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Abstract

We present a new framework for computing fine-scale solutions of multiscale Partial Dif-
ferential Equations (PDEs) using operator learning tools. Obtaining fine-scale solutions of
multiscale PDEs can be challenging, but there are many inexpensive computational methods
for obtaining coarse-scale solutions. Additionally, in many real-world applications, fine-scale
solutions can only be observed at a limited number of locations. In order to obtain approxi-
mations or predictions of fine-scale solutions over general regions of interest, we propose to
learn the operator mapping from coarse-scale solutions to fine-scale solutions using a limited
number (and possibly noisy) observations of the fine-scale solutions. The approach is to train
multi-fidelity homogenization maps using mathematically motivated neural operators. The
operator learning framework can efficiently obtain the solution of multiscale PDEs at any
arbitrary point, making our proposed framework a mesh-free solver. We verify our results
on multiple numerical examples showing that our approach is an efficient mesh-free solver
for multiscale PDEs.

1 Introduction

Obtaining fine-scale solutions for a multiscale partial differential equation (PDE) problem can
be costly, often requiring extensive large-scale computations to fully resolve. In addition, while
coarse scale solutions are easier to observe, we typically only have access to a limited number of
fine-scale solutions in real-world multiscale applications. This limitation becomes particularly
significant when fine-scale information is obtained by only a few samples or from specific sub-
regions within the domain. Therefore, there is a need for methods that effectively utilize coarse
scale solution (via simulations) alongside scarce fine-scale measurements. By addressing this one
could compute accurate fine-scale solutions throughout the domain of interest.

Solving multiscale problems presents significant challenges due to the need for computationally
expensive fine-scale solvers to accurately capture multiscale features. To address this issue, vari-
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ous multiscale methods have been proposed with the aim at resolving these complex phenomena.
Among these methods, multiscale finite element methods (MsFEM) have emerged as particularly
successful techniques [12, 6, 9, 8, 7]. MsFEM operates by first solving for the multiscale basis,
which effectively captures the local multiscale features on a coarse mesh. Subsequently, the
problem is solved using this constructed basis, enabling a computationally effective approach for
tackling multiscale problems. Although using MsFEM provides an effective framework for accu-
rately representing and resolving the multiscale behavior inherent in these challenging problems,
it can still be costly [5, 8, 19, 15, 14].

One technique for handling multiscale problems is through homogenization [13, 1, 19]. A stan-
dard approach is to employ the asymptotic expansion to represent the solution. One can con-
struct a homogenized solution without fully resolving the various scales, which still leads to a
valid approximation to the exact solution. In particular, one can compute the solution to a ho-
mogenized PDE which only contains information at the coarse scale. An alternative formulation
is to establish a connection, in the form of an operator, between a solution at a finer scale and
the homogenized solution. The mathematical formulation and numerical computation of the
operator for this task remains an open problem. However, we propose addressing this problem
through operator learning by creating an efficient deep neural network-based approximation of
the operator that represents the fine-scale solver of the corresponding multiscale PDE.

In operator learning [29, 22, 43, 44] one trains deep neural networks to approximate nonlinear
operators, which are mappings between infinite-dimensional spaces. These operator-learning
frameworks have been successful in scientific computing due to their versatility and efficiency
for various problems arising from physical systems, including modeling dependencies on initial
conditions or parameters. The first operator learning framework for PDE, the Deep Operator
Network (DON), was developed in [29]. DON is built on the universal approximation theorem for
operators from [4] and can effectively learn operators with relatively small datasets. Compared
to more traditional neural networks that learn mappings between vector spaces, DON exhibits
improved generalization behavior on more complex tasks, as demonstrated in various applica-
tions. These include acting as surrogate solvers of PDEs (such as bubble dynamics [23]), and ap-
proximating operators arising in tasks for control systems [25], power grids [31], and multiphysics
problems [2]. In [43, 44], a discretization-invariant extension and analysis of DON was proposed,
which allows the network to handle input functions with different discretizations. Some other
extensions of DON have enabled incorporating physical information, leading to physics-informed
DONs [41], handling noisy data [31, 26], quantifying uncertainty [37, 31, 26, 20], or performing
inverse design for complex applications [30, 39].

In a parallel effort, the Fourier Neural Operator (FNO) was presented in [22]. FNO approx-
imates nonlinear operators by directly parametrizing integral kernels in the Fourier domain.
FNO’s effectiveness has been demonstrated in numerous applications across various domains,
including but not limited to global weather prediction [34], multiphase flow [42], and solving
PDEs with complex geometry [22]. In [18], the authors generalized FNO and proposed neural
operators that can effectively learn operators. Specifically, they formulated the neural operator
as a composition of linear integral operators and nonlinear activation functions. Furthermore,
the authors supported the neural operators by providing a universal approximation theorem,
which demonstrates the existence of a neural operator that can approximate a given nonlinear
continuous operator.

