unique way for the stress state to
return to the yield surface. This ensures that the stress correction σ(t+∆t)
is unique.
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3.5.2. Monotonicity of the Hardening Law

The isotropic hardening law σ(εeq) is monotonic, meaning that the yield
stress always increases with increasing plastic strain (or remains constant in
the case of perfect plasticity). This prevents oscillations or multiple solutions
for the updated yield stress and plastic strain.

3.5.3. Positive Definite Tangent Modulus

In the Newton-Raphson iterative scheme used to solve the nonlinear
system in the return mapping algorithm, the key quantity is the consistent
tangent modulus, which governs how the stress and plastic strain are up-
dated at each iteration. For von Mises plasticity, the consistent tangent
operator is positive definite, meaning that the Newton-Raphson iterations
will always converge to a unique solution.

The consistent tangent modulus is derived from the stress-strain rela-
tionship and the plastic flow rule. It takes the form:

Ctan = C− (C : n)⊗ (C : n)

n : C : n+ h
(16)

where n is the normal to the yield surface, and h is the hardening modulus.

Since C (the elastic stiffness tensor) is positive definite and h ≥ 0 (for
isotropic hardening), the consistent tangent modulus remains positive def-
inite, ensuring that the return mapping algorithm converges to a unique
solution.

3.5.4. Existence of the Solution

The return mapping algorithm ensures the existence of a solution by
construction. The trial stress state is always projected back onto the yield
surface in the direction of plastic flow, meaning that a solution always exists
for the updated stress and plastic strain at each time increment.

In conclusion, by leveraging the convexity of the yield function, the posi-
tive definiteness of the tangent modulus, and the monotonicity of the harden-
ing law, the return mapping algorithm for von Mises plasticity with isotropic
hardening is guaranteed to have a unique solution. The iterative process
used in the return mapping algorithm converges reliably due to these prop-
erties, ensuring that the stress and plastic strain are updated in a well-posed
and physically consistent manner at each time step.
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4. Example 02: GLD model and the class of GSM

4.1. Governing equations of the GLD model

In the model proposed by Gologanu et al. (1997) , the cavities are as-
sumed to be ellipsoidal and axisymmetric, and aligned in the third direction
of the cartesian system of coordinates (e1, e2, e3). The porosity f is defined
as the ratio of the cavities volume to the total volume of the matter and
the cavities. The shape factor of cavities is defined as the logarithm of the
ratio of the axis of a cavity in the direction e3 and a perpendicular direction.

Just like the majority of classical plasticity models in large deforma-
tion, the GLD model introduces an assumption of additive decomposition
of the Eulerian strain rate into elastic and plastic parts, ε ≡ εe + εp, and
a hypoelasticity law connecting the elastic strain rate ϵe to some objective
time-derivative of the Cauchy stress tensor σ. We shall not insist on these
standard features but focus on the new elements of the model, which are
defined below.

4.1.1. Yield criterion

The yield criterion is given by the relation

Φ(σ, f, S, σ̄) ≡ C

σ̄2
||σ′ + ησhX||+ 2q(g + 1)(g + f) cosh

(
K
σh
σ̄

)
−(g + 1)2 − q2(g + f)2 = 0 (17)

where

• σ′ represents the deviatoric part of the stress tensor σ;

• X is the tensor defined as

X =
1

3
(−e1 ⊗ e1 − e2 ⊗ e2 + 2e3 ⊗ e3) (18)

(the unit vector e3 is parallel to the axis of the cavities);

• ||.|| is the von Mises magnitude symbol given by

||T|| ≡
(
3

2
T′ : T′

)1/2

(19)

(we shall adopt in the subsequent simplified notation

σeq = ||σ′ + ησhX||) (20)
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• σ̄ represents some average value of the yield stress in the heterogeneous
metallic matrix;

• C, η, K, g are the GLPD model parameters that depend on the poros-
ity f and the shape factor of the cavities S; their expressions can be
found in Gologanu et al. (1997) and are not repeated here;

• the stress σh is defined as:

σh = α2(σ11 + σ22) + (1− 2α2)σ33 (21)

where α2 is a parameter depending on the porosity f and the shape
factor of the cavities S;

• finally, q is the Tvergaard (1981) parameter.

4.1.2. Evolution equations of the internal variables

The evolution equation for the porosity, calculated from the approxi-
mate incompressibility (the elasticity being neglected) assumption of the
sane matrix material, is given by

ḟ ≡ 3(1− f)ε̇pm (22)

with ε̇pm = 1/3trϵ̇p denoting the mean part of the plastic deformation rate
ϵ̇p.

The rate of the shape factor of the cavities is defined as

Ṡ =
3

2
hε̇p

′

33 + 3

(
1− 3α1

f
+ 3α2 − 1

)
ε̇pm (23)

where ėp
′
denotes the deviatoric part of the plastic deformation rate ėp,

ε̇pm = 1
3tr(ė

p) is its mean part, and α1 is a parameter that is a function
of the porosity f and the shape factor of the cavities S. Finally, h is a
parameter which depends on the porosity f , the shape factor of the cavities,
in addition to the triaxiality T defined by:

T =
σm
||σ′||

, σm =
1

3
trσ. (24)

The variable σ̄ is given by

σ̄ ≡ σ(ϵ̄) (25)

20



where σ(ϵ) is the function giving the yield limit as a function of the equivalent
cumulated plastic strain ϵ, and ϵ̄ denotes the average value of this equivalent
strain in the heterogeneous matrix. The evolution equation of ϵ̄ obeys the
following law:

(1− f)σ̄ ˙̄ϵ = σ : ϵp, (26)

following an earlier suggestion of Gurson. Finally, the rate of change of the
vector e3 parallel to the axis of the cavities is defined as

ė3 = Ωe3 (27)

where Ω is the rotation rate of the matter (for example the skew-symmetric
part of the velocity gradient).

4.1.3. Flow rule

The plastic part of the additive decomposition of the deformation, de-
duced from the normality property, is obtained as

ϵ̇p = λ
∂Φ

∂σ
, λ ≥ 0 (28)

where Φ denotes the GLP yield function (see Eq.(17)) and λ is the plastic
multiplier. We shall now derive the explicit expressions of the plastic flow
rule, Eq.(28). To that end, we begin by calculating the derivative

∂σ2eq
∂σij

=
∂

∂σij

[
3

2
(σ′kl + ησhXkl)(σ

′
kl + ησhXkl)

]
= 3

[
σ′ij + ησhXij +

(
σ′kl + ησhXkl

)
η
∂σh
∂σij

Xkl

]
= 3

[
σ′ij + ησhXij +

2

3
η
∂σh
∂σij

(
3

2
σ′ : X+ ησh

)]
. (29)

Assuming that the Greek indices take only the values 1 and 2 and accounting
for the following relations

∂σh
∂σαβ

= α2δαβ,
∂σh
∂σα3

= 0,
∂σh
∂σ33

= 1− 2α2, (30)

∂Φ

∂σαβ
=

3C

σ̄2

[
σ′αβ + ησhXαβ +

2

3
η(1− 2α2)

(
3

2
σ′ : X+ ησh

)]
+ 2q(g + 1)(g + f)

K

σ̄
(1− 2α2) sinh

(
K
σh
σ̄

)
, (31)
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and

∂Φ

∂σα3
=
C

σ̄2
σα3 (32)

we obtain

∂Φ

∂σ33
=

3C

σ̄2

[
σ′33 + ησhX33 +

2

3
η(1− 2α2)

(
3

2
σ′ : X+ ησh

)]
+ 2q(g + 1)(g + f)

K

σ̄
α2 sinh

(
K
σh
σ̄

)
. (33)

We can then compute the mean part of the plastic deformation rate ϵ̇p as

ε̇pm =
1

3
(ε̇pαα + ε̇p33) =

λ

3

(
∂Φ

∂σαα
+

∂Φ

∂σ33

)
(34)

=
λ

3

[
2Cη

σ̄2

(
3

2
σ′ : X+ ησh

)
+ 2q(g + 1)(g + f)

K

σ̄
sinh

(
K
σh
σ̄

)]
.

Also, combining the relations (28), (33), and (34), we get
ε̇pαβ = λ

3C

σ̄2
(
σ′αβ + ησhXαβ

)
+ 3α2δαβ ε̇

p
m

ε̇pα3 = λ
3C

σ̄2
σα3

ε̇p33 = λ
3C

σ̄2
(
σ′33 + ησhX33

)
+ 3(1− 2α2)ε̇

p
m.

(35)

In the subsequent, let assume that

ϵ̇pd = ϵ̇p − 3α2ε̇
p
meα ⊗ eα − 3(1− α2)ε̇

p
me3 ⊗ e3. (36)

(Note that ϵ̇pd is a purely deviatoric tensor, i.e. trϵ̇pd = 0). Combining the
relations (35) and (36) we get

ϵ̇pd = λ
3C

σ̄2
(σ′ + ησhX). (37)

Thus, the tensors ϵ̇pd and σ′ + ησhX are positively collinear. It follows that

ϵ̇pd =
3

2

ε̇pd
σeq

(σ′ + ησhX), (38)

with

ε̇pd =

(
2

3
ϵ̇pd : ϵ̇pd

)2

(39)
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(ε̇pd is equal to 2/3 of the von Mises norm of ϵ̇pd) and σeq is given by Eq.(21).
Furthermore, we get

λ =
1

2C

σ̄2ε̇pd
σeq

; (40)

adding this result to Eq.(34) yields

ε̇pm
ε̇pd

=
η

3σeq

(
3

2
σ′ : X+ ησh

)
+ 2q(g + 1)(g + f)

K

3C

σ̄

σeq
sinh

(
K
σh
σ̄

)
.

