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1 Abstract

This study explores the incorporation of gradient-enhanced viscoplastic models to
address the limitations of traditional viscoplastic formulations in capturing size-
dependent and localized deformation behaviors. By introducing second-gradient
terms, the proposed framework accounts for nonlocal effects and smoothens dis-
continuities in stress and deformation profiles, which are critical for accurately
modeling materials with complex microstructures.

Analytical solutions are derived for benchmark problems, including the deformation
of a hollow sphere and toothpaste-like flow, demonstrating the enhanced predictive
capabilities of the gradient-enhanced models. Numerical analyses further validate
these formulations, highlighting their ability to stabilize computations and provide
physically realistic stress distributions under highly localized loading conditions.

The results reveal the significance of the gradient coefficient in influencing stress
diffusion and plastic strain localization, emphasizing its role in material design and
engineering applications. The study establishes a robust theoretical and computa-
tional foundations for gradient-enhanced viscoplastic models, offering new insights
into material behavior at micro- and meso-scales, with implications for advanced
manufacturing and processing technologies.
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2 Introduction

The study of visco-elastic and visco-plastic materials has long been a focal point
in mechanics, owing to their relevance across a wide array of applications, from
geological processes to industrial material design. Visco-elasticity, describing ma-
terials that exhibit both viscosity and elasticity, and visco-plasticity, encompassing
materials that yield under stress, offer essential frameworks for understanding and
predicting the mechanical behavior of complex materials. In this work, we inves-
tigate the application of viscous models to two specific mechanical problems: the
hydrostatic behavior of a hollow sphere and the flow dynamics of a material with
toothpaste-like properties in a cylindrical tube.

Theoretical Background and Context

The analysis of materials under hydrostatic loading is a well-established area of
study in continuum mechanics. Hollow spheres under hydrostatic stress have been
extensively studied, as they provide simplified models for porous, granular, or dam-
aged materials subject to compressive stress. Classic visco-plasticity theories (e.g.,
Hill, 1950 (1), Drucker and Prager, 1952 (2)) initially focused on perfectly plastic
materials, while subsequent models integrated viscous effects to capture time-
dependent deformation, such as the Norton model (3), which describes materials
undergoing steady-state creep under constant stress. This model has been applied
widely in geotechnics, metallurgy, and bioengineering to simulate long-term mate-
rial behavior (4; 5). The Norton model, in particular, has been shown to accurately
describe the visco-plastic flow of metals at high temperatures, where elastic effects
can be negligible (9; 10).

In the context of porous materials, the study of flow within a hollow sphere provides
essential insight into the behavior of materials with microstructural voids (8).
Models focusing on porosity have advanced from initial elasticity-based approaches
(e.g., Gurson, 1977 (6)) to visco-plastic descriptions that account for both matrix
flow and void growth at elevated temperatures (7). Current research continues to
examine these models under various boundary conditions, including both confined
and unconfined compressive states.

The Norton Viscous Model

The Norton viscous model is a well-established framework for describing the time-
dependent deformation of materials under stress, particularly in high-temperature
creep and plasticity. It is especially useful for modeling steady-state deformation
behavior in metals, polymers, and other viscoelastic materials. The model can be
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described mathematically as:

ϵ̇ = Aσn exp
(
− Q

RT

)
,

where ϵ̇ is the strain rate, σ is the applied stress, n is the stress exponent, A is
a material constant, Q is the activation energy, R is the universal gas constant,
and T is the absolute temperature. This equation captures the dependence of
strain rate on stress and temperature, which is crucial for understanding high-
temperature material behavior.

The model was initially proposed by Norton in 1929 (25) to describe creep de-
formation in metals. Norton’s law states that the strain rate is proportional to
the applied stress raised to a power n. While this simple power-law relationship
adequately describes steady-state creep, subsequent studies incorporated the tem-
perature dependence via an Arrhenius-type term to account for thermal activation
of deformation mechanisms (26).

One of the model’s critical features is its incorporation of thermal activation
through the exponential term exp(−Q/RT ), which reflects the reduction of creep
resistance with increasing temperature. Orowan (26) demonstrated the relevance
of thermal activation in creep processes, and this insight has been integral to the
model’s success in predicting temperature-dependent deformation.

Several modifications have been made to the Norton model to address its lim-
itations. For instance, McLean (29) proposed enhancements to account for the
microstructural changes during deformation, such as grain boundary sliding and
dislocation interactions. Multi-phase materials, such as composite systems, have
also been modeled using adaptations of the Norton law (30).

Additionally, Turner and McNeil (32) extended the model to incorporate stress
relaxation behavior in polymers, thereby broadening its applicability beyond met-
als. Liu et al. (33) demonstrated the use of the Norton model in finite element
simulations to study creep in nickel-based superalloys, highlighting its potential
for computational applications.

The increasing computational power in recent decades has facilitated the integra-
tion of the Norton model into numerical simulations. For instance, finite element
modeling (FEM) based on the Norton law has been widely used to simulate multi-
axial creep behavior in structural components, such as pressure vessels and pipeline
systems (34).
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Applied predominantly in the study of metals, ceramics, and geomechanics, the
Norton model has been validated across various experimental and theoretical in-
vestigations (13). The equation governing this model is of particular relevance in
high-temperature applications where steady-state creep is prominent, as it reflects
the flow characteristics of materials without a clear yield point (12). The problem
of a hollow sphere under hydrostatic loading within the Norton model is explored
here to further understand the implications of such visco-plastic behavior on overall
material stability and durability under high-temperature conditions (11; 24).

The Toothpaste Flow Problem

The study of semi-solid and semi-fluid materials, including colloids and pastes,
introduces complexities beyond those encountered in purely fluid or solid mechan-
ics. These materials exhibit yield behavior, transitioning from a solid-like state
to a fluid state under sufficient stress (16). This characteristic is exemplified in
the toothpaste flow problem, where the material remains stationary until a yield
stress threshold is reached, beyond which it flows as a visco-plastic medium (17).
Numerous studies have explored flow characteristics of such materials in confined
geometries, including tubes or channels, using models that incorporate yield stress
and elasticity (14; 15).

This behavior is particularly relevant for modeling the flow of highly viscous pastes
and gels, where a balance between elasticity and flow defines the material response
(19; 20). Recent work in visco-elastic flow has employed linear visco-elastic models
such as the Norton model, as well as more complex approaches incorporating
the Bingham or Herschel-Bulkley models for non-Newtonian fluids (18; 21). The
stationary flow regime described in this study offers a precise solution to the
toothpaste problem, providing comprehensive insights into stress distribution and
flow behavior (23; 22).

Gradient-Enhanced Viscoplastic Models

As stated previouslsy, viscoplasticity models have long been used to describe the
time-dependent deformation of materials under stress, particularly in scenarios in-
volving high-temperature creep and plasticity. While traditional viscoplastic mod-
els, such as the Norton model (25), are widely used, they often fail to capture
the complex, size-dependent, and localized deformation behaviors observed in ma-
terials with intricate microstructures. These limitations arise because traditional
models typically assume local stress and strain relationships that cannot fully ac-
count for nonlocal effects. This issue becomes particularly pronounced in materials
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with fine microstructures or under extreme loading conditions, where gradients in
stress and strain play a crucial role.

In this paper, we introduce an enhanced framework by incorporating gradient
terms into the viscoplasticity model, addressing these shortcomings. By introduc-
ing second-gradient terms, our model accounts for the nonlocal nature of the
material response, smoothing discontinuities in the stress and deformation pro-
files. This gradient-enhanced formulation allows for the capture of size-dependent
effects and provides a more accurate representation of materials under highly lo-
calized loading conditions, such as those observed in micro-scale deformations or
materials with complex microstructures.

We apply this gradient-enhanced viscoplastic model to two benchmark problems:
the deformation of a hollow sphere under hydrostatic loading and the flow dynam-
ics of a material with toothpaste-like properties. The first scenario investigates the
stress distribution and deformation behavior of a hollow sphere using the Norton
viscous model, while the second scenario models the flow of a visco-plastic medium
through a confined geometry, such as a cylindrical tube. For both problems, we
derive analytical solutions that demonstrate the enhanced predictive capabilities
of the gradient-enhanced model compared to traditional formulations.

This paper is structured as follows: First, we present the Norton model without
gradient terms, providing a foundational understanding of its application to vis-
coplastic behavior. Next, we solve the toothpaste problem, first without and then
with gradient terms, analyzing the impact of the gradient-enhanced framework
on handling localization in the material’s flow. We then investigate the deforma-
tion of a hollow sphere, again considering both the standard Norton model and
the gradient-enhanced model, and discuss how the inclusion of gradient terms
improves the model’s ability to handle localized deformation. For each of these
problems, we emphasize the role of the gradient framework in effectively addressing
localization issues and capturing size-dependent behaviors.

The results of our study reveal that the inclusion of gradient terms significantly in-
fluences the material’s stress diffusion and plastic strain localization. The gradient
coefficient, in particular, plays a critical role in controlling these effects, offering
new insights into material behavior at micro- and meso-scales. These findings have
important implications for engineering applications, particularly in the design and
processing of materials where localized deformation and size-dependent behaviors
are significant.

10



3 Elasto-Visco-Plastic Response Under Uni-Axial Loading.

The material’s viscous characteristics, particularly evident at elevated tempera-
tures or when subjected to low deformation rates, can be effectively emphasized
by employing diverse uni-axial experiments characterized by small deformations.
Among these experiments, the simplest involves conducting a tensile test at a
specified deformation rate ϵ̇, a procedure easily executed by adjusting the dis-
placement speed of the grips on the tensile machine. It becomes apparent that
as the imposed deformation rate ϵ̇ increases, the resulting stress-strain curve σ(ϵ)
exhibits a corresponding increase, thereby illustrating the influence of ϵ̇ on the
material’s behavior.

At the extreme, when the rate of strain ϵ̇ reaches exceedingly high values, the
behavior exhibits quasi-elastic tendencies, leading to the disappearance of visco-
plastic deformation due to insufficient time for its occurrence. On the converse
end, in the limit as ϵ̇ → 0, two scenarios emerge. In the case of low temperature,
the stress-strain curve σ(ϵ) converges towards a non-zero limit, aligning with the
characteristic elasto-plastic σ(ϵ) curve. Consequently, no visco-plastic deforma-
tion is conceivable beneath this limit curve, denoting the existence of a threshold,
which corresponds to the conventional plasticity threshold. Conversely, under high
temperatures, no lower limit is discernible for the σ(ϵ) curve as ϵ̇ → 0. As a result,
the behavior lacks a threshold, with visco-plastic flow manifesting irrespective of
the applied stress, even when it is exceptionally low.

