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Abstract

We present a generalized version of the discretization-invariant neural operator in [43]
and prove that the network is a universal approximation in the operator sense. Moreover, by
incorporating additional terms in the architecture, we establish a connection between this
discretization-invariant neural operator network and those discussed in [7] and [26]. The
discretization-invariance property of the operator network implies that different input func-
tions can be sampled using various sensor locations within the same training and testing
phases. Additionally, since the network learns a “basis” for the input and output function
spaces, our approach enables the evaluation of input functions on different discretizations.
To evaluate the performance of the proposed discretization-invariant neural operator, we
focus on challenging examples from multiscale partial differential equations. Our experimen-
tal results indicate that the method achieves lower prediction errors compared to previous
networks and benefits from its discretization-invariant property.

1 Introduction

Operator learning [7, 26, 43, 21] is an approach to approximate mappings between two func-
tion spaces, and can be seen as a generalization of the standard machine learning architectures.
These approaches have gained significant attention in recent years, particularly for their applica-
bility to scientific computing applications that require approximations of solution operators for
spatiotemporal dynamics [26, 43, 21]. Operator networks have been used to approximate solu-
tions to parametric partial differential equations (PDEs) [27, 43, 16, 2]. Furthermore, operator
learning has been employed for modeling control problems in dynamical systems [24, 31]. Addi-
tionally, operator learning can be used to train models with varying levels of fidelity [14, 28, 13]
and for data-driven prediction [33, 5].

Operator learning was initially proposed in [7, 6] using a shallow network architecture and was
shown to be a universal approximation for nonlinear continuous operators. Building upon this
work, the Deep Operator Neural Network (DON) was developed in [26, 16] and extended the
network in [7] to deep architectures. In particular, [26] extend the two layer operator network to
networks of arbitrary depth, while [16] generalized the operator network to handle multi-input
and multi-output problems. Convergence analysis of DON can be found in [19, 20]. Additionally,
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[23, 25] investigated operator learning in the presence of noise and proposed accelerated training
methodologies for DON. Another approach, known as the Fourier neural operator (FNO), was
introduced and analyzed in [21, 18, 42, 45]. FNO uses the Fourier transformation and inverse
Fourier transformation on the kernel integral approximation for approximating an operator. A
comparison between DON and FNO in terms of theory and computational accuracy is presented
in [27]. Additional noteworthy operator learning frameworks include [43, 32, 34, 45].

The choice of discretizations and domains is crucial in operator learning, as both the input and
output are functions. A neural operator is said to be input (output) discretization-invariant if
the network can handle varying discretizations for the input (output) function. This means that
the input (or output) functions can be evaluated on different grids during both training and
testing phases [43, 21, 22]. This property is sometimes referred to as resolution-invariant or a
non-uniform mesh approach. A discretization-invariant method is one that does not require the
(1) the input discretization to be fixed, (2) the output discretization to be fixed, and (3) the
input and output spaces to be the same [43]. The Basis Enhanced Learning operator network
(BelNet) was developed as a discretization-invariant approach. BelNet shares similarities with
DON [30] as it learns a representation for the output function space through the construction
net (see Figure 3). However, BelNet also learns the projection of the input functions onto a set
of “basis” terms obtained during training using the projection net. The architecture of BelNet
resembles an encoder-decoder, where the projection net acts as an encoder and the subsequent
layers in the network decode the reduced-order model produced by the earlier layers. Numerical
experiments presented in [43] demonstrate that BelNet can approximate nonlinear operators
without relying on fixed grids, although this property has not been formally proven.

In this work, we present a generalization of BelNet and provide a proof of the universal ap-
proximation theorem in the operator sense. We introduce a sub-network structure called the
nonlinear net, which enhances the flexibility of the architecture. This nonlinear net is motivated
by the universal approximation theorem proposed by [7]. Our proof strategy involves estab-
lishing connections between various discretizations through a proxy sampling that is fixed, thus
allowing us to leverage existing approximation theorems. Furthermore, our proof introduces a
more comprehensive approach through the encoder-decoder structure. Specifically, we demon-
strate that our model obtains a reduced order model within a subnetwork, which while often
stated in the literature, has not been shown. To distinguish our proposed network from previous
work, we refer to the BelNet framework introduced in [43] as “vanilla BelNet,” while our new
network is referred to as “BelNet.” The proposed network is related to the parallel work of [15],
who developed a similar structure based on a universal approximation result for operators with
varying sensors. However, the analysis in [15] relies on having access to the continuous inner
product layer, which does not imply that the conclusions hold for the discrete (approximated)
network.

Data plays a pivotal role in augmenting the learning process for physical systems. Notably, one
can gain insights into the underlying principles governing physical phenomena through data-
discovery [41, 3, 4, 37, 36, 29, 39, 35, 38, 40]. By employing data-driven approaches, these works
have effectively extracted and learned valuable information about the intricate dynamics of the
physical systems or governing model. This is one potential of data-driven methods for scientific
enhancement and for modeling of complex physical processes. Recently, related methods for
solving multiscale problems were proposed, wherein real observation data is employed to enhance
a coarse-scale multiscale model [44]. The approach involves training an operator that can map
the coarse-scale solution (input function) to a finer-scale solution (output function) using the
finer-scale solution obtained at specific locations within the domain.

