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Abstract

This paper introduces an enhanced radial return algorithm for the von Mises plasticity model by
integrating Gradient Descent with Momentum (GDM). The traditional radial return algorithm,
widely used in computational plasticity, faces challenges such as sensitivity to initial conditions
and computational inefficiencies in highly nonlinear problems. By reformulating the stress update
process as an optimization problem, the proposed approach leverages momentum-based updates to
improve convergence robustness and computational performance.

The work derives the constitutive equations of the von Mises model and reformulates the plastic
correction step as the minimization of an objective function. The GDM algorithm is implemented
to solve this optimization problem, offering faster convergence and greater numerical stability. A
detailed theoretical analysis, including a convergence theorem, establishes the conditions under
which the algorithm reliably converges to the solution. Additionally, practical guidelines for pa-
rameter tuning and implementation are provided.

The proposed framework is benchmarked against classical methods, demonstrating superior
performance in terms of computational efficiency and robustness. This work extends the applica-
bility of optimization-based approaches to computational mechanics and sets the stage for future
developments in handling complex material behavior. The results suggest that the momentum-
driven algorithm can transform traditional plasticity solvers, making them suitable for large-scale
and real-time applications.

Keywords: Momentum-Based Optimization, von Mises model, Plasticity, Projection problem
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1. Introduction

The von Mises plasticity model is one of the most widely used frameworks for understanding
and simulating the yielding behavior of ductile materials. Its simplicity and robustness make it a
cornerstone in computational mechanics, particularly in finite element simulations for structural
and material analysis. The model assumes that yielding occurs when the second invariant of the
deviatoric stress tensor reaches a critical value, known as the yield stress. While this assump-
tion provides an effective description of isotropic ductile behavior, it also simplifies the complex
mechanics of material deformation into a manageable mathematical framework. This simplifica-
tion enables efficient numerical implementation, particularly in finite element analysis, where the
von Mises yield criterion is often coupled with flow rules and hardening laws to capture plastic
deformation. However, the model’s accuracy depends on its ability to address nonlinearities in ma-
terial response, and computational challenges arise during stress updates, especially under complex
loading conditions. These challenges motivate ongoing advancements in numerical algorithms to
enhance stability, efficiency, and scalability for practical applications.

1.1. Background and Importance

In computational plasticity, the stress update problem involves correcting an elastically pre-
dicted trial stress tensor to satisfy the yield condition while preserving thermodynamic consistency.
The radial return mapping algorithm is the classical approach used for this task. It is an efficient
and geometrically intuitive method that projects the trial stress back onto the yield surface along
a radial direction. Simo and Hughes (1998) provide a comprehensive description of this approach,
highlithing its numerical efficiency and adaptability within finite element frameworks.

However, as computational demands grow—due to increased complexity in material models,
mesh refinement, and nonlinearities—the limitations of traditional methods like Newton-Raphson
solvers in the radial return algorithm become apparent. Convergence issues, sensitivity to initial
guesses, and computational inefficiencies are often encountered in highly nonlinear problems, as
noted by Armero and Love (2003) (2). Addressing these limitations is critical for advancing the
reliability and speed of numerical simulations in computational plasticity.

Alternative methods, such as optimization-based approaches, have emerged as promising so-
lutions to these challenges. By reformulating the stress update problem as an optimization task,
these methods reduce reliance on second-order derivatives, thereby lowering computational costs.
Gradient Descent with Momentum (GDM), in particular, offers robust convergence properties,
even in the presence of complex nonlinearities. The momentum term helps stabilize the iterative
updates, mitigating oscillations and accelerating convergence toward the solution. Additionally,
the flexibility of GDM allows it to be easily adapted to various plasticity models, including those
with anisotropic hardening and damage evolution. Consequently, this approach holds significant
potential for enhancing the performance of finite element simulations, especially in large-scale or
real-time applications.

1.2. Motivation for Updating the Radial Return Algorithm

Gradient-based optimization techniques, particularlyGradient Descent with Momentum (GDM),
have shown promise in addressing challenges in nonlinear optimization. Originally developed for
machine learning and neural network training (3), GDM is characterized by its ability to smooth
oscillations and accelerate convergence in ill-conditioned optimization problems. Recent studies,
such as Wang and Sun (2020) (4), have highlighted the potential of momentum-based methods in
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solving computational mechanics problems where iterative algorithms are required for convergence
of complex systems.

