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Abstract. This paper presents an implicit solution formula for the Hamilton-Jacobi partial4
differential equation (HJ PDE). The formula is derived using the method of characteristics and is5
shown to coincide with the Hopf and Lax formulas in the case where either the Hamiltonian or the6
initial function is convex. It provides a simple and efficient numerical approach for computing the7
viscosity solution of HJ PDEs, bypassing the need for the Legendre transform of the Hamiltonian8
or the initial condition, and the explicit computation of individual characteristic trajectories. A9
deep learning-based methodology is proposed to learn this implicit solution formula, leveraging the10
mesh-free nature of deep learning to ensure scalability for high-dimensional problems. Building upon11
this framework, an algorithm is developed that approximates the characteristic curves piecewise12
linearly for state-dependent Hamiltonians. Extensive experimental results demonstrate that the13
proposed method delivers highly accurate solutions, even for nonconvex Hamiltonians, and exhibits14
remarkable scalability, achieving computational efficiency for problems up to 40 dimensions.15
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1. Introduction. Hamilton-Jacobi partial differential equations (HJ PDEs) are18

of paramount importance in various fields of mathematics, physics, and engineering,19

including optimal control [27, 66, 4], mechanics [23, 21], and the study of dynamic20

systems [41, 65]. As they provide a powerful framework for modeling systems governed21

by physical laws, HJ PDEs have a wide range of applications in diverse areas such as22

geometric optics [56, 53], computer vision [8, 32, 58], robotics [48, 46, 3], trajectory23

optimization [22, 61], traffic flow modeling [34, 45], and financial strategies [31, 7].24

These applications illustrate the versatility and significance of HJ PDEs, emphasizing25

the necessity for effective methods to solve them in both theoretical and practical26

contexts. It is well-known that the solutions to HJ PDEs are typically continuous27

but exhibit discontinuous derivatives, irrespective of the smoothness of the initial28

conditions or the Hamiltonian. Moreover, such solutions are typically non-unique.29

In this regard, viscosity solutions [14] are commonly considered as the appropriate30

notion of solution, as they reflect the physical characteristics inherent to the problem.31

Numerical methods for solving HJ PDEs have been extensively developed, with32

numerous practical applications across various fields. The most prominent methods33

include essentially non-oscillatory (ENO) and weighted ENO (WENO) type schemes34

[60, 35, 6, 63], semi-Lagrangian methods [28, 15, 29], and level set approaches [59,35

56, 57, 54, 2]. However, they encounter significant scalability challenges as the di-36

mensionality of the state space increases. These methods rely on discretization of37

the state space with a grid and approximating the Hamiltonian in a discrete form.38

Consequently, the number of grid points required to obtain accurate solutions grows39

exponentially with the dimensionality of the problem, resulting in prohibitive compu-40

tational costs. In high-dimensional settings, particularly those involving more than41

four dimensions, this scaling issue renders the classical methods impractical for many42

real-world applications, where high-dimensional state spaces are prevalent.43
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2 Y. PARK AND S. OSHER

Several approaches have been proposed to address the curse of dimensionality in44

solving HJ PDEs. Methods based on max-plus algebra [52, 1, 30] show promise but45

are restricted to specific classes of optimal control problems and encounter significant46

challenges in practical implementation due to their complexity. Another promising47

approach involves the use of Hopf or Lax formulas to represent solutions to HJ PDEs48

[20, 12, 13, 10]. These formulas offer a causality-free approach, where solutions at49

each spatial and temporal point can be computed by solving an optimization problem,50

thus enabling parallel computation. This approach eliminates the reliance on grid-51

based discretization, making it particularly well-suited for high-dimensional problems.52

However, these methods require computing the Legendre transform of the Hamiltonian53

or initial function and are generally applicable only under specific assumptions, such as54

convexity, or when the problem can be framed as a particular type of control problem.55

In parallel, algorithms based on Pontryagin’s Maximum Principle [38, 39, 73], which56

employ the method of characteristics, have been proposed. Despite their potential,57

the practical effectiveness of these methods is often limited by the need to solve a58

system of ordinary differential equations (ODEs) at each point. Additionally, some59

of these methods assume that multiple characteristics do not intersect, a condition60

that may not hold in general scenarios. Furthermore, alternative techniques, such as61

tensor decomposition [24] and polynomial approximation [37, 36], have been studied62

for specific control problems.63

Recent advancements in deep learning have given rise to a growing interest in64

leveraging the extensive representational capabilities of neural networks to solve PDEs65

[67, 74, 64, 51, 47, 72]. The viscosity solution of HJ PDEs is challenging to ob-66

tain directly from the PDE itself, which underscores the development of alternative67

approaches beyond the established methods like physics-informed neural networks68

(PINNs) [64]. In response, data-driven methods have been proposed for solving HJ69

PDEs [55, 25, 16]; however, these methods face several challenges, including the need70

for large amounts of training data, the limitation that their performance cannot ex-71

ceed the accuracy of the numerical methods used to generate the data, and concerns72

regarding their ability to generalize to unseen scenarios. Moreover, the integration of73

reinforcement learning techniques to solve HJ PDEs related to control problems has74

been studied [76, 49]. Another line of research has focused on the development of spe-75

cialized neural network architectures that express representation formulas to specific76

HJ PDEs [18, 19, 17]. One of the most closely related prior works introduces a deep77

learning approach for learning implicit solution formulas along with characteristics78

for scalar conservation laws associated with one-dimensional HJ PDEs [75]. However,79

this method does not ensure the attainment of an entropy solution.80

This study presents a novel implicit solution formula for HJ PDEs. The proposed81

implicit formula is derived through the characteristics of the HJ PDE, with the costate82

identified as the gradient of the solution at the current spatio-temporal point, lead-83

ing to an implicit representation formula for the solution. We demonstrate that this84

new formula coincides with the classical Hopf and Lax formulas, which provides the85

viscosity solution for HJ PDEs in the case where either the Hamiltonian or the initial86

function is convex. Notably, the implicit formula is simpler than both the Hopf and87

Lax formulas, as it does not require the Legendre transform of either the Hamiltonian88

or the initial function, thereby broadening its practical applicability. Furthermore, al-89

though being based on characteristics, the implicit formula alleviates the need to solve90

the system of characteristic ODEs from the initial state to the present time. From91

an optimal control perspective, we further explore the connection of the proposed92

formula with the Pontryagin’s maximum principle and Bellman’s principle, showing93
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that the proposed implicit solution formula serves as an implicit representation of94

Bellman’s principle.95

Building on this foundation, we propose a deep learning-based approach to solve96