To evaluate the performance of BelNet, we examine its effectiveness in solving the viscous
Burgers’ equation and learning the mapping between two multiscale models. Previous work [44]
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demonstrated the concept of mapping between coarse and fine-scale solutions using operator
learning, showing its applicability in various examples using DON. In our work, we show that
BelNet offers more flexibility in selecting observation points for the coarse-scale input functions.
To introduce additional complexity to the problem, we employ random sensors to sample the
input functions. The corresponding section provides detailed results.

1.1 Contributions

We summarize the key contributions in this work below.

1. We introduce a generalization of the vanilla BelNet [43], a neural operator that is dis-
cretization invariant, and a proof of the universal approximation property for this extended
model.

2. The new BelNet extends the universal approximation results of [7, 6, 26].

3. We show a learning approach to map between two multiscale models on different grids and
showcase the effectiveness of BelNet in handling challenging observation data.

The rest of the paper is organized as follow. In Section 2, we will review DON, vanilla BelNet,
and the extended BelNet. We then present the universal approximation analysis in Section 3.
In Section 4, we present numerical experiments.

2 Preliminary Results and Important Lemmata

Let Y be a Banach space and assume that K1 ⊂ Y and K2 ⊂ R are both compact. Also, let
V ⊂ C(K1) be compact and G : V → C(K2) be a continuous and nonlinear operator. DON (see
Figure 1) approximates the operator G using a deep neural network. Specifically, in [7] it was
shown that for any ϵ > 0, there exists positive integers M,N,K, constants cki , ζk, θ

k
i , ε

k
ij ∈ R,

points ωk ∈ Rd, yj ∈ K1, where i ∈ [M ], k ∈ [K], j ∈ [N ] such that

∣∣∣∣G(u)(x) −
K∑
k=1

M∑
i=1

cki g

 N∑
j=1

εkiju(yj) + θki

 g(ωk · x + ζk)

∣∣∣∣ < ϵ

holds for all u ∈ V and x ∈ K2.

Inputs

Outputs

u = [u(y1), ..., u(yN )]⊺

branch net 1 b1

branch net K bK

branch net j bj

x ∈ Rd trunk net

t1

tj

tK

⊗
→ G(u)(x)

Figure 1: Stacked version DON.
⊗

denotes the inner product in RK .

3



The sensors are denoted by yi ∈ K1 and the input function u is evaluated on the sensors. That is
y = [y1, ..., yN ]⊺ is the collection of points that represent the discrete grid for the input functions.
Theorem 5 in [7] states that the sensors for all input functions u must be the same (i.e. the
input discretization must be fixed). This constraint imposes limitations on the applicability of
the DON framework in the regime where one does not have control over the input functions
or the sensor locations. Ideally, it would be desirable for the operator learning approach to
allow for different input functions u to have varying or non-uniform discretization, i.e. to have
a discretization-invariant method.

The vanilla BelNet, as displayed in Figure 2, learns the basis functions for both the input
and output function spaces. The authors provide an explanation of the network structure by
examining a special case (linear) and validating the discretization-invariant property through
various numerical experiments. Mathematically, let us introduce weights and biases, qk ∈ Rd,
W 1,k

y ∈ RN1×N , W 2,k
y ∈ RN×N1 , bkx ∈ R, and bky ∈ RN1 , where k = 1, ...,K, and activation

functions ax, ay and au, then the vanilla BelNet, denoted by Nθ, approximates the operator G
as follows,

G(u)(x) ≈ Nθ(u(y), y)(x) =

K∑
k=1

ax

(
(qk)⊺x + bkx

)
au

(
û⊺W 2,k

y

(
ay(W 1,k

y y + bky)
))

, (1)

for x ∈ K2 ⊂ R, u ∈ V , and where y = [y1, ..., yN ]⊺ ⊂ KN
1 and û = [u(y1), ..., u(yN )]⊺. The

network structure is also displayed in Figure 2. We do not assume that the sensors yi ∈ K1 are
uniform for all input functions (i.e. they are not fixed).

Inputs

Projection nets

Construction net Outputs

y = [y1, y2, ..., yN ]⊺

W 2,1
y ay(W 1,1

y y + b1y) := p1

W 2,K
y ay(W 1,K

y y + bKy ) := pK

...... ...... ......
Concatenate the outputs
{p1, ..., pK} to get a matrix
P ∈ RK×N

u = [u1, u2, ..., uN ]⊺ au(Pu)

x = [x1, x2, ..., xd]⊺ ax(Qx + bx) [au(Pu)]⊺ax(Qx+bx)

Figure 2: Plot of the vanilla BelNet structure. Projection nets are K independent fully con-
nected neural network with weights and bias W 2,k

y ∈ RN×N1 , W 1,k
y ∈ RN1×N and bky ∈ RN1 .