To summarize, the explicit equation of the flow rule is given by the relations

ϵ̇pd =
3

2

ε̇pd
σeq

(σ′ + ησhX)

ε̇pm
ε̇pd

=
η

3σeq

(
3

2
σ′ : X+ ησh

)
+ 2q(g + 1)(g + f)

K

3C

σ̄

σeq
sinh

(
K
σh
σ̄

) (41)

Note that in the case of a spherical cavity, η = 0, C = 1, α2 = 0, g = 0,
Eq.(41)2 reduces the relation

ε̇pm
ε̇pd

= 2qf
K

3

σ̄

σeq
sinh

(
K
σh
σ̄

)
, (42)

which corresponds to the theoretical equation of the flow rule for the Gurson
model, see Gurson (1977). Remarkably, ε̇pm is non-zero in Eq.(42) since the
porosity and the mean stress σh are generally non-zero; thus, there is a
plastic volume change of the cavity, which corresponds to an increase in the
porosity for σh > 0 or a decrease of the porosity if σh < 0. Hence, the model
accounts very well for the growth and closure of cavities.
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4.1.4. Parameterization of the yield surface

The numerical implementation of the GLD model requires solving the
complex problem of projection of the elastic stress predictor onto the yield
surface. One key point of the procedure of solution of the projection prob-
lem, aimed at reducing the number of unknowns, lies in a suitable parametriza-
tion of the yield locus defined by the yield function (17). This parametriza-
tion is inspired by the classical one for an ellipse and obtained by looking for

the maximum possible value of the quantity C
σ2eq
σ̄2

corresponding to σh = 0,

i.e. cosh
(
K
σh
σ̄

)
= 1. Using Eq.(17), we find

C
σ2eq
σ̄2

= (g+1)2+q2(g+f)2−2q(g+1)(g+f) = [g+1−q(g+f)]2. (43)

Assuming that

C
σ2eq
σ̄2

= [g + 1− q(g + f)]2 cos2(ϕ), (44)

we obtain

σeq =
σ̄√
C
[g + 1− q(g + f)]2 cos(ϕ) (45)

where ϕ represents some angle with positive cosine. Hence, Eq.(17) yields

2q(g + 1)(g + f) cosh
(
K
σh
σ̄

)
= (g + 1)2 + q2(g + f)2 − [g + 1− q(f + g)]2 cos2(ϕ)

= 2q(g + 1)(g + f) + [g + 1− q(f + g)]2 sin2(ϕ). (46)

Solving Eq.(46) for the parameter σh we get

σh =
σ̄

K
sgn(ϕ) cosh−1

(
1 +

[g + 1− q(g + f)]2

2q(g + 1)(g + f)
sin2(ϕ)

)
. (47)

The sign of ϕ is introduced into Eq.(47) to allow for negative as well as
positive values of σh. Finally, the equations of the parametrization of the
yield surface are given by

σeq =
σ̄√
C
[g + 1− q(g + f)]2 cos(ϕ)

σh =
σ̄

K
sgn(ϕ) cosh−1

(
1 +

[g + 1− q(g + f)]2

2q(g + 1)(g + f)
sin2(ϕ)

) (48)
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4.1.5. Nonlocal Damage Model Based on the GLD Model

The nonlocal damage model based on the Gologanu-Leblond-Devaux
(GLD) model extends the classical Gurson (1977) model by incorporating
void shape evolution, which captures how voids elongate or flatten during
plastic deformation, and a nonlocal treatment of damage, significantly im-
proving the accuracy of simulations in ductile fracture, where the shape and
distribution of voids play a critical role in material behavior.

4.1.6. Nonlocal Approach

In traditional local damage models, damage evolution is computed at a
specific material point based on local stress and strain states. However, a
nonlocal damage model introduces spatial averaging, so the damage at any
point also depends on the behavior of surrounding material points. This
approach resolves issues like mesh sensitivity and unrealistic localization of
damage.

4.1.7. Convolution of the Evolution Equation of the Damage

The nonlocal aspect is introduced using a convolution operator, which
spreads the effect of damage over a spatial domain. This convolution inte-
grates the damage variable over neighboring points, ensuring that damage
evolution considers both local and surrounding states. The mathematical
representation of the convolution is given by:

˙̄f(x) =

∫
Ω
w(x, x′)ḟ(x′) dx′

where ˙̄f(x) represents the nonlocal damage at point x, ḟ(x′) is the local
damage at a neighboring point x′, and w(x, x′) is a weighting function (or
kernel) that controls how much influence neighboring points have on the
damage at x.

4.1.8. Applications of the Nonlocal GLD Model

• Ductile Fracture in Metals: This model is particularly useful for
simulating fracture in porous metals, where void nucleation, growth,
and coalescence are essential mechanisms of ductile failure.

• Void Shape Effects: By incorporating the shape effects of voids,
the model enhances the prediction of material strength and fracture
patterns under complex loading conditions.
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• Mesh Regularization: The nonlocal formulation helps avoid mesh
dependence and instability in finite element simulations, providing
more reliable results in engineering applications.

4.1.9. Mathematical Formulation

The nonlocal GLD model replaces the local damage variable with a non-
local one, introducing spatial averaging via the convolution operation. The
mathematical form of the nonlocal damage variable is given by:

˙̄f(x) =

∫
Ω
w(x, x′)ḟ(x′) dx′

where:

• ˙̄f(x) is the nonlocal damage at point x,

• ḟ(x′) is the local damage at a neighboring point x′,

• w(x, x′) is a weighting function that defines the influence of damage
at point x′ on point x,

• Ω is the domain over which the convolution is computed.

The kernel function w(x, x′) is chosen based on the material’s characteristic
length scale and plays a crucial role in controlling the spatial distribution of
damage.

26



4.2. The GLD model and the class of generalized standard materials

In this section, we aim to examine the generalized standard nature of the
GLP model under the assumption of small deformations. It should be noted
that the formalism of generalized standard materials only applies under this
assumption.

The examination demonstrates that, at a fixed porosity, the constitutive
equations of the GLD model possess the required properties to ensure the
model’s classification within the GSM class.

In the following section, we will explore the implications of this property
concerning the numerical implementation of the model.

It is important to immediately note that this property applies equally
to both the original local version of the model and its non-local modified
version presented in Section 4, as fixing the porosity disregards its evolution
equation, which is the only differing point between the two versions.

The presentation begins with a very brief general overview of some as-
pects of the work by Halphen and Nguyen (1975), and Son (1977) on
the Generalized Strain Gradient (GSM). It continues by providing a simple
example of MSG before delving into the main result of this section: the
generalized standard nature of the GLP model when the porosity, the ori-
entation, and the shape factor components in the model are assumed to be
discretized with an explicit numerical scheme.

To begin with, it is necessary to define the state variables and the ex-
pression for the free energy, and then ensure that the latter satisfies the
required properties (see Appendix A).

The state of the material is described by the following state variables:
the components of total deformation ε and a set of internal variables includ-
ing the components of plastic deformation εp and the cumulative equivalent
plastic deformation.

We then propose the following free energy potential, which is the sum of
elastic deformation energy and ”locked” hardening energy:

ψ(ε, εp, εeq) =
1

2
(ε− εp) : C : (ε− εp) + λ

∫ εeq

0
σ(ε)dε. (49)
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In this equation, C represents the fourth-order elastic stiffness tensor, and
σ(εeq) is the yield stress in simple tension, a function of cumulative plastic
deformation.

It is easy to see, with this definition, that the free energy ψ is strictly
convex with respect to the internal variable ε, as the quadratic form defined
by C is positive definite. The free energy is also strictly convex with respect
to εp for the same reason as mentioned earlier. It is also strictly convex
with respect to the variable εeq due to the positivity of the hardening slope.
Furthermore, it is a sum of strictly convex functions of εp and εeq (with
ε fixed). Therefore, the free energy is strictly convex with respect to the
global internal variable (εp, εeq), as desired.

Moreover, the derivative of ψ with respect to ε is equal to σ, as desired
as well, and the thermodynamic forces Fεp and F εeq associated with the
internal variables εp and εeq are given by:

Fεp = − ∂ψ

∂εp
= C : (ε− εp) = s

F εeq = − ∂ψ

∂εeq
= −σ(εeq) ≡ σ

(50)

The second thing to do is to demonstrate that the reversibility domain
defined by GLD criterion in the space of thermodynamic forces ( expressing
GLD’s charge function Φ in terms of the variables Fεp and F ϵ̄ instead of σ
and σ̄) is convex.

The transformation from the variables (σ, σ̄) to the variables ( Fεp , F ϵ̄)
= (σ,−λσ̄) is, however, linear. Therefore, it will be sufficient to prove that
the reversibility domain in the space of the first variables,

C ≡ (σ, σ̄); Φ(σ, σ̄, S, f) ≤ 0,

is convex.

This would result immediately from the convexity of GLD’s charge func-
tion Φ with respect to the global internal variable (σ, σ̄), if this function
were convex.
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The second element consists of checking that the evolution equations
of the internal variables εp and ϵ̄ comply with the generalized normality
property with respect to the GLD’s yield function, expressed in terms of
thermodynamic forces:

ε̇p = η
∂Φ

∂Fεp
≡ η

∂Φ

∂σ

˙̄ϵ = η
∂Φ

∂F ε̄
≡ −η

λ

∂Φ

∂σ̄

(51)

The two previous elements of this proof were extensively discussed in Enakoutsa
et al. (2007) in the context of the Gurson (1977) ’s model, and for this rea-
son will not be repeated here.