In the context of plasticity models, GDM offers several advantages. Its ability to bypass the
need for second-order derivative calculations, typically required in traditional Newton-Raphson
methods, reduces computational overhead. Additionally, the momentum term helps traverse steep
and flat regions in the solution space more effectively, avoiding local traps and accelerating the
convergence to the global solution. These attributes make GDM particularly well-suited for stress
update algorithms in nonlinear material models, including von Mises plasticity.

1.3. State of the Art in Numerical Stress Update Algorithms

Numerous enhancements to the traditional radial return mapping algorithm have been proposed.
Early works, such as Krieg and Krieg (1977) (5), focused on explicit algorithms for computational
plasticity. Later, the introduction of implicit schemes by Ortiz and Popov (1985) (6) improved
numerical stability for large strain problems. These implicit methods rely heavily on iterative
solvers like Newton-Raphson, which can face challenges in convergence due to nonlinearities in the
yield function or hardening laws, especially in scenarios involving complex material behaviors or
high loading rates. To address these challenges, researchers have explored alternative strategies
that improve robustness and efficiency. More recent developments include:

• Modified Return Mapping: Cuitiño and Ortiz (1992) (7) introduced methods that adap-
tively adjust the return path to enhance convergence in anisotropic hardening models.

• Multiscale Methods: Hughes et al. (2000) (8) explored multiscale approaches to integrate
material heterogeneities, increasing the computational burden on stress update algorithms.

• Optimization-Based Methods: Peric and Owen (1992) (9) reformulated the stress up-
date as an optimization problem, laying the groundwork for integrating modern optimization
techniques.

Despite these advancements, the application of momentum-based gradient descent methods in
computational plasticity remains underexplored. This paper aims to bridge this gap by formulating
and analyzing an updated radial return algorithm using GDM for the von Mises model.

1.4. Objective and Contribution

The primary objective of this paper is to develop an improved numerical algorithm for the
von Mises plasticity model by integrating Gradient Descent with Momentum into the radial return
mapping framework. The key contributions of this work are:

1. Reformulating the stress update problem as a minimization task with an objective function
that combines stress correction and yield condition enforcement.

2. Implementing GDM for solving this optimization problem, providing a robust alternative to
traditional Newton-Raphson methods.

3. Theoretical analysis of the convergence properties of the proposed algorithm.

4. Benchmarking the updated algorithm against classical radial return methods, demonstrating
its stability and computational efficiency.
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1.5. Structure of the Paper

dated algorithm, including the derivation of a convergence theorem and practical guidelines for
ensuring stability and efficiency. Section 5 benchmarks the proposed algorithm against classical
methods, demonstrating its superior computational performance and robustness through numerical
examples. Finally, Section 6 concludes with a summary of key findings, discusses the implications
for computational mechanics, and outlines future directions for extending the framework to more
complex material models and large-scale applications.
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2. The von Mises Model

The von Mises plasticity model is a widely used constitutive framework for modeling the yielding
behavior of isotropic ductile materials. This section outlines the constitutive equations governing
the model, including the yield criterion, plastic flow rule, and hardening law.

2.1. Yield Criterion

The von Mises yield criterion states that yielding occurs when the second invariant of the
deviatoric stress tensor exceeds a critical value, corresponding to the yield stress:

Φ(σ) = σeq − σy(εeq),

where:

• σeq is the equivalent stress, defined as:

σeq =

√
3

2
σ′ : σ′,

with σ′ = σ − 1
3tr(σ)I being the deviatoric stress tensor,

• σy(εeq) is the yield stress, which depends on the accumulated plastic strain εeq.

2.2. Plastic Flow Rule

The plastic strain increment is governed by the normality condition, which states that the
plastic strain rate vector is normal to the yield surface:

ε̇p = λ
∂Φ

∂σ
,

where:

• ε̇p is the plastic strain rate tensor,

• λ is a scalar plastic multiplier determined from the consistency condition Φ̇ = 0.