Construction net is a fully connected neural network with weights and bias Q ∈ RK×d and
bx ∈ Rd. Here Q = [q1, q2, ..., qK ], where qi ∈ Rd are defined in Equation (1). In addition,
ax, ay, au are activation functions.

The motivation behind the vanilla BelNet stems from Mercer’s theorem, which involves approx-
imating the linear operator through a kernel integral formulations [43]. However, in order to
introduce nonlinearity, the activation function au is incorporated. For flexibility and expres-
siveness, the authors in [43] included an extra trainable layer prior to the activation function,
denoted by the term au(WPu). Here, W represents a trainable matrix of the appropriate
dimension.

In this work, we generalize the vanilla BelNet and prove the universal approximation theorem.
Instead of applying an activation function, we design a network to enforce the nonlinearity, see
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Figure 3. The additional subnetwork is theoretically consistent with an operator approximation
and is partly motivated through the analysis detailed in Section 3.

Inputs

Projection nets

Construction net Outputs

y = [y1, y2, ..., yN ]⊺

W 1
2 σ(W 1

1 y + b11) := p1

WC
2 σ(WC

1 y + bC1 ) := pC

...... ...... ......
Concatenate the outputs
{(p1)⊺, ..., (pC)⊺} to get a
matrix P ∈ RC×N

u = [u1, u2, ..., uN ]⊺
Nonlinear

nets g on Pu

x = [x1, x2, ..., xd]⊺ ax(Qx + bx) [g(Pu)]⊺ax(Qx + bx)

Nonliner nets

Pu ∈ RC

(c1)⊺a(W 1Pu + b1)

(cK)⊺a(WKPu + bK)

...... ...... ...... Concatenate output to
assemble h ∈ RK

Figure 3: BelNet structure. Projection nets are C independent fully connected neural network
with weights and bias W i

1 ∈ RN1×N , W i
2 ∈ RC×N1 and bi1 ∈ RN1 . Construction net is a

fully connected neural network with weights and bias Q ∈ RK×d and bx ∈ RK . Here Q =
[q1, q2, ..., qK ], where qi ∈ Rd. Nonlinear nets are K indepedent neural networks. Specifically,
ci ∈ RI , and W i ∈ RI×C and bi ∈ RI . In addition, ax, σ, a are activation functions.

3 Main Results

In this section, we prove the universal approximation theorem of BelNet in the sense of operators.

Definition 3.1. If a function g : R → R (continuous or discontinuous) satisfies that all linear
combinations ΣN

i=1cig(λix + θi) are dense in C[a, b], where ci, λi, θi ∈ R, then g is called a
Tauber-Wiener (TW) function.

Theorem 3 from [7] proves the universal approximation for functions. Unlike the universal
approximation theorems from [11, 1, 17], the approximation coefficients ci(f) is a functional
which depends on the input function f .

Lemma 3.2 (Theorem 3 from [7]). Suppose H ⊂ Rd is compact, V ⊂ C(H) is also compact,
and g ∈ TW . Let f ∈ V and for any ϵ > 0, there exists an integer K > 0 independent of f , and
continuous linear functionals ci on V such that∣∣∣∣∣f(y) −

K∑
k=1

ci(f)g(wk · y + bk)

∣∣∣∣∣ < ϵ,

for all y ∈ H and f ∈ V .

The following two topological lemmata are used to construct the input function approximation
uk as detailed in Equation 3.
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Lemma 3.3 (Lemma 5 from [7]). Let Y be a Banach space and H ⊂ Y , then H is compact if
and only if the following two statements are true:

1. H is closed.

2. For any η > 0, there is a η−net N(η) = {y1, ..., ym(δ)}, i.e., for any y ∈ H, there is
yk ∈ N(η) such that ∥y − yk∥ < η.

We recall some properties of compact subsets of continuous functions.

Lemma 3.4 (Lemma 6 from [7]). V ⊂ C(H) is compact set in C(H), then it is uniformly
bounded and equicontinuous, i.e.,

1. There is a constant A > 0 such that ∥u(y)∥C(H) ≤ A for all u ∈ V .

2. For all ϵ > 0, there exists δ > 0 such that |u(y′) − u(y′′)| < ϵ for all u ∈ V provided
∥y′ − y′′∥ < δ.

Remark 1. Let f be a continuous functional on V . Pick a sequence ϵ1 > ϵ2 > ... > ϵn → 0, there
exists another sequence δ1 > δ2 > ... > δn > 0, such that, |f(u)− f(v)| < ϵk, for all |u− v| < δk.
By Lemma 3.4, there exists a sequence η1 > η2 > ... > ηn → 0 such that |u(y′)− u(y′′)| < δk for
all ∥y′ − y′′∥ < ηk and u ∈ V .

