
PERSISTENT HOMOLOGY TRANSFORM OF EMBEDDED KNOTS

ZACHARY OJAKLI∗ AND AMY SOMERS†

Abstract. We explore the applicability of the Persistent Homology Transform (PHT) to distinguish em-

bedded knots in 3-space. Researchers have shown the PHT is a sufficient statistic to fully recover simple

closed curves in two and three dimensions. We test its ability to classify different knots with the application
of with different Reidemeister moves. Our results exhibit practical limitations in the ability of the PHT to

recover topological data of embedded knots.

1. Introduction

Topological data analysis (TDA) provides us with a set of methods to study the shape of complex data.
Persistent homology (PH) is an important tool from TDA which considers the way that the homology groups
change as you pass through a filtration that approximates a data set. It records the birth and death times
of connected components and holes — represented by homology classes — in the filtration. The persistence
of homology classes is recorded in a persistence diagram (PD).

In [12], the authors use the persistent homology transform (PHT) to model simplicial complexes in Rd as
a collection of persistence diagrams parameterized by the sphere Sd−1. For each vector v ∈ Sd−1, the PHT
assigns to it a PD from the directional height filtration in the direction of v. In particular, Turner et al. [12]
compute the 0-dimensional PHT of simple closed curves in R2 from k directions to test the theoretical result
that the PHT taken from infinitely many directions can fully recover topological objects. We apply a similar
approach to analyze simple closed curves embedded in R3. In particular, we study knots and investigate
if the PHT can identify different embeddings of the same knot while distinguishing different knots. We
investigate how factors such as the number of directions and methods of embedding the knot impact the
efficacy of this approach.

1.1. Related Work. Tools from topological data analysis have been used to classify and understand complex
shapes in R3. We are interested in exploring the use of methods from TDA for knot identification. The
work of [6] explores how Mapper can be used to analyze point clouds from knots in R3. Further, principal
component analysis (PCA) has been used to analyze the Jones polynomial, a knot invariants [7].

The PHT is an important tool in computational topology. Given a point cloud K ⊂ Rd, we fix a number
of directions v ∈ Sd−1, and for each v we associate a PD obtained by scanning K in the direction of v. The
authors of [5] show that this transform is injective on the space of shapes and is continuous from the sphere
to the space of PDs. PHT is applied in [12] to model shapes in R2 and surfaces in R3. In this paper, we
specifically apply PHT to classify knots in R3. In [3] the authors present an algorithm for reconstructing a
graph embedded in Rd with n vertices that uses the persistent homology transform (PHT) from n2−n+d+1
directional augmented persistence diagrams (APDs). An APD is defined to be a PD with the additional
data of points that have zero persistence, that is, where birth time equals death time. Points with zero
persistence are not included in a standard PD so an APD captures this additional data. This work provides
a theoretical guarantee on the number of directional APDs necessary for us to fully recover a knot.

1.2. Research Question. When defining the Persistent Homology Transform, [12] run the PHT on sets of
simple, closed, planar objects embedded in R3 and classify them.

Definition 1.1. A knot K is a smooth embedding of S1 into R3.

∗Dartmouth College
†University of California, Santa Barbara

This work is supported by NSF Research and Training Grant DMS-2136090.

1

2 PERSISTENT HOMOLOGY TRANSFORM OF EMBEDDED KNOTS

Since knots are also simple closed curves sitting in R3, we want to know if we can take a dataset of several
embeddings of unique knots obtained by performing Reidemeister moves and classify them by using the
PHT.

2. Background

2.1. Simplicial Homology. We will first review simplicial homology. An n-simplex is the generalization
of the notion of a point, line, triangle, or tetrahedron to n-dimensions. Specifically the convex hull of a
collection of n + 1 affinely independent points v0, v1, . . . , vn is an n-simplex denoted [v0, v1, . . . , vn]. The
n-simplex [v0, v1, . . . , vn] has an orientation and any odd permutation of the vertices negates the orientation,
e.g. [vn, vn−1, . . . , v0] = −[v0, v1, . . . , vn]. A face of [v0, v1, . . . , vn] is any simplex [u0, u1, . . . , um] with
{u0, u1, . . . , um} ⊂ {v0, v1, . . . , vn}. Each vertex vi is an example of a 0-simplex and the line segment
connecting vi, vj for i ̸= j is the 1-simplex [vi, vj]. A simplicial complex K is a collection of simplices such
that

(i) every face of a simplex in K is also in K,
(ii) if σ, τ ∈ K have non-empty intersection, then σ ∩ τ is a face of both σ and τ .

