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Abstract

We address two major challenges in scientific machine learning (SciML): interpretability and com-
putational efficiency. We increase the interpretability of certain learning processes by establishing
a new theoretical connection between optimization problems arising from SciML and a generalized
Hopf formula, which represents the viscosity solution to a Hamilton-Jacobi partial differential equa-
tion (HJ PDE) with time-dependent Hamiltonian. Namely, we show that when we solve certain
regularized learning problems with integral-type losses, we actually solve an optimal control prob-
lem and its associated HJ PDE with time-dependent Hamiltonian. This connection allows us to
reinterpret incremental updates to learned models as the evolution of an associated HJ PDE and
optimal control problem in time, where all of the previous information is intrinsically encoded in
the solution to the HJ PDE. As a result, existing HJ PDE solvers and optimal control algorithms
can be reused to design new efficient training approaches for SciML that naturally coincide with the
continual learning framework, while avoiding catastrophic forgetting. As a first exploration of this
connection, we consider the special case of linear regression and leverage our connection to develop
a new Riccati-based methodology for solving these learning problems that is amenable to continual
learning applications. We also provide some corresponding numerical examples that demonstrate
the potential computational and memory advantages our Riccati-based approach can provide.

Keywords: Hamilton-Jacobi PDEs; generalized Hopf formula; continual learning; optimal control

1. Introduction

Scientific machine learning (SciML) encompasses a wide range of powerful, data-driven techniques
renowned for their ability to solve complicated problems that more traditional numerical methods
cannot. Despite these successes, developing the theoretical foundations of SciML is still an active
area of research (e.g., see Carvalho et al. (2019)). In this work, we increase the interpretability of
certain learning processes by establishing a new theoretical connection between certain optimization
problems arising from SciML and a generalized Hopf formula, which represents the viscosity solution
to a Hamilton-Jacobi partial differential equation (HJ PDE) with time-dependent Hamiltonian
(Section 2). HJ PDEs have been shown to have deep connections with many scientific disciplines,
including but not limited to optimal control (Bardi and Capuzzo-Dolcetta (1997)) and differential
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games (Evans and Souganidis (1984)). Here, we leverage our new theoretical connection as well as
the established connection between HJ PDEs and optimal control to show that when we solve certain
regularized learning problems, we actually solve an optimal control problem and its associated HJ
PDE with time-dependent Hamiltonian. In doing so, we can reuse existing efficient HJ PDE solvers
and optimal control algorithms to develop new training approaches for SciML. We also build upon
our previous work in Chen et al. (2024a), which, to our knowledge, is the first to establish a
connection of this kind between SciML and HJ PDEs. In Chen et al. (2024a), we instead connect
regularized learning problems with the multi-time Hopf formula, which represents the solution
to certain multi-time HJ PDEs (Rochet (1985); Lions and Rochet (1986)). By discretizing the
generalized Hopf formula (e.g., by discretizing the integral in the middle row of Figure 1), we can
regard the work here as a generalization of Chen et al. (2024a) to the infinite-time case.

By instead considering HJ PDEs with time-dependent Hamiltonians, we develop a new theo-
retical framework that is more closely aligned with continual learning (Parisi et al. (2019); Van de
Ven and Tolias (2018)), which in turn yields potential computational and memory advantages, es-
pecially in big data regimes. Under the continual learning framework, data is accessed in a stream
and learned models are updated incrementally as new data becomes available. In many continual
learning scenarios, data is also assumed to become inaccessible after it is incorporated into the
learned model, which often leads to catastrophic forgetting (Kirkpatrick et al. (2017); Parisi et al.
(2019)) or, in other words, the abrupt degradation in the performance of learned models on pre-
vious tasks upon training on new tasks. However, this lack of dependence on historical data often
also facilitates the development of more computationally efficient learning algorithms by requiring
that only a small amount of data can be processed and stored at a time. Using our theoretical con-
nection, we reinterpret incrementally updating learned models as evolving an associated HJ PDE
and optimal control problem in time, where all of the information from previous data points are
inherently encoded in the solution to the HJ PDE. As such, our new interpretation has the potential
to yield new efficient continual learning approaches that naturally avoid catastrophic forgetting.
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Figure 1: (See Section 2) Illustration of a connection between a regularized learning problem with
integral-type loss (top), the generalized Hopf formula for HJ PDEs with time-dependent
Hamiltonians (middle), and the corresponding optimal control problem (bottom). The
colors indicate the associated quantities between each problem. For example, the optimal
weights in the learning problem are equivalent to the momentum in the HJ PDE, which
is related to the control in the optimal control problem (cyan). This color scheme is
reused in the subsequent illustrations of our connection. The solid-line arrows denote
direct equivalences. The dotted arrows represent additional mathematical relations.