We can find a sequence {zi}∞i=1 ⊂ H and a sequence m(η1) < m(η2) < ... < m(ηn) such that the
first m(ηk) elements N(ηk) = {z1, ..., zm(ηk)} is a ηk-net of H. For each ηk-net, and zj ∈ N(ηk),
define a function,

T ∗
k,j(y) =

{
1 − ∥y−zj∥H

ηk
, ∥y − zj∥H ≤ ηk,

0, otherwise ,

where y ∈ H. Next, we define,

Tk,j(y) =
T ∗
k,j(y)∑m(ηk)

j=1 T ∗
k,j(y)

, (2)

and a matrix T k ∈ Rm(ηk)×m(ηk), where the (i, j)th-entry of T k is Tk,i(zj). For any u ∈ V , we
define a function,

uk(y) =

m(ηk)∑
j=1

u(zj)Tk,j(y), (3)

and set ûkz = [u(z1), ..., u(zk)]⊺. Furthermore, we define Vk = {uk : u ∈ V } and Ṽ = V ∪
(∪k = 1∞Vk). The next lemma establishes the approximation of u by uk.

Lemma 3.5 (Lemma 7 from [7]). For any u ∈ V = C(K1), and δk > 0, there exists a ηk-net
N(ηk) ⊂ K1, and uk defined as in equation (3) such that,

∥u− uk∥C(K1) < δk.

The next lemma establishes the universal approximation to continuous functional using a two
layer networks.
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Lemma 3.6 (Theorem 4 from [7]). Suppose that g ∈ TW , Y is a Banach space, K1 ⊂ Y is
compact, and V ⊂ C(K1) is also compact. Let f be a continuous functional on V . For any ϵ > 0,
there exist integers I, C > 0, weight and bias W ∈ RI×C and c ∈ RI , b ∈ RI and ẑ = [z1, ...., zC ]
with zi ∈ K1 such that,

|f(u) − c⊺g(Wû + b)| < ϵ,

for all u ∈ V , and ûz = [u(z1), ..., u(zC)]⊺.

Remark 2. The proof appears in Theorem 4 from [7], and we discuss an important remark
regarding the theorem. The sensors {zi}Ci=1 are the evaluation points for the input function
space V . They form an ηk−net of K1, i.e., {zi}Ci=1 = N(ηk) = {z1, ..., zm(ηk)}, where we denote

C = m(ηk). The sensors {zi}Ci=1, constant C and the ηk−net are determined as follows. For
any ϵ > 0, choose m(ηk) large enough such that ∥u−uk∥C(Y ) < δk implies |f̃(u)− f̃(uk)| < ϵ/2.

Here f̃ ∈ Ṽ is the extension of f by the Tietze Extension Theorem, i.e.,

f(w) = f̃(w),∀w ∈ V.

One can then define ηk, and ηk−net (the sensors {zi}Ci=1) as in Remark 1. We will use the
sensors {zi}Ci=1 from [7] to establish the universal approximation theorem for BelNet.

To prove the universal approximation theorem of BelNet, the key is to show there is a neural
network that can map the function values at arbitrary sensors to ûz. In Lemma 3.7, we show
a strategy for selecting a set of appropriate sensors and then prove the existence of the neural
network.

Lemma 3.7. Let ẑ and C be defined from Lemma 3.6. For any ϵu > 0, there exist integers
N, I > 0, Ky ⊂ KN

1 , and neural networks N i : Ky → RC ,

N i(ŷ) = W i
2a(W i

1ŷ + bi1), i ∈ [N ]

and N : Ky → RC×N defined as N (ŷ) = [N 1(ŷ), ...,NN (ŷ)], such that

∥ûz −N (ŷ)u(ŷ)∥F < ϵ,

where W i
1 ∈ RI×N , W i

2 ∈ RC×I , and for any ŷ = [y1, ..., yN ]⊺ ∈ Ky.

Proof. For any δ > 0, by Lemma 3.5, there is a sufficiently large integer Cδ such that that

∥u− uk∥C(K1) < δ. Here uk(y) =
m(ηk)∑
j=1

u(rj)Tk,j(y) is defined as (3) and m(ηk) = Cδ. Moreover

we denote r̂ = [r1, ..., rCδ
]⊺.

For any N > 0 and ŷ = [y1, . . . , yN ]⊺ ∈ KN
1 we can define two continuous operators Ty : KN

1 →
RN×Cδ and Tz : KC

1 → RC×Cδ as

Ty(ŷ) =

Tk,1(y1) ... Tk,Cδ
(y1)

... ... ...
Tk,1(yN ) ... Tk,Cδ

(yN )

 , Tz(ẑ) =

Tk,1(z1) ... Tk,Cδ
(z1)

... ... ...
Tk,1(zC) ... Tk,Cδ

(zC)

 ,

where Tk,j is defined in Equation (2). For any fixed ϵu, δ, and N , we want to construct a subset
Ky ⊂ KN

1 , a continuous v : Ky → RC×N , such that,

v(ŷ)Ty(ŷ) = Tz(ẑ), (4)
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Let us define M(ŷ) = T ⊺
y (ŷ)Ty(ŷ) and set

v(ŷ) = Tz(ẑ)M−1(ŷ)T ⊺
y (ŷ)

for any ŷ ∈ Ky. We then define a subset Ky ⊂ KN
1 as,

Ky =

{
ŷ ∈ KN

1 ,M(ŷ) is invertible and ∥v(ŷ)∥ ≤ ϵu

2
√
Cδ2

− 1

}
, (5)

where ∥ · ∥ is the matrix operator norm. We remark that, for fixed ϵu and C, the set Ky is
nonempty when δ > 0 is sufficiently small and N is sufficiently large (see Remark 3).