The boundary of an n-simplex σ = [v0, v1, . . . , vn] is the collection of simplices of dimension n− 1 on the
vertices v1, v1, . . . , vn. The boundary operator ∂n on σ is given by

∂n(σ) :=

n∑
i=0

(−1)i[v0, . . . , vi−1, vi+1, . . . , vn].

A n-chain is a formal linear combination
k∑

i=1

αiσi

of n-simplices σ1, . . . , σk in a finite simplicial complex K with coefficients αi ∈ Z/2Z. The collection of all
n-chains forms a vector space Cn(K) over Z/2Z with basis consisting of all n-simplices σ1, . . . , σk. Extending
the boundary operator linearly defines the n-th simplicial boundary map

∂n : Cn(K) → Cn−1(K).

We note that the elements of im ∂n+1 are the boundaries of n-simplices in K. The elements of ker ∂n are
known as n-cycles. Since ∂n+1 ◦ ∂n = 0 for all n, C(K) =

⊕
n Cn(K) is a chain complex.

The n-th homology group of K is

Hn(K) = ker ∂n/im∂n+1

as a quotient of vector spaces.

2.2. Persistent Homology. One important tool in TDA is persistent homology (PH) which measures
changes in homology of a parameterized simplicial complex. Given a point cloud X = {x0, . . . , xn} in a
metric space, we construct a filtered simplicial complex to allow us to approximate the shape of X.

Definition 2.1. A filtration of a simplicial complex K is a nested sequence simplicial complexes

Kt0 ⊂ Kt1 ⊂ Kt2 ⊂ · · ·

where t0 < t1 < t2 < · · · and K =
⋃

t Kt.

Two common constructions of filtrations are the Čech filtration and the Vietoris-Rips filtration. In this
work, we use the directional height filtration.

Definition 2.2. Let K ⊂ Rd be a simplicial complex and let v ∈ Sd−1. We define the directional height
filtration of K in the direction v, denoted K(v), so that for each height parameter t, K(v)t is the simplicial
complex consisting of all simplices in K below the hyperplane orthogonal to v through tv, that is,

K(v)t = {σ ∈ K : x · v ≤ t for all x ∈ σ}.

Since the sets K(v)t and {x ∈ K : x · v ≤ t} are homotopy equivalent, they have the same homology groups.

PERSISTENT HOMOLOGY TRANSFORM OF EMBEDDED KNOTS 3

For each simplicial complex Kti in a filtration, we can compute its homology. As the parameter ti grows,
holes in the filtration form and get filled in. These holes in the filtration for a range of ti are represented by
the homology class. For example a 0-dimensional homology class represents a connected components and a
1-dimensional homology class represents the hole bounded by a loop. A homology class that exists from time
s and becomes trivial at time t with s < t is said to have birth time s and its death value is t. For each s < t
the inclusion map Ks ↪→ Kt induces an inclusion in the homology groups which induces a homomorphism

gs,tk : Hk(Ks) → Hk(Kt).

We define the kth persistence homology group by

Hk(s, t) = im gs,tk

and this group consists of the homology classes in Hk(Ks) which persist to Hk(Kt).
The data of birth and death of homology classes in a filtration is the persistent homology (PH) of the

filtration and is summarized in a persistence diagram (PD) or barcode.

Definition 2.3. Let K be a filtered simplicial complex. The kth persistence diagram (PD) of K, denoted

Dk(K) is the multi-set of points (b, d) in the extended plane R2
= R2 ∪ {∞} with b < d each of which has

multiplicity dimHk(a, b) and the points on the diagonal with infinite multiplicity.

The kth augmented persistence diagram (APD) of K, denoted Dk(K), is a PD that additionally includes
birth-death pairs (b, d) with b = d. The APD includes the additional data of points with zero persistence.