Another enduring experiment revolves around the phenomenon of creep. In this
particular trial, a tensile bar undergoes a consistent stress application—an easily
attainable condition, achieved, for instance, by merely suspending a weight. In
the context of elasto-plastic behavior, the relationship between ϵ̇p and σ̇ and the
latter’s nullity affirm the existence of ϵ̇p (similarly to ϵ̇e). Consequently, the total
deformation promptly adopts the value ϵ = ϵe + ϵp” and remains constant there-
after. Conversely, in cases of viscous behavior, ϵ immediately assumes the value
ϵe but undergoes subsequent evolution. To elaborate further, the visco-plastic de-
formation rate ϵvp experiences an initial decrease (primary creep), followed by
an increase (tertiary creep). The ultimate phase corresponds to material damage
culminating in final rupture, a facet generally omitted in visco-plastic behavior
models, particularly those outlined in the subsequent section.

A modification of the uncomplicated creep test involves the two-stage creep ex-
periment. Commencing with creep under stress σ1, one awaits the attainment of
secondary creep (at a rate ϵ̇vp), stopping short of reaching tertiary creep. Subse-
quently, the stress undergoes an abrupt reduction to a value σ2. After a certain

11



duration, a second phase of secondary creep emerges at a strain rate ϵ̇vp2 < ϵ̇vp1
(an outcome expected due to the lower magnitude of σ2 compared to σ1). In the
transitional stage, if σ2 is adequately low, the occurrence of creep hesitation might
manifest: rather than following a continuous decline from ϵ̇vp1 to ϵ̇vp2 (as might be
intuitively anticipated), ϵ̇vp2 abruptly adopts a negative value (even in the presence
of σ2), then subsequently ascends again until ϵ̇vp2 > 0, passing through the zero
point.

In the exploration of uni-axial elasticity, a third experiment delves into the realm
of relaxation. This particular experimental scenario involves the instantaneous im-
position of a specific deformation, a task easily accomplished. Subsequently, the
deformation is held constant, resulting in an immediate stress level dictated by
elasticity. Over time, there is a gradual decline in stress, marking the transition
from elastic deformation to visco-plastic deformation. The outcome hinges on
whether the material exhibits behavior without a threshold, typically observed at
high temperatures, or if a threshold is present, typically occurring at low temper-
atures. In the former scenario, the stress asymptotically approaches zero, while in
the latter, it decreases to the threshold value without actually reaching zero.
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4 Closed-Form Solution for Toothpaste Flow with an Elasto-Visco-Plastic
Model

Leveraging the methodologies employed for modeling the elastic-plastic behavior
of materials, we integrate the premise of strain rate partitioning, as elucidated in
the ensuing equation. This strategic incorporation facilitates a more comprehensive
understanding of the material’s mechanical response, accounting for the intricate
interplay between strain rates and their respective contributions to the overall
deformation process. Drawing upon the methods utilized in modeling the elastic-
plastic behavior of materials, we introduce the concept of strain rate partitioning
through the subsequent equation:

D = De +Dvp. (1)

This addition enhances the sophistication of our analysis, providing a nuanced
framework to discern the nuanced contributions of different strain rates to the
overarching deformational dynamics of the material.

In this context, the rate of elastic deformation, denoted as De, is intricately gov-
erned by a specific hypo-elasticity law. The current predicament lies in formulating
an apt expression for the visco-plastic strain, Dvp, that not only conforms to the
stipulated conditions but also evolves as a progressively increasing function in re-
sponse to stress.

Navigating this challenge requires a nuanced understanding of the intricate bal-
ance between elastic and visco-plastic behaviors. Crafting an expression for Dvp

that adheres meticulously to the requirement of a progressively increasing function
necessitates a delicate interplay of material properties, demanding a comprehen-
sive synthesis of theoretical foundations and empirical insights.

The simple visco-plastic model we consider here aligns with Norton’s behavior
without a yield factor. In the uniaxial scenario, this law presents us with the
following relationship:

Dvp = ε̇0

(
σ

σ0

)n

(2)

In this equation, ε̇0, σ0 and n are treated as constants. It’s important to note that
the model, in actuality, is only reliant on two constants, n and ε̇0σ

−n
0 . We will,

however, explain the necessity of introducing a third constant in the subsequent
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sections for comprehensive understanding.

The exponent n is typically greater than 1, and its value varies significantly, de-
creasing from high values at lower temperatures to figures closely approximating 1
near the melting point of the material. In many instances, n could be substantially
high, on the order of 5 to 10, indicating that materials rarely exhibit linear viscous
behavior, especially when contrasted with fluid mechanics.

It’s noteworthy to mention that in this model, if the stress σ is kept constant, Dvp

will also remain unchanged. Consequently, this model is capable of replicating only
the second, or stationary, stage of creep, but it fails to accurately simulate pri-
mary creep. Furthermore, it doesn’t adequately represent the ’hesitation’ in creep
initiation or the third stage of creep.

To generalize this law to the more complex tri-axial scenario, we shall assume that
Dvp is colinear with the deviatoric component of the stress, similar to the align-
ment observed in plasticity theory when the von Mises yield criterion is applied.

The expression of Dvp can be written as follows:

Dvp =
3

2
ε̇0

(
σeq

σ0

)n s

σeq

, σeq =
(
3

2
s : s

)1/2

(3)

This equation demonstrates that Dvp is proportional to the deviatoric tensor s
and can be utilized to verify the behavior under uniaxial tension load using Eq.
(3).

One intriguing property of the Norton visco-plastic model is its reduction to the
rigid perfectly plastic von Mises model with a yield limit of σ0 when we fix ε̇0 and
allow n to approach infinity. This adjustment requires treating ε̇0 and σ0 separately
and incorporating them into the single parameter ε̇0σ

−n
0 . Consequently, as n tends

to infinity, Dvp becomes zero for σeq < σ0 and infinite for σeq > σ0, resulting in
unlimited flow when the material is produced. As a result, Norton’s model serves
as a ”viscoplastic regularizer” that mitigates numerical issues such as spurious
mesh dependency effects inherent in the von Mises model.

A more sophisticated variant of the Norton model without yield is the Norton
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model with yield, which is written as:

vvp ≡ v =
3

2
ε̇0

〈
σeq

σ0

− 1

〉n
s

σeq

(4)

where

〈〉
denote the “positive part”:

〈
x

〉
= x if x ≥ 0, 0 if x < 0. Thus, vvp

vanishes if σeq < σ0 (existence of a yield) but non-zero whenever σeq > σ0 ( note
that, although a “yield exists” , there is no “criterion” the material should obey,
σeq could go beyond the yield σ0.) Note that this model depends on 3 parameters
ε̇0, σ0, n. Despite the refinement introduced by the existence of a yield, this model
does not reproduce the secondary creep (because σ = cst implies that Dvp is also
constant). It also does not reproduce hesitation in creep. In addition, it reduces
to the perfect rigid plastic Von Mises model in the limit ε̇0 → ∞, σ0 and n fixed
(since vvp) vanishes for σeq < σ0 and very large for σeq > σ0.

There exists other models, more complicated. Among these we shall only mention
here the Chaboche model ( at least in one of its version ), particularly inter-
esting since it is a relatively simple model which can reproduce (contrary to the
Norton models) the primary creep phenomenon and the “hesitation” to creep
phenomenon. The main equation of the Chaboche model reads:



Dvp =
3

2
ε̇0

(
σeq

σ0

)n s− α

σeq

α̃ =
2

3
hDvp − cα,

(5)

where σeq =
(
3
2
(s− α) : (s− α)

)1/2
is the generalized equivalent stress.

This model introduces an internal (deviatoric) tensorial parameter α, as in plastic-
ity model with accounting for kinematics hardening. It depends on four constants,
ε̇0σ

−n
0 , n, h, and c. The term −cα in the expression of α̃ ( the Jaumann derivative

of α ) represents a viscous relaxation of the parameter α, of characteristic time

1

/
c

To confirm that this model accurately represents both the primary creep phase
and the ”hesitation” to creep phenomena, we need to formulate the equations for
the uni-axial case, considering the assumption of small deformations.

Given the configuration of Dvp ≡ ε̇vp, σ, and s in such a scenario (as outlined
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previously), and taking into account that α = αe1⊗ e1− α
2
e2⊗ e2− α

2
e3⊗ e3 and

σeq = ||(σ − 3
2
α||, we can reformulate the equations as follows:



˙εvp = ε̇0

(
||(σ − 3

2
α||

σ0

)n
σ − 3

2
α

||(σ − 3
2
α||

= ε̇0

(
||(σ − 3

2
α||

σ0

)n

sgn
(
σ − 3

2
α
)

α̇ =
2

3
h ε̇vp − cα,

(6)

Initially ( α = 0), and therefore, we have ε̇vp = ε̇vp0 = ε̇0

(
σ

/
σ0

)n

. But later

on α increases, and thus ε̇vp decreases ( primary creep.) The secondary creep is
reached when α a stationary value α∞ ( α̇), ε̇vp = ε̇vp∞ become constant, less that
ε̇vp0 .

To analyze the “hesitation” to creep phenomena, let’s consider that we’ve arrived
at the secondary creep stage, corresponding to the stress σ1. In this case, α and
ε̇vp are constant and equivalent to α1∞ and ε̇vp1∞, respectively. Now, assume that
a secondary stress, denoted by σ2 and less than 3

2
α1∞, is applied. Under such

circumstances, ε̇vp∞ turns negative, illustrating the hesitation or resistance to the
creep phenomenon. However, as the time passes by α goes toward a second sta-
tionary value α2∞, and ε̇vp goes toward ε̇vp2∞, which is positive but less than ε̇vp1∞
( second secondary creep ).