All the necessary conditions for the GLD model with fixed porosity and
the shape factor of the cavities to define a generalized standard material are
thus satisfied.

The essential point here is that the evolution equation of the hardening
parameter ϵ̄ is such that the internal variables εp and ϵ̄ collectively satisfy a
certain normality law. This property does not appear to be extendable to
the case where the evolution of porosity and the shape factor of the cavities
are taken into account, because the right-hand sides of these equations bear
no relation to the derivative of the criterion with respect to the porosity and
the shape factor of the cavity.

29



4.3. Implications in terms of numerical implementation of the GLD model

4.3.1. Numerical Algorithm

Projection onto the yield surface

The key challenge in the numerical implementation of an elastoplastic
model lies in accurately projecting onto the yield surface. Specifically, the
task is as follows: given the outcome of a ”large elastoplastic iteration”
(where elastic deformation is solved over the entire structure, considering
initial plastic strains), which yields the total strain increment ∇ε̇ over the
time step from t to t+∇t, we must determine the decomposition of ε̇ into
its elastic ε̇e and plastic ε̇p components. This decomposition must satisfy
the yield criterion at t + ∇t and the flow rule governing plastic behavior
during the time step, ultimately leading to the updated stress at t+∇t.

In the following, quantities without indices refer to their values at time
t+∆t, while those with the subscript ’0’ correspond to their values at time
t (representing known quantities).

Let us begin by defining a parametrization of the original Gurson crite-
rion using an angle ϕ, following the approach of the original model. This
ensures automatic satisfaction of the criterion. The flow rules will then pro-
vide an equation for ϕ, which can be solved numerically.

To find this parametrization, let us look for the maximum value of C
σ2eq
σ2

corresponding to σh = 0 =⇒ cosh

(
K
σh
σ

)
= 1; according to Eq. ( 17 )

C
σ2eq
σ2

= (g + 1)2 + q2(g + f)2 − 2q(g + 1)(g + f) = [g + 1− q(g + f)]2.

It is therefore natural to assume that

C
σ2eq
σ2

= [g + 1− q(g + f)]2cos2φ

⇒σeq =
σ√
C
[g + 1− q(g + f)]cosφ

(52)

where φ is some angle with positive cosine. We get from Eq.( 17 )
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2q(g + 1)(g + f)cosh
(
K
σh
σ

)
= (g + 1)2 + q2(g + f)2 − [g + 1− q(g + f)]2cos2φ

= (g + 1)2 + q2(g + f)2 − [g + 1− q(g + f)]2

+ [g + 1− q(g + f)]2sin2φ

= 2q(g + 1)(g + f) + [g + 1− q(g + f)]2sin2φ

⇒ cosh
(
K
σh
σ

)
= 1 +

[g + 1− q(g + f)]2

2q(g + 1)(g + f)
sin2φ

⇒ σh =
σ

K
sgn(φ)cosh−1

(
1 +

[g + 1− q(g + f)]2

2q(g + 1)(g + f)
sin2φ

)
(53)

We introduce sgn(ϕ) (the sign of ϕ) to ensure that σh can assume both pos-
itive and negative values. Equations (52) and (53) provide the parametriza-
tion for the criterion we seek. The angle ϕ is considered within the interval[
−π

2 ,
π
2

]
, which allows cos(ϕ) to cover all positive values or zero, and sgn(ϕ)

to assume values of ±1. Before expressing the flow rule in its discretized
form, we first need to establish the relationships between σh and σm, and
between ε̇pd and ε̇p

′
as:

σh =α2σαα + (1− 2α2)σ33 =
1

3
(σαα + σ33) +

(
α2 −

1

3

)
σαα + 2

(
1

3
− α2

)
σ33

=σm + (1− 3α2)

(
−1

3
σαα +

2

3
σ33

)
which gives, from the definition Eq. ( 18 ) of the tensor X:

σh = σm + (1− 3α2)σ
′ : X. (54)

In addition, from Eq. ( 36 ),

ε̇pd = ε̇p − 3α2ε̇
p
mêα ⊗ êα − 3(1− 2α2)ε̇

p
mê3 ⊗ ê3

= ε̇p − ε̇pmêα ⊗ êα − ε̇pmê3 ⊗ ê3 + (1− 2α2)ε̇
p
mêα ⊗ êα + 2(3α2 − 1)ε̇pmê3 ⊗ ê3

= ε̇p − 3(1− 3α2)ε̇
p
mX.

(55)
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Let us now write the flow rule in discretized form. ∆εpd being related to

∆εp
′
par the relationship

∆εpd = ∆εp
′ − 3(1− 3α2)∆ε

p
mX (56)

(which is the discretized equivalent form of Eq.( 55 ), we get:

∆εpd =
3

2

∆εpd
σeq

(
σ′ + ησhX

)
(57)

where

∆εpd =

(
3

2
∆εpd : ∆εpd

)1/2

. (58)

Note that these equations correspond to an implicit algorithm with respect
to all parameters except the porosity f . The symbol f̃ represents an explicit
approximation of porosity on the half-interval t+ ∆t

2 given by

∆εpm
∆εpd

=
η

3σeq

(
3

2
σ′ : X + ησh

)
+ q(g + 1)(g + f̃)

K

3C

σ

σeq
sinh

(
K
σh
σ

)
.

(59)

The explicit character of the algorithm with respect to f (parameter gov-
erning softening) ensures its convergence, taking f̃ at t + ∆t

2 , and not at t
or t+∆t, allowing us to optimize the precision of the algorithm:

f̃ = f0 + ḟ0
∆t

2
. (60)

Assume σ′
o and σ⋆m the deviatoric and the mean parts of the stresses tensor

(at t + ∆t) σ⋆ ”elastically calculated,” that is by assuming that the incre-
ment of deformation ∆ε is purely elastic; we get

σ∗′ = σ′
o + 2µ∆ε′ and σm = σmo + (3λ+ 2µ)∆εm. (61)
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σ′
o and σ

⋆
m are the known quantities during the operation of the ”projection

on the yield surface.” Now let us evaluate σ′ using Eqs.( 61 ), Eqs.( 56 ),
Eq.( 57 ) )

σ′ =σ′
o + 2µ∆εe

′
= σ′

o + 2µ∆ε′ − 2µ∆εp
′
= σ∗′ − 2µ∆εp

′

=σ∗′ − 2µ∆εpd − 6µ(1− 3α2)∆ε
p
mX

=σ∗′ − 3µ
∆εpd
σeq

(
σ′ + ησhX

)
− 6µ(1− 3α2)∆ε

p
mX.

(62)

Contracting this equation with the tensor
3

2
X using Eq.( 59 )

k = q(g + 1)(g + f̃)
K

3C
σsinh

(
K
σh
σ

)
; (63)

we get

3

2
σ′ : X =

3

2
σ∗′

: X − 3µ
∆εpd
σeq

(
3

2
σ′ : X + ησh

)
−6µ(1− 3α2)

[
η

3σeq

(
3

2
σ′ : X + ησh

)
+

k

σeq

]
∆εpd

thus, adding ησh to the two sides of the equations, we get:

3

2
σ′ : X + ησh =

3

2
σ∗′

: X + ησh − 3µ
∆εpd
σeq

(
3

2
σ′ : X + ησh

)
− 2µ

η

σeq
(1− 3α2)

(
3

2
σ′ : X + ησh

)
∆εpd − 6µ(1− 3α2)

k

σeq
∆εpd

⇒
[
1 + 3µ

∆εpd
σeq

+ 2µη(1− 3α2)
∆εpd
σeq

](
3

2
σ′ : X + ησh

)
=

3

2
σ∗′

: X + ησh − 6µk(1− 3α2)
∆εpd
σeq
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⇒ 3

2
σ′ : X + ησh =

a∆εpd + b

c∆εpd + d
(64)

where

a = −6µk(1− 3α2) ; b =

(
3

2
σ∗′

: X + ησh

)
σeq ;

c = 3µ+ 2µη(1− 3α2) ; d = σeq.

(65)

Let’s go back now to Eq.( 62 ) by adding ησhX to the two sides of the
equations; we obtain

σ′ + ησhX = σ∗′
+ ησhX − 3µ

∆εpd
σeq

(
σ′ + ησhX

)
− 6µ(1− 3α2)∆ε

p
mX

⇒
(
1 + 3µ

∆εpd
σeq

)(
σ′ + ησhX

)
= σ∗′

+ ησhX − 6µ(1− 3α2)∆ε
p
mX.

In addition, by Eq.( 62 ) we have

σm = σmo + (3λ+ 2µ)∆εem = σ∗m − (3λ+ 2µ)∆εpm

⇒ ∆εpm =
σ∗m − σm
3λ+ 2µ

,

(66)

thus, by reporting in the previous equation, we get

(
1 + 3µ

∆εpd
σeq

)(
σ′ + ησhX

)
=

σ∗′
+ ησhX − 6µ

3λ+ 2µ
(1− 3α2)(σ

∗
m − σm)X.