Training effective operator networks for multiscale problems can be expensive due to the re-
quirement of large amounts of high-fidelity (fine-scale) data [40, 39, 28]. However, in practice,
high-fidelity data may be limited. Fortunately, we may have access to mathematical models
that can generate abundant low-fidelity (coarse-scale) data. In such cases, our objective is to
accurately calculate the fine-scale solution by constructing an operator learning framework that
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maps a function (i.e., the solution of the partially known PDE) to a new function that represents
the exact solution of the target PDE. We then use the available data to train this framework,
mixing scarce high-accuracy observation with abundant coarse simulations [36, 35].

Therefore, it is crucial to design operator learning frameworks that can be trained using high-
fidelity data, mathematical models, and low-fidelity data. Several studies [17, 30, 10] have
developed multi-fidelity neural operators to address this need, with applications to complex
tasks such as fluid or materials science. However, they do not consider the uncertainty caused
by using various fidelities or models during training and thus may not be effective in the presence
of noisy data. To bridge this gap, this paper proposes a novel Bayesian deep operator learning
architecture for developing surrogates of multi-scale PDE solvers. The architecture can incor-
porate noisy high-fidelity data and efficient solvers developed based on homogenization, which
is a PDE-based technique for handling multiscale PDEs [13, 1, 38, 16]. The main contributions
of this paper are summarized below.

• We propose a data-driven approach that downscales a given coarse model. This approach
maps coarse-scale solutions to fine-scale solutions directly from data.

• We propose an “oversampling” approach to capture the input function to this operator
through patches. In our numerical experiments, we observed that enlarging the patch
leads to improvement in the prediction error.

• Furthermore, we have designed the first Bayesian, multiscale operator learning framework
that is trained with noisy data. This framework can provide robust and mesh-free solutions,
even from coarse-scale solutions.

• Finally, we demonstrate through multiple numerical experiments that the proposed frame-
work represents an efficient mesh-free solver for multiscale PDEs.

The paper is organized as follows. Section 2 formulates the problem of learning the operator from
coarse-scale solutions to fine-scale solutions. In Section 3, we review the Deep Operator Net-
work framework. Section 4 provides detailed information about the proposed operator learning
frameworks, which are trained with coarse-scale solutions and a limited number of observa-
tions of fine-scale solutions to approximate fine-scale solutions. Section 5 develops a Bayesian,
multiscale operator learning framework that enables reliable prediction of fine-scale solutions,
even when trained with noisy observations. We demonstrate the effectiveness of the proposed
framework with a series of numerical examples in Section 6. Finally, Section 7 concludes the
paper.

2 Problem Formulation

The main goal is to improve the accuracy of a low-scale/low-accuracy model or physical simula-
tion by using real observation data related to a specific physical multiscale process. To address
this, the proposed framework involves first obtaining a coarse-scale solution with lower accuracy
via a numerical solver. Then, an operator learning approach is used to refine the coarse-scale
solution by incorporating available, possibly noisy, observed data. Obtaining the coarse-scale
solution is often a more feasible task in terms of the computational cost or algorithmic complex-
ity. Then, using the coarse-scale solution, the designed operator learning approach will act as a
downscaled multiscale model, providing a fine-scale multiscale solver simultaneously.
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We motivate and justify the descaling operator method as follows. Consider an example of
homogenization of a multiscale elliptic problem:

− ∂

∂xi

(
aij(x/ϵ)

∂

∂xj
uϵ(x)

)
= f(x), x ∈ Ω, (1)

with uϵ(x) = 0 at the boundary ∂Ω. In the above equation, we have used the Einstein notation,
uϵ is the PDE solution, aij is the multiscale permeability, f(x) is the forcing, and Ω is the
domain. We seek uϵ(x) with an asymptotic expansion of the form:

uϵ(x) = u0(x, x/ϵ) + ϵu1(x, x/ϵ) + ϵ2u2(x, x/ϵ) +O(ϵ3) (2)

where uj(x, y), for j = 0, 1, 2, . . ., is periodic in y = x/ϵ with period 1. Denote

Aϵ = − ∂

∂xi

(
aij(x/ϵ)

∂

∂xj

)
.

Then, it follows that:

Aϵ = ϵ−2A1 + ϵ−1A2 + ϵ0A3,

where

A1 = − ∂

∂yi

(
aij(y)

∂

∂yj

)
,

A2 = − ∂

∂xi

(
aij(y)

∂

∂yj

)
− ∂

∂yi

(
aij(y)

∂

∂xj

)
A3 = − ∂

∂xi

(
aij(y)

∂

∂xj

)
.

Thus, we have the decomposition ϵ−2A1uϵ + ϵ−1A2uϵ + ϵA3uϵ = f . By equating the terms with
the same power of ϵ, we obtain:

A1u0 = 0, (3)

A1u1 +A2u0 = 0, (4)

A1u2 +A2u1 +A3u0 = f. (5)

Substitute A1 into equation (3) leads to:

− ∂

∂yi

(
aij(y)

∂

∂yj

)
u0 = 0.

According to the theory of second-order ordinary differential equations, u0 is independent of y.
This simplifies (4) and we have:

− ∂

∂yi

(
aij(y)

∂

∂yj

)
u1 =

(
∂

∂yi
aij(y)

)
∂

∂xj
u0.