To delve into more details, we aim to derive the precise equations representing
primary and secondary creep stages, specifically in scenarios where n = 1. Not
only does this value align well with physical reality, but it also facilitates analytical
computation. In such cases, the term (σ− 3

2
α consistently stays positive, thereby

allowing us to express the flow rule as follows:

ε̇vp =
ε̇0
σ0

(
σ − 3

2
α
)

(7)

Using the expression of ε̇vp in the evolution equation of α, we get

α̇ =
2

3
h
ε̇0
σ0

(
σ − 3

2
α
)
− cα =

2

3
hε̇0

σ

σ0

−
(
c+ h

ε̇0
σ0

)
α (8)

The stationary solution of this equation can be written as:

α = α∞ ≡ 2

3

hε̇0

/
σ0

hε̇0

/
σ0 + c

σ (9)
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Using the initial condition α(0) = 0, the intermediate solution can be written as

α = α∞

1− e
−

(
hε̇0

/
σ0+c

)
t

 =
2

3

hε̇0

/
σ0

hε̇0

/
σ0 + c

σ

1− e
−

(
hε̇0

/
σ0+c

)
t

 (10)

The value of ε̇vp is obtained using the flow rule:

ε̇0
σ

σ0

(
hε̇0

/
σ0

)
e
−

(
hε̇0

/
σ0+c

)
t

+ c

hε̇0

/
σ0 + c

(11)

From the above discussion, we observe that ε̇vp varies with time, transitioning
from an initial value of ε̇vp0 = ε̇0

σ
σ0

to a final value of ε̇vp∞ = ε̇0
σ
σ0

c

hε̇0

/
σ0+c

, which

is less than ε̇vp0 .

This analysis highlights the role of the viscous relaxation of α in producing the
secondary creep phenomena. In the absence of this factor (i.e. c = 0 ), the equation
would result in ε̇vp∞ = 0, suggesting that the model could only account for the
primary creep stage, and not the secondary one.
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5 Norton Viscous Model Applied to Cylindrical Toothpaste Flow.

We are investigating the flow of toothpaste within a cylindrical tube, aligned along
the Oz axis, with a radius R, see Figure 1. This material, as its name suggests,
possesses a pastey consistency, which means it falls between a fluid and a solid. It
is adequately described by a rigid, linear viscoelastic Norton law (with n = 1) that
includes yield stress. The flow under consideration is stationary in nature, and the
only nonzero component of the velocity is vz = v(x, z). This component is zero
on the inner wall of the tube, reflecting the behavior of a viscous fluid. We assume
that v > 0, which means that the fluid flows to the right.

Fig. 1. Geometry of the toothpaste model problem

In the context of incompressible materials, where elasticity is neglected and the
incompressible visco-elasticity rule is applied, the dynamics are governed by certain
constraints. One crucial implication of these constraints is the incompressibility of
the material, which has significant consequences on the behavior of the velocity
variable v.

In the scenario described, the incompressibility condition imposes restrictions on
how the velocity variable v can vary. Specifically, due to the incompressibility
assumption, the velocity variable v becomes solely dependent on the radial coor-
dinate r. This restriction is essential in understanding the material’s response to
deformation, as it simplifies the representation of velocity in the system.

Digging deeper into the mechanics, when considering the strain tensor, a fun-
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damental quantity characterizing deformation, the incompressibility assumption
further narrows down the nonzero components. In this case, the only nonzero

component of the strain tensor is drz =
1

2

dv

dr
. This expression signifies the rate

of change of velocity with respect to the radial coordinate, emphasizing the axial-
radial coupling inherent in the system.

By recognizing and analyzing these constraints imposed by incompressibility, re-
searchers and engineers can gain valuable insights into the behavior of the ma-
terial and design more accurate models for predicting its response under various
conditions. The simplifications introduced by neglecting elasticity and applying
incompressible viscoelasticity rules pave the way for a focused understanding of
the mechanics at play, facilitating the development of effective solutions and op-
timizations in diverse engineering and scientific applications.

First, let us consider the visco-plastic zone (where σeq > σ0). In this zone,

〈
σeq

σ0
−

1

〉
̸= 0 and there fore the flow rule implied that the only non-zero component

of v is srz ≡ σrz < 0 (since it is clear that from the physics point of view

dzr = 1
2
dv
dr

< 0, see Figure 1). Thus, σeq =
(
3
2
2σ2

rz

)1/2
= −

√
3σrz so that the

component “rz” of the flow rule can be written as

drz =
1

2

dv

dr
=

√
3

2
ε̇0

(√
3
σrz

σ0

+ 1
)
, (12)

after substitution and simplification. From Eq.(12) we deduce that

σrz = σ0

(
1

3 ε̇0

dv

dr
− 1√

3

)
, (13)

which shows that σrz depends only on the coordinate r

Next, let us find the pressure p = −1
3
tr (σ) and the velocity fields in the visco-

plastic zone. Due to the cylindrical properties involved in the problem, the pressure
p depends only on r and z. The radial and axial balance equations (note that the
orthoradial equation is automatically satisfied) are as follows:
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

∂σrr

∂r
+

∂σrz

∂z
+

σrr − σθ

r
= 0

∂σrz

∂r
+

∂σrz

∂z
+

σrz

r
= 0,

(14)

which implies



∂p

∂r
= 0

∂σrz

∂r
− dp

dz
+

σrz(r)

r
= 0

(15)

given that σ = −p1 + s. Thus, the pressure depends only on the coordinate z. In
addition, the second equation of Eq. (25) is written as(

∂σrz

∂r
+

σrz(r)

r

)
(r) =

dp

dz
(z), (16)

which implies that the left and right hand sides of these equations equal the same
constant, say −P which represent the drop of the pressure (due to the viscosity )
by unit length of the tube. Clearly, P > 0 for a flow towards the right. Given the
expression of σrz as a function of v, we get:

σ0

(
1

3 ε̇0

d2v

dr2
+

1

3 ε̇0

1

3

dv

dr
− 1√

3r

)
= −P (17)

which implies that

d2v

dr2
+

1

r

dv

dr
= −3 ε̇0

P

σ0

+
√
3
ε̇0
r

(18)

Let’s find a quadratic solution in r (by analogy with Couette flow of a viscous

fluid) which vanishes on r = R, i.e. v = −a

2
(r − R)2 − b(r − R). We then get

dv
dr

= −a(r −R)− b,
d2v

dr2
= −a and the previous equation becomes −a− a(1−

R

r
)− b

r
= −2a+

aR− b

r
= −3ε̇0

P

σ0

+

√
3ε̇0
r

which yields


a =

3

2
ε̇0

P

σ0

b = aR−
√
3 ε̇0 = ε̇0

(
3
2
PR
σ0

−
√
3
)
.

(19)
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Therefore, in the visco-plastic zone v(r) becomes

v(r) = −3

4
ε̇0

P

σ0

(r −R)2 − ε̇0

(
3

2

PR

σ0

−
√
3
)
(r −R) (20)

Fig. 2. Velocity field as a function of the radius for different strain regimes of the
material.

We can now find the internal radius of the visco-plastic zone. This radius corre-
sponds to a point where σeq = σ0, which implied that drz = 0 and dv

dr
(R0) = 0

which at it turn gives the equality −a(R0 −R)− b = 0. With this we have

R0 = R − b

a
= R +

ε̇0

(
3

2

PR

σ0

−
√
3
)

3
2
ε̇0

P
σ0

=
2√
3

σ0

P
(21)

Note that R0 =
2√
3
σ0

P
is indeed the internal radius since dv

dr
is a decreasing function

of r, which vanishes for r = R0. We then have for r > R0,
dv
dr

< 0, this implies
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that:

σrz = σ0

(
1

3ε̇0

dv

dr
− 1√

3

)
<

σ0√
3

(22)

With this σeq = −
√
3σrz > σ0. The region r < R0 is in the contrary rigid: it it

where visco-plastic we would have dv
dr

> 0 which should σeq by the same reasoning.

In order for material to be visco-plastic, the internal radius R0 of the visco-plastic
zone must be smaller the radius if the tube R, i.e 2√

3
σ0

P
< R which implies

P > 2√
3
σ0

R
. There is no material flow whenever P < 2√

3
σ0

R
: all the material re-

mains rigid. In the case where there is a material flow (P > 2√
3
σ0

R
), the velocity

profile looks like Note that we recovered the parabolic velocity profile of the well

Fig. 3. Velocity profile of the toothpaste model, showing various regions within the tube

known Couette flow for a viscous fluid by letting the yield limit σ0 tending toward
0, the “viscosity coefficient” σ0/ε̇0 being kept constant.

To find the full solution of the model problem, let us completely determine the
stress field starting with the visco-plastic region. The pressure has already been
determined with additional additive constant: p = −Pz+C. As for the deviatoric
part of the stress, we can calculated σrz from the relation given the stress field as
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a function of the velocity

σrz = σ0

(
1

3ε̇0

dv

dr
− 1√

3

)
= σ0

(
1

3ε̇0
(−a(r −R)− b)− 1√

3

)
= −Pr

2
(23)

In the rigid region, we introduce the assumption that only the non-zero component
of s is σsz only depends on r, as in the visco-plastic region. The balance equations
read



∂p

∂r
= 0

∂σrz

∂r
− dp

dz
+

σrz(r)

r
= 0

(24)

which implies that



∂p

∂z
= P ′

∂σrz

∂r
+

σrz(r)

r
= P ′

(25)

where P ′ is a new constant ( “a priori” different P ). Integrating the second
equation, we get

∂σrz

∂r
+ σrz(r) =

d

dr
(rσrz) = −Pr′ (26)

which implies that

rσrz = −P ′ r
2

2
+ A (27)

and

σrz = −P ′ r

2
+

A

r
(28)

As σrz can not vanish at infinity at 0, we necessary have A = 0, and thus σrz =
−P ′ r

2
. The continuity of σrz in r = R0 then implies P = P ′. The formula

σrz = −P
r

2
(29)

is then valid everywhere in the tube.

Note that σrz is independent of the yield σ0: the distribution of the stresses is
exactly the same as for a Newtonian viscous fluid.
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6 Gradient-Enhanced Toothpaste Flow Analysis

The flow of semi-solid materials, such as toothpaste, is traditionally modeled using
visco-plastic models that capture the transition from solid-like to fluid-like behav-
ior. However, these models may fail to accurately represent localized phenomena
near rigid-visco-plastic boundaries. This work extends the model by incorporating
second-gradient effects, providing additional terms that account for higher-order
stress and strain variations. The benefits of this extension include improved nu-
merical stability and a more realistic representation of material behavior

This section presents an extended derivation and analysis of visco-plastic flow in
a cylindrical tube, incorporating second-gradient effects to model localized stress
behavior near the rigid-visco-plastic boundary. The primary focus is on refining the
velocity profile and stress distributions by considering higher-order stress terms and
validating the solutions numerically. The application discussed uses toothpaste flow
in a tube as a case study.

6.1 Governing Equations

Stress Decomposition

The stress tensor σ is expressed as a sum of Cauchy stress and second-gradient
contributions:

σ = σCauchy + σSG,

where:

• σCauchy is the classical Cauchy stress tensor.
• σSG = η ∂2d

∂r2
, with η as a material parameter representing second-gradient ef-

fects.