2



HJ PDEs for Continual SciML

As a first exploration of this connection, we consider the special case of regularized linear
regression problems with integral-type data fitting losses, which we show are connected to linear
quadratic regulator (LQR) problems with time-dependent costs and dynamics (Anderson and Moore
(2007); Tedrake (2023)) (Section 3). We then leverage this connection to develop a new Riccati-
based methodology that coincides with the continual learning framework, while inherently avoiding
catastrophic forgetting. Finally, we demonstrate how this methodology can be applied to some
SciML applications of interest (Section 4) and discuss some possible future directions (Section 5).

2. Connection between the generalized Hopf formula and learning problems

In this section, we begin by introducing the generalized Hopf formula and reviewing the well-
established connections between HJ PDEs and optimal control. Then, we introduce the learning
problems of interest and formulate our new theoretical connection.

2.1. Generalized Hopf formula for HJ PDEs with time-dependent Hamiltonians

Consider the following HJ PDE with time-dependent Hamiltonian:




∂S(x, t)

∂t
+H(t,∇xS(x, t)) = 0 x ∈ Rn, t > 0,

S(x, 0) = J(x) x ∈ Rn,
(1)

where H : (0,∞) × Rn → R is the Hamiltonian and J : Rn → R is the initial condition. Assume
that H, J are continuous, J is convex, and H(t,p) is convex in p. Then, using the same proof as
that for (Lions and Rochet, 1986, Proposition 1), it can be shown that the viscosity solution to this
HJ PDE (1) can be represented by the following generalized Hopf formula:

S(x, t) = sup
p∈Rn

�
⟨x,p⟩ −

Z t

0
H(s,p)ds− J∗(p)

�
= − inf

p∈Rn

�Z t

0
H(s,p)ds+ J∗(p)− ⟨x,p⟩

�
, (2)

where f∗ denotes the Fenchel-Legendre transform of the function f ; i.e., f∗(p) = supx∈Rn{⟨x,p⟩−
f(x)}. Note that, as stated in a remark in Lions and Rochet (1986), this Hopf representation
formula does not hold in general. However, under our convexity assumptions, the semigroup com-
mutation still holds and hence, we can follow the same proof as that for (Lions and Rochet, 1986,
Proposition 1). More details are provided in the arXiv version of this paper (Chen et al. (2024b)).
Also note that if the integral in (2) is discretized in time, then we recover a multi-time Hopf formula
(e.g., see Rochet (1985); Lions and Rochet (1986); Chen et al. (2024a); Darbon and Meng (2020)),
and hence, (1) can also be considered as a multi-time HJ PDE with infinitely many times.

It is well-known that the value function of the following optimal control problem also satisfies (1):

S(x, t) = min
u(·)

�Z t

0
L(s,u(s))ds+ J(x(t)) : ẋ(s) = f(s,u(s))∀s ∈ (0, t],x(0) = x

�
, (3)

where x is the initial position, t is the time horizon, u : [0,∞) → Rm is the control, x : [0,∞) → Rn

is the trajectory, the running cost L and the source term f of the dynamics are related to the
Hamiltonian H by H(s,p) = supu∈Rm{⟨−f(s,u),p⟩ − L(s,u)}, and J is now the terminal cost.