HJ PDEs by learning the implicit solution formula. This method approximates the97

solution as a Lipschitz continuous function, leveraging the powerful expressive capac-98

ity of neural networks. Unlike traditional grid-based methods, our approach does not99

require discretization of the domain, making it highly scalable and efficient, especially100

for high-dimensional problems. This effectively mitigates the curse of dimensionality,101

ensuring that computational time and memory usage scale efficiently with dimension-102

ality. Thanks to the inherent simplicity of the implicit solution formula, it obviates103

the need for computing the Legendre transform and individual characteristic trajec-104

tories, thereby enhancing both its applicability and computational efficiency across a105

wide range of problems. Through extensive and rigorous experimentation, we show106

that the proposed algorithm provides accurate solutions even for problems with up107

to 40 dimensions with negligible increases in computational cost. Importantly, the108

method also shows robust performance on various nonconvex HJ PDEs, for which109

mathematical demonstration has not been established, underscoring its versatility110

and potential.111

We extend our approach to handle HJ PDEs with state-dependent Hamiltonians.112

In such cases, where the characteristic curves are no longer linear, deriving an im-113

plicit solution formula becomes more intricate. To address this, we approximate the114

characteristic curves as piecewise linear segments over short time intervals, applying115

the proposed implicit solution formula at each interval. This leads to an efficient116

time-marching algorithm that can handle state-dependent Hamiltonians, which we117

validate through a series of experiments involving high-dimensional optimal control118

problems. The results demonstrate that the proposed method is not only simple and119

efficient but also effectively solving a wide range of high-dimensional, nonconvex HJ120

PDEs, highlighting its potential as a valuable tool for addressing complex optimal121

control problems and dynamic systems.122

2. Implicit Solution formula of Hamilton-Jacobi Equations.123

2.1. Implicit Solution Formula along Characteristics. In this subsection,124

we introduce a novel implicit solution formula for the Hamilton-Jacobi partial differ-125

ential equation (HJ PDE) defined in a domain Ω ⊂ Rd:126

(2.1)

{
ut +H (∇u) = 0 in Ω× (0, T )

u = g on Ω× {t = 0},
127

where H : Rd → R is the Hamiltonian and g : Ω → R is the initial function. System128

of characteristic ODEs for (2.1), also known as Hamilton’s system, is given by the129

following:130

(2.2a)

(2.2b)

(2.2c)

(2.2d)


ẋ = ∇H
u̇ = q + pT∇H = −H + pT∇H
q̇ = 0

ṗ = 0,

131

where the variables q and p are shorthand for the partial derivatives q = ut and132

p = ∇u. From (2.2d) it is clear that the value of p, which is the sole argument of the133
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Hamiltonian, remains constant along the characteristic. Therefore, the characteristic134

emanated from x (0) = x0 ∈ Ω is a straight line135

x (t) = t∇H (p) + x0,136

and137

u (t,x (t)) = −tH (p) + tpT∇H (p) + u (x0, 0)138

= −tH (p) + tpT∇H (p) + g (x0) .139

Given the constant nature of p along each characteristic line, its value can be deter-140

mined at any intermediate time between the initial and current times. In this context,141

we adopt p as the gradient of the solution at the current time. Substituting p = ∇u142

and expressing x (t) = x ∈ Ω induces that143

x0 = x− t∇H (∇u (x, t)) ,144

and hence we attain the following implicit solution formula for HJ PDEs (2.1):145

(2.3) u (x, t) = −tH (∇u) + t∇uT∇H (∇u) + g (x− t∇H (∇u)) .146

It is worth noting that this implicit formula expresses the solution without requiring147

the Legendre transform of the Hamiltonian H or the initial function g. Moreover, it148

does not require to compute individual characteristic trajectories by solving the system149

of characteristic ODEs. Therefore, it provides a highly practical and straightforward150

approach to solving HJ PDEs. Building upon this formula, we propose a highly simple151

and effective deep learning-based methodology for solving HJ PDEs in section 3.152

A key distinction between conventional approaches based on characteristics and153

the proposed implicit solution formula lies in the treatment of p, which is chosen154

as the gradient of the solution ∇u at the current time t. Since p remains constant155

along each characteristic line, it can be readily determined from the initial data.156

Consequently, conventional methods typically express p in terms of∇g (x0). However,157

these approaches are limited in situations where no characteristic traces back to the158

initial time t = 0, resulting in the gradient at the current time not being accessible159

from the initial data. In contrast, our approach employs the current value of p (t) =160

∇u (x, t), allowing the implicit solution formula to effectively handle such scenarios.161

It is well-established that under certain assumptions on the Hamiltonian H and162

the initial function g, a representation formula for the viscosity solution can be derived.163

The first is the Hopf-Lax formula164

(2.4) u (x, t) = inf
y

{
tH∗

(
x− y

t

)
+ g (y)

}
,165

which holds for convex (or concave) H and Lipschitz g [33, 5, 50], or for Lipschitz and166

convexH and continuous g [68], or also for strictly convexH and lower semicontinuous167

(l.s.c.) g [42, 43]. Here, where H∗ is the Legendre transforms of H. On the other168

hand, Hopf formula169

(2.5) u (x, t) = − inf
z

{
g∗ (z) + tH (z)− xTz

}
170

is valid for Lipschitz and convex (or concave) g and merely continuous H [33, 5], or for171

convex g and Lipschitz H [68]. In the following, we demonstrate that the proposed172

implicit solution formula (2.3) represents these two respective formulas under the173

conditions under which they hold.174

This manuscript is for review purposes only.



NEURAL IMPLICIT SOLUTION FORMULA FOR HJ PDES 5

Theorem 2.1. Assume the Hamiltonian H is differentiable and satisfies175

(2.6)

{
p 7→ H (p) is strictly convex,

lim|p|→∞
H(p)
|p| = +∞,

176

and the initial function g is l.s.c. Then, the continuous function u that satisfies the177

implicit solution formula (2.3) is the viscosity solution of (2.1) a.e.178

Proof. First, we can observe that the implicit solution formula (2.3) exactly sat-179

isfies the initial condition u = g of (2.1) at the initial time t = 0.180

Under the assumptions, the viscosity solution of the HJ PDE is described by181

the Hopf-Lax formula (2.4). By expanding the Legendre transform in the Hopf-Lax182

formula (2.1), the viscosity solution is expressed as follows183

u (x, t) = inf
y

sup
z

{
t
(
zT
(
x− y

t

)
−H (z)

)
+ g (y)

}
(2.7)184

= inf
y

sup
z

{
zT (x− y)− tH (z) + g (y)

}
,(2.8)185

The Euler-Lagrange equation of Hopf-Lax formula leads to186

(2.9) y⋆ = argmin
y

{
tH∗

(
x− y

t

)
+ g (y)

}
= x− t∇H (∇u) .187

Furthermore, differentiating (2.8) with respect to z provides that the optimal z⋆188

satisfies189

x− y⋆ − t∇H (z⋆) = 0.190

Together with (2.9), we have191

(2.10) z⋆ = ∇u.192

Substituting these (2.9) and (2.10) into (2.8) results in the implicit formula (2.3).193

Theorem 2.2. Assume the initial function g satisfies194

(2.11)

{
x 7→ g (x) is convex,

lim|x|→∞
g(x)
|x| = +∞,

195

that the Hamiltonian H is continuous, and that either the H or g is Lipschitz con-196

tinuous. Then, the continuous function u that satisfies the implicit solution formula197

(2.3) is the viscosity solution of (2.1) a.e.198

Proof. Since the viscosity solution is described by the Hopf formula (2.4) under199

these assumptions, it can be written as follows:200

u (x, t) = −g∗ (z⋆)− tH (z⋆) + xTz⋆(2.12)201

= inf
y

{
z⋆T (x− y)− tH (z⋆) + g (y)