Thus, u1(x, y) can be solved by introducing χj(y), which is the solution to the following problem:

− ∂

∂yi

(
aij(y)

∂

∂yj

)
χj =

∂

∂yi
aij(y),

χj is periodic in y with mean 0.
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The equation above is referred to as a cell problem where it needs to be solved within one period
of y, or, in the unit cell Y = [0, 1]d, where d is the dimension of the problem. Then, u1 can be
expressed as follows:

u1(x, y) = χj
∂u0
∂xj

(x).

Substituting the above into (2), we have:

uϵ,1(x) = u0 + ϵχj
∂u0
∂xj

(x), (6)

which is a higher-order approximation of u compared to u0.

Finally, we can express (6) in operator form as follows:

uϵ,1(x) = G(u0)(x). (7)

Here the operator G maps the homogeneized solution (i.e., the coarse-scale solution) u0 to a
finer-scale solution uϵ,1. Our goal is to approximate the operator G using a Deep Operator
Network (DON).

3 A Brief Review of Deep Operator Networks

This section provides a review of the Deep Operator Network (DON) proposed in [29]. DON is a
neural network architecture that approximates mappings between infinite-dimensional spaces. It
is built on the universal approximation theorem of continuous operators, which was introduced
in the seminal works [4, 3]. In particular, DON satisfies the following approximation theorem.
Suppose X is a Banach space, K1 ⊂ X, and K2 ⊂ R are compact sets. If V ⊂ C(K1) is
compact, then the continuous operator G : V → C(K2) can be effectively approximated by a
parameterized function. Specifically, for any ϵ > 0, there exist positive integers M , N , and K,
constants cki , ζk, θ

k
i , and εkij ∈ R, and points ωk ∈ Rd, yj ∈ K1, i = 1, ...,M , k = 1, ...,K, and

j = 1, ...., N such that

∣∣∣∣G(u)(x)−
K∑
k=1

M∑
i=1

cki g

 N∑
j=1

εkiju(yj) + θki

 g(ωk · x+ ζk)

∣∣∣∣ < ϵ

holds for all u ∈ V and x ∈ K2.

The above approximation theorem suggests a neural network architecture for DON illustrated
in Figure 1. The architecture comprises two sub-networks: a branch net and a trunk net.
The branch net is composed of a stacked collection of K networks, which take the function u
discretized using N sensors as input, and output the vector (b1, . . . , bK)⊤. On the other hand,
the trunk net takes the location x within the output function domain as input and outputs
the vector (t1, . . . , tK)⊤. The final output of the DON is obtained through the inner product
between the output vectors of the branch and trunk nets.

It is important to note that the DON inputs contain the independent variable, x, which denotes
the location of the output target function. This means that a well-trained DON can predict
the output function value at any arbitrary point in its domain. We will use this property to
construct an operator learning-based mesh-free solver for multiscale PDEs.
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Inputs

Outputs

u = [u(y1), ..., u(yN )]⊺

branch net 1 b1

branch net K bK

branch net j bj

x ∈ Rd trunk net

t1

tj

tK

⊗
→ G(u)(x)

Figure 1: Stacked version of the Deep Operator Network (DON).
⊗

denotes the inner product
in RK .

4 Proposed Methodology

We use DON to design two operator learning-based algorithms that can approximate the oper-
ator mapping coarse-scale solutions to fine-scale solutions.

The Vanilla Operator Learning Algorithm (without Patches). Here, we design and train a deep
neural network Gθ, with a vector of trainable parameters θ, to approximate the true operator
G(u0(x))(x), which maps the coarse-scale solution u0(x) to the fine-scale solution at any given
location x within the domain Ω. We summarize this vanilla algorithm in Algorithm 1. We also
note that we refer to this algorithm as “without patch” to emphasize that we only use the coarse
solution at a point x, and not any neighboring locations within Ω.

To train the proposed DON Gθ : u0 7→ u, we minimize the loss function:

L(θ) = 1

Np

Np∑
i=1

∥Gθ(u0(xi))(xi)− u(xi)∥2,

using the dataset of Np triplets {u0(xi), xi, u(xi)}
Np

i=1, where u0(xi) is the low-accuracy (coarse-
scale) solution, xi ∈ Ω the given location within the domain Ω, and u(xi) the fine-scale (obser-
vation) solution.

Algorithm 1: Vanilla Operator Learning Without Patch

1 Requires: dataset: {u0(xi), xi, u(xi)}
Np

i=1, where u0(xi) is the low-accuracy (coarse-scale)
solution, xi the location within the domain Ω, and u(xi) the fine-scale (observation)
solution.

2 Use a coarse solver to solve the multiscale equation and obtain u0(xi), where xi ∈ Ω.
3 Train the DON Gθ : u0 7→ u by minimizing the loss function

L(θ) = 1

Np

Np∑
i=1

∥Gθ(u0(xi))(xi)− u(xi)∥2. (8)

4 Predict fine-scale solutions at arbitrary locations x ∈ Ω using the trained DON Gθ∗(u0)(x),
where θ∗ denotes the optimal network parameters.

Remark 1. We have two remarks regarding Algorithm 1.