2.3. Persistent Homology Transform. Let D denote the space of persistence diagrams.

Definition 2.4. The persistent homology transform of K ⊂ Rd is the map

PHT(K) : Sd−1 → Dd

v 7→ (D0(K(v)), D1(K(v)), . . . , Dd−1(K(v))).

The space D of PDs has many possible choices of metric. We will take the metric to agree with the
conventions of [12]. Let X,Y denote two persistence diagrams. Since each consists of a collection of points
and countably infinite number of copies of the diagonal, there exist bijections φ : X → Y . We define a
metric on D by

dist(X,Y) = inf
φ:X→Y

∑
x∈Y

∥x− φ(x)∥.

3. Data

The data for this project consists of several point clouds of varying densities for each unique knot. The
knots studied are the 01 (unknot), 31 (trefoil), 41 (figure 8), 51, 52, and 61 knots. Define

Y = {01, 31, 41, 51, 52}
to be the set of knots that we work with.

Definition 3.1. A grid diagram G is an n by n grid on the plane, marked with n different X markings
and n different O markings such that each row/column has exactly one X marking and one O marking,
respectively, and no grid cell contains more than one marking.

The knot associated with a grid diagram G is obtained by drawing oriented segments from O markings
to X markings horizontally, and from X markings to O markings vertically, with vertical segments always
passing over horizontal segments. An example for the trefoil knot is shown in Figure 1.

For each knot K ∈ Y , we use the Python program SnapPy to obtain a three-dimensional embedding of
the knot, realized as a grid diagram of K in the xy-plane with understrands ”pulled” down to a fixed z
value, as shown in Figure 2. Then, we discretize this closed curve by taking n evenly spaced points along
the line segments which compose the knot K. This gives a point cloud which we will call a Grid Diagram
point cloud.

The Grid Diagram point clouds have corners, and all parts of the knot other than the understrands in the
crossings lie in a two dimensional plane, so we decided to investigate how to obtain more smooth embeddings
of our knots in R3. We used the spring layout algorithm in the NetworkX Python package to produce these
embeddings [13]. An example is shown in Figure 2. We refer to these as Spring Layout point clouds.

4 PERSISTENT HOMOLOGY TRANSFORM OF EMBEDDED KNOTS

Figure 1. Example of a Grid Diagram for the Trefoil

Figure 2. Embedding of the Trefoil

Figure 3. Spring Layout Point Cloud for Trefoil (n = 300)

PERSISTENT HOMOLOGY TRANSFORM OF EMBEDDED KNOTS 5

For a knot K ∈ Y , we generate an alternate embedding of K by applying m Reidemeister moves of Type
I and II using SnapPy. In all of our experiments, we fix m = 2 and set the probabilities of performing a
Type I or Type II move to be equal. Examples are shown in Figure 3.

Figure 4. Two random Reidemeister moves applied to two Trefoils (n = 300)

Now, for each knot K ∈ Y , we perform these 2 random Reidemeister moves to obtain a different embedding
K ′. We do this 20 times to obtain 21 embeddings of each K. Then, we have a multiset of all knots Y where
|Y| = 126, representing 21 different embeddings of each of the 21 knots we studied. Define a function

f : Y → {0, 1, 2, 3, 4, 5}

where f(K) gives the type of the knot K ∈ Y , i.e. the set {K ∈ Y | f(K) = 0} is the set of the 21 copies of
the unknot.

We will produce three copies of Y, each corresponding to a value of n ∈ {200, 300, 400} where n is the
number of points in the point cloud. An example for the trefoil is shown in Figure 4. We will specify the
value of n whenever we discuss a specific set Y or a subset thereof.

Figure 5. Grid Diagram Trefoil Point Clouds for n = 200; n = 300; n = 400

The Sage code for obtaining these point clouds is located in our GitHub repository.

6 PERSISTENT HOMOLOGY TRANSFORM OF EMBEDDED KNOTS

4. Methods

For each of the point clouds generated, we calculate the persistent homology transform from k directions
evenly spaced around S2. Then, we take a union of the k (augmented) persistence diagrams so that we have
one PD/APD for each K ∈ Y. Finally, we cluster these vectors and evaluate the accuracy of the clustering.