}
(2.13)202

= z⋆T (x− y⋆)− tH (z⋆) + g (y⋆) .(2.14)203

Differentiating the both side of (2.12) with respect to x induces204

∂u

∂x
= − ∂

∂z

{
g∗ (z⋆) + tH (z⋆)

}
· ∂z

⋆

∂x
+ z⋆ = z⋆,205
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where the last equality follows from the optimality of z⋆. Consequently, we have206

z⋆ = ∇u. Furthermore, differentiating (2.13) with respect to z provides that the207

optimal y⋆ satisfies208

x− y⋆ − t∇H (z⋆) = 0,209

that is,210

y⋆ = x− t∇H (z⋆) = x− t∇H (∇u) ,211

which concludes the proof.212

Theorems 2.1 and 2.2 offers the theoretical validation of the implicit solution formula213

(2.3) under the assumption of convexity of the HamiltonianH or the initial function g.214

However, this result has not yet been extended to the nonconvex case. Nonetheless, as215

illustrated in Subsubsection 4.2, we present robust empirical evidence demonstrating216

the performance of the proposed approach through extensive experiments on a diverse217

range of nonconvex examples, where neither the Hamiltonian nor the initial function is218

convex. These results suggest the potential applicability and validity of the proposed219

formula in such scenarios.220

To facilitate comprehension of the implicit solution formula, a simple example is221

presented.222

Example 2.1. Consider a one-dimensional example with a quadratic Hamilton-223

ian and a homogeneous initial condition:224

(2.15)

{
ut + u2x = 0 in R× (0,∞)

u = 0 on R× {t = 0}.
225

The viscosity solution to this problem is u∗ = 0. Note that there are infinitely many226

Lipschitz functions satisfying (2.15) a.e. [26], for instance,227

v (x, t) =


0 if | x |≥ t
x− t if 0 ≤ x ≤ t
x− t if − t ≤ x ≤ 0.

228

This example shows that, although there are infinitely many Lipschitz functions that229

satisfy the HJ PDE, the implicit solution formula uniquely characterizes the viscosity230

solution. The implicit solution formula (2.3) corresponding to (2.15) is written as231

(2.16) u = tux.232

For t = 0, (2.16) satisfies the initial condition u = 0. For a fixed time t > 0, (2.16)233

represents an ordinary differential equation (ODE) with a coefficient that depends on234

t, and the ODE admits infinitely many solutions235

u = Cetx, ∀C ∈ R.236

However, in order to satisfy the initial condition u = 0 at t = 0, it follows that C must237

be zero. Therefore, the viscosity solution u∗ = 0 is the unique continuous function238

that satisfies the implicit solution formula (2.16).239
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This example illustrates that, despite the existence of an infinitely many weak240

solutions to the governing HJ PDE, the continuous function that satisfies the implicit241

solution formula (2.3) is the unique viscosity solution. However, it also suggests that,242

at a fixed time t > 0, the implicit formula may admit multiple solutions. For a fixed243

t > 0, the implicit solution formula (2.3) describes a first-order nonlinear static PDE244

(or an ODE in the one-dimensional case) in x, where the time variable t appears as245

coefficients. The absence of boundary conditions in this static PDE at fixed t > 0246

naturally leads to the ill-posedness of the PDE with multiple solutions. Therefore,247

the condition that the implicit formula (2.3) satisfies the initial condition at t = 0 is248

crucial, and finding a continuous function that satisfies the implicit solution formula249

across the entire spacetime domain from the initial data is essential for obtaining the250

unique viscosity solution. It is noteworthy, however, that the above example is taken251

in the unbounded spatial domain R. For the general case of HJ PDEs on a bounded252

domain Ω, boundary conditions are specified. In such cases, the given boundary253

condition serves as the boundary condition for the static PDE described by (2.3) at254

a fixed time, thereby ensuring the uniqueness of the solution.255

Remark 2.3. (Level set propagation) If the Hamiltonian H is homogeneous of256

degree one in its gradient argument, i.e., H takes of the form with a function v :257

Rd → Rd258

(2.17) H (∇u) = v

(
∇u
∥∇u∥

)T

∇u,259

then the implicit formula (2.3) comes down to the following simple formula a.e.260

(2.18) u (x, t) = g

(
x− tv

(
∇u
∥∇u∥

))
,261

where the solution u is constant along the characteristics.262

2.2. Control Perspectives on the Implicit Solution Formula. In this sub-263

section, we revisit the implicit solution formula (2.3) from the perspective of control264

theory, elucidating that it represents an implicit formulation of Bellman’s principle.265

This perspective also enables a comprehensive exploration of the relationships be-266

tween the implicit solution formula and Pontryagin’s Maximum Principle (PMP) and267

the Hopf-Lax formula (2.4), while also highlighting the distinctions between these268

established approaches and the proposed implicit formula.269

Let L = L (q) : Rd → R be the corresponding Lagrangian, that is, L = H∗,270

the Legendre transform of H. Under the assumption (2.6) on the Hamiltonian H, it271

satisfies272 {
q 7→ L (q) is convex,

lim|q|→∞
L(q)
|q| = +∞,

273

and H (p) = L∗ (p) = sup
q

{
pTq− L (q)

}
.274

It is well-known that the viscosity solution u of the HJ PDE275

(2.19)

ut +H (∇u) = ut + sup
q

{
∇uTq− L (q)

}
= 0,

u (x, 0) = g (x)
276
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is represented by the value function of the following corresponding optimal control277

problem:278

(2.20) u (x, t) = inf
q

{∫ t

0

L (q (s)) ds+ g (y (0)) : y (t) = x, ẏ(s) = q(s), 0 ≤ s ≤ t
}
.279

Pontryagin’s maximum principle (PMP) states that the optimal trajectory of280

state y (t) arriving at y (t) = x and costate p (t) satisfies281

(2.21a)

(2.21b)

(2.21c)


ẏ = q, y (t) = x,

ṗ = 0, p (0) = ∇g (y(0)) ,
q = argmax

v

{
pTv − L (v)

}
.

282

Note that this is identical to the characteristic ODEs for the state x (2.2a) and283

the gradient of the solution (2.2d) of the HJ PDEs. Therefore, PMP implies that the284

characteristic of the HJ PDE corresponds to the optimal trajectory.285

We now establish that both the Hopf-Lax formula and the implicit solution for-286

mula can be derived from the PMP in conjunction with the definition of the value287

function. This facilitates a comprehensive understanding of their relationships and288

differences.289

Hopf-Lax Formula. Since the costate p is constant along the optimal trajectory290

(2.21b), the last condition (2.21c) of the PMP implies that q is also constant. There-291

fore, from (2.21a), it follows that the optimal trajectory of y is a straight line, whose292

solution is given by293

(2.22) y (0) = y (t)− tq = x− tq.294

Therefore, the optimal q is expressed by y (0) as follows:295

(2.23) q =
x− y (0)

t
,296

and hence, the minimization with respect to q can be transformed into a minimization297

with respect to y (0) ∈ Rd. Substituting this relation (2.23) into the definition of the298

value function (2.20) leads to the following Hopf-Lax formula:299

u (x, t) = inf
y∈Rd

{∫ t

0

L

(
x− y

t

)
ds+ g (y)