6



1. The coarse-scale solution u0 can be obtained easily and with low computational cost. One
approach is to use multiscale finite element methods (MsFEM) [12, 6, 5]. Another option
is to use data-free machine learning methods, such as neural homogenization physics-
informed neural networks (NH-PINN) [19]. PINN is a mesh-free solver, which means it
can calculate the solution at any point in the PDE’s domain, allowing u0 to be evaluated
at any point in the domain.

2. The resulting trained DON, Gθ∗(u0(x))(x), with optimal parameters θ∗, is a fine-scale,
mesh-free solver.

The Operator Learning Algorithm with patch. In the vanilla algorithm, the input function u0
(i.e., the coarse-scale solution) is evaluated at a single point xi. However, in Equation 6, ∂u0

∂x (xi)
requires the consideration of the derivative at that point. To approximate this derivative, finite
difference schemes use neighboring points, leading to the idea of sampling a local neighborhood
centered around xi, i.e., the patch.

To illustrate this concept, we provide an example (see Figure 2) involving a 5 × 5 patch for
a two-dimensional (2D) problem. Subsequently, we propose a novel algorithm, the operator
learning with patch algorithm detailed in Algorithm 2 and illustrated in Figure 3, which uses
the patch sampling approach to estimate the desired derivative.

Figure 2: A 5 × 5 patch (red dots) centered at an observation point (black dot). All red dots
represent the sensors used to sample the local input function (coarse-scale solutions) centered
at the black dot (observation).

Formally, we approximate the fine-scale solution u(xi) at any arbitrary point xi within the
domain using the DON Gθ(ûi)(xi). Here, ûi refers to the collection of coarse-scale solutions
{u(x)}x∈Pi evaluated at the patch Pi (i.e., the neighborhood of locations around xi), which
serves as the new input to the branch net.

To train the proposed DON Gθ : ûi 7→ u(xi), we minimize the loss function:

L(θ) = 1

Np

Np∑
i=1

∥Gθ(ûi)(xi)− u(xi)∥2,

using the dataset of Np triplets {ûi, xi, u(xi)}
Np

i=1.

Remark 2. We conclude this section with two remarks concerning the patch.

1. Our numerical experiments have revealed a notable trend: as the size of the patch or
neighborhood increases, the relative error decreases.

2. We use DON to learn the operator. However, since DON is not invariant to the discretiza-
tion of the input function, all patches must share the same discretization.
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Coarse-scale

solver

Patch

{uo(x)}x ∈ Pi

Pi

branch net
coarse-scale

solutions

xi ∈ Ω trunk net

Gθ(ûi)(xi)

fine-scale

solution

Figure 3: A pictorial description of the operator learning algorithm with the patch. First, a
coarse solver generates a collection of coarse-scale solutions ûi = {uo(x)}x∈Pi on the patch Pi

centered at xi ∈ Ω. The collection of coarse-scale solutions ûi is then input to the branch net,
while the target location xi ∈ Ω is input to the trunk net. The proposed operator learning
algorithm with patch outputs the fine-scale solution Gθ(ûi)(xi) = u(xi) at the arbitrary target
location xi ∈ Ω.

Algorithm 2: Operator Learning With Patch

1 Require: dataset: {ûi, xi, u(xi)}
Np

i=1. Here u(xi) is the fine-scale (observation) solution and
ûi = {u(x)}x∈Pi is the collection of coarse-scale solutions {u(x)}x∈Pi evaluated at the
patch Pi (i.e., the neighborhood of locations around xi). For example, a patch of size
three around xi of 1D case is Pi = {xi−1, xi, xi+1}. A 5× 5 2D patch demonstration is
presented in Figure 2.

2 Use a coarse solver to solve the multiscale equation and obtain u0(x), where x ∈ Pi.
3 Train the DON Gθ : ûi 7→ u(x) by minimizing the loss function

L(θ) = 1

Np

Np∑
i=1

∥Gθ(ûi)(xi)− u(xi)∥2.

4 Predict fine-scale solutions at xi ∈ Ω using the trained DON Gθ∗(ûi)(xi), where θ∗ denotes
the optimal network parameters.

5 Bayesian, Multiscale Operator Learning

The conventional optimization framework used to train DON does not accurately quantify un-
certainty and provide robust predictions, which are crucial for creating credible intervals for
scientific and engineering applications. This can lead to unreliable DON predictions and limit
the reliability of DON. However, quantifying the uncertainty associated with limited and noisy
training data, along with the fact that the network is over-parametrization makes this a chal-
lenging task. And this challenge is even greater in operator learning, as it involves mappings
between infinite-dimensional spaces, such as the multiscale operator G. In this section, we ad-
dress this challenge by developing a Bayesian DON (B-DON) [26]. B-DON can create estimators
and credible intervals for the operator that maps the homogenized solution uo to the fine-scale
solution G(uo)(x) for any given x ∈ Ω.