2.2. Connection to learning problems

In this section, we connect the Hopf formula (2) to regularized learning problems with integral-
type losses (e.g. see Sirignano and Spiliopoulos (2018)). Consider a learning problem with data
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Figure 2: (See Section 2) Mathematical formulation describing the connection between a regularized
learning problem with integral-type loss (top), the generalized Hopf formula for HJ PDEs
with time-dependent Hamiltonians (middle), and the corresponding optimal control
problem (bottom). The content of this illustration matches that of Figure 1 by replacing
each term in Figure 1 with its corresponding mathematical expression. The colors indicate
the associated quantities between each problem. The solid-line arrows denote direct
equivalences. The dotted arrows represent additional mathematical relations.

(s,y(s)) ∈ [0, t] × Rm. The goal is to learn a function F (·; θ) with inputs in [0, t] and unknown
parameter θ ∈ Rn. We learn F (·; θ) as follows. First, we apply an operator A on the function
F (·; θ), where we denote AFθ(s) := A[F (·; θ)](s). For example, A could be the identity operator
(as in regression problems; e.g., see Weisberg (2005)) or a differential operator (as in PINNs; e.g.,
see Raissi et al. (2019)). The discrepancy between the learned model AFθ and the measurements
y is measured using an integral-type data fitting loss

R t
0 L(AFθ(s),y(s))ds, where we assume that

the function θ 7→ L(AFθ(s),y(s)) is convex. For example, setting L(a, b) =
Pm

i=1 |ai − bi| or
L(a, b) = Pm

i=1(ai − bi)
2 yields an L1 or L2-squared data fitting loss, respectively. The unknown

parameters θ are then learned by solving the following optimization problem:

min
θ∈Rn

λ

Z t

0
L(AFθ(s),y(s))ds+R(θ), (4)

where λ > 0 is a weight on the data fitting loss and R is a convex regularization term.
Then, the connection between the learning problem (4), the generalized Hopf formula (2), and

the optimal control problem (3) is summarized in Figure 2. Specifically, the learning problem (4)
is related to the generalized Hopf formula (2) by setting θ = p, H(s,p) = λL(AFp(s),y(s)), and
R(p) = J∗(p) − ⟨x,p⟩ + c(x), where c(x) is a constant (possibly 0) that is independent of p but
may depend on x. In other words, the variable x in the HJ PDE becomes a hyper-parameter in the
learning problem, and we can treat it as a constant when optimizing the learning problem (4) with
respect to θ = p. Hence, when we solve these learning problems, we also solve the optimal control
problem (3) with initial position x and time horizon t, or, equivalently, we evaluate the solution to
the corresponding HJ PDE (1) at the point (x, t). Conversely, when we solve the HJ PDE (1), the
spatial gradient ∇xS(x, t) of the solution gives the minimizer θ∗ of the learning problem (4).

3. Regularized linear regression problems with quadratic integral-type losses

As a first exploration of the theoretical connection we developed in Section 2.2, we consider the
specific case of quadratic-regularized linear regression problems with quadratic integral-type losses.
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We begin by establishing the connection for this specific case. We then leverage this connection
to develop a new Riccati-based approach for solving this learning problem, which has potential
computational and memory advantages in continual learning and big data settings.