In cylindrical coordinates, for axial symmetry, we focus on the shear stress σrz:

σrz = σCauchy
rz + η

∂2drz
∂r2

.

Appendix D provides a variational oriented justification of this decomposition.
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Linear Momentum Balance

The balance of linear momentum in the axial-radial plane is given by:

∂σrz

∂r
+

σrz

r
=

dp

dz
.

Substituting the stress decomposition:

∂

∂r

(
σCauchy
rz + η

∂2drz
∂r2

)
+

σCauchy
rz + η ∂2drz

∂r2

r
=

dp

dz
.

Expanding the derivatives:

∂σCauchy
rz

∂r
+

σCauchy
rz

r
+ η

∂3drz
∂r3

+
η

r

∂2drz
∂r2

=
dp

dz
.

Strain Rate Relationship

The shear strain rate drz is related to the velocity gradient by:

drz =
1

2

dv

dr
.

Thus, its higher derivatives are given by:

∂2drz
∂r2

=
1

2

d3v

dr3
,

∂3drz
∂r3

=
1

2

d4v

dr4
.

Substituting into the momentum balance equation:

∂σCauchy
rz

∂r
+

σCauchy
rz

r
+

η

2

d4v

dr4
+

η

2r

d3v

dr3
=

dp

dz
.

Stress in the Visco-Plastic Zone

In the visco-plastic zone (r > R0), the Cauchy stress σCauchy
rz is governed by the

visco-plastic flow rule:

dv

dr
=

√
3

2
ϵ0

(√
3σCauchy

rz

σ0

+ 1

)
.

Rearranging:

σCauchy
rz = σ0

(
1

3ϵ0

dv

dr
− 1√

3

)
.
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Substitute this expression into the momentum balance:

∂

∂r

(
σ0

(
1

3ϵ0

dv

dr
− 1√

3

))
+

σ0

r

(
1

3ϵ0

dv

dr
− 1√

3

)
+

η

2

d4v

dr4
+

η

2r

d3v

dr3
=

dp

dz
.

Simplifying:

σ0

3ϵ0

d2v

dr2
+

σ0

r

(
1

3ϵ0

dv

dr
− 1√

3

)
+

η

2

d4v

dr4
+

η

2r

d3v

dr3
=

dp

dz
.

Boundary Layer Correction Near r = R0

Near the rigid-visco-plastic boundary, the second-gradient contributions dominate.
Assuming a small perturbation around r = R0:

d2v

dr2
+ α

d4v

dr4
=

3ϵ0
σ0

P, α =
3ϵ0η

2σ0

.

6.2 Solution and Trial Function

To solve this equation, we use a trial solution:

v(r) = c1(r −R0)
2 + c2(r −R0)

4.

Taking the derivative of the trial function and substituting these derivatives into
the governing equation we get:

2c1 + 12c2(r −R0)
2 + α(24c2) =

3ϵ0
σ0

P.

At r = R0 (where (r −R0) = 0):

2c1 + 24αc2 =
3ϵ0
σ0

P.

For a small perturbation (r −R0 = δ):

2c1 + 12c2δ
2 + 24αc2 =

3ϵ0
σ0

P.
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From the first equation:

c1 =
3ϵ0
σ0
P − 24αc2

2
.

From the second equation:

c2 =
3ϵ0
σ0
P − 2c1

12δ2 + 24α
.

6.3 Numerical Implementation

To validate the proposed model, we numerically solve the governing equation:

d2v

dr2
+ α

d4v

dr4
=

3ϵ0
σ0

P,

with the boundary conditions:

v(R0) = 0,
dv

dr
(R0) = 0.

The solution is implemented using finite differences to approximate the derivatives,
discretizing the spatial domain [R0, Rmax] into N equally spaced points with step
size ∆r.

Finite Difference Discretization

The second derivative is approximated using a central difference scheme:

d2v

dr2
≈ vi+1 − 2vi + vi−1

∆r2
,

and the fourth derivative is discretized as:

d4v

dr4
≈ vi+2 − 4vi+1 + 6vi − 4vi−1 + vi−2

∆r4
.

The governing equation at each interior point i becomes:

vi+1 − 2vi + vi−1

∆r2
+ α

vi+2 − 4vi+1 + 6vi − 4vi−1 + vi−2

∆r4
=

3ϵ0
σ0

P.

Boundary conditions are imposed explicitly:
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• At R0: The Dirichlet boundary condition v(R0) = 0 is enforced by setting
v1 = 0.

• At R0: The Neumann boundary condition dv
dr
(R0) = 0 is discretized as:

v2 − v1
∆r

= 0.

This leads to v2 = v1, which is incorporated into the system matrix.
• At Rmax: The Dirichlet condition v(Rmax) = 0 is enforced by setting vN = 0.

Matrix Formulation

The system is represented as a linear system:

Av = b,

where:

• A is the finite difference coefficient matrix derived from the discretized equa-
tions.

• v is the vector of unknowns [v1, v2, . . . , vN ]
⊤.

• b is the right-hand side vector containing the source term 3ϵ0
σ0
P .

To improve numerical stability, a small regularization term (ϵ = 10−8) is added to
the diagonal of A, ensuring that the matrix remains well-conditioned for inversion.

Numerical Solution Procedure

The steps for solving the system are as follows:

(1) Define the spatial grid by discretizing the radial coordinate r with a step
size ∆r = Rmax−R0

N−1
, where R0 and Rmax represent the minimum and

maximum values of the radial domain, respectively, and N is the total
number of grid points.

(2) Construct the system matrix A and the right-hand side vector b by ap-
plying finite difference approximations to the governing differential equa-
tions, ensuring that the discretization reflects the specific problem being
solved.

(3) Enforce the boundary conditions by explicitly modifying the first and last
rows of the matrix A and updating the corresponding entries in b. This
step ensures that the solution satisfies the required conditions at the
boundaries of the domain.

(4) Solve the resulting linear system Ax = b using MATLAB’s backslash
operator (\), which efficiently computes the solution vector x.
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6.4 Results and Discussion

The computed solution v(r) is plotted over the domain [R0, Rmax], providing in-
sights into the deformation profile. The accuracy of the numerical solution is
validated by ensuring that it satisfies the boundary conditions and the original
differential equation within the discretization error, see Figures 4, 5.

Fig. 4. Velocity profile V (r), corrected by incorporating second-gradient effects near the
rigid-visco-plastic boundary r = R0, with different values for α and a fixed value of P .

Fig. 5. Velocity profile V (r), corrected by incorporating second-gradient effects near the
rigid-visco-plastic boundary r = R0 for different values of the pressure P and α = 2
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Next, we present a detailed analysis of the numerical results obtained for the
velocity profile v(r), corrected by incorporating second-gradient effects near the
rigid-visco-plastic boundary r = R0. The goal is to understand the impact of these
effects on the material behavior and verify the model’s consistency with physical
expectations.

6.4.1 Velocity Profile near r = R0

The velocity profile v(r) starts at zero at r = R0, consistent with the no-slip
boundary condition. Additionally, the initial gradient dv

dr
is also zero at r = R0,

reflecting the transition from rigid to visco-plastic behavior in the material. The
inclusion of second-gradient terms introduces curvature corrections near R0, re-
sulting in a more gradual increase in velocity beyond R0 compared to classical
models. This effect highlights the role of higher-order stress terms in smoothing
the velocity gradient.

The second-gradient parameter α = 3ϵ0η
2σ0

significantly affects the velocity profile:

• Higher α: Larger values of α result in a smoother profile with reduced ve-
locity gradients near R0. This behavior indicates increased resistance to shear
deformation, emphasizing the importance of size-dependent effects.

• Lower α: Smaller values of α lead to a sharper profile, approximating the
classical quadratic form. This corresponds to weaker size effects and a more
localized deformation response.

6.5 Comparison to Classical Visco-Plastic Models

For α = 0 (i.e., no second-gradient effects), the velocity profile reduces to the
quadratic form given by:

v(r) = −3

4
ϵ0
P

σ0

(r −R)2 − ϵ0

(
3

2

PR

σ0

−
√
3
)
(r −R). (30)

The addition of second-gradient terms refines this profile by introducing correc-
tions proportional to (r −R)4, enhancing the model’s ability to capture localized
microstructural behavior.

The inclusion of second-gradient effects has several key implications for material
behavior:

• Shear Localization: Second-gradient terms distribute shear more evenly across
the visco-plastic zone, preventing sharp velocity gradients near the boundary R0.
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• Material Behavior: The corrected model aligns with the observed behavior
of semi-solid materials, such as toothpaste, where microstructural resistance
smooths localized stress and deformation near boundaries.

The numerical solution demonstrates the following characteristics:

• Stability: The inclusion of higher-order derivatives improves numerical stability,
avoiding oscillations or mesh dependency in the velocity profile, see Apendix A

• Accuracy: The numerical results closely match theoretical predictions, validat-
ing the correctness of the finite difference scheme used in the computations,
here also see Appendix A.

6.6 Velocity Profile Across the Entire Domain

The velocity profile v(r) was solved numerically for the entire domain r ∈ [0, R],
incorporating both the rigid and visco-plastic zones. The numerical solution reveals
a distinct behavior in each zone, reflecting the underlying physics of the toothpaste
flow model with second-gradient effects.

Rigid Zone (r < R0)

In the rigid zone, where r < R0, the material exhibits no flow, consistent with the
assumption of rigidity. The velocity remains zero throughout this region:

v(r) = 0, for r ∈ [0, R0]. (31)

This behavior confirms that the material is unable to deform or flow below the
yield stress threshold.

Transition at r = R0

At the interface between the rigid and visco-plastic zones, located at r = R0, the
velocity profile transitions smoothly from zero to nonzero values. The boundary
conditions enforce:

v(R0) = 0,
dv

dr

∣∣∣∣∣
r=R0

= 0. (32)

The inclusion of second-gradient terms results in a smooth, gradual transition
across the boundary, reducing sharp gradients and providing a more realistic rep-
resentation of the material’s mechanical response near the interface.
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Visco-Plastic Zone (r ≥ R0)

In the visco-plastic zone, the governing equation for the velocity profile is given
by:

d2v

dr2
+ α

d4v

dr4
=

3ϵ0
σ0

P, α =
3ϵ0η

2σ0

, (33)

with appropriate boundary conditions at r = R0 and r = R. The numerical
solution shows a parabolic increase in velocity, modified by higher-order terms due
to the second-gradient effects:

• Smooth Profile: The velocity increases gradually from zero at r = R0, reflect-
ing the material’s visco-plastic flow behavior, see Figures 4 and 5.