Denote Cv = sup∀u∈V ∥u∥V , it follows from the universal approximation theorem for functions
[11] that, for any ϵu

2
√

NC2
v

> 0, there exist neural networks N i of the form W i
2σ(W i

1y + bi1) and

N (y) = [N 1(y), ...,NN (y)] such that,

∥v(y) −N (y)∥C(K1) <
ϵu

2
√

NC2
v

. (6)

For ŷ = [y1, ..., yN ]⊺ ∈ Ky and uk(y) =
Cδ∑
j=1

u(rj)Tk,j(y), by multiplying both sides of uk by v(ŷ),

it follows that,

v(ŷ)uk(ŷ) =

Cδ∑
j=1

u(rj)v(ŷ)Tk,j(ŷ) =

Cδ∑
j=1

u(rj)Tk,j(ẑk) = uk(ẑ). (7)

By equation (7) and Cauchy-Schwartz, we have the bound:

∥N (ŷ)u(ŷ) − u(ẑ)∥F =
∥∥(N (ŷ) − v(ŷ) + v(ŷ)

)
u(ŷ) − u(ẑ)

∥∥
F

=
∥∥(N (ŷ) − v(ŷ)

)
u(ŷ) + v(ŷ)

(
u(ŷ) − uk(ŷ) + uk(ŷ)

)
− u(ẑ)

∥∥
F

≤
∥∥(N (ŷ) − v(ŷ)

)
u(ŷ)

∥∥
F

+
∥∥v(ŷ)

(
u(ŷ) − uk(ŷ)

)∥∥
F

+ ∥uk(ẑ) − u(ẑ)∥F
≤ ∥N (ŷ) − v(ŷ)∥∥u(ŷ)∥F + (∥v(ŷ)∥ + 1)

√
Cδ2.

Utilizing (5) and (6), the estimation follows.

Remark 3. We present one example to show Ky is non-empty. Let ŷ = [r̂, r̂, ...r̂], where we
repeat r̂ n times, and define Ty(ŷ) by,

Ty(ŷ) =

Tr

...
Tr

 , where Tr = Ty(r̂).

We have M = T ⊺
y Ty = nT ⊺

r Tr. Thus if Tr has full column rank Cδ, then the matrix M is
invertible and it follows that

M−1T ⊺
y =

1

n
[(T ⊺

r Tr)
−1T ⊺

r , ..., (T
⊺
r Tr)

−1T ⊺
r ].

We estimate the operator norm of M−1T ⊺
y by studying its largest singular value σ1. We have,

M−1T ⊺
y (M−1T ⊺

y )⊺ = 1
n(T ⊺

r Tr)
−1 which implies that ∥M−1T ⊺

y ∥ = σ1 ≤
√

1
n∥(T ⊺

r Tr)−1∥. By

letting n be large enough, ∥v∥ = ∥Tz∥∥M−1T ⊺
y ∥ can be sufficiently small, and thus Ky is non-

empty.
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Remark 4. M(y) = T ⊺
y (y)Ty(y), this implies that rank(M) = rank(Ty) ≤ min(Cδ, N). Since

M ∈ RCδ×Cδ , M is singular if N < Cδ.

Remark 5. N is the projection net in Figure 3. Nu is the projection coefficients of u onto a
set of functions (“basis”) implicitly learned.

Theorem 3.8 (Universal Approximation Theorem for BelNet). Suppose that a ∈ TW , Y
is a Banach space, K1 ⊂ Y , K2 ⊂ R are all compact. V ⊂ C(K1) is compact and G : V → C(K2)
is continuous and nonlinear. For any ϵ > 0, there exist integers N,C,K, I, weights and biases
W k

x ∈ Rd, bkx ∈ R, W k ∈ RI×C , bk ∈ RI , ck ∈ RI , subset of sensors Ky ⊂ KN
1 and a trainable

network N : Ky → RC×N specified in Lemma 3.7, where Ky satisfies Equation (5). Then the
following inequality holds∣∣∣∣∣G (u) (x) −

K∑
k=1

a(W k
x · x + bkx)(ck)⊺a

(
W kN (ŷ)u(ŷ) + bk

)∣∣∣∣∣ < ϵ,

for all x ∈ K2, ŷ = [y1, y2, ..., yN ]⊺ ∈ Ky, and u ∈ V .