}
300

= inf
y∈Rd

{
tL

(
x− y

t

)
+ g (y)

}
301

= inf
y∈Rd

{
tH∗

(
x− y

t

)
+ g (y)

}
.302

In other words, the Hopf-Lax formula is derived by substituting the control q in terms303

of the initial state y (0) = y, leveraging the fact that the optimal trajectory is linear304

(2.23), as determined by the characteristic ODE of the PMP.305

Implicit Solution formula. The implicit solution formula (2.3) is derived in a306

manner analogous to the Hopf-Lax formula, but it differs by expressing p as the307

gradient of the value function ∇u and additionally removing the Legendre transform.308

From the optimality of q in (2.21c), the Hamiltonian is written as309

(2.24) H (p) = pTq+ L (q) .310
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It follows that311

(2.25) ∇pH =
∂H

∂p
+
∂H

∂q

∂q

∂p
=
∂H

∂p
= q,312

where ∂H
∂q = 0 is induced from (2.21c). Let q∗ be the optimal control. Putting (2.21c),313

(2.22), and (2.23) to the definition of the value function in (2.20) leads to the following314

formula of the value function:315

u (x, t) = tL (q∗) + g (x− tq∗)

= t
(
H (p)− pTq∗)+ g (x− tq∗)

= t
(
H (p)− pT∇pH (p)

)
+ g (x− t∇pH (p)) ,

(2.26)316

where the second and third equalities are derived from (2.24) and (2.25), respectively.317

In other words, by substituting these two expressions (2.24) and (2.25), we derive the318

formula for the value function u that is independent of both the control q and the319

Legendre transform. Since the optimal p is the gradient of the value function ∇u, the320

solution formula (2.26) derived from PMP is identical to the implicit solution formula321

(2.3). Furthermore, it is important to note that the definition of the value function322

(2.20) precisely encapsulates the integral of the characteristic ODE of u (2.2b); that323

is, it directly represents the solution to the characteristic ODE of u (2.2b). In other324

words, the characteristic ODE of u (2.2b), which is not explicitly included in the325

PMP formula (2.21), is inherently embedded within the construction of Bellman’s326

value function.327

Consequently, the PMP (2.21a)-(2.21c), the Bellman’s value function (2.20), the328

Hopf-Lax formula (2.4), and the proposed implicit solution formula (2.3) are all in-329

terconnected. The PMP states that the characteristics of the HJ PDE correspond to330

the optimal trajectory, and Bellman’s principle expresses the value function in terms331

of the solution to the characteristic ODE of u (2.2b). Together, they imply that the332

viscosity solution to the HJ PDE (2.1) is defined along the characteristics.333

However, there are notable differences in how these formulas yield the solution to334

(2.1) from a practical perspective. The PMP necessitates the solution of a single tra-335

jectory of the characteristic ODEs, which implies that, when attempting to compute336

the value function, one must solve a system of ODEs for each trajectory, introducing337

significant computational complexity. The Hopf-Lax formula, by exploiting the lin-338

earity of the optimal trajectory, eliminates the need to solve such ODEs. However, it339

involves the computation of the Legendre transform of the Hamiltonian H, ultimately340

leading to a challenging min-max problem. In contrast, the implicit solution formula341

(2.3) alleviates both the ODE solving of PMP and the min-max problem from the342

Hopf-Lax formula by leveraging the fact that the optimal costate p is the gradient of343

the solution ∇u. Consequently, compared to the PMP and the Hopf-Lax formula, the344

proposed implicit formula provides a more practical and widely applicable approach345

for solving HJ PDEs.346

3. Learning Implicit Solution with Neural Networks. In this section, we347

introduce a deep learning-based approach for solving the implicit solution formula348

(2.3). Building upon the implicit solution formula, we propose the following mini-349

mization problem:350

(3.1) min
u
L (u) :=

∫ T

0

∫
Ω

(
u+tH (∇u)−t∇uT∇H (∇u)−g (x− t∇H (∇u))

)2
dx dt.351

This manuscript is for review purposes only.



10 Y. PARK AND S. OSHER

The minimization problem (3.1) is inherently complex to be efficiently solved using352

classical numerical methods. To address this challenge, we propose a deep learning353

framework that has shown significant effectiveness in optimizing complex problems.354

This approach enables the scalable learning of the implicit solution formula, even in355

high-dimensional settings, thereby allowing the solution of the HJ PDEs (2.1) to be356

represented by a neural network, which is a Lipschitz function.357

3.1. Implicit Neural Representation. We represent the solution u of the358

HJ PDE (2.1) using a standard artificial neural network architecture, a multi-layer359

perceptron (MLP). The MLP is a function uθ : Rd×R→ R defined as the composition360

of functions, which can be expressed as follows:361

(3.2) uθ (x, t) =W (hL ◦ · · · ◦ h0 (x, t)) + b, (x, t) ∈ Rn × R,362

where L ∈ N is a given depth, W ∈ R1×dL is a weight of the output layer, b ∈ R is363

an output bias and the perceptron (also known as the hidden layer) hℓ : Rdℓ−1 → Rdℓ364

is defined by365

hℓ (y) = σ (Wℓy + bℓ) , y ∈ Rdℓ−1 , for all ℓ = 0, . . . , L,366

for weight matrices Wℓ ∈ Rdℓ×dℓ−1 with the input dimension d−1 = d+1, bias vectors367

bℓ ∈ Rdℓ , and a non-linear activation function σ. The dimensions dℓ of the hidden368

layers are also called by the width of the network. A shorthand notation θ is used369

to refer to all the parameters of the network, including the weights {W,W0, · · · ,WL}370

and biases {b,b0, · · · ,bL}. Since Lipschitz continuous activation functions σ are371

used, the MLP fθ is a Lipschitz function and is also bounded on a bounded domain.372

Given the current parameter configuration, the parameters θ are successively adapted373

by minimizing an assigned loss function explained in the subsequent section.374

Representing the solution of HJ PDEs using neural networks offers a scalable375

and efficient approach for modeling the spatio-temporal dependencies of the solution,376

offering several advantages over classical numerical schemes. Classical methods dis-377

cretize the spatial vector field using primitives such as meshes, which scale poorly378

with the number of spatial samples. In contrast, representing the spatio-temporal379

function through networks known as implicit neural representations (INRs) encodes380

spatial and temporal dependencies through neural network parameters θ, each globally381

influencing the function. Consequently, the memory usage of INRs remains indepen-382

dent of the spatial sample size, being determined solely by the number of network383

parameters, which enables scalability in high-dimensional settings as evidenced in384

Table 1 for the proposed method. Additionally, INRs are adaptive, leveraging their385

capacity to represent arbitrary spatio-temporal locations of interest without requiring386

memory expansion or structural modifications. The expressivity of non-linear neu-387

ral networks enables INRs to achieve superior accuracy compared to mesh-based and388

meshless methods, even under the same memory constraints [69, 9]. Furthermore,389

INRs represent the solution as a continuous function rather than at discrete points,390

with activation functions that can be tailored to the solution’s regularity. Thanks391

to the architecture of MLPs, exact derivatives can be computed via the chain rule,392

eliminating the need for numerical differentiation methods such as finite differences.393