4.1. PHT Calculation. The code provided in [12] computes the persistent homology transform of simple
closed curves in R2. Since a knot is a simple closed curve embedded in R3, we made minor modifications
to this code. Further, we modified the code to allow us to compute augmented persistence diagrams as well
as regular persistence diagrams. We then computed the PHT of each knot from k directions, where in our
case, k ∈ {100, 1000, 10000, 18000, 30000}. To evenly sample these k directions from the unit sphere, we use
the Fibonacci Sphere method. An example is shown in Figure 5

The theoretical guarantee described in [3] tells us that about n2 directions are needed to perfectly classify
each knot for a point cloud with n points. Then, for a point cloud with n = 200, approximately 40000
directions should be sufficient in order to perfectly classify each knot. We test fewer directions due to
computational constraints.

Figure 6. Fibonacci Sphere vectors for k = 100

We then take the union of these k persistence diagrams for a particular knot K and put them on a single
plot. This gives a single persistence diagram for a particular knot K representing the PHT of K. An example
for k = 10 is shown in Figure 6.

Figure 7. Union of 10 PDs for the Trefoil

PERSISTENT HOMOLOGY TRANSFORM OF EMBEDDED KNOTS 7

4.2. Featurization & Clustering. In order to compare sets of persistence diagrams, we need to put them
into a form that is amenable to clustering. Two of the most common methods of doing so are using persistence
images [1] and persistence landscapes [4]. We focus on using persistence images for computational efficiency.

To produce a persistence image, one takes a weighted sum of Gaussians at each point in the diagram
and integrates this over a grid [1]. Persistence images give a stable vector representation of the topological
information captured by a persistence diagram. One drawback of obtaining persistence images from a union
of augmented persistence diagrams is that we had to modify the weighting function used in [1] in order to
keep track of points on the diagonal, so we lose the stability guarantee. An example of a persistence image
is shown in Figure 7, where the area of high density in the top left corner corresponds to the large number
of points on or near the diagonal [11].

Figure 8. Persistence Image for one instance of the Unknot

Define a function

φ : S → Rd

where φ(K) is the d-dimensional vector associated with the persistence image of K. Then, the set V =
{φ(K) ∈ Rd | K ∈ Y} represents the 126 vectors corresponding to each knot in the dataset. We then
perform k-means clustering on V with 6 clusters. A perfect labelling of the vectors is a labelling in which
two knots K1 and K2 have the same label if and only if f(K1) = f(K2). We compare the labelling given
by k-means to this perfect labelling to obtain an accuracy score. This gives a measure of how well the PHT
was able to retain the necessary topological data of each knot to classify it correctly.

4.3. Community Detection. We also explored an alternate method to grouping the vectors corresponding
to each K ∈ Y, community detection on networks.

This can be done by calculating distances between all vectors pairwise, which we use to create a symmetric
similarity matrix. Then, we can view vectors as nodes and add edges between them if the similarity is above
some fixed threshold, and analyze the resultant network with Louvain community detection [13].

5. Results

We ran many experiments testing several variables, including:

• Point cloud density (n ∈ {200, 300, 400}
• Number of Directions (k ∈ {100, 1000, 10000, 18000, 30000}
• Type of Persistence Diagram (Augmented vs. Regular)
• Point Cloud Type (Grid Diagram vs. Spring Layout)

8 PERSISTENT HOMOLOGY TRANSFORM OF EMBEDDED KNOTS

Figure 9. Sample Results for one clustering

As described in 4.2, we assign cluster labels to each K ∈ Y and obtain an accuracy score. An sample of
results for one clustering with an accuracy of 1.0 is shown in Figure 8.

We also obtain clustering results for a smaller subset C ⊂ Y where C contains all the different embeddings
of the unknot, trefoil, and 61 knot. These knots were chosen because they appear the most different when
embedded in R3. More concretely, they are the three knots with the greatest difference in number of crossings.

We first give results for one particular experiment, where we fix the number of points at n = 300, the
number of directions at k = 100, and use augmented persistence diagrams. We cluster the knots with
these criteria twice, once using Grid Diagram point clouds and once using Spring Layout point clouds. The
clustering results for this experiment are shown in Figure 9 and Figure 10.