(67)
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Taking the von Mises norm ∥∥ of the two sides of the equation, we get

σeq + 3µ∆εpd =

∥∥∥∥σ∗′
+ ησhX − 6µ

3λ+ 2µ
(1− 3α2)(σ

∗
m − σm)X

∥∥∥∥

⇒ ∆εpd =
1

3µ

(∥∥∥∥σ∗′
+ ησhX − 6µ

3λ+ 2µ
(1− 3α2)(σ

∗
m − σm)X

∥∥∥∥− σeq

)
.

(68)

Finally, using the flow rule Eq.( 59 ) together with Eqs.( 63, 64, 66 ) we
obtain

∆εpm =
σ∗m − σm
3λ+ 2µ

=

(
η

3σeq

a∆εpd + b

c∆εpd + d
+

k

σeq

)
∆εpd

⇒ σ∗m − σm
3λ+ 2µ

σeq −
(
η

3

a∆εpd + b

c∆εpd + d
+ k

)
∆εpd = 0.

(69)

Let us observe that ∆εpd can be expressed as a function of ϕ and 3
2σ

′ : X
thanks to Eq.( 68 ), considering Eqs.( 52, 53, 54 ). Thus, we can choose ϕ
and 3

2σ
′ : X as principal unknowns. These equations satisfy Eqs.( 64, 69 )

where the coefficients a, b, c, d are given by Eq.(65) (k itself being given by
Eq.( 63 ) ) .

These equations can be solved numerically by Newton’s method: the
quantity 3

2σ
′ : X can be evaluated by solving Eq.( 64 ), ϕ being calculated

at each Newton’s iteration on 3
2σ

′ : X by solving Eq.( 69 ) by Newton
iteration on ϕ. Once ϕ and 3

2σ
′ : X are determined, we deduced σeq, σh,

and σm by Eqs.( 52, 53, 54 ), and ∆εpm and ∆εpd by Eqs.( 66, 68 ), σ′+ησhX
(and hence σ′) by Eq.( 67 ), ∆εpm by Eq.( 57 ) and ∆εp′ by Eq.( 56 ). Thus,
the operation of projection onto the yield locus has been carried out.
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Evolution equations for the internal parameters

The first internal parameter we consider is the porosity f . Using an
implicit algorithm for this parameter leads to significant convergence diffi-
culties that are often challenging to resolve. Consequently, we employ an
explicit algorithm in which f—as shown in equations (52) and (53)—does
not represent the actual porosity value at time t+∆t. Instead, it approxi-
mates the porosity based on the previous time step:

f = fo + ḟo∆t (70)

( f is therefore fixed throughout the passage from the instant t to instant
t+∆t).

Of course, after convergence of the large elastic plastic iterations from t
to t + ∆t, f is updated for the next step thanks to the following formula,
discretized equivalent of Eq.( 22 )

f(t+∆t) = 3
(
1− f̃

)
∆εpm. (71)

The (approximate) value f̃ of the porosity in the half-interval (see Eq.(60))
is used here in order to improve the accuracy of the algorithm.

The second internal parameter is the shape factor S, also unknown “a
priori”. To determine it, we adopt an iterative algorithm of a ”fixed point”
type. The law of evolution of this parameter is the discretized equivalent of
Eq.(23 )

∆S =
3

2
h∆εp

′

33 + 3

(
1− 3α1

f
+ 3α2 − 1

)
∆εpm. (72)

We recall that h is an independent parameter, besides f and S, of the triaxi-
ality T defined by Eq.(24). It is therefore necessary to calculate, in addition
to σm as we saw above, ∥σ′∥, a quantity which, we recall, is not equal to

σeq =

(
∥σ′ + ησhX∥

)
. By definition of the von Mises norm ∥∥ defined by

σ2eq =
∥∥σ′ + ησhX

∥∥2 = 3

2

(
σ′ + ησhX

)
:
(
σ′ + ησhX

)

=
3

2
σ′ : σ′ + 3ησhσ

′ : X + η2 + σ2h =
∥∥σ′∥∥2 + 2ησh

(
3

2
σ′ : X + ησh

)
− η2σ2h
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⇒
∥∥σ′∥∥ =

[
σ2eq − 2ησh

(
3

2
σ′ : X + ησh

)
+ η2σ2h

]1/2
. (73)

This equation allows to evaluate ∥σ′∥ and therefore the triaxiality T , the
quantities σeq, σh,

3
2σ

′ : X + ησh being known elsewhere.

The third internal parameter is the hardening parameter σ, or what
amounts to the same via Eq.(26), the mean equivalent deformation ε. We
use a fixed point algorithm to calculate this parameter, as for the shape form
factor. The law of evolution used, the discretized equivalent of Eq.(26), is

(
1− f̃

)
σ∆ε = σ : ∆εp. (74)

Its use requires the calculation of σ : ∆εp according to known quantities.
We get, from Eqs.(54, 56 ) and Eq.(57),

σ : ∆εp =
(
σ′ + σm1

)
:
(
∆εp

′
+∆εpm1

)
= σ′ : ∆εp

′
+ 3σm∆εpm

= σ′ :
(
∆εpd + 3(1− 3α2)∆ε

p
mX

)
+ 3

(
σh − (1− 3α2)σ

′ : X
)
∆εpm

= σ′ : ∆εpd + 3σh∆ε
p
m

= σ′ :
3

2

∆εpd
σeq

(
σ′ + ησhX

)
+ 3σh∆ε

p
m

=
(
σ′ + ησhX

)
:
3

2

∆εpd
σeq

(
σ′ + ησhX

)
− 3

2

∆εpd
σeq

ησhX :
(
σ′ + ησhX

)
+ 3σh∆ε

p
m

= σeq∆ε
p
d + 3σh∆ε

p
m − η

σh
σeq

(
3

2
σ′ : X + ησh

)
∆εpd

thus, the evolution equation of Eq.(74) of ε can be written as

∆ε =
1(

1− f̃
)
σ

[
σeq∆ε

p
d + 3σh∆ε

p
m − η

σh
σeq

(
3

2
σ′ : X + ησh

)
∆εpd

]
(75)

where all the quantities on the right side of the equation are known quanti-
ties.
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The fourth internal parameter is the vector e3 parallel to the void axis.
Its law of evolution Eq.(27 ) is discretized in an explicit way following the
expression:

∆e3 = ∆Ω · (e3)o (76)

where ∆e designates the rotation increment of the manner, equals for exam-
ple to the anti-symmetric part of the gradient of the displacement increment.
(e3)o designating the vector e3 at the explicitly known instant t; therefore
we can perform the correction of this vector given by Eq.(76) prior to any
other calculation, without having to perform iterations.
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5. Discretization of the Convolution Integral of the Evolution Equa-
tion of the Damage

In this section, we describe the numerical implementation of the convo-
lution integral used in the nonlocal damage model based on the Gologanu-
Leblond-Devaux (GLD) model. The inclusion of nonlocal effects ensures
that damage evolution is influenced by the surrounding material, thus pre-
venting mesh dependency and enhancing the accuracy of ductile fracture
simulations. The core of the nonlocal formulation is the convolution inte-
gral, which we discretize and implement in a finite element code. Below, we
outline the key steps involved in this numerical procedure.

5.1. Governing Convolution Equation

In the nonlocal damage model, the nonlocal damage variable ˙̄f(x) at a
point x is computed as a spatial average of the local damage field ḟ(x′) over
a certain neighborhood of x, defined by the characteristic length scale l. The
convolution integral is given by:

˙̄f(x) =

∫
Ω
w(x, x′)ḟ(x′) dx′ (77)

where w(x, x′) is a weighting function that controls the influence of neigh-
boring points x′ on the damage at x. The function w(x, x′) typically decays
with distance, ensuring that points far away from x have less influence on
˙̄f(x).

5.2. Discretization of the Convolution Integral

To implement this convolution in a finite element framework, we dis-
cretize the integral over the finite element mesh. Given that the domain Ω
is divided into elements, the convolution at a point xi (which can represent
a node or integration point) is approximated as:

˙̄f(xi) ≈
n∑

j=1

w(xi, xj)ḟ(xj)Vj (78)

where ḟ(xj) is the local damage at point xj , w(xi, xj) is the weight-
ing function between points xi and xj , and Vj is the volume (or area in
2D) associated with point xj . This summation involves contributions from
neighboring points that lie within the interaction range defined by the char-
acteristic length l.
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5.3. Choice of Weighting Function
The choice of the weighting function w(xi, xj) plays a crucial role in

capturing the nonlocal effects. For this implementation, we select a Gaussian
kernel, which provides a smooth decay of influence with distance:

w(xi, xj) = exp

(
−|xi − xj |2

l2

)
(79)

This kernel ensures that points closer to xi have a stronger influence on
the damage at xi, while distant points contribute less. The characteristic
length l controls the extent of the neighborhood over which the convolution
operates, and it is chosen based on material properties or experimental data.

5.4. Efficient Neighbor Search
In the finite element mesh, computing the convolution at every node

requires identifying neighboring nodes within the characteristic length l. To
optimize this process, we employ a nearest neighbor search algorithm, such
as a k-d tree, to efficiently locate the neighboring points for each node.
This reduces the computational cost by avoiding the need to evaluate the
convolution over the entire mesh.

5.5. Quadrature for Finite Elements
To achieve higher accuracy in the finite element method, we use Gauss

integration points within each element to compute the convolution. For each
integration point xi, we calculate the nonlocal damage f̄(xi) by summing
contributions from neighboring elements:

˙̄f(xi) ≈
∑

elements

∑
Gauss points

w(xi, xj)ḟ(xj)Wj (80)

where Wj is the quadrature weight associated with point xj . This ap-
proach ensures that the convolution is accurately captured across the do-
main, even in regions with complex geometries or irregular element shapes.