3.1. Problem formulation and connection to LQR problems

The learning problem is formulated as follows. Given data (s,y(s)) ∈ [0, t] × Rm, the goal is
to learn a linear prediction model Φ(·)θ such that AΦ(s)θ ≈ y(s), ∀s ∈ [0, t], where Φ(·) =
[ϕ1(·), ...,ϕn(·)] ∈ Rm×n is the matrix whose columns are the basis functions ϕj : [0, t] → Rm,
j = 1, . . . , n, θ = [θ1, . . . , θn]

T ∈ Rn are unknown trainable coefficients, and A is a linear
operator (e.g., identity operator, differential operators), where we abuse notation and denote
AΦ(s) := [Aϕ1(s), ...,Aϕn(s)]. We learn θ by minimizing the following loss function:

L(θ) =
Z t

0

λ

2
∥AΦ(s)θ − y(s)∥22ds+

1

2
∥Aθ − b∥22, (5)

where 1
2∥Aθ − b∥22 is a quadratic regularization term, A ∈ Rn×n is a positive definite matrix that

weights the regularization, and b ∈ Rn acts as a prior on θ that biases θ to be close to A−1b. Note
that this loss function (5) is strictly convex; hence, it has a unique global minimizer.

Then, this learning problem has connections with a generalized Hopf formula and an optimal
control problem. By expanding the square, we see that computing the minimizer of the loss
function (5) is equivalent to computing the maximizer of the following generalized Hopf formula:

S(x, t) = sup
p∈Rn

�
⟨x,p⟩ −

Z t

0

λ

2
∥AΦ(s)p− y(s)∥22ds−

1

2
∥Ap∥22 + ⟨Ap, b⟩

�
, (6)

when x = 0. In other words, solving this learning problem (5) is equivalent to solving the HJ
PDE (1) with time-dependent, quadratic Hamiltonian H(s,p) = λ

2∥AΦ(s)p−y(s)∥22 and quadratic
initial condition J(x) = 1

2∥(A−1)Tx + b∥22 at the point (0, t). By extension, solving both of these
problems is also equivalent to solving the optimal control problem (3) with running cost L(s,u) =
1
2u

Tu −
√
λy(s)Tu, terminal cost J(x) = 1

2∥(A−1)Tx + b∥22, dynamics f(s,u) =
√
λ(AΦ(s))Tu,

initial position x(0) = 0, and time horizon t. Note that since this optimal control problem has
quadratic running and terminal costs and linear dynamics, it is actually an LQR problem with
time-dependent costs and dynamics (e.g., see Anderson and Moore (2007); Tedrake (2023)).

3.2. Riccati-based methodology

It is well-known that LQR problems can be solved using Riccati ODEs (e.g., see McEneaney
(2006)). By our connection, this gives us that the learning problem (5) can also be solved using
Riccati ODEs. Namely, the viscosity solution S (given by (6)) to the corresponding HJ PDE is
also given by S(x, t) = 1

2x
TP (t)x+ q(t)Tx+ r(t), where P : [0,∞) → Rn×n, which takes values in

the space of positive definite matrices, q : [0,∞) → Rn, and r : [0,∞) → R satisfy the following
Riccati ODEs: 




Ṗ (s) = −λP (s)T (AΦ(s))TAΦ(s)P (s) s > 0,

q̇(s) = −λP (s)T (AΦ(s))T (AΦ(s)q(s)− y(s)) s > 0,

ṙ(s) = −λ

2
∥AΦ(s)q(s)− y(s)∥22 s > 0

(7)

with initial conditions P (0) = A−1(A−1)T , q(0) = A−1b, and r(0) = 1
2b

Tb. Then, the minimizer
θ∗ of the learning problem (5) is given by θ∗ = p∗ = ∇xS(0, t) = q(t), where p∗ is the optimizer
in the generalized Hopf formula (6) when x = 0.
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Remark 1 When solving the learning problem (5), we only care about computing the minimizer
θ∗ and not the minimal value of the loss function. Hence, solving the learning problem using the
Riccati ODEs (7) only requires solving the ODEs for P,q, and the ODE for r can be ignored. In
the remainder of the paper, we disregard the ODE for r.