Figure 10. Clustering and accuracy scores for Grid Diagram point clouds (left) and Spring
Layout point clouds (right)

Figure 11. Clustering and accuracy scores for Grid Diagram (top); Spring Layout point
clouds (bottom) for Unknot, Trefoil, 61 knot

We saw higher accuracy scores for Spring Layout point clouds on a number of experiments, so we focused
our attention on other variables. The results given in 1 and 2 all use Spring Layout point clouds.

In Experiments (1b), (2b), and (3b), where all variables are fixed with k = 100 except for n, we see that
n = 200 gives the lowest accuracy and n = 400 gives the highest accuracy for the 6 knots clustering, and
n = 300 gives the highest accuracy for the 3 knot clustering. In Experiments (1b), (2b), and (3b), where
k = 1000 and n varies, we again see that n = 400 gives the highest accuracy scores. Similar results hold
when looking at APDs and varying n. In general, we see that higher values of n give stronger results.

When holding all variables fixed and varying number of directions k, we generally see that higher accuracy
scores correspond with higher values of k as expected. This trend is more pronounced in the clustering of
the unknot, trefoil, and 61 knot.

When varying the type of persistence diagram, we see that APDs give higher accuracy scores for larger
values of k, while PDs in some cases give higher scores for smaller values of k.

PERSISTENT HOMOLOGY TRANSFORM OF EMBEDDED KNOTS 9

Experiment No. Points (n) No. Directions PD/APD Accuracy Score

1a 200 100 APD 0.3651
1b 200 100 PD 0.3730
1c 200 1000 APD 0.3810
1d 200 1000 PD 0.3730
1e 200 10000 PD 0.3810
2a 300 100 APD 0.4048
2b 300 100 PD 0.4048
2c 300 1000 APD 0.3968
2d 300 1000 PD 0.3730
2f 300 10000 PD 0.3968
3a 400 100 APD 0.4523
3b 400 100 PD 0.4523
3c 400 1000 APD 0.4127
3d 400 1000 PD 0.4127

Table 1. Table of clustering results for 6 knots

Experiment No. Points (n) No. Directions PD/APD Accuracy Score

1a 200 100 APD 0.5397
1b 200 100 PD 0.5873
1c 200 1000 APD 0.5556
1d 200 1000 PD 0.5873
1e 200 10000 PD 0.6032
2a 300 100 APD 0.6508
2b 300 100 PD 0.6508
2c 300 1000 APD 0.6508
2d 300 1000 PD 0.5873
2f 300 10000 PD 0.6508
3a 400 100 APD 0.5714
3b 400 100 PD 0.5714
3c 400 1000 APD 0.5714
3d 400 1000 PD 0.5714

Table 2. Table of clustering results for Unknot, Trefoil, 61 Knot

The results from these experiments show that, as expected, denser point clouds and taking the PHT from
a larger number of directions corresponds with higher accuracy scores. To a lesser degree, it seems that
APDs are preferable over PDs in terms of accuracy scores when k is large, although the time complexity of
running PHT with APDs is much higher than that for PDs.

5.1. Community Detection. We run community detection on two of the best performing experiments in
the dataset, namely Experiments (2c) and (3c). We create the network by the method described in 4.3, an
example of which is shown in Figure 12

These two networks give the community labels for each of the six knots shown in Figure 13:
We do not fix a number of communities to assign nor a maximum/minimum number of vectors to be

assigned to a single community. Thus, many of the vectors fall under one community. However, these results
are significant because each of the six knots in both networks have some embeddings which are placed into
unique communities. That is, for every knot K, some embeddings of K have community labellings which
no other knot has. For example, in the community labellings for Experiment (3c), communities 8 and 10

10 PERSISTENT HOMOLOGY TRANSFORM OF EMBEDDED KNOTS

Figure 12. Network for vectors from Experiment (3c)

only appear in the labellings for the 61 knot (Knot 6), and they appear 2 and 3 times in these labellings,
respectively.