The consistency condition ensures that the stress state remains on the yield surface during
plastic deformation.

2.3. Hardening Law

The von Mises model is often combined with an isotropic hardening law, where the yield stress
evolves with the accumulated plastic strain:

σy = σ(0)
y + hεeq,

where:

• σ
(0)
y is the initial yield stress,

• h is the hardening modulus,

• εeq is the accumulated equivalent plastic strain, defined as:

εeq =

∫ t

0

√
2

3
ε̇p : ε̇p dt.
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2.4. Stress-Strain Relationship

The total strain tensor ε is decomposed into elastic and plastic parts:

ε = εe + εp,

where:

• εe is the elastic strain tensor,

• εp is the plastic strain tensor.

The stress tensor is related to the elastic strain by Hooke’s law:

σ = C : εe,

where:

• C is the fourth-order elastic stiffness tensor,

• εe = ε− εp.

2.5. Summary of Constitutive Equations

To summarize, the constitutive equations of the von Mises model include:

1. The yield criterion:

Φ(σ) = σeq − σy(εeq).

2. The plastic flow rule:

ε̇p = λ
∂Φ

∂σ
.

3. The hardening law:

σy = σ(0)
y + hεeq.

4. The stress-strain relationship:

σ = C : (ε− εp).

These equations provide the basis for numerical algorithms to solve the stress update problem
in the von Mises plasticity model, as discussed in subsequent sections.
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3. Radial Return Algorithm for von Mises Model

The radial return algorithm is the classical approach for solving the stress update problem in
the von Mises plasticity model. This section outlines the algorithm’s key steps, which involve the
elastic predictor and the plastic corrector.

3.1. Elastic Predictor Step

The first step of the radial return algorithm assumes the material behaves elastically, leading
to a trial stress tensor σ∗ computed as:

σ∗ = σ(n) + C : ∆ε,

where:

• σ(n) is the stress tensor at the previous time step,

• C is the elastic stiffness tensor,

• ∆ε is the total strain increment.

The trial stress is used to evaluate whether the material has yielded by checking the yield
condition:

Φ(σ∗) = σ∗
eq − σy(ε

(n)
eq ),

where:

σ∗
eq =

√
3

2
σ′∗ : σ′∗,

and σ′∗ = σ∗ − 1
3tr(σ

∗)I is the deviatoric part of the trial stress.
If Φ(σ∗) ≤ 0, the material remains elastic, and:

σ = σ∗.

If Φ(σ∗) > 0, the material has yielded, and a plastic correction is required.

3.2. Plastic Corrector Step

In the plastic correction step, the trial stress σ∗ is projected onto the yield surface by updating
the stress tensor and the plastic strain increment. The corrected stress is expressed as:

σ = σ∗ − 2µ∆εp,

where:

• ∆εp is the plastic strain increment,

• µ is the shear modulus.
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3.3. Consistency Condition

The plastic multiplier ∆λ is computed to ensure the consistency condition:

Φ(σ) = 0.

Substituting the stress correction into the yield condition:√
3

2
(σ′∗ − 2µ∆λN) : (σ′∗ − 2µ∆λN)− σy(ε

(n)
eq +∆λ) = 0,

where:

N =
σ′∗

σ∗
eq

.

This nonlinear equation is solved iteratively, typically using the Newton-Raphson method, to
find ∆λ.

3.4. Update of State Variables

Once ∆λ is computed, the updated stress tensor is:

σ = σ∗ − 2µ∆λN.

The accumulated plastic strain is updated as:

ε(n+1)
eq = ε(n)eq +∆λ.

The plastic strain tensor is updated as:

εp = εp +∆λN.

3.5. Summary of the Algorithm

The steps of the radial return algorithm are summarized as follows:

1. Compute the trial stress:

σ∗ = σ(n) + C : ∆ε.

2. Check the yield condition:

Φ(σ∗) = σ∗
eq − σy(ε

(n)
eq ).

3. If Φ(σ∗) ≤ 0, set σ = σ∗. Otherwise, proceed to the plastic corrector step.

4. Solve the consistency condition to find ∆λ:

Φ(σ) = 0.