• Impact of Second-Gradient Terms: The second-gradient contributions lead
to curvature corrections near the boundaries, smoothing the transition between
the rigid and visco-plastic zones, here also see Figures 4 and 5.

Influence of the Second-Gradient Parameter α

The parameter α controls the influence of second-gradient effects. Larger values
of α produce a smoother profile with reduced velocity gradients near r = R0. Con-
versely, smaller values of α result in a sharper transition, approximating classical
visco-plastic behavior without higher-order corrections. This demonstrates the role
of α in capturing size-dependent and localized stress effects within the material.

6.7 Comparison with Classical Visco-Plastic Models

When second-gradient effects are neglected (α = 0), the velocity profile reduces
to the classical quadratic form observed in standard visco-plastic models:

v(r) = −3

4
ϵ0
P

σ0

(r −R)2 − ϵ0

(
3

2

PR

σ0

−
√
3
)
(r −R). (34)

The inclusion of second-gradient terms provides a more accurate representation of
the material behavior by incorporating microstructural resistance and distributing
shear more evenly across the visco-plastic zone.

6.8 Physical Implications

The numerical results highlight several important physical characteristics:

32



• Shear Localization: The second-gradient terms distribute shear stresses more
evenly, reducing sharp gradients and enhancing numerical stability.

• Realistic Material Behavior: The model aligns well with the observed be-
havior of semi-solid materials, such as toothpaste, where localized stress and
deformation near boundaries are smoothed due to internal microstructural re-
sistance.

6.9 Numerical Stability and Accuracy

The numerical solution demonstrates stability and accuracy in capturing both the
primary velocity profile and the higher-order corrections, see Appendix A. The use
of fourth-order finite differences avoids numerical artifacts, such as oscillations,
and ensures consistent results across different mesh resolutions.
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7 Additional Numerical Results and Discussion

This section presents some additional numerical results of the gradient-based
model, obtained using the finite difference method to discretize the governing
equations. The discussion includes the simulation parameters, the condition num-
ber of the matrix system, the velocity profiles, and the residual trends, with rele-
vance to the context of gradient models. Figures 6 to 9 summarize the results.

7.1 Simulation Setup and Matrix Conditioning

The governing equation is derived from a gradient-enhanced model designed to
include higher-order terms that account for material gradient effects. The equation
is written as:

α
d4v

dr4
+ β

d2v

dr2
+ γv = P, (35)

where:

• v(r): Velocity profile;
• α = 1× 10−7: Gradient stiffness coefficient;
• β = 5: Damping coefficient;
• γ = 0: Higher-order term neglected for simplicity;
• P : Load term.

The problem is defined over a non-dimensionalized domain r ∈ [0, 1], where:

v(1) = 0 (Dirichlet boundary condition at r = 1), (36)

dv

dr

∣∣∣∣
r=0

= 0 (Neumann boundary condition at r = 0). (37)

The finite difference discretization uses a uniform grid with N = 800 points,
resulting in a spatial step size of ∆r = 0.00125. A small regularization term
(1× 10−5) is added to the diagonal of the matrix to enhance numerical stability.
The linear system is solved for multiple P values (P = 1, 10, 50, 100, 500).

The matrix condition number is a critical measure of numerical stability and ac-
curacy. Across all simulations, the condition number remains consistent and well-
controlled, with values on the order of 106 to 107. For P = 500, the condition
number is approximately 9.05 × 106, ensuring that the matrix system is not ill-
conditioned. This stability is crucial for accurately resolving higher-order gradient
terms.
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7.2 Velocity Profiles and Residuals

The velocity profiles and residuals are analyzed in Figures 6 to 9.

7.2.1 Raw Velocity Profiles

Figure 6 illustrates the raw velocity profiles v(r) for different P . The profiles
increase proportionally with the load P , reflecting the linear dependence of the
solution on the forcing term. For P = 500, the maximum velocity reaches approx-
imately 250, while for P = 1, it remains near zero. The smooth decay to v(1) = 0
aligns with the Dirichlet boundary condition. The matrix condition number’s con-
sistency across simulations ensures that the velocity profiles remain stable and free
from numerical artifacts.

7.2.2 Normalized Velocity Profiles

The normalized velocity profiles are presented in Fig. 7. These profiles collapse
into a single curve, confirming consistent scaling and numerical behavior across all
P . The smooth decay from 1 at r = 0 to 0 at r = 1 validates the enforcement of
boundary conditions. The normalization also highlights the relative trends in v(r),
independent of the load magnitude.

7.2.3 Residuals and Normalized Residuals

Figure 8 shows the residuals for varying P . For P = 1, the residuals remain
small and positive, demonstrating good numerical balance. As P increases, the
residuals grow, peaking at ∼ 600 for P = 500. This trend suggests that higher
loads pose greater challenges for balancing the governing equation, despite the
well-conditioned matrix.

Normalized residuals are plotted in Fig. 9, where residuals are scaled by P . These
results reveal consistent behavior across all loads, with normalized residuals peak-
ing at approximately 1.5 near r = 0. The consistent scaling of residuals further
demonstrates the stability of the numerical scheme.

7.3 Discussion on Gradient Models

Gradient-enhanced models include higher-order terms (αd4v
dr4

) that capture spatial
localization effects. For lower P , the gradient stiffness parameter α dominates,
resulting in smooth velocity profiles. However, at higher P , the damping term
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Fig. 6. Raw velocity profiles v(r) for varying P . The profiles scale linearly with P ,
highlighting proportional system response.

Fig. 7. Normalized velocity profiles ṽ(r) for varying P . Profiles collapse into a single
curve, confirming consistent scaling and trends.

(β d2v
dr2

) and forcing term (P ) overshadow the gradient effects, leading to higher
residuals.
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Fig. 8. Residuals of the governing equation for varying P . Residuals increase for higher
P , highlighting the need for additional refinement at larger loads.

Fig. 9. Normalized residuals Residual/P for varying P . Consistent scaling across all P
values indicates robust numerical stability.

The matrix condition number remains stable even as the gradient term contributes
to the stiffness. This stability highlights the robustness of the finite difference
scheme. Future work could explore adaptive meshing or higher-order schemes to
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improve residual control for larger loads.

7.3.1 Contour Plot of Velocity Profiles

The contour plot of the velocity profiles is presented in Fig. 10. This plot visu-
alizes the spatial variation of the velocity v(r) along the non-dimensional radial
coordinate r (horizontal axis) for different pressure values P (vertical axis). The
smooth and continuous variation of v(r) across the domain reflects the stability
and effectiveness of the numerical solution. Also:

• Scaling with Pressure: The velocity profiles scale proportionally with P , with
the maximum velocity near r = 0 increasing from near-zero values for P = 1 to
approximately 250 for P = 500. This is consistent with the raw velocity profiles
shown in Fig. 6.

• Boundary Condition Enforcement: The velocity decreases monotonically
along r and reaches v(1) = 0 at the domain boundary, satisfying the Dirichlet
boundary condition. Near r = 0, the Neumann condition ensures a maximum
velocity, where dv

dr
→ 0.

• Localized Effects: The smooth transition from high velocity near r = 0 to zero
velocity at r = 1 highlights the importance of the gradient model in regularizing
the solution. Without the inclusion of the higher-order gradient term (αd4v

dr4
),

sharp transitions or oscillations might occur, particularly for high P .

The contour plot also provides a visual link to the residuals discussed in Fig. 8. The
smoothness of v(r) correlates with the small residuals for lower pressures (P =
1, 10). However, as P increases, the forcing term dominates over the regularizing
effect of the gradient term, leading to larger residuals at higher pressures (P =
100, 500).

From a numerical perspective, the contour plot demonstrates the robustness of
the finite difference scheme and the stability of the matrix system. The condition
number remains consistently below 107 for all simulations, even as the gradient
term introduces additional stiffness. This ensures that the velocity profiles remain
free of numerical artifacts and converge smoothly across the domain.

In conclusion, the results validate the gradient-enhanced model in capturing smooth
and proportional velocity profiles across varying load conditions. The matrix con-
dition number (∼ 106) ensures stability and accuracy, while normalized residuals
reveal consistent scaling. These findings support the model’s applicability for prob-
lems involving higher-order spatial effects.
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Fig. 10. Contour plot of velocity profiles v(r) for different pressure values P . The plot
illustrates the spatial variation of velocity across the non-dimensional domain, demon-
strating smooth scaling with increasing P . The gradient term ensures stability and
regularization, particularly near the boundaries.

7.4 Analysis of Velocity Profiles and Gradient Effects

In this section, we analyze the effect of the gradient term parameter α on the

velocity profile v(r), the energy-like term
∫
v2(r) dr, and the numerical stability

of the solution. The governing equation incorporates a fourth-order derivative
term scaled by α, which introduces regularization effects, alongside a second-order
damping term scaled by β.

7.4.1 Velocity Profiles for Varying α

Figure 11 shows the velocity profiles v(r) for fixed pressure P = 100 and varying
values of α. For small values of α (e.g., 10−12 and 10−10), the velocity profile
remains nearly flat across the interior of the domain, forming a plateau, with a
steep drop near the boundary at r = Rmax. This behavior reflects the dominance of
the second-order term scaled by β, which governs the primary damping mechanism
in the system.

The plateau in the interior arises because the second-order term counterbalances
the forcing term P , resulting in a nearly uniform velocity distribution. The steep
gradient at the boundary is due to the Dirichlet condition v(Rmax) = 0, which
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enforces dissipation at the domain edge.

As α increases (e.g., 10−6), the profile becomes smoother, reflecting the regu-
larizing effect of the fourth-order term. However, for the chosen range of α, the
velocity profiles exhibit minimal variation, suggesting that the second-order term
and forcing term P dominate the solution.

Fig. 11. Stabilized velocity profiles for fixed P = 100 and varying α. The profiles remain
stable and smooth across all values of α.

7.4.2 Energy-Like Term vs. α

To quantify the effect of α on the overall solution, we compute the energy-like

term E(α) =
∫

v2(r) dr. Figure 12 shows the variation of E(α) with α on a

log-log scale.

For small values of α, the energy-like term remains nearly constant, indicating
that the fourth-order term has a negligible impact on the solution. As α increases,
E(α) decreases significantly, demonstrating the regularizing effect of the gradient
term. This trend is consistent with the expected behavior of gradient models,
where higher-order terms smooth the solution and reduce sharp variations.