The partial derivatives of uθ are efficiently computed using automatic differentiation394

library (autograd) [62].395

3.2. Training. Given that the solution u is represented by the neural network396

uθ, the minimization problem (3.1) reduces to finding the network parameters θ that397
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minimize L in (3.1). For notational convenience, we denote398

S (u) = u+ tH (∇u)− t∇uT∇H (∇u)− g (x− t∇H (∇u)) .399

The integral of L is approximated using Monte Carlo methods400

(3.3) L̂ (θ) = 1

M

M∑
j=1

S (uθ (xj , tj))
2
,401

with the M collocation points {(xj , tj)}Mj=1 randomly sampled from a uniform distri-402

bution U (Ω× [0, T ]). This empirical loss L̂ serves as the loss function for training403

the neural network. The current network parameters are updated using a gradient-404

based optimizer to minimize the loss function L̂. During training, different random405

collocation points are employed in each iteration to ensure accurate learning across406

the entire domain. The partial derivatives of the network uθ are computed through407

autograd when calculating the loss. The training procedure for optimization using408

gradient descent is summarized in Algorithm 3.1.409

Algorithm 3.1 Algorithm for Learning Implicit Solution of HJ PDEs

1: Initialize the network uθ with an initial network parameter θ0.
2: for n = 0, · · · , N do
3: Randomly sample M collocations points {(xj , tj)}Mj=1 ∼ U (Ω× [0, T ]).
4: Calculate the loss by Monte Carlo integration

L̂ (θn) =
1

M

M∑
j=1

S (uθn (xj , tj))
2
.

5: Update θn by gradient descent with a step size α > 0

θn+1 ← θn − α∇θL̂ (θn) .

6: end for
7: return uθN as the predicted viscosity solution to the HJ PDE (2.1).

This algorithm is considerably simpler than existing methodologies in several410

respects and yields remarkable results, as demonstrated in section 4. Previous ap-411

proaches [20, 12, 13, 10], which aimed to obtain the viscosity solution via the Hopf412

or Lax formula, involved calculating the Legendre transform of the Hamiltonian or413

the initial function. Therefore, these methods were restricted to problems where the414

Legendre transform was easily computable or required solving numerically intensive415

min-max problems for each spatio-temporal point, limiting their general applicabil-416

ity. In contrast, our approach bypasses the Legendre transform by using an implicit417

formula, enabling us to handle a broader class of Hamiltonians and initial functions.418

Moreover, while prior methods based on characteristics or PMP [38, 39, 73] necessi-419

tated solving a system of ODEs to track individual trajectories, the proposed method420

eliminates the requirement for explicit trajectory computation.421

The proposed method also overcomes the limitations of classical grid-based nu-422

merical methods, which face challenges when dealing with high-dimensional or large-423

scale problems due to the increasing number of grid points required as the dimension424
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or domain size grows. Unlike classical methods, the deep learning approach is charac-425

terized by its mesh-free nature, which precludes the necessity for a grid discretization426

of the computational domain. The mesh-free approach allows for the random selection427

of collocation points in each iteration, with the selected points gradually covering the428

domain as iterations proceed. Consequently, the computational and memory require-429

ments do not increase significantly with higher dimensions, as evidenced in Table 1430

for the proposed method. Furthermore, under certain mild assumptions, it has been431

demonstrated that this stochastic gradient descent applied using randomly sampled432

collocation points converges to the minimizer of the original expectation loss [40].433

The absence of mesh generation also simplifies the practical implementation of the434

method.435

This approach also offers distinct advantages over existing deep learning methods436

for solving PDEs. As an unsupervised learning method, it solves HJ PDEs given the437

Hamiltonian and initial condition, without requiring solution data for training. This438

addresses the limitations of supervised learning methods [55, 25, 16], which rely on439

extensive solution data and do not guarantee generalization to unseen problems. The440

proposed approach also offers strengths compared to the established unsupervised441

methods, such as PINNs [64] and the DeepRitz method [74]. DeepRitz, which is442

based on a variational formulation, is not suitable for HJ PDEs. PINNs, on the443

other hand, use the residual of the PDE itself as the loss function, which cannot444

guarantee obtaining the viscosity solution for HJ PDEs among multiple solutions.445

Since the viscosity solution cannot be directly derived from the PDE itself, there are446

inherent challenges in obtaining it from the PDE residual loss used in PINNs. In447

comparison, the proposed method learns an implicit formula for the solution that448

naturally inherits the properties of the viscosity solution through the characteristic449

equation, enabling effective solutions to HJ PDEs. Furthermore, most deep learning450

methods for solving PDEs, including PINNs and DeepRitz method, use a training451

loss function that is the linear sum of the loss term corresponding to the PDE and452

the loss term for the initial condition. This requires a regularization parameter to453

balance the two loss terms, which is highly sensitive and difficult to optimize [70].454

In contrast, the proposed method employs an implicit solution formula, whereby the455

initial condition is automatically incorporated by substituting t = 0 into (3.3). As a456

result, our approach eliminates the need for a regularization parameter, using only457

a single loss function and obviating the distinction between the initial condition and458

the PDE.459

When boundary conditions are specified in the spatial domain Ω, we incorporate460

additional loss terms to enforce these conditions. For instance, when a Dirichlet461

boundary condition is imposed with the boundary function h : ∂Ω→ [0, T ]→ R, the462

following loss function is used:463

1

Mb

Mb∑
j=1

(
u
(
xb
j , t

b
j

)
− h

(
xb
j , t

b
j

))2
,464

where the Mb boundary collocation points
(
xb
j , t

b
j

)
∈ ∂Ω × [0, T ] are randomly sam-465

pled from a uniform distribution. Similarly, for a periodic boundary condition, the466

boundary loss term is given as follows:467

1

Mb

Mb∑
j=1

(
u
(
xb
j , t

b
j

)
− u

(
yb
j , t

b
j

))2
,468
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where yb
i ∈ ∂Ω represents the point on the opposite side of the domain Ω correspond-469

ing to xb
i . This boundary loss, weighted by the regularization parameter λ > 0, is470

then added to the implicit solution loss L̂ (3.3) to form the total training loss.471

Remark 3.1. If the goal is to obtain a solution at a specific time t = T rather than472

over the entire temporal evolution, integrating over time in the loss function may not473

be necessary. However, as shown in Example 2.1 in subsection 2.1, when the PDE474

lacks boundary conditions, at a fixed time t > 0, the the implicit solution formula475

at a fixed t results in a differential equation without boundary conditions, leading476

to the possibility of multiple spurious solutions. To address this, it is preferable to477

incorporate an integral over the entire temporal domain in the loss function, thereby478

training a continuous network to find a continuous solution that satisfies (2.3) across479

the entire spacetime domain. On the other hand, when boundary conditions are given480

in the HJ PDE (2.1), these can serve as the boundary condition for the differential481

equation (2.3) at the fixed time, ensuring the uniqueness of the solution. In such482

cases, training the model exclusively with respect to the terminal time t = T may483

suffice.484

3.3. State-dependent Hamiltonian. In this subsection, we propose an algo-485

rithm for the case of a state-dependent Hamiltonian, inspired by the implicit solution486

formula (2.3). Consider the state-dependent HJ PDE defined in a domain Ω ⊂ Rd487

(3.4)