Solving the learning problem (5) via the Riccati ODEs (7) provides computational and memory
advantages in certain learning scenarios, particularly those involving continual learning and/or
very large datasets. For example, consider the case where our model has already been trained
using the data (s,y(s)) ∈ [0, t] × Rm and we want to incorporate some additional data points
(s,y(s)) ∈ (t, t1]× Rm, where t1 > t, into our learned model. Then, our model can be updated by
simply evolving the Riccati ODEs (7) from t to t1. Note that doing so requires neither retraining on
the entire dataset (s,y(s)) ∈ [0, t1]×Rm nor access to any of the previous data (s,y(s)) ∈ [0, t]×Rm

since evolving the Riccati ODEs (7) from t to t1 only requires the values P (t),q(t) (i.e., the results
of the previous training) to initialize the Riccati ODEs and the new data (s,y(s)) ∈ (t, t1] ×
Rm to continue evolving the ODEs on the subsequent time interval [t, t1]. Hence, this Riccati-
based approach is particularly beneficial in continual learning scenarios, wherein learned models
are incrementally updated as new data becomes available (and hence, constantly retraining on the
entire, growing dataset can quickly become computationally infeasible), and memory-constrained
learning scenarios where datasets are too large to store in their entirety.

Now consider the case where we want to remove some data (s,y(s)) ∈ [t2, t]×Rm, where t2 < t,
which has already been incorporated into our learned model. This scenario may correspond to the
case where we want to remove some corrupted data in order to improve the accuracy of the learned
model. Then, this data can be removed by reversing time and solving the Riccati ODEs (7) from t
to t2 with terminal conditions given by P (t),q(t). As in the previous case, the advantages of this
Riccati-based approach are that we only require access to the data that is being removed and not
the entire dataset. Thus, if we are removing a small amount of data (relative to the size of the
entire dataset), this approach can be more efficient than retraining on the entire remaining dataset.

Remark 2 We have flexibility in how we connect the learning problem (5) to an HJ PDE. Specif-
ically, in (6), we interpret b as part of the initial condition J of the corresponding HJ PDE.
However, we could also interpret b to be part of x, the point at which we evaluate the HJ PDE.
Let b = bJ + bx, where bJ and bx are the parts of b that will be associated with J and x, respec-
tively. Then, the new corresponding HJ PDE and optimal control problem are identical to those
defined in Section 3.1 but with b replaced with bJ and evaluated at x = x(0) = ATbx (instead of at
x = x(0) = 0). Let S̃ be the solution to this new HJ PDE. Then, the minimizer θ∗ of the learning
problem (5) can alternatively be computed as θ∗ = p∗ = ∇xS̃(A

Tbx, t) = P̃ (t)ATbx + q̃(t), where
P̃ , q̃ satisfy the Riccati ODEs (7) with initial conditions P (0) = A−1(A−1)T , q(0) = A−1bJ . The
advantage of this alternative interpretation is that bx (i.e., the bias on θ) can be tuned efficiently
using only 2 matrix-vector multiplications and 1 vector addition instead of having to re-solve the
Riccati ODEs (7) with a new initial condition (i.e., re-training on the entire dataset with a new
bias). Note that when bx = 0, we recover the original framework from Section 3.1.

4. Numerical examples

In this section, we apply the Riccati-based methodology from Section 3 to two test problems to
demonstrate the potential computational and memory advantages of our approach. For illustration
purposes, we apply 4th-order Runge-Kutta (RK4) to solve the Riccati ODEs in each example.
Note that our methodology does not rely on any particular numerical solver. Hence RK4 could be
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replaced by any other appropriate numerical method. Code for all examples will be made publicly
available at https://github.com/ZongrenZou/TimeHJPDE4SciML after this paper is accepted.

4.1. A boundary-value ODE problem

(a) Inference of u after [0, t] ∋ s 7→ f(s) is visited.

(b) Inference/fitting of f after [0, t] ∋ s 7→ f(s) is visited.

Figure 3: Continual learning of the solution u and source term f of the boundary-value ODE (8)
using our Riccati-based approach, where information of f is treated as a flow with respect
to t and cannot be stored once visited. −−: inferences of u, f at different t; —: exact val-
ues of u, f ; −−: where integration has advanced in t so far. Our Riccati-based approach
naturally coincides with the continual learning framework by allowing new information
to be continuously incorporated into the learned model without requiring access to any
of the previous information. Instead, all of the previous information is encoded in the
solution to the corresponding HJ PDE, thus avoiding catastrophic forgetting.