In this Bayesian DON framework, our goal, given the training noisy dataset D, is to construct
a distribution p(G|(uo, x),D) that can predict the operator value of G (the fine-scale solution)
based on the input homogenized solution uo and at any new location x. To achieve this, we first
assume the following factorized Gaussian likelihood function for the data:

p(G|(uo, x), θ) = N (G|Gθ(uo)(x), diag(Σ
2)) =

N∏
j=1

N (Gj |Gθ(uo,j)(xj), σ), (9)

8



where the output Gθ(uo)(x) is the mean of the Gaussian distribution assumed for G, given
the homogenized input uo at location x, and diag(Σ2) is a diagonal covariance matrix with
Σ2 = (σ2, . . . , σ2) on the diagonal [37]. Note that σ can be assumed or estimated from the noisy
data.

The fine-scale solution G for a given homogeneized solution uo at a location x, given the noisy
training data D, is the random variable (G|(uo, x),D). To obtain the density of this random
variable, we need to integrate the model parameters as follows:

p(G|(uo, x),D) =

∫
p(G|(uo, x), θ)p(θ|D)dθ.

Here, p(θ|D) represents the posterior distribution of the trainable parameters. This distribution
enables us to quantify the epistemic uncertainty, which refers to the uncertainty related to the
trainable parameters θ [37, 26].

To obtain this posterior, we use Bayes’ rule:

p(θ|D) ∝ p(D|θ)p(θ),

where p(θ) is the prior distribution of the parameters and p(D|θ) the data likelihood, i.e.,
p(D|θ) =

∏N
j=1 p(Gj |(uo,j , xj), θ), which we calculate using the DON forward pass and the

i.i.d noisy training dataset D. Acquiring the posterior distribution using Bayes’ rule is compu-
tationally and analytically intractable [37]. Therefore, in previous work [26], we approximated
the posterior distribution through samples obtained from it. Specifically, we obtained an M -
ensemble of θ samples, denoted as {θk}Mk=1, as described below.

5.1 Sampling the M-ensemble {θk}Mk=1

To obtain the M -ensemble of parameters {θk}Mk=1, B-DON uses the stochastic gradient replica
exchange Langevin diffusion (SG-reLD), which we developed and studied in [26, 27, 24, 32,
20, 11]. As demonstrated in our previous work, SG-reLD enjoys theoretical guarantees beyond
convex scenarios, effectively handles large datasets, and accelerates convergence to the posterior
distribution p(θ|D).

Specifically, SG-reLD uses two Langevin diffusions to describe the stochastic dynamics of θ,
along with a stochastic process that allows the diffusions to swap simultaneously. The high-
temperature diffusion enables exploration of the parameter space, facilitating convergence to
the flattened distribution of θ. The low-temperature diffusion exploits the same parameter
space, enabling faster convergence to local minima θ∗. By swapping the diffusions, SG-reLD
effectively escapes local minima and allows θk to converge faster to the desired posterior p(θ|D).
For more details about employing SG-reLD with B-DONs, please refer to our previous paper
[26, 27].

In practice, we can use the M -ensemble {θk}Mk=1 obtained using SG-reLD to fit a parametric
distribution, such as the Gaussian distribution

N (µ̄(uo)(Xtest), σ̄
2
e(uo)(Xtest))

for an arbitrary mesh Xtest of locations. The parameters of this distribution are given by:

µ̄(uo)(Xtest) =
1

M

M∑
k=1

Gθk(uo)(Xtest), (10)

σ̄2
e(uo)(Xtest) =

1

M

M∑
k=1

(Gθk(uo)(Xtest)− µ̄(uo)(Xtest))
2 . (11)
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Sampling from the aforementioned distribution allows for estimating credible sets for the fine
solution. This also enables the sampling of more reliable predictions, which can help reduce
the average relative error of test trajectories in the presence of noise, as demonstrated in our
numerical experiments section.

6 Numerical experiments

This section presents several numerical experiments to demonstrate the effectiveness of the pro-
posed framework. For all examples, we conducted 100 independent experiments and presented
the average relative error. We will analyze the error decay with respect to the patch size, the
error decay with respect to the number of observation points, and the error decay in the presence
of noise.

6.1 1D Elliptic

In our first example, we will study a 1D problem for which we can obtain an exact homogenized
solution. Specifically, we will consider the following elliptic equation:

− d

dx
(a(x/ϵ)

du

dx
) = f, x ∈ [0, 1],

u(0) = u(1) = 0,

where a(x) = 0.5 sin(2π x
ϵ )+ 0.8 and f(x) = 0.5. Figure 4 illustrates the multiscale permeability

κ(x) and the reference solution. We set ϵ = 1/16. Then, the coarse-scale solution is obtained

Figure 4: 1D elliptic. Left: permeability κ(x). Right: reference solution.

using classical homogenization theory, and the relative error of the homogenized solution is
0.07%. To further improve the homogenized solution, we employ data from exact solutions at
uniformly distributed 16 points in the domain, i.e., Np = 16 in (8). We evaluate the performance
of our approach as the patch enlarges using the oversampling trick, and we present the results
in Figure 5.