Proof. Since G is continuous and V ⊂ C(K1) is compact, the range G(V ) is also compact in
C(K2). By Lemma 3.2, for any ϵ > 0, there exist a positive integer K and linear continuous
functional Lk, W k

x ∈ Rd, bkx ∈ R such that∣∣∣∣∣G (u) (x) −
K∑
k=1

Lk

(
G(u)

)
a(W k

x · x + bkx)

∣∣∣∣∣ < ϵ

3
,

for all x ∈ K2 and u ∈ V . By Lemma 3.6, for all k, there exist integers C, I, ẑ = [z1, ..., zC ]⊺

with zi ∈ K, ck ∈ RI , W k ∈ RI×C , bk ∈ RI such that

|Lk (G(u)) − (ck)⊺a(W kûz + b)| < ϵ

3CuK
,

where ûz = [u(z1), ..., u(zC)]⊺ and Cu = max
k,x∈K2

a(W k
x · x + bkx). Therefore, we obtain an approxi-

mation to G(u)(x) as in [7] defined by

G (u(ẑ)) (x) =

K∑
k=1

a(W k
x · x + bkx)(ck)⊺a(W ku(ẑ) + bk) (8)

with
∣∣∣G (u(ẑ)) (x) − G(u)(x)

∣∣∣ < 2ϵ

3
. Since a is continuous and KC

1 is compact, we can define

uniformly continuous functions ak : KC
1 → R:

ak(û) = a(W kû + bk).

Thus, there is an ϵu > 0, such that

|ak(û′) − ak(û′′)| <
ϵ

3KLCu
(9)

for all ∥û′ − û′′∥F < ϵu where L = max
k

∥ck∥l1 .

By Lemma 3.7, there exists N,N , and Ky ⊂ KN
1 such that

∥u(ẑ) −N (ŷ)u(ŷ)∥F < ϵu for any y ∈ Ky. (10)
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Letting ŷ = [y1, ..., yN ] ∈ KN
1 , the difference is bounded by∣∣∣∣∣G (u) (x) −

K∑
k=1

a(W k
x · x + bkx)(ck)⊺a

(
W kN (ŷ)u(ŷ) + bk

)∣∣∣∣∣
≤ |G (u) (x) − G(u(ẑ))(x)|︸ ︷︷ ︸

E1

+

∣∣∣∣∣G(u(ẑ))(x) −
K∑
k=1

a(W k
x · x + bkx)(ck)⊺a

(
W kN (ŷ)u(ŷ) + bk

)∣∣∣∣∣︸ ︷︷ ︸
E2

.

By equations 9, 8 and 10, the second term E2 is controlled by:

E2 =

∣∣∣∣∣
K∑
k=1

a(W k
x · x + bkx)(ck)⊺ (ak(ẑ) − ak(N (ŷ)u(ŷ)))

∣∣∣∣∣ < ϵ

3
, (11)

and the total approximation follows accordingly.

4 Numerical Experiments

We apply our approach to a nonlinear scalar PDE and multiscale PDE problems. Specifically,
we first test the proposed BelNet extension on the viscous Burgers’ equation. Then we show
that BelNet can be used to address some of the difficulties associated with learning multiscale
operators. The code and examples will be available when the work is published.

4.1 Parametric Viscous Burgers’ Equation

Consider the viscous Burgers’ equation with periodic boundary conditions:

∂us
∂t

+
1

2

∂(u2s)

∂x
= α

∂2us
∂x2

, x ∈ [0, 2π], t ∈ [0, 0.3]

us(x, 0) = u0s(x),

us(0, t) = us(2π, t),

where u0s(x) is the initial condition that depends on the parameter s and the viscosity is set to
α = 0.1. We consider the operator that maps from the initial condition to the terminal solution
at t = 0.3.

Training Data: In order to obtain more variability between initial samples for the training
phase and to include different levels of steepness in the derivative of the initial data, we generate
the initial conditions as follows. We first compute a short-time solution (t = 0.1) to Burgers’
equation using the periodic boundary conditions, set the viscosity to zero, and use the initial
condition s sin(x) where s ∈ [0, 4]. The solution of the system at t = 0.1 is then used as the
initial condition u0s (resetting time to zero); see the yellow and blue curves in Figure 4 as a
display.

10



Figure 4: Plots of two solutions to the viscous Burgers’ equation with our initialization proce-
dure. Note that each example’s sampling points (i.e. the sensors represented by the black dots)
for the initial condition differ. The yellow curves are used to generate the initial conditions for
the model problem (viscous Burgers’ equation). The initial conditions for the viscous Burgers’
equation are displayed in blue.

The mesh for the input data is as follows. Each initial condition (input function) has 25 sensors,
and we used a total of 200 initial conditions for training. For each initial condition, the true
system is evolved up to time t = 0.3, and a total of 5 time-stamps are collected (the terminal
time is not included). Therefore the space-time mesh contains 25-by-5 total sample locations
for each initial condition.

Testing and observations: We train 100 independent models with the same training dataset,
test on the same dataset of 500 samples and compute the average relative error of 100 predictions.
To test the neural operators’ ability to forecast future states, we do not include the solution at
the terminal time t = 0.3 in the training dataset. For testing, we use solutions from 500 initial
conditions and test each neural operator on the solution at the terminal time with a finer mesh
of 151 grid points. We present the relative errors in Table 1. We compare BelNet with the
vanilla BelNet, which was previously shown to be more accurate than comparable models [43].
With fewer trainable parameters, listed in Table 1, BelNet obtains a small prediction error than
the vanilla BelNet.