In this example, we apply our Riccati-based methodology to solve a boundary value problem using
continual learning (Parisi et al. (2019); Van de Ven and Tolias (2018)) to demonstrate the potential
computational and memory benefits of our approach. Consider the following ODE problem:





d2u

dt2
+ u(t) = f(t), t ∈ (0, T ),

u(0) = u0, u(T ) = uT ,

(8)

where f : [0, T ] → R is the source term derived from u(t) = exp(−0.05t) sin(0.4πt), t ∈ [0, T ]
(although u is assumed to be unknown a priori), u0 = 0 and uT = exp(−0.05T ) sin(0.4πT ) are
constants, and T = 100 so that this is a long-term integration problem. Following the continual
learning framework, we assume that information of f is accessed in a stream as a flow of t and
that information of f becomes inaccessible after it is incorporated into our learned model. Our
goal is to learn the linear model

Pn
i=1 θiϕi(·) to approximate the solution u of the ODE (8),

7
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where {ϕi(·)}ni=1 = {1} ∪ {j sin(j·), j cos(j·)}
n−1
2

j=1 , n = 301. We learn the unknown coefficients

θ = [θ1, . . . , θn]
T using the following PINN-type loss (Raissi et al. (2019); Zou et al. (2024)):

L(θ; t) = λf

2

Z t

0

�����
nX

i=1

θi

�
d2ϕi

dt2
(s) + ϕi(s)

�
− f(s)

�����

2

ds

+
λ0

2

�����
nX

i=1

ϕi(0)θi − u0

�����

2

+
λT

2

�����
nX

i=1

ϕi(T )θi − uT

�����

2

+
1

2

nX

i=1

γi|θi|2,
(9)

where λf > 0 is the belief weight for the ODE, λ0,λT ≥ 0 are belief weights for the boundary
conditions, and γi > 0, i = 1, . . . , n are belief weights for the ℓ2-regularization. Following the
data streaming paradigm, to achieve real-time inferences, we need to minimize L(·; t) for all t ∈
[0, T ]. Note that by completing the square, minimizing the above loss function (9) is equivalent
to minimizing a loss function in the form of (5), where λ = λf , Φ(·) = [ϕ1(·), . . . ,ϕn(·)], AΦ(·) =
[d

2ϕ1

dt2
(·) + ϕ1(·), . . . , d

2ϕn

dt2
(·) + ϕn(·)], y = f , A = (λ0Φ(0)

TΦ(0) + λTΦ(T )
TΦ(T ) + Γ)1/2, where Γ

is the diagonal matrix whose i-th entry is γi, and b = A−1(λ0Φ(0)
Tu0 + λTΦ(T )

TuT ). In other
words, we treat the sum of the boundary and regularization terms in (9) as the regularization term
in (5). Thus, the learning problem (9) can be solved using the Riccati ODEs (7).