{
ut +H (x,∇u) = 0 in Ω× (0, T )

u = g on Ω× {t = 0}.
488

The system of characteristic ODEs of (3.6) is given by489

(3.5a)

(3.5b)

(3.5c)


ẋ = ∇pH

u̇ = −H + pT∇pH

ṗ = −∇xH,

490

where p = ∇u. Given that p is no longer a constant along the characteristic (3.5c),491

the characteristics are not linear but instead curves. Consequently, computing the492

integral along these curves becomes highly challenging, making the derivation of an493

implicit solution formulation difficult.494

Piecewise Linear Approximation of Characteristic Curves. We assume that p495

remains relatively constant over short time intervals. In other words, we approximate496

the characteristic curve as linear over short time segments. To this end, we discretize497

the temporal domain by498

t0 = 0 < t1 = ∆t < t2 = 2∆t < · · · , tN = N∆t = T.499

For each k = 0, · · · , N − 1, we can write the solution as follows: for t ∈ [tk, tk +∆t],500

u (x, t) = u (x, tk + τ) = uk (x, τ)501

with t = tk+τ , τ ∈ [0,∆t]. Then uk can be regarded as the solution of the following HJ502

PDE for time 0 ≤ t ≤ ∆t with the initial function uk (·, 0) = uk−1 (·,∆t) = u (·, k∆t):503

504

(3.6)

{
ukt +H

(
x,∇uk

)
= 0 in Ω× (0,∆t)

uk (x, 0) = uk−1 (x,∆t) on Ω.
505
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Assuming that p remains constant within each short time interval [tk, tk +∆t], similar506

to the state-independent Hamiltonian discussed in subsection 2.1, we can derive the507

following implicit solution formula for (3.6):508

uk (x, τ) = −τH
(
x,∇uk (x, τ)

)
+ τ∇uk (x, τ)T∇pH

(
x,∇uk (x, τ)

)
(3.7)509

+ uk−1
(
x− τ∇pH

(
x,∇uk

)
,∆t

)
.(3.8)510

This can be regarded as an implicit Euler discretization of the characteristic ODE511

(3.5a):512

x (τ) = x (0) + τ∇pH (x (τ) ,∇u (x (τ) , τ)) +O
(
τ2
)

513

for small τ ∈ [0,∆t]. For notational simplicity, let us denote514

S
[
uk, uk−1

]
(x, τ) =uk (x, τ)− τ∇uk (x, τ)T∇pH

(
x,∇uk (x, τ)

)
515

+ τH
(
x,∇uk (x, τ)

)
− uk−1

(
x− τ∇pH

(
x,∇uk

)
,∆t

)
.516

Time Marching Algorithm. Based on these, we propose the following time march-517

ing method that solves the HJ PDE (3.6) with the state dependent H sequentially518

over short time intervals [tk, tk +∆t]:519

1. Set the initial condition u0 = g.520

2. For k = 1, · · · , N ,521

(3.9) uk = argmin
v

∫ ∆t

0

∫
Ω

(
S
[
v, uk−1

]
(x, τ)

)2
dx dt.522

For each k, the predicted function uk approximates the solution u of (3.6) on tk ≤523

t ≤ tk+1, i.e.,524

uk (x, τ) ≈ u (x, k∆t+ τ) , ∀τ ∈ [0,∆t] ,x ∈ Ω.525

It is important to note that rather than using separate neural networks for each526

uk, the model is trained using a single network, ensuring memory efficiency. After527

training the network for the solution uk−1 on the time interval [tk−1, tk−1 +∆t], the528

network parameters are saved. These saved parameters are then used as the initial529

function to train the same network for the subsequent solution uk by (3.9). As a530

result, when training uk, the network is initialized with uk−1, which accelerates the531

training process. Consequently, although the learning process is divided for time532

marching, the rapid convergence for each uk ensures that the overall training time533

does not increase significantly.534

4. Numerical Results. In this section, we evaluate the performance of the pro-535

posed deep learning-based method for learning the implicit solution formula through a536

series of diverse examples and high-dimensional problems. Experiments are conducted537

on up to 40 dimensions, and both qualitative and quantitative results are presented.538

Although theoretical verification has not yet been established, extensive experiments539

on nonconvex Hamiltonians are also included, demonstrating the effectiveness of the540

proposed method in learning viscosity solutions.541

To assess the scalability of the proposed method, we maintain the same exper-542

imental configurations across all cases, regardless of dimensionality or domain size.543

All experiments are conducted using an MLP (3.2) of a depth L = 5 and a width544

This manuscript is for review purposes only.



NEURAL IMPLICIT SOLUTION FORMULA FOR HJ PDES 15

64 with the softplus activation function σ (x) = 1
β log

(
1 + e100x

)
. The network is545

trained for for N = 200, 000 epochs using the gradient descent with an initial learning546

rate of 10−3 decayed by a factor of 0.99 whenever the loss decreased. In each epoch,547

M = 5, 000 collocation points were uniformly randomly sampled from the domain.548

When boundary conditions are given, the regularization parameter λ is set to 0.1 and549

the number of boundary collocation points Mb is set to 200. All experiments are550

implemented on a single NVIDIA GV100 (TITAN V) GPU.551

4.1. Convex Hamiltonians. We begin by measuring the error with respect to552

the true solution for the theoretically validated convex Hamiltonian. Experiments553

are conducted in up to 40 dimensions. In addition to accuracy, we also measure554

computational time and memory consumption to assess the efficiency of the approach555

for high-dimensional problems.556

Example 4.1 (Burgers’ equation). Consider the Burgers’ equation with the557

quadratic Hamiltonian H (p) = 1
2 ∥p∥

2
2 and initial function g (x) = ∥x∥1. Experiments558

were conducted on the 1, 10, and 40 dimensions. The Mean Squared Error (MSE)559

with respect to the exact solution is summarized in the first row of Table 1.560

To assess how the computational cost increases with dimension, we measure both561

computational time and memory consumption. The time taken for each training epoch562

was averaged over the total 10,000 training epochs, while the memory consumption is563

recorded as the maximum memory usage during a single epoch. The average values564

for these measurements across the three examples, including the two provided below,565

are reported in Table 1. It can be observed that neither computational time nor mem-566

ory consumption increases sharply with dimension. It is important to emphasize that567

the computational time reported in Table 1 refers to the time required to obtain the568

solution function over the entire spatio-temporal domain, rather than the time taken569

to compute the solution at discrete points or on a grid. Moreover, as discussed in570

subsubsection 3.1, the memory requirements of implicit neural representations are571

primarily determined by the size of the network. Increasing the dimension does not572

significantly alter the overall network size, except for the increase in the input di-573

mension of the input layer. Consequently, the results in Table 1 demonstrate that574

memory usage is nearly independent of dimensionality. These findings demonstrate575

that deep learning methods are highly scalable with respect to dimensionality, making576