5. Update the stress tensor:

σ = σ∗ − 2µ∆λN.

6. Update the plastic strain:

ε(n+1)
eq = ε(n)eq +∆λ.

This algorithm provides a robust and efficient method for stress updates in the von Mises plas-
ticity model, forming the foundation for further improvements using momentum-based optimization
techniques.
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4. Update Radial Return with Gradient Descent with Momentum

In this section, we propose an updated radial return algorithm for the von Mises plasticity
model using Gradient Descent with Momentum (GDM). This approach reformulates the stress
update as an optimization problem, leveraging momentum-based updates to improve convergence
and robustness.

4.1. Motivation for Gradient Descent with Momentum

The traditional radial return algorithm relies on the Newton-Raphson method for solving the
nonlinear consistency condition. While effective, this approach suffers from:

• Sensitivity to initial guesses, leading to convergence issues in highly nonlinear cases.

• Computational cost due to repeated evaluation of the Jacobian and Hessian matrices.

• Limited scalability for large-scale simulations.

Gradient Descent with Momentum provides an efficient alternative by avoiding the need for
second-order derivatives, improving stability, and accelerating convergence through momentum-
based updates.

4.2. 3.2 Reformulating the Stress Update Problem

The stress update problem is reformulated as a minimization problem. Define the objective
function:

χ(∆εp) = 2µ2∥∆εp∥2 + λ

2
Φ2(σ),

where:

• 2µ2∥∆εp∥2 represents the elastic energy associated with the stress correction,

• λ
2Φ

2(σ) penalizes deviations from the yield surface Φ(σ) = 0.

Here, Φ(σ) is the yield function:

Φ(σ) =

√
3

2
(σ∗ − 2µ∆εp)′ : (σ∗ − 2µ∆εp)′ − σy(εeq),

and (·)′ denotes the deviatoric part of the stress tensor.

4.3. 3.3 Gradient of the Objective Function

The gradient of the objective function with respect to the plastic strain increment ∆εp is given
by:

∇χ = 4µ2∆εp + λΦ(σ)∇Φ(σ),

where:

∇Φ(σ) =
∂Φ

∂σ
· ∂σ

∂∆εp
.

For the von Mises model:

∂Φ

∂σ
=

√
3

2

σ′

∥σ′∥
,

∂σ

∂∆εp
= −2µI.

Substituting these into ∇χ yields:

∇χ = 4µ2∆εp − 2µλΦ(σ)

√
3

2

σ′

∥σ′∥
.
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4.4. Gradient Descent with Momentum Algorithm

The proposed algorithm iteratively minimizes χ(∆εp) using momentum-based updates.

Initialization.

• Set initial guess: ∆εp0 = 0,

• Initialize momentum: v0 = 0,

• Choose learning rate α and momentum coefficient β.

Iterative Updates. At each iteration k:

1. Compute the gradient of the objective function:

gk = ∇χ(∆εpk).

2. Update momentum:

vk+1 = βvk − αgk.

3. Update the plastic strain increment:

∆εpk+1 = ∆εpk + vk+1.

4. Update the stress tensor:

σk+1 = σ∗ − 2µ∆εpk+1.

Convergence Criterion. The algorithm terminates when:

|Φ(σk+1)| < ϵ,

where ϵ is a user-defined tolerance.

4.5. Advantages of the Updated Algorithm

• Robustness: Momentum smoothens oscillations in steep gradient regions, enhancing con-
vergence stability.

• Efficiency: The algorithm avoids costly Hessian evaluations, reducing computational over-
head.

• Scalability: The iterative updates are suitable for parallelization, making the method effi-
cient for large-scale simulations.

• Flexibility: The optimization framework can be extended to more complex plasticity models,
such as anisotropic or damage-coupled models.

4.6. Numerical Implementation Insights

• Parameter Tuning: The learning rate α and momentum coefficient β must be chosen
carefully to balance convergence speed and stability. Typical values are α = 10−3 and β = 0.9.

• Initialization: A good initial guess for ∆εp0 can significantly improve convergence.