Model Relative Error Parameter Count

vanilla BelNet 1.42% 102.93K

BelNet 1.32% 96.5K

Table 1: Relative errors and trainable parameter counts for viscous Burgers equation. The top
row is the vanilla BelNet, while the second row is the BelNet. We perform 100 independent
experiments and present the average relative errors.

4.2 Multiscale Operator Learning

We test BelNet’s performance on the multiscale operator learning problem. In particular, we
apply BelNet to improve a coarse-scale (low-accuracy) solution from a multiscale PDE solver.
This problem was introduced in [44] with the DON framework. Let u0 denote a low-accuracy
coarse-scale solution of a given PDE; the target is to construct an operator G such that G(u0)(·)
is a fine-scale solution of the PDE.

To learn the operator, we assume that some observed fine-scale solution data is available. If
we denote an approximation to the input function u0 as û0 and u(xi) as the fine-scale observed

solution at xi, the dataset for training can then be denoted as {xi, û0, u(xi)}
Np

i=1. We can then
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construct the loss function as,

Np∑
i=1

∥u(xi) −Gθ(û0)(xi)∥2, (12)

where Gθ denotes the neural network with trainable parameter θ.

Since DON is not discretization invariant, i.e., the input function must be discretized in the
same way, û0 is then sampled in the same way for all training samples. This limits the potential
accuracy as seen in numerical tests. To fix this, the authors of [44] used a localized patch
discretization of u0 which was shown to improve the performance of the DON approximation.
However, this is theoretically inconsistent with the DON framework.

Since BelNet is discretization-invariant, a local patch discretize of u0 is theoretically consis-
tent. Let us denote Pi as a patch (neighborhood) around at xi, which is the observed solution
coordinate. For example, a three-point patch for a 1d problem is Pi = {xi − h1i , xi, xi + g1i },
where h1i and g1i are real numbers. The patch is used to discretize the input function u0, i.e.,
ûi = u0|Pi = [u0(xi − h1i ), u0(xi), u0(xi + g1i )]⊺ is the local discretization of u0. To make the
problem more challenging, we assume hi and gi are different for all i. We present a 2D display
of a patch and the candidate sensors’ position in Figure 5.

Figure 5: Plot of a 5×5 patch (red dots) centered at an observation point (black dot). To make
the problem more challenging, we randomize the sensor position. Specifically, we randomly place
a sensor in a neighborhood centered at each red dot. Blue crosses are all candidate locations to
place sensors for the yellow dot, we uniformly pick one blue ’x’ to place one sensor.

4.2.1 One dimensional elliptic equation

We first study a 1D example for which we can obtain an exact homogenized solution u0. In
particular, let us consider the following equation:

− d

dx

(
κ(x/ϵ)

du

dx

)
= f, x ∈ [0, 1],

u(0) = u(1) = 0,

where κ(x) = 0.5 sin(2π x
ϵ ) + 0.8 and f(x) = 0.5. We plot the multiscale permeability κ(x) and

the reference solution in Figure (6).
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Figure 6: 1D elliptic. Left: permeability κ. Right: reference solution.

The relative error of the homogenized solution is 0.07%; we use exact solutions u(xi) as the
observations, xi are uniformly distributed, and Np = 16 points are used in total. We use the
oversampling trick which employs a patch of coarse-scale solutions to capture the input function
(see Figure 5), and the result is presented in Figure 7.

Figure 7: Relative errors with respect to different patch sizes. For each patch size, we perform
100 independent experiments and present the average relative error. All input functions (low
accuracy solution) of each experiment do not share the discretization, and the discretizations
for the same input function are not the same in 100 independent experiments. The larger the
patch size, the more flexibility in sampling the input function, and hence is more challenging to
train. We do not observe an increase of the relative error with respect to the patch, which also
implies that BelNet is discretization-invariant for this example.

Settings, Observations, and Comments: We use Np = 16 exact solutions uniformly
distributed in the domain to improve u0. It is important to note that our focus does not
involve studying the decay of error in relation to the number of observation points, and for a
comprehensive investigation, please refer to the work by [44].

As the size of the patch expands, there is increased flexibility in terms of sensor placement for
sampling the input function. Specifically, we consider the placement of 1, 3, 5, 7, and 9 sensors,
respectively. The locations of the sensors are randomized for each local patch, denoted as hji and

gji , which vary across different samples of u0(xi). Refer to Figure 5 for a display of this random-
ization process. With an increasing number of sensors, the various possible discretizations of
each sample u0 become more numerous, resulting in a more challenging training scenario when
dealing with larger patches. However, the results presented in Figure 7 demonstrate that BelNet
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exhibits discretization invariance, as the accuracy remains unaffected and improves with patch
size.

4.2.2 2D elliptic equation with one fast variable

We consider the following 2D elliptic equation:

−∇ · (κ(x/ϵ)∇u) = f, x ∈ Ω = [0, 1]2, (13)

u(x) = 0, x ∈ ∂Ω, (14)

where κ(x/ϵ) = 2 + sin(2πx/ϵ) cos(2πy/ϵ) and ϵ = 1
8 . We display κ(x) in Figure (8).