them well-suited for addressing high-dimensional problems.577

Example 4.2 (Concave Hamiltonian). Consider the quadratic Hamiltonian578

H (p) = − 1
2 ∥p∥

2
2 and initial function g (x) = ∥x∥1. Experiments were conducted on579

the 1, 10, and 40 dimensions until time T = 1. MSE with respect to the exact solution580

is reported in the second row of Table 1.581

Example 4.3 (Level set Propagation). We consider the level set equation [57]582

that governs the collision of two spheres, initially separated and moving along their583

respective normal directions, which ultimately results in a collision. The level set584

propagation is written by585

ut + ∥∇u∥2 = 0,586

where the initial function g is given as the signed distance function for two circles587

with centers at (−0.3, 0, · · · , 0) and (0.3, 0, · · · , 0), and radius of 0.2. Experiments588

were conducted on the 1, 10, and 40 dimensions with T = 1. MSE with respect to589

the exact solution is summarized in the bottom row of Table 1. Figure 1 depicts the590

obtained solution for the two-dimensional case.591
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Table 1
The mean squared errors with the exact solution, the average computational time per epoch, and

the memory usage for Examples 4.1, 4.2, and 4.3 across dimensions d = 1, 10, 40 are presented. The
computational time is measured as the average across three examples over a total of 10,000 epochs.
Maximum memory consumption per iteration is measured. It is observed that the computational
time and memory usage do not increase significantly as the dimension increases.

Problem d = 1 d = 10 d = 40

Example 4.1 1.14E-7 2.56E-5 1.30E-3
Example 4.2 8.59E-6 1.63E-4 1.23E-3
Example 4.3 7.08E-6 5.57E-5 1.13E-3

Time (s) per Epoch 0.01518 0.01630 0.01864
Memory (MB) 42.648 42.648 43.623

Fig. 1. Iso-contours of the numerical solution to two-dimensional collision of circles in Exam-
ple 4.3. The predicted zero leve lsets are represented by red curves.

4.2. Nonconvex Hamiltonians. In this subsection, we present experimental592

results for various Hamiltonians that are neither convex nor concave. While the the-593

oretical proof for the proposed implicit solution formula has not yet been established594

in the nonconvex case, the experiments show that the proposed method effectively595

yields viscosity solutions.596

Example 4.4. We solve the nonlinear equation with a nonconvex Hamiltonian597

ut − cos

(
d∑

i=1

uxi
+ 1

)
= 0,598

with the initial function g (x) = − cos
(

π
d

∑d
i=1 xi

)
, and periodic boundary conditions.599

The results for d = 1, 2 are depicted in Figure 2. The results are plotted up to time600

T = 0.2, at which point kinks have already emerged in the solution.601

Example 4.5. The two-dimensional Riemann problem with a nonconvex flux602 {
ut + sin (ux + uy) = 0,

u (x, y, 0) = π (|y| − |x|) .
603

The predicted solution up to T = 1 is depicted in Figure 3.604

Example 4.6. The above nonconvex examples are actually one-dimensional along605

the diagonal. To evaluate the performance of the proposed method on fully two-606

dimensional problems, we solve607 {
ut + uxuy = 0,

u (x, y, 0) = sin(x) + cos(y),
608
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(a) d = 1

(b) d = 2

Fig. 2. The numerical results for Example 4.4.

Fig. 3. The numerical solution for Example 4.5

with periodic boundary condition and T = 1.125. The solution is smooth for t < 1609

and has kinks for t ≥ 1. Results are shown in Figure 4.610

Example 4.7 (Eikonal equation). Consider a two-dimensional nonconvex prob-611

lem that arises in geometric optics:612 {
ut +

√
ux + uy + 1 = 0,

u (x, y, 0) = 1
4 (cos (2πx)− 1) (cos (2πy)− 1)− 1.

613

The results up to time T = 0.45 are shown in Figure 5, where we can observe the614

sharp corners in the solution.615

Example 4.8. Consider the combustion problem [44]:616 {
ut −

√
ux + uy + 1 = 0,

u (x, y, 0) = cos (2πx)− cos (2πy) .
617

Results up to time 0.27 are given in Figure 6.618

Example 4.9. Consider the one-dimensional nonconvex problem619 {
ut + u3x − ux = 0,

u (x, 0) = − 1
10 cos (5x) .

620

The results up to time T = 0.7 are shown in Figure 7, where we can observe can621

observe that the sinusoidal wave becomes progressively sharper.622
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Fig. 4. The numerical solution for Example 4.6

Fig. 5. The numerical solution for Example 4.7

4.3. State-dependent Hamiltonians. This subsection provides experimen-623

tal validation of the methodology proposed for the state-dependent Hamiltonian in624

subsubsection 3.3. It includes error analyses with respect to ∆t and addresses various625

state-dependent Hamiltonians, including a 10-dimensional optimal control problem.626

Example 4.10. We solve the following variable coefficient linear equation [71]:627 {
ut + sin (x)ux = 0,

u (x, 0) = sin(x),
628

with periodic boundary condition. The exact solution is expressed by629

u (x, t) = sin
(
2 arctan

(
e−t tan

(x
2

)))
.630

We compute the solution up to T = 1. Since the characteristic curve for the state-631

dependent Hamiltonian is approximated linearly, the accuracy of the algorithm is in-632

fluenced by the size of ∆t. To verify this, we conducted experiments for various values633

of ∆t = 0.5, 0.25, 0.1, and the results are summarized in the top row of Table 2. The634

results show that the linear approximation of the proposed algorithm yields first-order635

accuracy with respect to ∆t.636

Example 4.11. We solve the following the two-dimensional linear equation which637

describes a solid body rotation around the origin [11]:638

ut − yux + xuy = 0, (x, y) ∈ (−1, 1)2639

where the initial condition is given by640

g (x, y) =


0 0.3 ≤ r,
0.3− r 0.1 < r < 0.3

0.2 r ≤ 0.1,

641

where r =
√

(x− 0.4)2 + (y − 0.4)2. We also impose the periodic boundary condition.642
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Fig. 6. The numerical solution for Example 4.8

Fig. 7. The numerical solution for Example 4.9.

The exact solution is643

u (x, y, t) = g (x cos t+ y sin t,−x sin t+ y cos t) .644

We compute the solution up to T = 1 and the numerical errors for ∆t = 0.5, 0.25, 0.1645

are reported in the second row of Table 2. As in the previous example, we observe646

that the error increases linearly as ∆t increases.647

Example 4.12. We solve an optimal control problem related to cost determina-648

tion [60]:649 {
ut + ux sin y + (sin y + sign (uy))uy − 1

2 sin
2 y − (1− cosx) = 0,

u (x, y, 0) = 0,
650

with periodic conditions. The result at T = 1 is presented in Figure 8 and is qualita-651

tively in agreement with [60].652

Example 4.13. We solve the problem associated with the state-dependent Hamil-653

tonian well-known as the harmonic oscillator:654

H± (x,p) = ±1

2

(
∥x∥22 + ∥p∥

2
2

)
.655

We consider the two-dimensional problem where the initial function is the level set656

function of an ellipsoid657

(4.1) g (x, y) =
1

2

(
x2

2.52
+ y2 − 1

)
.658

The results up to T = 0.4 are depicted in Figure 9.659

Example 4.14. We consider a state-dependent nonconvex Hamiltonian of the fol-660

lowing form given in [13]:661

H (x, p) = −c (x) p1 + 2 |p2|+ ∥p∥2 − 1,662
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Table 2
The mean squared errors (MSE) and relative mean square errors (RMSE) with the exact solu-

tion for Examples 4.10 and 4.11 with ∆t = 0.5, 0.25, 0.1.