6. Discussion

To classify sets of shapes, Turner et al. use an algorithm to orient the shapes in a particular way so as
to directly compare directions when taking the PHT [12]. Using Grid Diagram point clouds initially seemed
to intuitively mimic this approach by setting a standard by which our simple, closed curves will sit in R3,
making comparison of persistence diagrams from different directions more straightforward.

However, our original intuition for this project was that if one performs a Reidemeister Type I move to a
knot K, we obtain an equivalent knot K ′ with an additional crossing. This knot is isotopically equivalent
to one where there exists some space in between the overstrand and understrand of this crossing. If we view
K ′ in the direction of this ”space”, the knot will look just like K. This intuition follows for Reidemeister
moves of Type II and Type III. Thus, we thought there should be some directions of the PHT which give
similar persistence diagrams between different embeddings of K. With Grid Diagram point clouds, this idea
is somewhat lost because of the rigidity of the grid diagram embedding, prompting us to more smoothly
embed the point clouds with Spring Layout. This approach did result in higher accuracy scores, as shown
in Figure 9 and Figure 10.

PERSISTENT HOMOLOGY TRANSFORM OF EMBEDDED KNOTS 11

Figure 13. Community labels for vectors from Experiment (3c) (top); Experiment (4c)
(bottom)

7. Future Directions

Due to the many computational constraints we encountered in this project, many of the future directions
involve running similar experiments with parameters we were not able to test.

First, testing a larger set of knots Y with more random embeddings for each knot K would give more
reliable and replicable results. If each point cloud has n points, it would be most instructive to run the PHT
on this larger dataset from closer to n2 directions, as this directly follows from the theoretical guarantee
given by Belton et al. (cite) for closed curves in R2. Due to computational constraints, we were not able to
guide or choice of number of directions with his theoretical guarantee.

Next, other featurization methods could be studied, such as persistence landscapes. The method of
matching introduced in 4.3 for community detection could be extended to all APDs of each knot. That is,
for two sets of APDs Pi = {Ki,k, · · · ,Ki,k} and Pj = {Kj,k, · · · ,Kj,k} where Pi and Pj correspond to two
embeddings Ki and Kj , where k is the number of directions, we can use a metric defined on persistence
diagrams (cite) to compare all persistence diagrams pairwise and compute an ”optimal bijection” between
PHTs. This would allow us to compare specific directions more concretely, and this approach more follows
the close attention paid to specific directions, as done in [12].

Another possible direction is to test a larger dataset, which would have a particular benefit in allowing
us to implement a supervised machine learning algorithm to classify the knots. If the theoretical guarantees
hold and knots are correctly classified by the PHT for a larger dataset, we could try varying the number of
Reidemeister moves performed on each K.

The results suggest that taking PHT of an embedded knot is more accurate with denser point clouds, a
large amount of directions, using Augmented Persistence Diagrams, and running it on Spring Layout point
clouds. We infer that the marginal benefit of increasing the density of the point clouds n will taper off at
some value of n, at which point further increases will not be computationally worthwhile. Another future
direction could be to find this threshold and quantify it somehow. Also, further experiments could more
firmly establish the slight advantage of Augmented Persistence Diagrams over regular PDs that we found.

12 PERSISTENT HOMOLOGY TRANSFORM OF EMBEDDED KNOTS

Acknowledgements

This work was completed as a part of the Geometry and Topology REU program at UCLA, supported by
National Science Foundation Research and Training Grant DMS-2136090. We thank Nathan Dunfield for
his help in obtaining the embeddings of the knots with SnapPy. We also thank our mentors Mason Porter,
Sarah Tymochko, and Sidhanth Raman for all of their guidance and support throughout this project.

References

[1] Henry Adams et al. “Persistence Images: A Stable Vector Representation of Persistent Homology”. In:
Journal of Machine Learning Research 18.8 (2017), pp. 1–35. url: http://jmlr.org/papers/v18/16-
337.html.

[2] Erik Amézquita et al. “Measuring hidden phenotype: quantifying the shape of barley seeds using the
Euler characteristic transform”. In: in silico Plants 4.1 (2021), pp. 1–15. url: https://doi.org/10.
1093/insilicoplants/diab033.