Figure 8: 2D elliptic with 1 fast variable. Left: permeability κ. Right: reference solution.

We measure the input function (the low-accuracy solution) by sampling it in a neighborhood
around the observation sensor. In order to obtain the low-accuracy solution, we employ mesh-
dependent solvers that define all solutions on grid points. As the neighborhood around the grid
point sensor expands, there is an increase in the degrees-of-freedom available for sampling the
input function. It is important to highlight that the utilization of different discretizations for the
input functions poses difficulties during training. Therefore, we require a discretization-invariant
tool such as BelNet to address this issue.

Settings and comments on the results: We increase the patch size, perform 100 independent
experiments for each patch size and compute the average relative error. In each experiment,
the input function value u0, representing the low-accuracy solution, was measured by sampling
random points within the patch (neighborhood) surrounding the observation point xi.

The results are displayed in Figure 9. When the patch size is 1, only a single point is used to
sample u0, rendering it insufficient for an accurate approximation. As the patch size increases,
training becomes more challenging due to the increased freedom in sensor placement for sampling
u0. However, the approximation error decreases (in trend) indicating that BelNet can effectively
handle problems with varying input function meshes.
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Figure 9: Relative errors with respect to different patch sizes. For each patch size, we conducted
100 independent experiments and calculated the average relative error. It is important to note
that the input functions (representing low-accuracy solutions) used in the experiments do not
share the same discretization. Furthermore, the discretization of each input function varies
across the 100 independent experiments.

4.2.3 2D elliptic multiscale PDE

We consider the same equation (14) but with different permeability κ:

κ(x, y) = 1 +
sin(2π x

ϵ0
) cos(2π y

ϵ1
)

2 + cos(2π x
ϵ2

) sin(2π y
ϵ3

)
+

sin(2π x
ϵ4

) cos(2π y
ϵ5

)

2 + cos(2π x
ϵ6

) sin(2π y
ϵ7

)
,

where ϵ0 = 1
5 , ϵ1 = 1

4 , ϵ2 = 1
25 , ϵ3 = 1

16 , ϵ4 = 1
16 , ϵ5 = 1

32 , ϵ6 = 1
3 , and ϵ7 = 1

9 . We plot the
permeability and the solution in Figure (10).

Figure 10: 2D elliptic multiscale PDE. Left: permeability κ. Right: reference solution.

We obtain the coarse-scale solution by the multiscale finite element method with one local basis
[12, 9, 10, 8]. We conduct six sets of experiments with patch sizes 1× 1, 3× 3, and 5× 5, 7× 7,
9 × 9 and 11 × 11. We train 100 models for each set of experiments and compute the average
relative errors of the last 100 epochs of 100 models. The results are shown in Figure 11.
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Figure 11: Relative errors with respect to different patch sizes. For each patch size, we perform
100 independent experiments and present the average relative error. It should be noted that the
input functions (representing the low accuracy solution) used in the experiments do not share
the same discretization. Additionally, the discretization of each input function varies among the
100 independent experiments. Even as the patch size expands, BelNet maintains stability.

Settings, Observations, and Comments: We used a set of 16 input function samples,
denoted as u(xi), which are uniformly distributed to improve the initial function u0. When the
patch size is 1, all input functions are sampled as u0(xi). However, this sampling strategy does
not yield a satisfactory approximation to u0, resulting in (slightly more) inaccurate prediction
as compared to a coarse-scale solution. As the patch size increases from 1 × 1 to 11 × 11, we
incorporate a larger number of sensors. Specifically, the number of sensors used is 1, 9, 25, 49,
81, and 121, respectively. Despite the numerical challenge of using more sensors which are non-
overlapping, the prediction accuracy does not deteriorate significantly. The error has a slight
increase between 5 × 5 and 9 × 9 patches which may indicate a saturation of the error within
this patch size window (since the error remain around 3.7%). The relative error decreases again
as the patch size increases.

5 Conclusion

We generalize the vanilla BelNet architecture proposed in [43] by adding a trainable nonlinear
layer in the network. We prove the universal approximation theorem of BelNet in the sense of
operators, extending the results of [6, 7, 26]. In particular, we show that BelNet can be viewed
as a discretization-invariant extension of the operator networks in [7, 7] which allows for several
new applications, particularly to multiscale PDE. In particular, the discretization-invariance
property allows for the input functions to be observed at different sensor locations which is often
the case for applications where the sensor locations move in time or where fluctuations in data
acquisition occurs. For multiscale problems, the randomization of patch location and neighboring
points necessitates the use of discretization-invariant learning. We test the performance on high-
contrast and multiscale parametric PDE. Our experiments show that BelNet typically obtains
about 1.2× to 2× improvement in relative error over the course-scale solution without needing
to fully resolve the multiscale problem. Lastly, it is worth noting that part of the theoretical
analysis shows that the network obtains a (trained) reduced order model and projection. This is
a useful result for assessing the contributions of individual subnetworks within the full operator
learning architecture, i.e. peering into the black-box of deep networks for PDE.
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