5.6. Handling Boundary Conditions
Special care must be taken when implementing the convolution near

the domain boundaries, as points near the boundary may not have sufficient
neighboring points within the interaction radius l. To address this, we adopt
a reflection technique, whereby points near the boundary are ”mirrored”
across the boundary to provide additional neighbors. Alternatively, the
weighting function can be modified near the boundaries to account for the
missing contributions from outside the domain.
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5.7. Algorithm for the Numerical Convolution

The overall algorithm for the numerical implementation of the convolu-
tion can be summarized as follows:

• Preprocessing:

– Build the finite element mesh.

– For each node or integration point xi, identify neighboring points
xj within the interaction range using a nearest neighbor search
algorithm.

• At Each Time Step:

– For each node or integration point xi, compute the local damage
f(xi) using the damage evolution law.

– Compute the nonlocal damage f̄(xi) using the discretized convo-
lution:

˙̄f(xi) =
∑
j

w(xi, xj)ḟ(xj)Vj (81)

– Update the material stiffness matrix and force vector to account
for the effects of nonlocal damage.

• Solve the Global System: Use a nonlinear solver, such as the
Newton-Raphson method, to solve the global system of equations for
displacements and other unknowns.

5.8. Computational Considerations and Parallelization

The convolution operation, particularly for large-scale problems, can be
computationally expensive due to the summation over neighboring nodes.
To improve efficiency, we leverage parallel computing techniques such as
OpenMP or MPI, which allows for concurrent evaluation of the convolution
at multiple points. Additionally, sparse convolution techniques are employed
to limit the range of interactions to only those points within the character-
istic length l, further reducing the computational burden.

The numerical implementation of the convolution integral for the non-
local damage model enhances the predictive capabilities of ductile frac-
ture simulations by accounting for the spatial distribution of damage. By
discretizing the convolution, selecting an appropriate weighting function,
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and employing efficient neighbor search and parallelization techniques, we
achieve a robust and scalable implementation that can be integrated into
existing finite element codes. This formulation helps mitigate mesh de-
pendency and provides more accurate results, especially in the context of
complex loading conditions and material behavior.

5.9. Advantages of using the GSM framework

Generalized Standard Materials, as formulated by Halphen and Nguyen
(1975), and Son (1977) in the context of infinitesimal strain theory, con-
stitute a broad class of elastic-plastic solids. In these materials, both the
plastic strain tensor and the set of internal state variables evolve according
to an ”extended normality rule,” a generalization of the classical normal-
ity condition in plasticity. This class is remarkable for several key reasons.
One of the most significant results, demonstrated by Halphen and Nguyen
(1975), is that for the GSM, the local elastoplastic update problem at a
material point—spanning a time increment [t, t + ∆t]v can be recast as a
minimization problem involving a strictly convex potential. This holds pro-
vided the flow rule is discretized using an implicit time integration scheme,
typically the backward Euler method. In this formulation, the unknown
stress tensor and internal variables at time t+∆t are determined implicitly,
rather than relying on their known values at time t. The strict convexity of
the objective functional guarantees the well-posedness of the minimization
problem, ensuring both existence and uniqueness of the solution at the in-
tegration point, which is critical for ensuring the stability and robustness of
the numerical algorithm in solving the local return-mapping equation.

It must be rigorously underscored that, although the convexity of the
local projection problem ensures existence and uniqueness at the level of a
single integration point, this property is restricted to the return-mapping
algorithm and addresses only a discretized aspect of the global boundary-
value problem (BVP). Specifically, this result does not extend to the global
solution of the BVP, where issues of the existence and uniqueness remain
fundamentally unresolved, particularly in the presence of material soften-
ing. Softening models, such as those investigated in the present study, in-
duce strain localization phenomena that are intrinsically linked to a loss of
ellipticity in the underlying system of partial differential equations. This
breakdown in ellipticity typically manifests as ill-posedness of the global
BVP, leading to non-existence or non-uniqueness of the solution, as well
as pathological mesh sensitivity in numerical simulations. Consequently,
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the mathematical guarantees derived from the local projection problem are
insufficient to ensure the well-posedness of the global problem, where ad-
ditional factors such as regularization techniques or nonlocal formulations
may be required to mitigate these effects.

Enakoutsa et al. (2007); Enakoutsa (2007) rigorously established that
Gurson (1977) model can be embedded within the class of Generalized
Standard Materials (GSM), contingent upon two specific conditions: (i) the
analysis is carried out within the linearized regime, corresponding to the
assumption of small strains and small displacements, and (ii) the internal
state variables are limited to the plastic strain tensor components, εp, and
the isotropic hardening variable associated with the sound matrix material,
ϵ̄. In this formulation, the porosity f , although typically treated as an evolv-
ing internal variable in Gurson-type models, is artificially constrained to be
a fixed parameter, effectively reducing the dimensionality of the internal
state space. This formal classification relies on the verification of three key
structural properties intrinsic to the Gurson model:

• The representation of strain hardening effects through a single scalar
parameter, σ̄, provides a significant simplification in the constitutive
modeling of material behavior. In this framework, the yield criterion
can be expressed as a convex yield function f(σ/σ̄), where σ denotes
the Cauchy stress tensor. This formulation encapsulates the essential
characteristics of the hardening response while ensuring the convexity
of the yield surface, a crucial requirement for the mathematical con-
sistency and well-posedness of the associated plasticity model. The
reduced stress tensor σ/σ̄ effectively normalizes the stress state, allow-
ing for a clear delineation of yielding behavior across varying loading
conditions.

• the normality property of the plastic flow rule

• the evolution equation of the hardening parameter ϵ̄ of the sound ma-
trix, identical to Eq. (26 ).

• Given that the GLD model presented here exhibits the same structural
properties, it can be concluded that it belongs to the class of Gener-
alized Standard Materials (GSM), subject to the same constraints as
Gurson (1977)’ model. Specifically, this classification holds under two
key assumptions: (i) the model operates within the linearized frame-
work (infinitesimal strains and displacements), and (ii) the internal
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state variables are limited to the plastic strain, εp, and the hardening
parameter, ϵ̄, while treating both the porosity, f , and S that character-
izes the voids’ shape and orientation) as fixed quantities. This artificial
simplification restricts the evolving internal variables to εp and ϵ̄, in
line with the assumptions used in Gurson’s original formulation.

To fully exploit the beneficial properties of Generalized Standard Mate-
rials (GSM), particularly the guarantees of existence and uniqueness asso-
ciated with the local projection problem, it is imperative to relax the two
aforementioned constraints. This adjustment will facilitate a more compre-
hensive characterization of the material response and enable the application
of advanced computational methods that align with the principles of GSM
theory.

In the context of large displacements and strains, their impact on the
numerical implementation within an Eulerian framework (as employed in
this study) can be distilled into two critical aspects: (i) the equilibrium
equations must be formulated in the context of the updated configuration
at time [t, t+∆t], necessitating the application of a finite deformation the-
ory; and (ii) the constitutive model, specifically the (hypo)elasticity law,
must incorporate appropriate corrections to uphold objectivity and frame
indifference. These corrections are crucial for maintaining the invariance of
the material response under arbitrary configurations, ensuring that the nu-
merical simulations accurately reflect the physical behavior of the material
during large deformations.

The first consideration mandates that at the commencement of each
global elastoplastic iteration, the computational domain must be reconfig-
ured to reflect the displacement field associated with the configuration at
time t+∆t. This involves recalibrating the shape function derivatives with
respect to the updated geometry, ensuring that all spatial discretizations are
accurately represented. Once this geometric update is executed, the config-
uration is held constant throughout the iterative solution of the projection
problem at each integration point. Consequently, this approach effectively
simulates a scenario devoid of geometric updates, thereby establishing that
the imposed geometric modification does not compromise the existence or
uniqueness of the solution to the local return-mapping problem, which re-
mains invariant under such transformations.
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The second consideration necessitates the incorporation of the Jaumann
derivative of the stress tensor σ into the hypoelasticity law, as opposed to
the conventional time derivative. The Jaumann derivative is distinguished
from the standard derivative by the inclusion of terms that are functions
of both the stress tensor σ and the velocity gradient tensor ∇u When dis-
cretizing these quantities using an explicit numerical scheme, they manifest
as combinations of the stress tensor evaluated at time t and the gradient of
the displacement increment ∇u = u(t + ∆t) − u(t). Notably, these com-
binations remain constant throughout the duration of a given elastoplastic
iteration, allowing them to be incorporated as pre-corrections to the elastic
predictor at the commencement of the iteration. Thus, the algorithm em-
ployed to solve the projection problem at each integration point effectively
mirrors the scenario in which these corrections are absent, confirming that
their application does not compromise the existence or uniqueness of the
solution to the local return-mapping problem.

In consideration of the variations in f and S, we assume that the pro-
jection problem is formulated utilizing an explicit numerical scheme that is
predicated on the parameter values at time t. As a result, these parameters
are effectively fixed throughout the entirety of the solution procedure at
each integration point. This methodology renders the projection algorithm
analogous to a case where f and S are treated as temporally invariant.
The existence and uniqueness of the solution are guaranteed by the inher-
ent properties of Generalized Standard Materials (GSM), contingent upon
the employment of an implicit scheme for the evolution of the internal state
variables εp and ϵ̄. This framework ensures that the mathematical rigor nec-
essary for stability and convergence is upheld in the numerical formulation.