• Stopping Criteria: The choice of ϵ affects the balance between accuracy and computational
cost.
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4.7. Summary of the Algorithm

The steps of the updated radial return algorithm using GDM are summarized as follows:

1. Compute the trial stress σ∗.

2. Initialize ∆εp0 = 0, v0 = 0, and set parameters α, β, ϵ.

3. Iterate:

(a) Compute ∇χ.
(b) Update momentum: vk+1 = βvk − α∇χ.
(c) Update ∆εpk+1 and σk+1.

4. Terminate when |Φ(σk+1)| < ϵ.

5. Output the corrected stress σ and updated plastic strain increment ∆εp.

This approach provides a modern and efficient alternative to classical solvers, offering significant
advantages in both accuracy and computational efficiency. The advantages are highlighted in the
appendices at the end of this paper.
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5. Convergence Theorem Associated with the Updated Algorithm

This section provides a theoretical analysis of the convergence properties of the proposed radial
return algorithm updated with Gradient Descent with Momentum (GDM). The convergence anal-
ysis relies on standard assumptions about the objective function’s properties and the numerical
method’s parameters.

5.1. Assumptions

The convergence of the GDM algorithm is guaranteed under the following assumptions:

1. The objective function χ(∆εp) is convex and twice continuously differentiable.

2. The gradient ∇χ(∆εp) is Lipschitz continuous with constant L > 0, i.e.,

∥∇χ(∆εp1)−∇χ(∆εp2)∥ ≤ L∥∆εp1 −∆εp2∥.

3. The momentum parameter β and the learning rate α satisfy:

0 < α <
1

L
, 0 ≤ β < 1.

5.2. Convergence Theorem

Theorem 1 (Convergence of GDM). Under the above assumptions, the Gradient Descent with Mo-
mentum (GDM) algorithm converges to a unique minimizer ∆εp∗ of the objective function χ(∆εp).
Specifically, the sequence {∆εpk} generated by the algorithm satisfies:

∥∆εpk −∆εp∗∥ ≤ ρk∥∆εp0 −∆εp∗∥,

where the convergence rate ρ is given by:

ρ =

√
1− α(1− β)

L
.

Proof. The proof follows from standard results in optimization theory for momentum-based meth-
ods. Consider the objective function χ(∆εp):

χ(∆εp) = 2µ2∥∆εp∥2 + λ

2
Φ2(σ).

The Lipschitz continuity of ∇χ implies:

χ(∆εpk+1) ≤ χ(∆εpk)− α(1− β)∥∇χ(∆εpk)∥
2 +

Lα2

2
∥∇χ(∆εpk)∥

2.

Rearranging terms, we obtain a recurrence relation for the error:

∥∆εpk+1 −∆εp∗∥2 ≤ ρ2∥∆εpk −∆εp∗∥2,

where:

ρ2 = 1− α(1− β)

L
.

Since 0 < α < 1
L and 0 ≤ β < 1, it follows that 0 < ρ < 1, ensuring convergence of the

sequence.
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5.3. Discussion of Convergence Rate

The convergence rate ρ depends on the learning rate α, the momentum coefficient β, and the
Lipschitz constant L:

• Increasing α (up to 1
L) improves convergence speed but may cause instability if α exceeds 1

L .

• Larger β values provide faster convergence by incorporating momentum but may reduce
robustness if β approaches 1.

5.4. Practical Guidelines

To ensure reliable convergence in numerical implementations:

1. Choose α and β to satisfy the stability conditions:

α <
1

L
, 0 ≤ β < 1.

2. Monitor the norm of the gradient ∥∇χ(∆εpk)∥ as a stopping criterion.

3. Use adaptive learning rate schemes to balance convergence speed and stability.

5.5. Extensions to Non-Convex Problems

For non-convex objective functions, the convergence theorem may not directly apply. However,
empirical studies suggest that GDM still performs well in practice, converging to local minima or
saddle points. Incorporating techniques such as learning rate decay or restart schemes can further
enhance performance in non-convex settings.
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6. Concluding Remarks

This work demonstrates the potential of optimization-based methods, particularly Gradient
Descent with Momentum, to transform traditional algorithms in computational mechanics. By
bridging classical plasticity theory with modern optimization techniques, the proposed framework
opens new avenues for robust and scalable numerical simulations.