7.4.3 Numerical Stability

The numerical stability of the solution is validated through the condition number
of the system matrix A and the residual norm. For small α, the condition number
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Fig. 12. Energy-like term E(α) =
∫
v2(r) dr vs. α. The decrease in E(α) for larger α

reflects the regularizing effect of the fourth-order term.

remains moderate (∼ 1011), and the residual norm is small (< 10−3), indicating
a stable solution. As α increases, the condition number grows significantly (e.g.,
1013 for α = 10−4), highlighting the need for careful regularization.

Table 1 summarizes the condition numbers for the system matrix A and the cor-
responding residual norms for varying α.

α Condition Number of A Residual Norm

10−12 1.01× 1011 4.86× 10−4

10−10 1.01× 1011 4.99× 10−4

10−8 9.21× 1010 5.25× 10−4

10−6 2.62× 1013 2.70× 10−2

Table 1
Condition numbers and residual norms for the system matrix A for varying α.

The stabilization strategy employed includes a regularization term added to the
diagonal of A and an increased damping coefficient β. These adjustments ensure
smooth and stable velocity profiles, even for larger α.

7.4.4 Implications for Gradient Models

The results demonstrate the role of the gradient term in regularizing the veloc-
ity distribution. For small α, the second-order term dominates, leading to nearly
flat profiles in the interior of the domain, forming plateaux. As α increases, the
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fourth-order term suppresses sharp gradients, reducing the energy-like term and
introducing smoothness.

The steep drop near r = Rmax highlights the boundary effect imposed by the
Dirichlet condition v(Rmax) = 0. This boundary behavior reflects the dissipation
or termination of velocity at the edge of the domain, consistent with physical
systems requiring zero velocity at boundaries.

This behavior is typical of gradient-enhanced models, such as those used in strain-
gradient elasticity, phase-field modeling, and regularized plasticity. The minimal
variation in velocity profiles for the chosen α range suggests that gradient effects
are secondary in this setup, dominated by the forcing term P and the damping
term β.

In conclusion, the analysis highlights the stabilizing influence of the gradient term
α on the velocity profiles and the energy-like term. Numerical stability is achieved
through careful parameter selection, including regularization and damping. These
results provide insights into the interplay between second-order and fourth-order
terms in gradient models and their implications for physical and numerical behav-
ior.
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8 Norton Viscous Model Applied to the Problem of the Flow in a Hollow
Sphere under Hydrostatic Load.

In this section, we address the scenario of a hollow sphere subject to hydrostatic
loading conditions. We assume that the sphere’s material matrix follows the Nor-
ton visco-plastic rigid behavior model without yield, effectively neglecting elasticity.
This problem’s solution is of interest because it provides insights that can be valu-
able in defining a homogenized plastic porous material at high temperatures.

Just like with plastic materials, deriving an exact solution for arbitrary loads (where
D is arbitrary) poses significant challenges. While it is possible to find an approxi-
mate solution, it first necessitates the development of an approximation technique
in visco-plasticity.

In this work, we will focus exclusively on the specific case of purely hydrostatic
loading, represented by D = Dm1, where Dm > 0 indicates the sphere’s expan-
sion. In such a case, with loads exhibiting spherical symmetry, it is feasible to
arrive at an analytical solution.

Due to the incompressibility and the spherical symmetry of the problem, the ve-
locity field can be written as:

v(r) =
α

r2
er, α = b3Dm (38)

As a result the non-zero components of the strain rate and the equivalent strain
rate can be found as:


Drr =

dvr
dr

= −2Dm
b3

r3

Dθθ = Dϕϕ =
vr
r

= Dm
b3

r3
.

(39)

The equivalent strain rate is then defined as:

Deq =
(
D2

rr +D2
θθ +D2

ϕϕ

) 1
2 = |Drr| = 2Dm

b3

r3
(40)

By inverting the flow rule, we get

D =
3

2
ε̇0

(
σeq

σ0

)n s

σeq

(41)
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which implies that:

Deq = ε̇0

(
σeq

σ0

)n

; (42)

the verification of the latter formula is easy as the flow rule was developed such
that this relation is automatically satisfied and the colinearity between D and s.

As a consequence, we get

σeq = σ0

(
deq
ε̇0

)1

/
n

(43)

which yields:

s =
2

3

d

ε̇0
σ0

(
deq
ε̇0

) 1−n
n

(44)

which finally gives

s =
2

3
σ0

(
deq
ε̇0

) 1
n s

deq
(45)

Form there we can deduce the components of the deviatoric tensor s read:



srr =
2

3
σ0

(
2
Dm

ε̇0

b3

r3

)1

/
n

drr
|drr|

= −2

3
σ0

(
2
Dm

ε̇0

b3

r3

)1

/
n

sθθ = sϕϕ = −srr

/
2 =

(
2
Dm

ε̇0

b3

r3

)1

/
n

(46)

Given the spherical symmetry of the system, the macroscopic stress tensor adopts
a hydrostatic form: Σ = Σm1. Our next step is to derive an expression for Σm,
leveraging Hill (31)’s theory and Mandel (44)’s lemma. Notably, the virtual velocity
field, denoted by v⋆, in this scenario aligns with the real velocity field:

v⋆(x) = D⋆
m

b3

r3
(47)
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which implies

D⋆
rr = −2D⋆

m

b3

r3
, D⋆

θθ = D⋆
ϕϕ = D⋆

m

b3

r3
. (48)

As a result, we get:



Σ : D⋆ = ΣmD
⋆
m1 : 1 = 3ΣmD

⋆
m

= (1− f) ⟨σ : D⋆(x)⟩Ω−ω

= (1− f) ⟨σrr(x)D
⋆
rr(x) + 2σθθ(x)D

⋆
θθ(x)⟩Ω−ω

= (1− f)2D⋆
m

〈
(σrr − σθθ)(x)

r3

〉
Ω−ω

= 2
(
1− a3

b3

)
D⋆

mb
3 1
4
3
π(b3 − a3)

∫ b

a

(σrr − σθθ)(r)

r3
4πr2d r

= 3D⋆
m

∫ b

a
2(σrr − σθθ)(r)

d r

r

(49)

and the latter equation implies that

Σm =
∫ b

a
2(σrr − σθθ)(r)

d r

r
(50)

As in the case with a cylindrical shape, this results can be written as

Σm =
∫ b

a

dσrr

dr
(r) = σrr(b) (51)

since σa = 0. Note that this result is intuitively of satisfaction (even though it is
not of entire satisfaction for the effective calculation of Σm.) From our previous
calculations:

σθθ = σrr = sθθ − srr = σ0

(
2
Dm

ε̇0

b3

r3

)1

/
n

(52)

and thus:
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

Σm = 2σ0

(
2
Dm

ε̇0
b3
)1

/
n ∫ b

a
r−

3
n
d r

r
=

2

3
σ0

(
2
Dm

ε̇0
b3
)1

/
n ∫ b3

a3

d r3

(r3)
1
n
+1

= 2
3
σ0

(
2Dm

ε̇0
b3
)1
/

n

(−n)
(
b−

3
n − a−

3
n

)
,

(53)

or by inverting we get

Dm =
ε̇0
2


3

2n

Σm

/
σ0

f
−1

/
n

− 1


n

(54)

Above, it was observed that the visco-plastic Norton model, devoid of yield, con-
verges to the plastic Von Mises model as the parameter n approaches infinity. In
this asymptotic scenario, we are compelled to rediscover the expression for the
yield limit of the plastic hollow sphere, given by 2σ0 ln

a
b
= −2

3
σ0 ln f .

It is noteworthy that this expression was originally derived for an internal pressure
applied at r = a, in contrast to the current scenario where an external tension is
applied at r = b. Nevertheless, our findings effortlessly demonstrate that the limit
loads remain consistent for both loading conditions.

Subsequently, let us analyze the limit of the expression n
(
f−1/n − 1

)
as n tends

towards infinity:

n
(
f−1/n − 1

)
= n

(
e−

ln f
n − 1

)
= n

(
1− 1

n
ln f − 1 +O

(
1

n2

))
→ − ln f

In the same limit, as n → ∞, we observe that
(
2
Dm

ε̇0

)1/n

→ 1. Consequently, for

the limit n → ∞, we find:

Σm → −2

3
σ0 ln f

This result aligns with our expectations.
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9 Solution of the Hollow Sphere Problem Including Gradient Effects.

In this section, we extend the analysis of the hollow sphere problem under hydro-
static loading by incorporating high-gradient effects. This extension is particularly
relevant in capturing localized deformation phenomena, size-dependent behavior,
and enhanced mechanical stability, which are not accounted for in traditional vis-
coplastic models. Our goal is to derive the modified expressions for stress and strain
distributions and analyze the physical implications of these gradient-enhanced con-
tributions.

9.1 Incorporating High-Gradient Terms in Stress Components

The radial and hoop stresses, originally derived using a Norton viscoplastic model,
are modified to include high-gradient contributions as follows:

σrr = σViscoplastic
rr + η

d3u

dr3
,

σθθ = σViscoplastic
θθ + η

(
1

r

d2u

dr2
− 2

r2
du

dr
+

2u

r3

)
. (55)

where η is a material parameter representing the influence of high-gradient effects
and u(r) is the radial displacement. Here, σViscoplastic

rr and σViscoplastic
θθ denote the

viscoplastic stress components derived from the original model. Further justifica-
tions of this “ad hoc” choice of stress modeling with physical and mechanical
insights are provided in Appendix B.

9.2 Modified Mechanical Equilibrium Equation

The mechanical equilibrium equation for a hollow sphere under spherical symmetry,
incorporating high-gradient contributions, is given by:

d

dr

(
σViscoplastic
rr + η

d3u

dr3

)
+

2

r

σViscoplastic
rr + η

d3u

dr3

−

σViscoplastic
θθ + η

(
1

r

d2u

dr2
− 2

r2
du

dr
+

2u

r3

) = 0.

This equation ensures mechanical equilibrium by balancing the modified radial and
hoop stresses, while accounting for the influence of high-gradient terms.
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9.3 Simplified Expressions for Σm

To derive the macroscopic stress Σm, we use Hill’s averaging method, leading to:

Σm =
∫ b

a
2 (σrr − σθθ)

dr

r
.