[3] Robin Lynne Belton et al. “Reconstructing embedded graphs from persistence diagrams”. In: Compu-
tational Geometry 90 (2020), p. 101658. issn: 0925-7721. doi: https://doi.org/10.1016/j.comgeo.
2020.101658. url: https://www.sciencedirect.com/science/article/pii/S0925772120300523.

[4] P. Bubenik. “Statistical topological data analysis using persistence landscapes”. In: Journal of Machine
Learning Research 16 (Jan. 2015), pp. 77–102.

[5] Justin Curry, Sayan Mukherjee, and Katharine Turner. How Many Directions Determine a Shape and
other Sufficiency Results for Two Topological Transforms. 2021. arXiv: 1805.09782 [math.AT]. url:
https://arxiv.org/abs/1805.09782.

[6] Pawe l D lotko, Davide Gurnari, and Radmila Sazdanovic. Mapper-type algorithms for complex data and
relations. 2023. arXiv: 2109.00831 [math.AT]. url: https://arxiv.org/abs/2109.00831.

[7] Jesse S F Levitt, Mustafa Hajij, and Radmila Sazdanovic. Big Data Approaches to Knot Theory:
Understanding the Structure of the Jones Polynomial. 2019. arXiv: 1912.10086 [math.GT]. url:
https://arxiv.org/abs/1912.10086.

[8] Samuel Mickas. “Searching and reconstruction: Algorithms with topological descriptors”. In: Montana
State University (2020). url: https://www.proquest.com/dissertations-theses/searching-
reconstruction-algorithms-with/docview/2404677419/se-2.

[9] Elizabeth Munch. “An Invitation to the Euler Characteristic Transform”. In: arXiv (2023). url:
https://arxiv.org/pdf/2310.10395.

[10] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of Machine Learning
Research 12 (2011), pp. 2825–2830.

[11] Nathaniel Saul and Chris Tralie. Scikit-TDA: Topological Data Analysis for Python. 2019. doi: 10.
5281/zenodo.2533369. url: https://doi.org/10.5281/zenodo.2533369.

[12] Katharine Turner, Sayan Mukherjee, and Doug M Boyer. “Persistent Homology Transform for Modeling
Shapes and Surfaces”. In: Information and Inference: A Journal of the IMA 3.4 (2014), pp. 310–344.
url: https://doi.org/10.1093/imaiai/iau011.

[13] G. Varoquaux, T. Vaught, and Millman. J. “Exploring network structure, dynamics, and function using
NetworkX”. In: Proceedings of the 7th Python in Science Conference (2008), pp. 11–15.

http://jmlr.org/papers/v18/16-337.html
http://jmlr.org/papers/v18/16-337.html
https://doi.org/10.1093/insilicoplants/diab033
https://doi.org/10.1093/insilicoplants/diab033
https://doi.org/https://doi.org/10.1016/j.comgeo.2020.101658
https://doi.org/https://doi.org/10.1016/j.comgeo.2020.101658
https://www.sciencedirect.com/science/article/pii/S0925772120300523
https://arxiv.org/abs/1805.09782
https://arxiv.org/abs/1805.09782
https://arxiv.org/abs/2109.00831
https://arxiv.org/abs/2109.00831
https://arxiv.org/abs/1912.10086
https://arxiv.org/abs/1912.10086
https://www.proquest.com/dissertations-theses/searching-reconstruction-algorithms-with/docview/2404677419/se-2
https://www.proquest.com/dissertations-theses/searching-reconstruction-algorithms-with/docview/2404677419/se-2
https://arxiv.org/pdf/2310.10395
https://doi.org/10.5281/zenodo.2533369
https://doi.org/10.5281/zenodo.2533369
https://doi.org/10.5281/zenodo.2533369
https://doi.org/10.1093/imaiai/iau011

	1. Introduction
	1.1. Related Work
	1.2. Research Question

	2. Background
	2.1. Simplicial Homology
	2.2. Persistent Homology
	2.3. Persistent Homology Transform

	3. Data
	4. Methods
	4.1. PHT Calculation
	4.2. Featurization & Clustering
	4.3. Community Detection

	5. Results
	5.1. Community Detection

	6. Discussion
	7. Future Directions
	Acknowledgements
	References