In conclusion, to exploit the guarantees of existence and Halphen and
Nguyen (1975) , and Son (1977) for the solution to the local projection
problem—albeit not to the global problem—articulated by within the theo-
retical framework of Generalized Standard Materials, it is essential to satisfy
three foundational conditions in the formulation of the solution algorithm:

• In the hypo-elasticity formulation, discretize the supplementary terms
arising from the Jaumann stress derivative by employing the stress
tensor σ evaluated at time t. This approach ensures that the numerical
treatment accurately captures the kinematic effects associated with the
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material’s evolving configuration.

• In the framework of the projection problem, employ an explicit numer-
ical scheme for the discretization of the parameters f and S, ensuring
that their values are consistently evaluated at each iteration of the
algorithm.

• in the same problem, use an implicit scheme with respect to the pa-
rameters σ and ϵ̄

The GSM framework ensures that the model is thermodynamically con-
sistent, meaning that: (i) the free energy is well-defined and convex with
respect to the internal variables (e.g., strain and damage), (ii) the evolution
laws for damage (or other internal variables) are derived from a potential,
ensuring irreversibility and non-negative dissipation.

This consistency simplifies the numerical algorithms by providing a clear
framework for how internal variables evolve and interact with the stresses
and strains. For instance: (i) damage evolution will always be incremental
and irreversible, so you won’t need to implement checks to prevent damage
reduction, (ii) the use of potentials provides a systematic way to derive con-
sistent incremental evolution equations for the internal variables.

Numerical schemes for solving the GLD model, particularly for damage
evolution, can benefit from implicit time integration schemes because:

• the evolution of internal variables like damage tends to be stiff, mean-
ing damage can evolve very rapidly under certain conditions. Explicit
schemes may require very small time steps to remain stable.

• Implicit schemes are more robust and can handle larger time steps
without compromising stability, especially when the dissipation po-
tential ensures a thermodynamically admissible solution.

In implicit integration, the internal variables are updated at each time step
by solving a system of nonlinear equations (often using Newton-Raphson
methods). This can be efficiently handled because the convexity of the
dissipation potential and the free energy guarantees the stability and con-
vergence of the numerical solution.

In finite element implementations, when solving for stresses and strains,
you need the algorithmic tangent modulus (or consistent tangent operator)
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for faster convergence of the nonlinear solver (such as Newton-Raphson).
For GSM models, including the GLD model, the tangent modulus is derived
from the free energy and the evolution for the damage.

The consistent tangent modulus accounts for both the elastic behavior
and the influence of damage, ensuring that the finite element solution con-
verges efficiently. This is particularly important in nonlinear problems where
damage evolution significantly alters the stiffness of the material.

One numerical challenge in the GLD model arises from the fact that
local damage models (like the original Gurson model) can lead to mesh
dependency and localization of damage, resulting in non-physical results
(e.g., spurious mesh sensitivity). This is because the damage evolution may
localize into a single element, which reduces the convergence of the solution.
we mitigate this issue, you adopt the following strategy:

• Implement nonlocal damage models or gradient-enhanced damage mod-
els, which introduces a length scale into the damage variable to spread
the damage over a region, improving numerical robustness.

• Alternatively, we could use regularization techniques that introduce
additional terms in the free energy to avoid mesh dependence.
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6. Application 1: Simulation of a 2D Compact Tension (CT) spec-
imen

In this section, the accuracy of the numerical implementation is assessed
by replicating the fracture test performed by Devaux and Mottet ?. The
test utilized a CTJ 25 compact tension specimen fabricated from 16MND5
stainless steel, subjected to loading under plane strain conditions. The spec-
imen’s nominal dimensions are 50 mm in width, 50 mm in height, and 25
mm in thickness. A rectangular notch with a width of 2 mm is machined into
the top surface, transitioning near the root into a triangular configuration
with an apex angle of 60◦. Additionally, a fatigue pre-crack, measuring 1.34
mm in length and propagating from the notch root, was introduced prior to
testing, though it is not depicted in the figure.

Plane strain conditions were maintained due to the relatively large thick-
ness of the specimen compared to its in-plane dimensions, constraining the
deformation in the thickness direction and ensuring that the out-of-plane
strain components are negligible. This constraint leads to a higher triaxial
stress state at the crack tip, which is critical for accurately assessing the
material’s fracture behavior and validating the numerical model’s predictive
performance.

The discretized geometry of the specimen is depicted in Figure 1. To
reduce computational complexity, the symmetry of the specimen about its
vertical mid-plane is leveraged, allowing for a simulation of only the right
half of the geometry. The triangular elements in the mesh represent a wedge
idealized as an elastic continuum with equivalent isotropic elastic properties
matching those of the 16MND5 steel. The center of the wedge corresponds
to the centroid of the circular hole machined into the CT specimen. Bound-
ary conditions are imposed by applying a controlled vertical displacement
at the centroid of the wedge, simulating the load transfer mechanism and
ensuring consistency with the experimental setup. This approach maintains
the fidelity of the stress-strain response while optimizing computational re-
sources.

In this study, a single 2D finite element mesh is adopted, as a rigorous
mesh sensitivity analysis was previously conducted in the numerical simula-
tions of TA pre-cracked specimens, as reported in Enakoutsa et al. (2007);
Enakoutsa (2007) . These earlier studies confirmed that the selected mesh
density ensures sufficient spatial resolution for accurately capturing the lo-
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calized stress and strain gradients near the crack tip, while maintaining
computational efficiency. As a result, further mesh refinement or sensitiv-
ity analysis was deemed unnecessary for the present investigation, given the
convergence and robustness demonstrated in prior work.

Figure 1: The figure presents the fine mesh configuration utilized in the computational
analysis of the CTJ 25 pre-cracked specimen, which is critical for accurately capturing
stress distribution and crack propagation. A refined mesh in finite element modeling en-
hances the simulation’s fidelity, particularly in areas with high stress gradients around the
crack tip. This detailed mesh allows for precise calculations of the material’s mechanical
response, facilitating a better understanding of how crack geometry and loading conditions
affect fracture behavior. Ultimately, this careful meshing improves the accuracy of simu-
lation results and aids in validating the modeling approach against experimental data.

In the experimental setup, the inclusion of lateral central triangular
notches and the defined opening angle ensured that the region of crack prop-
agation experienced near plane strain conditions, enabling a two-dimensional
numerical analysis. However, the assumption of ideal plane strain conditions
is an approximation. To accurately correlate the simulation with the exper-
imental results, the experimentally applied force must be normalized by an
”equivalent thickness” of the specimen, which accounts for deviations from
the actual thickness in capturing the three-dimensional stress state. This
correction has been rigorously investigated by Bosse (2009), who determined
an optimal equivalent thickness of 10.3 mm based on a detailed analysis of
the stress distribution. This value is employed in the present study to en-
hance the fidelity of the simulation results. The material properties and
constitutive parameters utilized in the model are listed in Table B.1 in the
Appendix.

Figure 2 illustrates the experimental load–displacement curve (depicted
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by black points) in conjunction with the numerical results obtained via both
kinematic and isotropic hardening formulations. The simulations reveal that
the inclusion of kinematic hardening (results not presented here) yields neg-
ligible deviations from the isotropic hardening results, attributed to the
uniaxial tension loading conditions employed in the numerical analysis. Ad-
ditionally, the initial iteration of the nonlocal damage model demonstrates
excessive smoothing of the porosity distribution in the ligament region ahead
of the crack tip, culminating in a significant and abrupt decrease in the load-
displacement response. This anomaly can be rectified by implementing the
natural logarithm in the porosity evolution equation, as depicted in Fig-
ure 2. However, the disparity between the numerical predictions derived
from the modified nonlocal Gurson model (incorporating isotropic harden-
ing) and the actual experimental data is markedly pronounced, necessitating
urgent intervention. This discrepancy can be effectively minimized through
meticulous calibration of the parameters fc, representing the critical poros-
ity threshold at the onset of coalescence, and the cavity growth acceleration
factor δ, thus ensuring a robust alignment between theoretical predictions
and experimental observations.

Figure 2: Comparison of experimental and computed load–displacement curves of the CT
specimen.
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7. Applications 2: Simulation of Ductile Fracture in a Notched
Steel Plate using the GLD Damage Model with Peridynamics

7.1. Generalities

This section discusses the integration of the Gurson-Leblond-Devaux
(GLD) damage model with the peridynamic framework to model ductile
fracture in materials, a complex phenomenon influenced by microstructural
features such as void formation and growth. While the GLD model pro-
vides a robust framework for capturing damage evolution through a damage
variable that accounts for voids in ductile materials, the peridynamic theory
offers a non-local approach to continuum mechanics that effectively describes
the initiation and propagation of cracks. By combining these two method-
ologies, this work aims to enhance the predictive capabilities of material
failure under various loading conditions.

7.2. GLD Damage Model

The GLD damage model is characterized by the evolution equation for
the damage variable f :

ḟ = (1− f) tr(ε̇p) (82)

where ḟ represents the rate of change of damage, f is the damage variable,
and εp is the plastic strain tensor. The term tr(εp) captures the volumetric
plastic strain, which drives the damage evolution.

The damage variable f ranges from 0 (undamaged state) to 1 (fully
damaged state). This property allows the model to represent the gradual
degradation of material properties as damage accumulates throughout the
loading process.