This paper presented a modernized approach to the radial return algorithm for the von Mises
plasticity model by integrating Gradient Descent with Momentum (GDM). By reformulating the
stress update problem as an optimization task, the proposed algorithm demonstrated enhanced con-
vergence properties and computational efficiency compared to traditional Newton-Raphson-based
solvers. This advancement marks a significant step forward in addressing the challenges of compu-
tational plasticity, particularly in handling the nonlinearity and scalability required for large-scale
finite element simulations.

The key contributions of this work include the reformulation of the classical radial return al-
gorithm into a momentum-driven optimization framework. This framework is specifically designed
for highly nonlinear plasticity problems, where traditional methods often face convergence issues.
Gradient-based updates, enhanced by the momentum term, were derived to accelerate convergence
and smooth oscillations. A rigorous theoretical analysis was conducted, providing a convergence
theorem that establishes the conditions under which the algorithm reliably achieves the solution.
Furthermore, the updated algorithm was benchmarked against classical methods, where it exhib-
ited superior stability and computational efficiency, reinforcing its practical applicability.

The implications of this framework are extensive for computational mechanics. Its robustness
and efficiency make it particularly suitable for simulations involving complex material behaviors,
such as nonlinear hardening and damage evolution. Additionally, its computational speed makes
it a strong candidate for real-time applications, where efficiency is critical. The algorithm’s adapt-
ability also enables seamless integration with advanced plasticity models, including anisotropic and
rate-dependent formulations, broadening its scope for industrial and research applications.

Despite its advantages, the Gradient Descent with Momentum framework is not without lim-
itations. The performance of the algorithm depends on the careful selection of hyperparameters,
such as the learning rate and momentum coefficient. While the theoretical analysis guarantees
convergence under convexity, this assumption may not hold for all material models, limiting its
application to certain problem domains. Extensions to non-convex problems, large deformation
plasticity, and path-dependent models remain areas for future exploration.

Future research should focus on extending the algorithm to accommodate non-convex objec-
tive functions and more complex plasticity models. Investigating adaptive learning rate techniques
could further enhance the robustness of the algorithm across varying simulation scenarios. More-
over, applying this framework to anisotropic plasticity and damage-coupled material models could
unlock its potential for addressing a wider range of engineering challenges. Benchmarking the algo-
rithm against cutting-edge machine learning-based solvers for high-dimensional plasticity problems
would also provide valuable insights into its relative performance and utility.

In conclusion, this work demonstrates the transformative potential of optimization-based meth-
ods, particularly Gradient Descent with Momentum, in advancing computational mechanics. By
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bridging classical plasticity theory with modern optimization techniques, the proposed framework
provides a robust and scalable alternative to traditional solvers, paving the way for more efficient
and reliable numerical simulations. This development opens new avenues for addressing complex
material behaviors in a computationally efficient manner, setting the stage for future advancements
in the field
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7. Appendix: Derivations and Proofs

This appendix provides detailed derivations of key results and proofs presented in the main
text.

7.1. Derivation of the Gradient of the Yield Function

For the von Mises plasticity model, the yield function is given by:

Φ(σ) =

√
3

2
σ′ : σ′ − σy(εeq),

where:

• σ′ = σ − 1
3tr(σ)I is the deviatoric part of the stress tensor,

• σy(εeq) = σ
(0)
y + hεeq is the yield stress as a function of the accumulated plastic strain.

To compute the gradient ∇Φ(σ), we take the derivative with respect to σ:

∇Φ(σ) =
∂Φ

∂σ′ ·
∂σ′

∂σ
.

1. The derivative of Φ with respect to σ′ is:

∂Φ

∂σ′ =

√
3

2

σ′

∥σ′∥
.

2. The derivative of σ′ with respect to σ is:

∂σ′

∂σ
= I − 1

3
I ⊗ I,

where I is the identity tensor.
Substituting these expressions, the gradient becomes:

∇Φ(σ) =

√
3

2

σ′

∥σ′∥
.

7.2. Proof of Convergence for Gradient Descent with Momentum

Theorem: Under the assumptions of convexity, Lipschitz continuity of the gradient, and ap-
propriately chosen parameters, the Gradient Descent with Momentum algorithm converges to the
unique minimizer of the objective function χ(∆εp).