Substituting the modified stress components yields:

Σm =
∫ b

a
2

(σViscoplastic
rr + η

d3u

dr3

)

−
(
σViscoplastic
θθ + η

(
1

r

d2u

dr2
− 2

r2
du

dr
+

2u

r3

))dr
r
. (56)

This expression can be further simplified by separating the viscoplastic and gradient
terms, yielding:

Σm ≈− 2σ0

(
2
Dm

ε̇0

b3

r3avg

) 1
n

ln

(
b

a

)

+ η
∫ b

a

d2u
dr2

(
1

r2
− 1

r

d

dr

)
+

2

r3

(
du

dr
− 2u

)dr
+ η

d2u

dr2
1

r

∣∣∣∣∣
b

a

. (57)

The high-gradient terms provide enhanced mechanical stability by smoothing out
stress and strain gradients, particularly near boundaries. This regularization ef-
fect reduces localization phenomena such as shear bands and promotes a more
distributed flow of viscoplastic deformation. Additionally, the gradient contribu-
tions introduce size-dependent behavior, making the model particularly relevant
for small-scale or thin-walled structures. The dependence of the stress distribution
on the radial coordinate highlights the importance of considering high-order terms
in applications involving complex loading and geometrical constraints.

9.4 Simplified Higher-Order Terms and Physical Interpretation

To further analyze the impact of high-gradient effects on the macroscopic stress
Σm in the hollow sphere model, we proceed by incorporating the simplified higher-
order terms into our formulation and exploring their physical implications.
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9.4.1 Simplified Expression for Σm

Recall that the macroscopic stress Σm is given by:

Σm ≈− 2σ0

(
2
Dm

ε̇0

b3

r3avg

) 1
n

ln

(
b

a

)

+
∫ b

a
η

d2u
dr2

(
1

r2
− 1

r

d

dr

)
+

2

r3

(
du

dr
− 2u

)dr
+ η

d2u

dr2
1

r

∣∣∣∣∣
b

a

. (58)

9.4.2 Simplification of the High-Gradient Integral Term

We first consider the high-gradient integral term:

∫ b

a
η

[
d2u

dr2

(
1

r2
− 1

r

d

dr

)
+

2

r3

(
du

dr
− 2u

)]
dr. (59)

To simplify this term, we assume that the displacement field u(r) varies smoothly,
such that higher derivatives are small near the boundaries. Additionally, we ap-
proximate the slowly varying term

(
1
r2

− 1
r

d
dr

)
over the interval [a, b].

By integrating by parts and considering boundary terms, we have:

∫ b

a
η
d3u

dr3
dr

r
≈ η

d2u

dr2
1

r

∣∣∣∣∣
b

a

+
∫ b

a
η
d2u

dr2
dr

r2
. (60)

9.4.3 Final Approximate Expression for Σm

Combining the contributions, the approximate expression for Σm becomes:

Σm ≈− 2σ0

(
2
Dm

ε̇0

b3

r3avg

) 1
n

ln

(
b

a

)

+ η
d2u

dr2

∣∣∣∣∣
avg

[∫ b

a

(
1

r2
− 1

r

d

dr

)
dr

]

+ η
d2u

dr2
1

r

∣∣∣∣∣
b

a

. (61)
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9.5 Asymptotic Analysis of the Modified Stress Equation.

In this section, we investigate the asymptotic behavior of the modified stress
parameter, Σm, derived from the governing equations. The expression for Σm is
given as in the previous equation.

This equation combines contributions from logarithmic terms, grading effects en-
capsulated in the integral, and boundary terms. Here, we analyze the asymptotic
behavior under the assumption of b ≫ a, which is typical for many practical
applications.

9.5.1 Analysis of Dominant Terms

Logarithmic Contribution

The first term,

−2σ0

(
2
Dm

ε̇0

b3

r3avg

) 1
n

ln

(
b

a

)
,

dominates as b ≫ a due to the logarithmic growth of ln(b/a). The prefactor,
which includes the material parameters Dm, ε̇0, and ravg, modulates this growth.

For large n, the scaling factor
(
2Dm

ε̇0
b3

r3avg

)1/n

approaches unity, simplifying the

term.

Integral Contribution

The integral term in Σm involves a grading term,∫ b

a

(
1

r2
− 1

r

d

dr

)
dr.

Under the assumption of a smooth displacement field u(r), the second term 1
r

d
dr

becomes negligible compared to 1
r2
. Evaluating the integral gives:∫ b

a

1

r2
dr ≈ 1

a
− 1

b
,

which simplifies further to 1
a
as b ≫ a. Consequently, this contribution scales with:

η
d2u

dr2

∣∣∣∣∣
avg

1

a
,

where d2u
dr2

∣∣∣
avg

represents the average curvature of the displacement field.
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Boundary Contributions

The boundary term,

η
d2u

dr2
1

r

∣∣∣∣∣
b

a

,

captures the effects of grading at the boundaries. Explicitly, this term evaluates
to:

η

(
1

b

d2u

dr2

∣∣∣∣
r=b

− 1

a

d2u

dr2

∣∣∣∣
r=a

)
.

For b ≫ a, the contribution from r = a dominates, simplifying this term to:

−η
1

a

d2u

dr2

∣∣∣∣
r=a

.

Asymptotic Expression

Combining the dominant contributions, the asymptotic expression for Σm as b ≫ a
is:

Σm ∼− 2σ0

(
2
Dm

ε̇0

b3

r3avg

) 1
n

ln

(
b

a

)

+
η

a

 d2u

dr2

∣∣∣∣∣
avg

− d2u

dr2

∣∣∣∣
r=a

 . (62)

Impact of the Grading Term

The grading term, encapsulated in the integral and boundary contributions, adds
a correction to the logarithmic behavior. Its influence depends on:

• The material property η, which represents the effect of viscosity or grading;
• The curvature of the displacement field (d

2u
dr2

) at the boundaries and over the
interval [a, b];

• The scaling of a and b, with the grading term becoming relatively less significant
as b/a → ∞.

This analysis highlights the interplay between the dominant logarithmic term and
the grading correction, emphasizing the importance of boundary effects and ma-
terial properties in the asymptotic behavior of Σm.
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Fig. 13. Logarithmic behavior of Σm as a function of b/a

Figure 13 correctly captures the logarithmic behavior of Σm as a function of b/a.
The linear decrease with respect to ln(a/b) indicates that the logarithmic term is
indeed dominating the grading contribution.

Fig. 14. Boundary effects arising from the gradient term in a stress equation.

We analyze the boundary effects arising from the gradient term in a stress equation,
particularly focusing on the contribution:

Boundary Effect = η
d2u

dr2
1

r
,

evaluated at r = a. The objective is to examine how the boundary term behaves
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with varying a, which represents the inner radius of a cylindrical domain, while
keeping the outer radius b fixed. This analysis provides insights into the localized
effects of gradients near boundaries in materials with graded properties.

The boundary effect was implemented in MATLAB with the following setup:

• The parameter η represents the grading coefficient and scales the con-
tribution of the gradient term.

• The displacement curvature, d2u
dr2

, was modeled as a smooth function of
r = a:

d2u

dr2
|r=a = 0.1 + 0.05 cos(a),

allowing us to simulate spatial variations in the curvature.
• The boundary effect was computed for a range of a values, ensuring
a < b to maintain physical consistency.

• The fixed outer radius was set to b = 10, and the inner radius a was
varied from 1 to b− 0.1.

The behavior of the boundary effect was analyzed with respect to r = a, producing
the plot shown in Figure 14.

For small values of a, the term 1
a
dominates, leading to a sharp increase in the

boundary effect. This reflects the mathematical nature of 1
r
, which grows rapidly

as r → 0. Physically, this suggests that the boundary effect is highly localized and
significant near small radii. In gradient-enhanced material models, this corresponds
to a higher contribution of curvature effects near smaller boundaries.

As a increases, the boundary effect diminishes due to the 1
a
term. This is con-

sistent with gradient models, where the contribution of curvature becomes less
pronounced farther from small-scale boundaries. The grading term essentially
smoothens the transition.

For larger values of a, small oscillations in the boundary effect are observed. These
are due to the smooth variation in the modeled curvature, d2u

dr2
, which was chosen

as 0.1 + 0.05 cos(a). Physically, this suggests that the material properties or dis-
placement curvature still have subtle effects even at larger radii, reflecting inherent
variations in the material’s grading.
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The magnitude of the boundary effect is directly proportional to the grading coef-
ficient η. Larger values of η would amplify the boundary effect, making it a more
significant contributor to the overall stress response. Conversely, smaller values of
η reduce the boundary contribution, emphasizing the dominance of other terms
in the stress model.

9.6 Physical Interpretation of the High-Gradient Terms

9.6.1 Regularization and Stability

The inclusion of high-gradient terms, represented by the parameter η, introduces
additional stiffness into the system. This regularization effect smooths abrupt
changes in the stress and strain fields, particularly near the boundaries of the hollow
sphere. Such smoothing is critical in preventing localized deformation phenomena,
such as the formation of sharp stress discontinuities or shear bands.

9.6.2 Size-Dependent Behavior

The dependence of high-gradient terms on the radial coordinate r and the shell
thickness (b−a) indicates a size-dependent mechanical response. Smaller spheres
or thin-walled shells exhibit more pronounced gradient effects, altering the stress
distribution compared to larger structures. This behavior aligns with observations
in micro- and nano-scale applications, where traditional continuum mechanics
models may inadequately capture such size-dependent effects.
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10 Conclusion

This paper introduces a second-gradient viscoplastic framework to address limita-
tions in classical viscoplastic models for size-dependent and localized deformation
behaviors. The main contributions of this work are as follows:

• Theoretical Advancements: We incorporate second-gradient terms into the
governing equations of viscoplasticity, enabling the capture of localized phenom-
ena such as stress diffusion and shear banding. This approach smoothens stress
and velocity discontinuities near rigid-visco-plastic boundaries, which classical
models fail to address.

• Numerical Stability: Our model demonstrates improved numerical stability,
avoiding oscillations and mesh dependency through higher-order gradient correc-
tions. The implementation is validated using finite difference schemes, ensuring
robustness and consistency.

• Practical Applications: We provide analytical and numerical solutions for two
benchmark problems:
· The toothpaste flow in a cylindrical tube.
· The hollow sphere under hydrostatic loading.
The inclusion of second-gradient effects refines the stress and velocity profiles,
yielding new insights into size-dependent material behaviors.

• Comparison with Classical Models: The proposed framework is shown to
outperform classical viscoplastic models in capturing smooth transitions and
localized phenomena. Additionally, the model reduces to classical behavior when
second-gradient effects are negligible (α = 0).

• Material Design Implications: The second-gradient parameter (α) emerges
as a key factor in influencing stress localization and material response, offering
a powerful tool for designing materials with tailored mechanical properties.

Our work bridges the gap between classical viscoplasticity and modern require-
ments for capturing size-dependent phenomena, with implications for advanced
manufacturing, material engineering, and microstructural analysis.
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A Convergence Rate Algorithm

In this section, we describe the algorithm used to determine the convergence rate
of the numerical method for solving the differential equation:

d2v

dr2
+ α

d4v

dr4
=

3ϵ0
σ0

P,

with the boundary conditions:

v(R0) = 0,
dv

dr
(R0) = 0, v(Rmax) = 0.