6.2 2D Elliptic Equation with 1 Fast Variable

In this experiment, we consider the following 2D elliptic equation:

−∇ · (κ(x/ϵ)∇u) = f, x ∈ Ω = [0, 1]2, (12)

u(x) = 0, x ∈ ∂Ω, (13)
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Figure 5: Relative errors for 1D elliptic equations are shown with respect to different patch sizes.
The patch size ranges from 1 (using only the observation point) to 9 (using 9 points with the
observation point in the patch center). We trained 100 independent models and present their
average relative errors.

where κ(x/ϵ) = 2 + sin(2πx/ϵ) cos(2πy/ϵ) and ϵ = 1
8 . Figure 6 shows the permeability κ as a

function of x. For the proposed framework, we assume prior knowledge of the exact solution of

Figure 6: 2D elliptic with 1 fast variable. Left: permeability κ(x). Right: reference solution.

the given equation at a limited number of points. To compute the coarse-scale solution, we use
the methodology described in [19]. Specifically, we use a neurohomogenized physics-informed
neural network (NH-PINN) to derive the homogenized solution, denoted as u0. The NH-PINN
method employed in this study is a mesh-free solver, which allows for the generation of coarse-
scale solutions at any point within the domain. As a result, we can always obtain a patch
consisting of coarse-scale solutions centered around the observed fine-scale solutions.

Our goal for this experiment is to use operator learning to approximate the mapping from
the NH-PINN-based coarse-scale solution u0 to the corresponding fine-scale solution uf . By
learning this mapping, we aim to improve the accuracy of the coarse-scale solution by leveraging
the information from the fine-scale solution.

We demonstrate that the operator can be constructed (trained) more effectively as the patch
size increases. We conducted five sets of experiments with patch sizes of 1 × 1, 3 × 3, 5 × 5,
7× 7, and 9× 9. For each set of experiments, we trained 100 models and computed the average
relative errors of the last 100 epochs for each model. The results are shown in Figure 7.

Remarkably, our analysis shows that as the patch size increases, there is a reduction in relative
errors. This observation highlights the benefits of enlarging the patch size in order to achieve
improved accuracy in our models.

11



Figure 7: We investigate the relative errors associated with different patch sizes, ranging from
1 × 1 (using only the observation point) to 9 × 9 (consisting of a total of 81 points, with the
observation point located at the center of the patch). To obtain a thorough evaluation, we train
a total of 100 independent models and report the average relative errors.

In the second part of this numerical experiment, we investigate the relationship between the
relative error and the number of observation (training) points, which represent the exact solution.
To achieve this, we use a fixed patch size of 1, which means that we only include one point from
the neighborhood for each observation sample.

To investigate the influence of the number of observation points, we vary the number of obser-
vation points and present the results in Figure 8. This analysis helps us understand the impact
of the number of observation points on the relative error, providing valuable insights into the
behavior of our model.

Figure 8: We use various exact solutions, uniformly distributed in the domain, as the training
labels (observations). We set the patch size to be 1, which means that only the observation
point coordinate is included as the branch input. By increasing the number of observations
from 9 to 49, we evaluate the predictions on a 100 × 100 mesh to compare the errors. For
each observation set, we train a total of 100 independent models, which capture the inherent
variability in the training process. To assess the performance, we calculate the average relative
error across the ensemble of models. This approach provides a comprehensive evaluation of the
predictive accuracy for different numbers of observations.

To conclude this experiment, we train the proposed multiscale B-DON model using noisy obser-
vations. We again conduct experiments by gradually increasing the number of observations from
9 to 49, while constructing an M-ensemble of models. Then, by sampling the fitted distribution
whose parameters are given in (10) and (11) and using a 100 × 100 Xtest mesh, we predict the
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values of the fine-scale solutions. Figure 9 depicts the results of such experiments, which illus-
trate that the proposed Bayesian multi-fidelity operator learning framework can provide robust
predictions even in the presence of noisy observations.

Figure 9: We employ different numbers of exact solutions as the training labels (observations).
We add Gaussian noise with variance σ2 = 0.0052 to the training labels. We fix the patch size
to be 1, i.e., include only the observation point coordinate as the brunch input. The number of
observations runs from 9 to 49, while we test the prediction on 100× 100 mesh. For each set of
observations, we use as reference the results from the previous section that trains 100 models
with the true labels (DON). We train another 100 models with noisy targets (noisy DON). We
also use the proposed Bayesian framework (B-DON) to sample from the predictive distribution
constructed using an ensemble of M = 100 sets of parameters. For all the cases, we compute
the average relative error.

6.3 2D Elliptic with Multiple Scales

This experiment considers the same equation (13) as before but with a different permeability κ.
Specifically, we let κ be:

κ(x, y) = 1 +
sin(2π x

ϵ0
) cos(2π y

ϵ1
)

2 + cos(2π x
ϵ2
) sin(2π y

ϵ3
)
+

sin(2π x
ϵ4
) cos(2π y

ϵ5
)

2 + cos(2π x
ϵ6
) sin(2π y

ϵ7
)
,

where ϵ0 = 1
5 , ϵ1 = 1

4 , ϵ2 = 1
25 , ϵ3 = 1

16 , ϵ4 = 1
16 , ϵ5 = 1

32 , ϵ6 = 1
3 , ϵ7 = 1

9 . Figure 10 illustrates
the permeability and reference solution.

Figure 10: 2D elliptic with multiple scales. Left: Permeability κ. Right: Reference solution.