7.3. Peridynamic Theory

Peridynamics is a non-local continuum mechanics theory that enables
modeling of material behavior without relying on traditional gradient con-
cepts. The fundamental equation of peridynamics is expressed as:

du(x, t)

dt
=

∫
B
H(x,y)ψ(y, u(y, t)) dV (83)

where u(x, t) is the displacement field, H is the interaction kernel describing
force contributions from neighboring material points, and ψ is the deforma-
tion energy density function.
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7.4. Interaction Kernel

The interaction kernel H governs the range and nature of interactions
among particles in the material. A commonly used form for the kernel is:

H(x,y) =

{
C
(
1− ||x−y||

δ

)
if ||x− y|| < δ

0 otherwise
(84)

where C is a constant and δ is the horizon, which represents the distance
over which interactions are considered.

7.5. Combining GLD with Peridynamics

To effectively combine the GLD damage model with the peridynamic
framework, we replaced the local stress measures in the GLD model with
their peridynamic counterparts. This integration is crucial for capturing the
non-local interactions during damage evolution.

7.5.1. Damage in Peridynamics

In the peridynamic context, the evolution of the damage variable f can
be reformulated as:

ḟ = (1− f) tr

(∫
B
H(x,y) ε̇p(y) dV

)
(85)

This expression enables consideration of non-local interactions in the damage
evolution process, which is essential for accurately modeling crack initiation
and growth.

7.5.2. Numerical Implementation

The numerical implementation of the combined GLD damage model and
peridynamic equations involve several key steps, which we detail below.

Discretization

• Spatial Discretization: We discretized the domain into a mesh of par-
ticles, where each particle represents a material point with associ-
ated state variables (e.g., displacement, damage). The mesh was con-
structed such that the particles are distributed uniformly throughout
the domain, ensuring an accurate representation of material properties
and interactions.

• Horizon Selection: The horizon δ was determined for each particle to
establish the interaction range. A smaller horizon increases accuracy
but may lead to higher computational costs, while a larger horizon can
reduce the resolution of interactions.
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7.5.3. Time Integration

We employed a suitable numerical method for time integration: (i) Ex-
plicit Time Integration: The explicit scheme updates the state variables at
each time step based on the previous state. This method is advantageous
for dynamic simulations where stability conditions are met. The update
equation is:

un+1 = un +∆t · du(x, t)
dt

∣∣∣∣
tn

(86)

Here, ∆t is the time step, which must be chosen carefully to maintain sta-
bility and accuracy.

(ii) Implicit Time Integration: For static or quasi-static problems, we
utilized an implicit scheme for improved stability, especially when dealing
with large deformations. This approach involves solving a system of equa-
tions at each time step, providing better control over convergence:

Kun+1 = Fn+1 (87)

where K is the stiffness matrix and F is the force vector.

7.5.4. Algorithm Steps

The algorithm for implementing the combined model was structured as
follows:

• Initialization: Set initial conditions for displacement and damage vari-
ables based on the material properties. This includes defining the
initial plastic strain and damage levels in the material.

• Iterative Loop:

– Calculate Interaction Forces: Compute the peridynamic forces
acting on each particle using the interaction kernel H. This
step involves integrating over the horizon to capture contribu-
tions from neighboring particles.

– Update Displacement Field: Update the displacement field u
based on the calculated forces. This is performed using either
explicit or implicit time integration methods, as discussed above.

– Compute Plastic Strain: Evaluate the plastic strain εp using the
updated displacement field. This requires a plasticity model that
relates stress and strain under the influence of damage.
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– Update Damage Variable: Update the damage variable f using
the GLD model’s evolution equation, incorporating the computed
plastic strain.

– Check Convergence Criteria: Assess the convergence of the so-
lution by monitoring changes in displacement and damage over
iterations. If the changes are below a predefined threshold, the
algorithm terminates.

• Output Results: Store the results for analysis and visualization. This
includes displacement fields, damage distribution, and crack patterns.

7.6. Simulation Results

In this example, we simulate the ductile fracture of a notched steel plate
subjected to uniaxial tensile loading using the combined GLD damage model
and peridynamic framework. The simulation captures the effects of void
growth and shape evolution on the fracture process.

Problem Setup

• The steel plate has dimensions 100mm×20mm×1mm, with a central
notch of 5 mm in length.

• Material properties:

– Yield stress σy = 450MPa,

– Young’s modulus E = 203GPa,

– Poisson’s ratio ν = 0.3,

– Initial porosity f0 = 0.00016,

– Initial shape factor S0 = 1.0 (spherical voids).

• The GLD damage model is characterized by parameters q = 1.47, fc =
0.05, and δ = 0.25, A = 0.02 which govern the interaction between
cavities, the porosity at the beginning of coalescence, the accelerator
of coalescence, and the void nucleation parameter, respectively. These
parameters are summarized in Table 1 in Appendix B.

Loading Condition

A displacement-controlled uniaxial tensile load is applied at the top
boundary of the plate at a rate of 0.01mm/s, while the bottom boundary is
fixed.
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Simulation Procedure

• Stress and Damage Evaluation: At each time step, the local stress
state is computed using the GLD yield function, where the void volume
fraction f and void shape factor S evolve according to the local plastic
deformation. As the applied tensile load increases, the voids within
the material grow (increasing f) and elongate (increasing S) due to
the high triaxiality near the notch.

• Nonlocal Interaction (Peridynamics): The peridynamic frame-
work models the interaction of material points over a finite horizon.
Bonds between points weaken as voids grow and elongate. Once a
critical porosity threshold fc = 0.05 or void shape threshold Sc = 3.0
is reached, the bonds between points break, leading to crack initiation.

• Fracture Evolution: The simulation predicts crack initiation at the
root of the notch where stress concentration is highest. As the porosity
increases, the peridynamic bonds in this region progressively break,
leading to crack propagation along the tensile axis. The evolution of
void shape S significantly influences the direction of crack propagation,
with elongated voids driving the crack growth in a zig-zag pattern due
to the local heterogeneity of void shapes.

Results

The combined GLD-peridynamic model captures the fracture process
with high fidelity. The influence of void shape evolution is evident in the
non-linear crack path, which deviates from classical fracture patterns due
to the directional nature of void elongation. The simulation successfully
predicts the critical tensile load at which the fracture initiates, and the frac-
ture toughness of the steel plate is computed based on the energy dissipated
during crack growth.

The results from the simulations are presented above, illustrating the ge-
ometry, stress distribution, void growth, shape evolution, and crack patterns
resulting from the combined model.
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Figure 3: The geometry of the notched steel plate along with the mesh points. This
figure illustrates the geometry of a notched steel plate used in the simulation. The blue
rectangle represents the steel plate, while the red rectangle indicates the central notch, a
critical feature for studying stress concentration and fracture behavior. The mesh points
are shown as black dots along the edges, highlighting the discretization of the model for
the peridynamic framework. Understanding the geometry and mesh setup is crucial for
interpreting the subsequent analysis and results related to ductile fracture mechanisms
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Figure 4: The void fraction (f) evolution over time steps. The plot depicts the evolution
of the void volume fraction over multiple time steps during the loading process, highlight-
ing the progressive accumulation of damage within the material as it experiences plastic
deformation. In contrast, the right subplot presents the evolution of the shape factor (S),
which quantifies the morphological changes of the voids within the material structure.
Together, these plots offer valuable insights into the damage mechanisms at play in the
notched steel plate under loading conditions. Understanding the relationship between void
growth and the evolution of the shape factor is essential for accurately predicting ductile
fracture behavior in metallic materials.
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Figure 5: The initial stress distribution within the plate. This contour plot displays the
initial stress distribution within the notched steel plate before any loading is applied.
The color gradient indicates varying levels of von Mises stress across the plate. Noticeable
stress concentrations are evident around the notch, which is expected due to the geometric
discontinuity. This figure sets the foundation for understanding how initial stress states
influence fracture behavior and provides a baseline for evaluating changes during loading.

Figure 6: The shape factor (S) evolution over time steps. The figure shows the evolution of
the shape factor (S), which quantifies the morphological changes of voids in the material.
Together with the evolution of the void volume fraction, these plots provide insight into
the damage mechanisms occurring within the notched steel plate under loading conditions.
The relationship between void growth and shape factor evolution is critical for predicting
ductile fracture behavior in metallic materials.
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The integration of the GLD damage model with the peridynamic frame-
work has proven to be a powerful approach for simulating ductile fracture.
This method enables accurate modeling of void evolution and crack prop-
agation under complex loading conditions. The findings from this study
contribute significantly to the understanding of material failure and provide
a robust framework for future research in

This example demonstrates the capability of the combined GLD damage
model and peridynamic framework to capture complex fracture processes in
ductile materials. The inclusion of both void growth and shape evolution in
the simulation provides insights into how void morphology affects fracture
initiation and propagation, especially in regions of high stress triaxiality
such as the vicinity of notches or defects.
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8. Conclusion

In this study, we have rigorously explored the integration of the Gen-
eralized Standard Materials (GSM) formalism with classical and advanced
models of metal plasticity, specifically focusing on the von Mises yield cri-
terion and the GLD model for ductile fracture incorporating cavity shape
effects. Our analysis demonstrates that the GSM framework not only pro-
vides a coherent theoretical underpinning for these models but also enhances
their numerical implementation, particularly through established projection
algorithms.