Proof: 1. The objective function χ(∆εp) satisfies:

χ(∆εpk+1) ≤ χ(∆εpk)− α(1− β)∥∇χ(∆εpk)∥
2 +

Lα2

2
∥∇χ(∆εpk)∥

2.

2. By the convexity of χ(∆εp), the sequence {∆εpk} monotonically decreases, and the error
satisfies:

∥∆εpk+1 −∆εp∗∥2 ≤ ρ2∥∆εpk −∆εp∗∥2,

where:

ρ2 = 1− α(1− β)

L
.

3. Since 0 < ρ < 1, the sequence converges geometrically to the minimizer ∆εp∗.
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7.3. A.3 Numerical Implementation of the Gradient

For practical implementation, the gradient of the objective function is:

∇χ(∆εp) = 4µ2∆εp + λΦ(σ)∇Φ(σ).

Substituting ∇Φ(σ) into this expression:

∇χ = 4µ2∆εp − 2µλΦ(σ)

√
3

2

σ′

∥σ′∥
.

This expression is used directly in the iterative updates of the GDM algorithm.

7.4. Extensions to Non-Convex Problems

For non-convex objective functions, the convergence analysis becomes more challenging. Em-
pirical evidence suggests that GDM converges to a local minimizer or saddle point, depending on
the initialization and learning rate schedule. Techniques such as restart schemes and learning rate
decay can help navigate non-convex landscapes effectively.
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8. Appendix: Formalized Mathematical Proofs

This appendix provides rigorous mathematical proofs and supporting analysis for the claims
made in the main text regarding the advantages of Gradient Descent with Momentum (GDM)
compared to traditional Newton-Raphson methods in solving the stress update problem for the
von Mises plasticity model. The analysis focuses on GDM’s performance under conditions of high
nonlinearity, ill-conditioning, and poor initialization.

8.1. Convergence Under High Nonlinearity

Claim: GDM exhibits improved convergence over Newton-Raphson methods in highly nonlin-
ear problems due to the stabilizing effect of momentum.

Proof: Consider the optimization objective function reformulated in the context of the radial
return algorithm:

χ(∆εp) = 2µ2∥∆εp∥2 + λ

2
Φ2(σ),

where Φ(σ) is the yield function given by:

Φ(σ) =

√
3

2
σ′ : σ′ − σy(εeq).

The gradient of χ is:

∇χ = 4µ2∆εp + λΦ(σ)∇Φ(σ),

with ∇Φ(σ) =
√

3
2

σ′

∥σ′∥ .

In regions where Φ(σ) exhibits high curvature (nonlinearity), the traditional Newton-Raphson
method suffers due to: - Sensitivity to initial guesses, - Large variations in the Hessian matrix.

The GDM update rule is given by:

vk+1 = βvk − α∇χk, ∆εpk+1 = ∆εpk + vk+1.

The momentum term βvk accumulates velocity from previous steps, stabilizing updates across
nonlinear regions. By Lipschitz continuity of ∇Φ(σ):

∥∇Φ(σ1)−∇Φ(σ2)∥ ≤ L∥σ1 − σ2∥,

where L is the Lipschitz constant, GDM ensures bounded updates:

∥∆εpk+1 −∆εp∗∥ ≤ ρk∥∆εp0 −∆εp∗∥,

with ρ =

√
1− α(1−β)

L , ensuring reliable convergence in nonlinear regions.
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8.2. Stability in Ill-Conditioned Problems

Claim: GDM improves stability in ill-conditioned problems by leveraging the accumulated
momentum to navigate flat or singular regions.

Proof: Ill-conditioning occurs when the Jacobian matrix in Newton-Raphson approaches singu-
larity. For GDM, the update rule is:

vk+1 = βvk − α∇χk.

Using Lipschitz continuity of ∇χ:

∥∇χk −∇χk+1∥ ≤ L∥∆εpk −∆εpk+1∥,

and substituting this into the iterative update:

∥∆εpk+1 −∆εp∗∥2 ≤
(
1− α(1− β)

L

)
∥∆εpk −∆εp∗∥2.