We obtain the coarse-scale solution using multiscale finite element methods with one local basis
[12, 6, 9, 5]. Then, we demonstrate that the approximation to the true solution operator can
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be better constructed (learned) as the patch size increases. To illustrate this, we conduct three
sets of experiments with patch sizes of 1 × 1, 3 × 3, 5 × 5, 9 × 9, and 16 × 16. For each set of
experiments, we trained 100 models and computed the average relative errors of the last 100
epochs of all the 100 models. Figure 11 shows the obtained results.

Figure 11: Relative errors of the 2D elliptic example with respect to different patch sizes. The
patch size ranges from 1 × 1 (using only the observation point) to 9 × 9 (using 81 points with
the observation point at the patch center). We trained 100 independent models and present the
average relative errors.

6.4 Radiative Transfer Equation

In this final experiment, we consider the Radiative Transfer Equation (RTE) [33, 21, 7] with a
high-contrast scattering coefficient σ(x, ω) (see Figure 12). The term ‘high-contrast’ refers to
the strong scattering in the channels:

s · ∇I(x, s) =
σ(x, ω)

ϵ

(∫
Sn−1

I(x, s′)ds′ − I(x, s)

)
∀x ∈ D, s ∈ Sn−1.

Here, s is a vector on the unit sphere, and n is the dimension of the problem. In our experiments,
we considered n = 2, and thus Sn−1 = S1 is the unit circle. Additionally, we set ϵ = 0.001 and
D = [0, 1]2. We also introduced the Dirichlet boundary conditions I(x, s) = Iin for entrant
directions s · n < 0, i.e., on Γ− := {(x, s) ∈ ∂D × Sn−1 : s · n < 0}. Here, n is the unit outward
normal vector field at x ∈ ∂D. The condition can be written as:

I = Iin(x, s) for all (x, s) ∈ Γ−.

In our examples, the top, bottom, and right boundaries have zero incoming boundary conditions.
We also assume that the left boundary has non-zero flow injected into the domain. We chose
the multiscale Radiative Transfer Equation (RTE) with high contrast channels for its numerical
complexity [7] and its challenge for learning-based approaches. However, as ϵ approaches zero,
the elliptic solution converges to the RTE [33, 21]. We use the elliptic solution as a low-accuracy
solution and incorporate observed real RTE solutions to learn the downscaling of the model.
Specifically, the RTE solution is used to correct errors in the elliptic solution. To understand
how observations improve downscaling, we conducted a series of experiments with different
numbers of observation points. We present the results in Figure 13.
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Figure 12: Left: demonstration of multiscale scattering σ(x)/ϵ, where ϵ = 0.001. Right: the
solution of the RTE.

Figure 13: We use varying numbers of RTE solutions, uniformly distributed in the domain, as
training labels (observations). The number of observations ranges from 9 to 49. We test the
prediction on a 51× 51 mesh. For each set of observations, we train 50 independent models and
calculate the average relative error.

7 Conclusion

This paper introduces a mesh-free operator learning framework for computing the fine-scale so-
lution of multiscale PDEs. The proposed framework is trained using (i) coarse-scale solutions,
which are inexpensive to obtain, and (ii) a limited number of observations of the fine-scale
solution, to approximate the fine-scale solution at any desired location within the domain. Ad-
ditionally, when the observations are noisy, we designed a Bayesian, multiscale operator learning
approach that can reliably predict fine-scale solutions. Finally, we demonstrated the effective-
ness and reliability of the proposed framework using a 1D elliptic equation, 2D elliptic equations
with one fast variable and multiple scales, and the radiative transfer equation. The results
confirmed that the proposed framework can work as a multiscale, mesh-free solver. In future
work, we plan to design a DON that is invariant to input discretization. This will enable more
effective capturing of derivatives by having patches with different discretizations.

8 Acknowledgement

Z. Zhang was supported in part by AFOSRMURI FA9550-21-1-0084. H. Schaeffer was supported
in part by AFOSR MURI FA9550-21-1-0084, NSF DMS-2208339, and an NSF CAREER Award
DMS-2331100.

15



References

[1] G. Allaire. Homogenization and two-scale convergence. SIAM Journal on Mathematical
Analysis, 23(6):1482–1518, 1992.

[2] S. Cai, Z. Wang, L. Lu, T. A. Zaki, and G. E. Karniadakis. Deepm&mnet: Inferring the
electroconvection multiphysics fields based on operator approximation by neural networks.
Journal of Computational Physics, 436:110296, 2021.

[3] T. Chen and H. Chen. Approximations of continuous functionals by neural networks with
application to dynamic systems. IEEE Transactions on Neural networks, 4(6):910–918,
1993.

[4] T. Chen and H. Chen. Universal approximation to nonlinear operators by neural net-
works with arbitrary activation functions and its application to dynamical systems. IEEE
Transactions on Neural Networks, 6(4):911–917, 1995.

[5] B. Chetverushkin, E. Chung, Y. Efendiev, S.-M. Pun, and Z. Zhang. Computational
multiscale methods for quasi-gas dynamic equations. Journal of Computational Physics,
440:110352, 2021.