By establishing a clear relationship between the GSM formalism and the
constitutive equations of the von Mises and GLD models, we highlighted the
advantages of employing GSM in achieving robust numerical stability and
convergence in finite element analyses. We further addressed the projection
problem inherent in the numerical implementation of the GLD model, con-
firming that under the assumptions of fixed porosity and a constant cavity
shape factor, a unique solution can be obtained. This finding is critical for
ensuring the reliability of simulations involving ductile fracture in porous
materials.

Additionally, our simulations of the fracture behavior of a Compact Test
specimen subjected to tensile loading provide empirical validation of the
GLD model, aligning closely with experimental data for 16 MND Steel. This
alignment not only reinforces the predictive capabilities of the GLD model
but also underscores the potential of the GSM framework in enhancing the
accuracy and applicability of material modeling in engineering contexts.

In conclusion, this work paves the way for further investigations into the
GSM formalism, inviting future research to explore its applications across a
broader spectrum of material behaviors and loading conditions. The findings
presented herein contribute to the growing body of literature on advanced
metal plasticity modeling, offering valuable insights for both theoretical ad-
vancements and practical applications in materials engineering.
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Journal de Mécanique, Journal de Mécanique, 14: 39-63.
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Appendix A. Class of Generalized Standard Materials

Appendix A.1. Generalities

The constitutive law of a GSM is specified using two thermodynamic po-
tentials. The first one is the specific free energy ψ(ε,α), which is a function
of the strain tensor v and a set of internal parameters collectively denoted
as α. This function must be convex with respect to the variables ε and
α taken separately (but not necessarily with respect to the global variable
(ε, α)).

The free energy is provided by the differentiation of the stress tensor σ
and the thermodynamic force F associated with α:

σ =
∂ψ

∂ε
and F = −∂ψ

∂α
(A.1)

The second thermodynamic potential is the dissipation potential, de-
noted as D(α̇), which must be a convex, positive, and zero function for
α̇ = 0. This potential governs the evolution equations of the internal pa-
rameters through the following equivalent relationships:

F ∈ ∂D(α̇) ⇐⇒ α̇ ∈ ∂D̃(F) (A.2)

The notation D̃ represents the Legendre-Fenchel transform. 3

Here, ∂D and ∂D̃ represent the sub-differentials of D and D̃ respectively.

For a time-independent behavior, as is the case in our work, the potential
D is positively homogeneous of degree 1 with respect to ȧ.

Its Legendre-Fenchel transform, D̃(F), is then the indicator function4 of
a closed convex set C (the domain of reversibility) in the space of thermo-
dynamic forces F.

This set is defined by an inequality of the form Φ(F) ≤ 0 for a cer-
tain function Φ, the sub-differential ∂D̃(F) is reduced to the zero vector
0 if F is contained within the convex set C, coincides with the half-line

3It is recalled that: (i) the Legendre-Fenchel transform f̃(y) of the function f(x) is
defined by the formula f̃(y) ≡ supx[x · y − f(x)]; (ii) its subdifferential ∂f(x) at point
x is the set of points y such that y · (x′ − x) ≤ f(x′) − f(x) for all points x′; (iii) the
equivalence y ∈ ∂f(x) ⇐⇒ x ∈ ∂f̃(y) follows.

4Recall that the indicator function of a convex set takes the values 0 and +∞ inside
and outside the set, respectively.
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η(∂f/∂F)(F), η ≥ 0 if F is on the boundary of C, and is empty if F is not
contained in C.

The evolution equation [A.2]2 can thus be rewritten in an equivalent
form:

ȧ = η
∂Φ

∂F
, η =

{
0 if Φ(F) < 0

≥ 0 if Φ(F) = 0
(A.3)

This means that the evolution equation of a follows a kind of generalized
”normality property.”

This immediately leads to a number of properties that the GSMs satisfy:

Appendix A.2. Properties of the GSMs

Appendix A.2.1. Property 1

The evolution law [A.3] of a ensures the positiveness of the dissipation
F : ȧ.

Indeed, the sub-differential of D(ȧ) is defined as:

F ∈ ∂D(ȧ) ⇐⇒ ∀ȧ′, F : (ȧ′ − ȧ) ≤ D(ȧ′)−D(ȧ). (A.4)

For ȧ′ = 0, this gives −F : ȧ′ ≤ −D(ȧ) (since D(0) = 0), which means
F : ȧ′ ≥ D(ȧ) ≥ 0 (due to the positiveness of D).

Appendix A.2.2. Property 2

Let’s agree that quantities indexed by 0 are taken at time t, and those
without a particular symbol are taken at time t+∆t. If the evolution equation
[A.3] for α is discretized in time using an implicit scheme, then the projec-
tion problem, which consists of determining the values of α or ∆α ≡ α−α0

based on the values of ε0, α0, and ∆ε ≡ ε − ε0, is equivalent to minimiz-
ing the function χ(ε, α0,∆α) ≡ ψ(ε, α0+∆α)+D(∆α) with respect to ∆α.

To establish this property, let’s note that the condition ensuring that the
function χ is minimal at the point ∆α is given by:

0 ∈ ∂χ(ε,α0,∆α)

⇐⇒ 0 ∈ ∂ψ

∂α
(ε,α0 +∆α) + ∂D(α)

⇐⇒ −∂ψ
∂α

(ε,α0 +∆α) ∈ ∂D(α)

⇐⇒ F ∈ ∂D(∆α) (A.5)
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where F represents the thermodynamic force at time t+∆t.

The announced equivalence is then clear since the last expression is noth-
ing but the evolution equation of α, written in the form [A.2]1 instead of
[A.2]2, and discretized implicitly in time.

(Note that ∂D
(
∆α

∆t

)
= ∂D(∆α) since D is positively homogeneous of

degree 1).

Since the functions ψ(ε, α0 +∆α) and D∆α are convex with respect to
∆α, this equivalence guarantees the existence of the solution to the projec-
tion problem, and its uniqueness if the free energy is strictly convex5 with
respect to α.

It also ensures the symmetry of the tangent matrix to be used to solve the
projection problem, since this matrix is the Hessian matrix of the function
χ.

Appendix A.2.3. Property 3

The tangent matrix of global elasto-plastic iterations is symmetric.
This third property is somewhat less obvious than the first two and arises

from the second property. To establish it, we will employ a vector notation
for stress and strain tensors: ε ≡ (εi)1 ≤ i ≤ 6, σ ≡ (σi)1 ≤ i ≤ 6, along
with internal variables: α ≡ (αp)1 ≤ p ≤ N . The relevant tangent matrix is
then (∂σi/∂εj)1 ≤ i, j ≤ 6 where σ is expressed as a function of the unique
variable ε using the expression:

σ ≡ ∂ψ

∂ε
[ε, α(ε)] (A.6)

Here, α(ε) = α0 +∆α(ε), and ∆α(ε) minimizes the function χ(ε, α0,∆α).
By differentiating equation [A.6], we obtain:

∂σi
∂εj

(ε) =
∂2ψ

∂εi∂εj
(ε, α(ε)) +

∂2ψ

∂εi∂αp
(ε, α(ε))

∂∆αp

∂εj
(ε) (A.7)

5The dissipation potential cannot be strictly convex, as its property of positive degree
1 homogeneity implies linearity along each half-line starting from the origin 0.
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To evaluate the derivatives ∂∆αp

/
∂εj , we differentiate the conditions

∂χ/∂∆αp = 0 defining ∆α with respect to εj , using the definition of the
function χ:

∂2ψ

∂εj∂αp
(ε, α(ε)) +

∂2D
∂∆αp∂∆αq

(∆α(ε))
∂∆αq

∂εj
(ε) = 0. (A.8)

LetM denote the inverse of the Hessian matrix (∂2D
/
∂∆αp∂∆αq)1≤p,q≤N .

Inverting equation [A.8], we obtain:

∂∆αp

∂εj
(ε) = −Mpq(∆α(ε))

∂2ψ

∂εj∂∆αq
(ε, α(ε)) (A.9)

Substituting this result into equation [A.7], we have:

∂σi
∂εj

(ε) =
∂2ψ

∂εi∂εj
(ε, α(ε))− ∂2ψ

∂εi∂αp
(ε, α(ε))Mpq(∆α(ε))

∂2ψ

∂εj∂∆αq
(ε, α(ε)),

(A.10)

which clearly reveals the symmetry of the matrix (∂σi

/
∂εj)1≤i,j≤6.

In summary, from the above, three main insights can be drawn.
The first insight pertains to the convexity of the function φ(+∆ε, α +

∆α)+D(∆α) with respect to the variable ∆α. This ensures the existence of
the minimum, and consequently, the solution to the “projection problem.”

The second insight concerns the uniqueness of the solution to the pro-
jection problem. It is achieved under the condition that φ is strictly convex
with respect to the variable α. It should be noted that D is convex but not
strictly so, as it is positively homogeneous of degree 1.

The third insight, finally, pertains to the symmetry of the tangent matrix
necessary for minimizing χ(ε, α0,∆α) ≡ ψ(ε, α0,∆α)+D(∆α) with respect
to ∆α. Therefore, there is symmetry in the tangent matrix within the
projection problem.
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Appendix B. Material parameters for the simulations

The material parameters for the simulations presented above are as fol-
lows:

E
Gpa

ν Σ0

Mpa
q f0 fc l (µm) δ A

203 0.3 450 1.47 0.00016 0.05 0.05 0.2 0.002

Table B.1: Material parameters used for the numerical simulations on the CT specimen
and the fictious plate
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