Problem ∆t = 0.1 ∆t = 0.25 ∆t = 0.5
MSE RMSE MSE RMSE MSE RMSE

Example 4.10 3.27E-6 6.57E-6 8.82E-6 1.61E-5 1.26E-5 2.26E-5
Example 4.11 6.29E-7 1.25E-3 3.88E-6 2.10E-3 6.12E-6 4.32E-3

Fig. 8. The numerical solution for Example 4.12.

where p = (p1, p2) and663

(4.2) c (x) = 2
(
1 + 3 exp

(
−4 ∥x− (1, 1)∥22

))
.664

We employ the initial function as presented in Example 4.13. The results up to T = 1665

are presented in Figure 10, which are consistent with those reported in [13].666

Example 4.15. We test the proposed method for a state-dependent nonconvex667

Hamiltonian of the following form given in [13]:668

H (x, p) = −c (x) |p1| − c (−x) |p2| ,669

where we write p = (p1, p2) and c (x) is a coefficient function as given in (4.2). The670

initial function g (4.1) presented in Example 4.13 is employed in this instance. The671

results up to T = 0.3 are presented in Figure 11 and the results are in agreement with672

those reported in [13].673

Example 4.16. We solve the following optimal control problem:674

u (x, t) = inf
{
g (x (0)) ; ẋ (t) = f (x (t))a (t) , x (t) = x, ∥a (t)∥2 ≤ 1

}
,675

where g is defined by676

g (x) =
1

2

(
xTAx− 1

)
677
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(a) H+

(b) H−

Fig. 9. The numerical results for Example 4.13.

Fig. 10. The numerical solution for Example 4.14.

with A = diag(0.25, 1) and f is given by678

f (x) = 1 + 3 exp
(
−4 ∥x− (1, 1)∥22

)
.679

This corresponds to the HJ PDE given in [13]:680 {
ut + f (x) ∥∇u∥2 = 0

u (x, 0) = g (x) .
681

When solving the maximization problem sup g (x (T )) with the same constraints, we682

obtain the following HJ PDE:683 {
ut − f (x) ∥∇u∥2 = 0

u (x, 0) = g (x) .
684

The results for both the minimization (at T = 0.2) and maximization (at T = 0.5)685

problems are presented in Figure 12 and are consistent with the results in [13].686

Example 4.17. Consider the following 10-dimensional quadratic optimal control687

problem presented in [10]:688

u (x, t) = inf
{∫ t

0

∥ẋ (s)∥2 − ψ (x (s)) ds+ g (x (0)) ;x (t) = x
}
,689
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Fig. 11. The numerical solution for Example 4.15.

(a) Minimization (b) Maximization

Fig. 12. The numerical solution for Example 4.16 with ∆t = 0.1.

where the potential function ψ : Rd → (−∞, 0] is ψ (x) =
∑d

i=1 ψi (xi), where each690

function ψi : R→ (−∞, 0] is a positively 1-homogeneous concave function given by691

ψi (x) =

{
−aix x ≥ 0,

bix x < 0,
692

with parameters (a1, · · · , ad) = (4, 6, 5, · · · , 5) and (b1, · · · , bd) = (3, 9, 6, · · · , 6). The693

corresponding HJ PDE reads:694 {
ut +

1
2 ∥∇u∥

2
+ ψ (x) = 0

u (x, 0) = g (x) .
695

We conduct experiments for the two initial cost functions:696

• A quadratic initial function g1 (x) = 1
2 ∥x− 1∥22, where 1 denotes the d-697

dimensional vector whose elements are all one.698

699

• A nonconvex initial function700

g2 (x) = min
j∈{1,2,3}

gj (x) = min
j∈{1,2,3}

1

2
∥x− yj∥22 − αj ,701

where y1 = (−2, 0, · · · , 0), y2 = (2,−2,−1, 0, · · · , 0), y3 = (0, 2, 0, · · · , 0),702

α1 = −0.5, α2 = 0, and α3 = −1.703

Figure 13 presents two-dimensional slices of the solutions in the xy plane for both704

cases up to time T = 0.5. The results demonstrate that the evolution of the solution705

is non-trivial, as evidenced by the nonlinear progression of the level sets over time,706

exhibiting multiple kinks. These findings are consistent with the experimental results707

presented in [10].708
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(a) g1

(b) g2

Fig. 13. The numerical results for Example 4.17.

5. Conclusion. We have introduced a novel implicit solution method for HJ709

PDEs derived from the characteristics of the PDE. This formula aligns with the710

Hopf-Lax formula for convex Hamiltonians but simplifies it by removing the need711

for Legendre transforms, thereby enhancing computational efficiency and broadening712

its practical applicability. The proposed formula not only bridges the method of713

characteristics, the Hopf-Lax formula, and Bellman’s principle from control theory714

but also offers a simple and effective numerical approach for solving HJ PDEs. By715

integrating deep learning, the formula provides a scalable method that effectively716

mitigates the curse of dimensionality. Experimental results demonstrate its robustness717

and effectiveness across various high-dimensional and nonconvex problems without718

tuning the configuration of the deep learning model. These findings validate the719

method as a versatile and computationally efficient tool for solving high-dimensional,720

nonconvex dynamic systems and optimal control problems governed by HJ PDEs.721

An important direction for future work includes a rigorous analysis of the pro-722

posed implicit solution formula. While experimental results demonstrate the method’s723

effectiveness on various nonconvex problems, a comprehensive analysis is needed to724

confirm whether the proposed formula describes the viscosity solution of HJ PDEs in725

nonconvex problems. Since the formula involves the first derivatives and is a compos-726

ite of multiple terms, the proposed minimization problem (3.1) is nonconvex, making727

the convergence of gradient descent non-trivial. Consequently, a convergence analysis728

would be an important future endeavor.729

Regarding the deep learning approach, we approximate the expectation loss (3.1)730

using Monte Carlo integration (3.3), which introduces a discrepancy between the731

empirical and expectation losses. A valuable research direction could involve investi-732

gating whether the stochastic gradient descent process, with its random collocation733

points at each epoch, converges to the global minimum of the expectation loss in the734

context of stochastic approximation. Although we focused on scalability by maintain-735

ing a fixed model configuration across experiments, future research should explore the736

optimal selection of collocation points and network size for different problem dimen-737

sions. Furthermore, the investigation of using automatic differentiation to compute738

exact derivatives of the network, rather than finite differences such as ENO/WENO,739
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presents an intriguing avenue for future research, particularly in its ability to capture740

shocks. For state-dependent Hamiltonians, the development of higher-order methods741

beyond the proposed first-order linear approximation of the characteristic curve would742

be a promising direction. Finally, the simplicity and efficiency of the proposed method743

open up avenues for its application to a wide range of problems, including level set744

evolutions, optimal transport, mean field games, and inverse problems, which would745

constitute valuable extensions of this work.746
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