A.1 Algorithm Description

To assess the convergence rate, the solution is computed on progressively refined
grids with different numbers of grid points. The L2-norm of the error between
the numerical solution and a known exact solution is then used to evaluate the
convergence behavior. The steps of the algorithm are as follows:
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(1) Define Parameters and Exact Solution: The parameters for the
problem include the domain limits (R0 and Rmax), the coefficient α,
and the source term 3ϵ0

σ0
P . The exact solution, if available, is defined

as vexact(r).
(2) Grid Refinement: The domain is discretized using different numbers

of grid points N (e.g., N = 20, 40, 80, . . .). The corresponding step
size is ∆r = Rmax−R0

N−1
.

(3) Numerical Solution: For each grid size N , the finite difference
method is applied to discretize the governing equation. The second
and fourth derivatives are approximated as:

d2v

dr2
≈ vi+1 − 2vi + vi−1

∆r2
,

d4v

dr4
≈ vi+2 − 4vi+1 + 6vi − 4vi−1 + vi−2

∆r4
.

The resulting linear system is solved to obtain the numerical solution
v(r).

(4) Error Calculation: The error is computed as the L2-norm of the
difference between the numerical solution v(r) and the exact solution
vexact(r):

Error =

√√√√ N∑
i=1

(vi − vexact,i)2∆r.

(5) Convergence Rate: The convergence rate is determined by plotting
the error against the grid size on a log-log scale. The slope of the
best-fit line is calculated as:

Convergence Rate = −slope of the line.

A.2 Algorithm Implementation

The algorithm was implemented in MATLAB, and the following key features en-
sured robust evaluation of convergence:

• Matrix Construction: The finite difference coefficient matrix was carefully
constructed to handle boundary conditions and ensure stability for all grid sizes.

• Diagnostics: Singular matrices were detected and handled, with regularization
added to improve the numerical conditioning.

• Error Reporting: For each grid size, the error was computed, and cases with
invalid solutions were skipped to avoid corrupting the convergence rate calcu-
lation.
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A.3 Results

The results of the convergence test were visualized using a log-log plot of grid
size vs. error, Figure A.1. A linear relationship between the error and grid size
on the log-log scale indicates that the method converges with a consistent rate.
The slope of the line provides the estimated convergence rate, confirming the
theoretical expectations of the method.

Fig. A.1. Log-log plot of grid size vs. error.

In conclusion, this algorithm effectively measures the convergence behavior of the
numerical method, providing insights into its accuracy and stability. The approach
can be generalized to other differential equations and numerical schemes, making
it a versatile tool for numerical analysis.
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B Incorporation of High-Gradient Effects in Stress Components

Classical viscoplastic models, such as the Norton viscoplastic formulation, describe
stress components based on local strain and displacement fields. While effective
for many applications, these models fail to capture the influence of steep spa-
tial gradients in deformation, which are crucial in materials with microstructural
heterogeneities or when size effects become significant.

To address this limitation, high-gradient terms are incorporated into the stress
components, enhancing their predictive capability in nonlocal material behaviors
and refined deformation patterns.

B.1 Modified Radial Stress

The radial stress is augmented to include high-gradient effects through the third
derivative of the radial displacement u(r), expressed as:

σrr = σViscoplastic
rr + η

d3u

dr3
, (B.1)

where:

• σViscoplastic
rr is the radial stress derived from the classical Norton viscoplastic

model,
• η is a material parameter representing the strength of gradient effects,
• d3u

dr3
captures fine-scale variations in radial deformation.

Physical Justification: The term d3u
dr3

accounts for nonlocal interactions and steep
deformation gradients, which become critical near interfaces or in microstructured
materials. The parameter η ensures dimensional consistency and quantifies the
magnitude of gradient effects.

B.2 Modified Hoop Stress

The circumferential (hoop) stress is enriched by terms that account for the geo-
metric and gradient-dependent effects of radial displacement:

σθθ = σViscoplastic
θθ + η

(
1

r

d2u

dr2
− 2

r2
du

dr
+

2u

r3

)
, (B.2)

where:

• σViscoplastic
θθ is the classical hoop stress from the Norton viscoplastic model,
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• The additional terms include:
· 1

r
d2u
dr2

: Contribution from the curvature of the displacement gradient,
· − 2

r2
du
dr
: Effect of first-order radial deformation scaled by geometry,

· 2u
r3
: Direct contribution of radial displacement u(r), emphasizing circumferen-

tial effects in curved geometries.

Physical Justification: The additional terms reflect the influence of radial defor-
mation on circumferential stresses, particularly in cylindrical or spherical geome-
tries. These contributions are essential for capturing size effects, localized stress
distributions, and nonlocal material responses.

B.3 Discussion and Physical Insights

The incorporation of high-gradient terms enriches the stress model by addressing
two key aspects:

(1) Nonlocal Effects: High-order derivatives (d
3u
dr3

, d2u
dr2

) introduce length-scale-
dependent behavior, critical for materials with microstructures or interfaces.

(2) Geometric Consistency: The scaling factors (1
r
, 1
r2
, 1
r3
) ensure the circum-

ferential stress reflects deformation patterns intrinsic to the material’s geom-
etry.

These modifications provide a robust framework for analyzing stress distributions
in gradient-sensitive materials and systems.
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C General Solution of the Differential Equation with the Gradient Terms

The differential equation under consideration is:

d2v

dr2
+ α

d4v

dr4
=

3ϵ0
σ0

P,

where v(r) is the unknown function, and α, ϵ0, σ0, and P are constants.

C.1 Solution

The general solution of this fourth-order linear inhomogeneous differential equation
is:

v(r) = C1r + C2 cos

√ 1

α
r

+ C3 sin

√ 1

α
r

+
3ϵ0
σ0

P,

where C1, C2, and C3 are constants to be determined from the boundary condi-
tions.

C.2 Boundary Conditions

The boundary conditions are:

v(R0) = 0,
dv

dr
(R0) = 0, v(Rmax) = 0.

1. At r = R0:

C1R0 + C2 cos

√ 1

α
R0

+ C3 sin

√ 1

α
R0

 = −3ϵ0
σ0

P.

2. First derivative at r = R0:

dv

dr
= C1 − C2

√
1

α
sin

√ 1

α
R0

+ C3

√
1

α
cos

√ 1

α
R0

 .

At r = R0:

C1 − C2

√
1

α
sin

√ 1

α
R0

+ C3

√
1

α
cos

√ 1

α
R0

 = 0.
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3. At r = Rmax:

C1Rmax + C2 cos

√ 1

α
Rmax

+ C3 sin

√ 1

α
Rmax

 = −3ϵ0
σ0

P.

C.3 Summary of the System of Equations

The constants C1, C2, and C3 satisfy the following linear system of equations:

C1R0 + C2 cos

√ 1

α
R0

+ C3 sin

√ 1

α
R0

 = −3ϵ0
σ0

P,

C1 − C2

√
1

α
sin

√ 1

α
R0

+ C3

√
1

α
cos

√ 1

α
R0

 = 0,

C1Rmax + C2 cos

√ 1

α
Rmax

+ C3 sin

√ 1

α
Rmax

 = −3ϵ0
σ0

P.

Solving this system provides the values of C1, C2, and C3, which complete the
general solution of the differential equation.
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D Variational Derivation of the Governing Equations in Cylindrical Co-
ordinates

A. Variational Principle with Second-Gradient Effects

The total potential energy functional incorporating second-gradient effects is ex-
pressed as:

Π =
∫
V

[
W (ε) +

η

2
(∇ε) : (∇ε)

]
dV −

∫
V
f · u dV −

∫
∂V

t · u dA, (D.1)

where:

• W (ε) is the strain energy density, a function of the strain tensor ε,
• u is the displacement vector field,
• η is a material parameter representing second-gradient effects,
• f is the body force per unit volume,
• t is the traction vector on the boundary ∂V ,
• ∇ε represents the gradient of the strain tensor.

The equilibrium equations are derived by requiring stationarity of the potential
energy functional, i.e., δΠ = 0.

B. First Variation of the Functional

The first variation of Π with respect to the displacement field u is given by:

δΠ =
∫
V

[
σCauchy : δε+ η (∇ε) : ∇δε

]
dV −

∫
V
f ·δu dV −

∫
∂V

t·δu dA, (D.2)

where σCauchy = ∂W
∂ε

is the classical Cauchy stress tensor, and δε = 1
2

(
∇δu+ (∇δu)⊤

)
is the variation of the strain tensor.

C. Governing Equations

The variation of the first term, corresponding to the classical strain energy, is:

∫
V
σCauchy : δε dV =

∫
V
∇·σCauchy · δu dV −

∫
∂V

(
σCauchy · n

)
· δu dA. (D.3)
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The second term, arising from the second-gradient effects, is:

η
∫
V
(∇ε) : ∇δε dV = η

∫
V
∇2ε : δε dV − η

∫
∂V

(∇ε · n) : δε dA. (D.4)

Combining these terms and applying the stationarity condition δΠ = 0, the equi-
librium equations become:

∇ · σCauchy + η∇4u = f , (D.5)

where ∇4u is the fourth-order derivative of the displacement field.

D. Reduction to Cylindrical Coordinates

In cylindrical coordinates (r, θ, z), assuming axial symmetry (∂/∂θ = 0), the dis-
placement field is expressed as:

u = ur(r, z) er + uz(r, z) ez. (D.6)

The non-zero strain components are:

εrr =
∂ur

∂r
, εzz =

∂uz

∂z
, (D.7)

εrz =
1

2

(
∂ur

∂z
+

∂uz

∂r

)
. (D.8)

The equilibrium equation in the rz-plane is:

∂σrz

∂r
+

σrz

r
= 0. (D.9)

The total shear stress σrz is given by:

σrz = σCauchy
rz + η

∂2εrz
∂r2

. (D.10)

Substituting the expression for εrz into the second-gradient term:

εrz =
1

2

∂uz

∂r
=⇒ ∂2εrz

∂r2
=

1

2

∂3uz

∂r3
. (D.11)

Thus, the total shear stress becomes:

σrz = G
∂uz

∂r
+ η

∂3uz

∂r3
, (D.12)
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where G is the shear modulus.

Finally, we conclude that the total shear stress can be written as:

σrz = σCauchy
rz + η

∂2εrz
∂r2

, (D.13)

which captures the classical and second-gradient contributions.
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