For our numerics, we use λf = 100,λ0 = λT = γi = 1, i = 1, ..., n, and RK4 with step size
h = 10−6. Note that evolving the Riccati ODEs from t to t+h only requires information of f(s), s ∈
[t, t+h]. Hence, our approach naturally coincides with the continual learning framework. In Figure
3, we observe that our inferences of both u and f improve as more information is incorporated
into our learned model. In particular, we see that our inferences improve in accuracy in both the
regions we have already visited and at future times, which indicates that catastrophic forgetting
has not occurred. This behavior is consistent with the fact that all of the information from s < t
is inherently encoded in the solution to the corresponding HJ PDE via the solutions P (t),q(t) to
the Riccati ODEs. Specifically, the relative L2 errors of the inferences of u are 27.13%, 12.36%,
0.03% once t = 25, 75, 100 has been visited, respectively. Similarly, the relative L2 errors of the
inferences of f are 23.83%, 8.08%, 0.03% once t = 25, 75, 100 has been visited, respectively. For
comparison, we also compute the least squares estimate (LSE) for (9), in which the integral is
approximated using Monte Carlo with 106 uniform sampling points. The relative L2 errors of the
LSE inferences of u and f are both 0.03%. We compute all of the above L2 errors using trapezoidal
rule with a uniform grid of size 1001 over the whole domain [0, 100]. Note that LSE does not meet
the requirements of continual learning as it requires access to the full information of f at once
(i.e., LSE requires information of f(t), ∀t ∈ [0, 100]), yet our approach yields similar error levels
once t = 100 has been visited even though we only access a small portion of the data at a time.
We also note that the inferences made using our approach can be considered in real time as they
are updated every h time units of data. Thus, our approach provides potential computational and
memory advantages as updating the learned model using information on [t, t+ h] does not require
retraining on or storage of any of the previous information from [0, t).

4.2. 2D Poisson equation

In this example, we extend our Riccati-based approach to a higher dimensional problem to demon-
strate the potential memory advantages of our approach. Consider the 2D Poisson equation:

(
−κ∆u(x, y) = f(x, y), (x, y) ∈ (Ω \ ∂Ω),
u(x, y) = 0, (x, y) ∈ ∂Ω,

(10)

8
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(a) Absolute errors of the inference of u after [0, 1]× [0, y] ∋ (x, t) 7→ f(x, t) is visited.

(b) Absolute errors of the inference/fitting of f after [0, 1]× [0, y] ∋ (x, t) 7→ f(x, t) is
visited.

Figure 4: Continual learning of the solution u and source term f of the 2D Poisson equation (10)
using our Riccati-based approach. White dashed lines: where integration has advanced
in y so far. Information of f is discretized in x and then propagated along y. Hence, our
approach only requires access to 1D slices of the domain instead of the entire domain,
which highlights the potential memory benefits of our Riccati-based approach.

where Ω := [0, 1]2 is the domain, κ = 0.01
π2 is a constant, and f : Ω → R is the source term. Assume

that we only have access to a few slices of f due to limited computational resources, which prevents
direct deployment of most traditional numerical solvers, which typically require full information
of f to solve the equation either iteratively or in one-shot. Hence, we can solve this PDE using
continual learning to take advantage of the memory benefits of data streaming. Namely, we will
avoid having to store the entire discretized grid of Ω by only processing/accessing information
on a small portion of Ω at any given time. We learn a linear model (x, y) 7→ Pn

i=1 θiϕi(x, y) to
approximate the solution u, where the coefficients θ = [θ1, . . . , θn]

T are learned by minimizing:

L(θ; t) = λf

2N

Z t

0

N+1X

j=1

"
κ

nX

i=1

θi

�
∂2ϕi

∂x2
+

∂2ϕi

∂y2

�
(xj , y) + f(xj , y)

#2

dy +
1

2

nX

i=1

γi|θi|2, (11)

where λf and γi, i = 1, ..., n are belief weights. Note that we omit the boundary loss in (11) since the
boundary conditions will be enforced by our choice of {ϕi}ni=1. We also have discretized the integral-
type loss in x with a uniform mesh xj =

j−1
N , j = 1, . . . , N + 1, so that the integration along y can

be treated as the evolution in “time” of the corresponding HJ PDE. The above loss function (11)

is in the same form of (5) by setting λ =
λf

N , [Φ(·)]ji = ϕi(xj , ·), [AΦ(·)]ji = κ(∂
2ϕi

∂x2 + ∂2ϕi

∂y2
)(xj , ·),

y(·) = −[f(x1, ·), . . . , f(xN+1, ·)]T , A = Γ1/2, where Γ is a diagonal matrix whose i-th entry is
γi, and b = 0. Thus, this learning problem (11) can be solved using the Riccati ODEs (7) to
perform the integration along y, and instead of storing information of f on all of Ω, we only require
information along 1D slices of Ω at any given time, which provides memory advantages over more
traditional discretization methods.
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In our numerical experiments, we consider the case where f is derived from

u(x, y) = −0.8 sin(3πx) sin(8πy) + 0.4 sin(9πx) sin(7πy)− 0.3 sin(6πx) sin(10πy)