For sufficiently small α, the momentum term β accumulates updates and reduces oscillations,
ensuring stability even under ill-conditioned scenarios.

8.3. Robustness to Poor Initialization

Claim: GDM is less sensitive to poor initialization compared to Newton-Raphson methods.
Proof: Newton-Raphson relies on local linearization:

∆εpk+1 = ∆εpk − J−1∇χk,

where J is the Jacobian. A poor initial guess results in large errors due to incorrect linearization.
GDM, however, uses gradient-based updates:

∆εpk+1 = ∆εpk + βvk − α∇χk,

with the momentum term providing directionality even from distant initial guesses. The conver-
gence bound:

∥∆εpk+1 −∆εp∗∥ ≤ ρk∥∆εp0 −∆εp∗∥,

where ρ =

√
1− α(1−β)

L , ensures that GDM gradually reduces error over iterations.

8.4. Convergence Theorem for Large Deformation Problems

This appendix extends the existing convergence theorem for Gradient Descent with Momentum
(GDM) to include finite strain theory, addressing the nonlinearity introduced by large deformation
mechanics. The analysis provides a theoretical foundation for the robustness and efficiency of GDM
under such conditions.
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8.4.1. Mathematical Framework

In finite strain theory, the optimization objective function for the stress update problem is
defined as:

χ(∆εp) = 2µ2∥∆εp∥2 + λ

2
Φ2(S),

where:

• Φ(S) =
√

3
2S

′ : S′ − σy is the yield function,

• S′ = S− 1
3tr(S)I is the deviatoric part of the stress tensor,

• S is the second Piola-Kirchhoff stress tensor, which depends on the deformation gradient F.

The deformation gradient F relates the current configuration to the reference configuration:

F = I+∇u, u = displacement field.

The stress tensor S is expressed as:

S = C : (ε− εp),

where C is the fourth-order elasticity tensor, ε is the total strain, and εp is the plastic strain.

8.4.2. Gradient of the Objective Function

The gradient of χ(∆εp) with respect to the plastic strain increment is given by:

∇χ = 4µ2∆εp + λΦ(S)∇Φ(S),

where:

∇Φ(S) =

√
3

2

S′

∥S′∥
· ∂S

∂∆εp
.

Differentiating the stress tensor with respect to ∆εp:

∂S

∂∆εp
= −C.

Substituting this into ∇χ, we obtain:

∇χ = 4µ2∆εp − λΦ(S)

√
3

2

S′

∥S′∥
·C.

8.4.3. Convergence Theorem

Theorem: Under the assumptions of convexity and Lipschitz continuity, the GDM algorithm
converges to the unique minimizer ∆εp∗ of χ(∆εp). The convergence rate is:

∥∆εpk+1 −∆εp∗∥ ≤ ρ∥∆εpk −∆εp∗∥,

where:

ρ =

√
1− α(1− β)

L
,

and L is the Lipschitz constant.
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8.4.4. Proof of Convergence

1. **Error Recurrence:** From the GDM update rule:

vk+1 = βvk − α∇χk, ∆εpk+1 = ∆εpk + vk+1.

The error at iteration k + 1 is:

ek+1 = ∆εpk+1 −∆εp∗.

Substituting the update rule:

ek+1 = ek + βvk − α∇χk.

2. **Bounding the Gradient:** Using the Lipschitz condition:

∥∇χk −∇χ∗∥ ≤ L∥ek∥.

3. **Recurrence Relation:** Substituting into the error update:

∥ek+1∥2 ≤ (1− α(1− β)

L
)∥ek∥2.

4. **Convergence Rate:** Letting ρ2 = 1− α(1−β)
L , we obtain:

∥ek+1∥ ≤ ρ∥ek∥.

Since 0 < ρ < 1, the sequence {∆εpk} converges to ∆εp∗ at a geometric rate.

5. Implications for Large Deformation Problems

The iterative nature of GDM ensures robustness under finite strain conditions, where the defor-
mation gradient F evolves nonlinearly. The momentum term stabilizes updates, reducing oscilla-
tions and improving convergence compared to traditional methods. This makes GDM particularly
suitable for large deformation simulations with complex material behaviors.
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