(but u is assumed to be unknown a priori), N = 400, λ = 100, γi = 1, i = 1, ..., n, {ϕi}m2

i=1 =
{(x, y) 7→ sin(jπx) sin(kπy)}mj,k=1, m = 15 (n = m2), and we employ RK4 with step size h = 10−5.
We also assume that our measurements of f are corrupted with additive Gaussian noise with
mean zero and scale 0.05, which justifies the use of ℓ2-regularization. In Figure 4, we see that
our Riccati-based approach obtains increasingly accurate inferences of f and u as more noisy data
is incorporated into our learned models. Specifically, the relative L2 errors of the inferences of u
are 81.42%, 34.00%, 0.07% and of f are 81.87%, 30.30%, 0.03% once y = 0.25, 0.75, 1 has been
visited, respectively. For comparison, we also compute the LSE for (11), in which the integral is
approximated using Monte Carlo with 104 uniform sampling points. The relative L2 errors of the
LSE inferences of u and f are 0.30% and 0.09%, respectively. We compute all of the above L2

errors using trapezoidal rule with a uniform 401 × 401 grid over all of Ω. Note that LSE requires
information of all of Ω at once, yet our approach obtains more accurate inferences once all of Ω has
been visited despite only accessing information along one 1D slice of Ω at a time. The accuracy of
the LSE inferences could be improved by increasing the number of Monte Carlo points. However,
the LSE with 105 Monte Carlo points is not able to be computed on a standard laptop (13th
Gen Intel(R) Core(TM) i9-13900HX with 2.20 GHz processor and 16 GB RAM) due to memory
constraints, which highlights the memory advantages of our approach. In this case, LSE would
require an N × 105 grid of Ω, whereas our approach only requires N points at a time, where the
accuracy in y can be improved without any additional memory burden by decreasing h.

5. Summary

In this paper, we established a new theoretical connection between regularized learning problems
with integral-type losses and the generalized Hopf formula for HJ PDEs with time-dependent
Hamiltonians. This connection yields a new interpretation for certain SciML applications. Namely,
when we solve these learning problems, we also solve an optimal control problem and its associated
HJ PDE with time-dependent Hamiltonian. In the special case of linear regression, we leveraged this
connection to develop a new Riccati-based methodology that provides promising computational and
memory advantages in continual learning settings, while inherently avoiding catastrophic forgetting.

This work opens opportunities for many exciting future directions. For example, in contrast to
the methodology in Chen et al. (2024a), our methodology (Section 3.2) does not allow data to be
added or removed in arbitrary order since the corresponding HJ PDE must be evolved continuously
in time. Achieving the same flexibility as the methodology in Chen et al. (2024a) requires relaxing
the convexity and regularity assumptions for the generalized Hopf formula in Section 2. Thus, a
worthwhile future direction of this work would be to extend to nonconvex and/or discontinuous
Hamiltonians, which, in turn, would extend our connection to be between more general learning
problems (e.g., those with nonconvex loss functions) and differential games (Evans and Souganidis
(1984)), instead of optimal control. In Section 4.2, we extended our Riccati-based approach to
a 2D example, and as an illustration we propagated the information along the y-axis. For more
general problems, it would be valuable to perform a more in-depth investigation into selecting an
appropriate propagation direction, so that the memory load of this approach remains sufficiently
reduced in higher dimensions. Another natural extension would be to explore how our connection
could be leveraged to reuse existing efficient machine learning algorithms to solve high-dimensional
HJ PDEs and optimal control problems as so far, we have only explored the opposite direction.
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