[6] E. Chung, Y. Efendiev, and T. Y. Hou. Adaptive multiscale model reduction with gen-
eralized multiscale finite element methods. Journal of Computational Physics, 320:69–95,
2016.

[7] E. Chung, Y. Efendiev, Y. Li, and Q. Li. Generalized multiscale finite element method for
the steady state linear boltzmann equation. Multiscale Modeling & Simulation, 18(1):475–
501, 2020.

[8] E. Chung, Y. Efendiev, S.-M. Pun, and Z. Zhang. Computational multiscale method for
parabolic wave approximations in heterogeneous media. Applied Mathematics and Compu-
tation, 425:127044, 2022.

[9] E. T. Chung, Y. Efendiev, and W. T. Leung. Constraint energy minimizing generalized mul-
tiscale finite element method. Computer Methods in Applied Mechanics and Engineering,
339:298–319, 2018.

[10] S. De, M. Reynolds, M. Hassanaly, R. N. King, and A. Doostan. Bi-fidelity modeling
of uncertain and partially unknown systems using deeponets. Computational Mechanics,
71(6):1251–1267, 2023.

[11] W. Deng, Q. Feng, L. Gao, F. Liang, and G. Lin. Non-convex learning via replica exchange
stochastic gradient mcmc. In International Conference on Machine Learning, pages 2474–
2483. PMLR, 2020.

[12] Y. Efendiev, J. Galvis, and T. Y. Hou. Generalized multiscale finite element methods
(gmsfem). Journal of computational physics, 251:116–135, 2013.

[13] Y. Efendiev and T. Y. Hou. Multiscale finite element methods: theory and applications,
volume 4. Springer Science & Business Media, 2009.

[14] Y. Efendiev, W. T. Leung, W. Li, and Z. Zhang. Hybrid explicit–implicit learning for
multiscale problems with time dependent source. Communications in Nonlinear Science
and Numerical Simulation, 120:107081, 2023.

16



[15] Y. Efendiev, W. T. Leung, G. Lin, and Z. Zhang. Efficient hybrid explicit-implicit learning
for multiscale problems. Journal of Computational Physics, page 111326, 2022.

[16] T. Y. Hou, Q. Li, and H. Schaeffer. Sparse+ low-energy decomposition for viscous conser-
vation laws. Journal of Computational Physics, 288:150–166, 2015.

[17] A. A. Howard, M. Perego, G. E. Karniadakis, and P. Stinis. Multifidelity deep operator
networks. arXiv preprint arXiv:2204.09157, 2022.

[18] N. Kovachki, Z. Li, B. Liu, K. Azizzadenesheli, K. Bhattacharya, A. Stuart, and A. Anand-
kumar. Neural operator: Learning maps between function spaces. arXiv preprint
arXiv:2108.08481, 2021.

[19] W. T. Leung, G. Lin, and Z. Zhang. Nh-pinn: Neural homogenization-based physics-
informed neural network for multiscale problems. Journal of Computational Physics, page
111539, 2022.

[20] G. Li, G. Lin, Z. Zhang, and Q. Zhou. Fast replica exchange stochastic gradient langevin
dynamics. arXiv preprint arXiv:2301.01898, 2023.

[21] Q. Li and K. Newton. Diffusion equation-assisted markov chain monte carlo methods for
the inverse radiative transfer equation. Entropy, 21(3):291, 2019.

[22] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anand-
kumar. Fourier neural operator for parametric partial differential equations. arXiv preprint
arXiv:2010.08895, 2020.

[23] C. Lin, Z. Li, L. Lu, S. Cai, M. Maxey, and G. E. Karniadakis. Operator learning for
predicting multiscale bubble growth dynamics. The Journal of Chemical Physics, 154(10),
2021.

[24] G. Lin, C. Moya, and Z. Zhang. Accelerated replica exchange stochastic gradient langevin
diffusion enhanced bayesian deeponet for solving noisy parametric pdes. arXiv preprint
arXiv:2111.02484, 2021.

[25] G. Lin, C. Moya, and Z. Zhang. On learning the dynamical response of nonlinear control
systems with deep operator networks. arXiv preprint arXiv:2206.06536, 2022.

[26] G. Lin, C. Moya, and Z. Zhang. B-deeponet: An enhanced bayesian deeponet for solving
noisy parametric pdes using accelerated replica exchange sgld. Journal of Computational
Physics, 473:111713, 2023.

[27] G. Lin, Y. Wang, and Z. Zhang. Multi-variance replica exchange sgmcmc for inverse and
forward problems via bayesian pinn. Journal of Computational Physics, 460:111173, 2022.

[28] G. Lin, Z. Zhang, and Z. Zhang. Theoretical and numerical studies of inverse source problem
for the linear parabolic equation with sparse boundary measurements. Inverse Problems,
38(12):125007, 2022.

[29] L. Lu, P. Jin, G. Pang, Z. Zhang, and G. E. Karniadakis. Learning nonlinear operators
via deeponet based on the universal approximation theorem of operators. Nature Machine
Intelligence, 3(3):218–229, 2021.

[30] L. Lu, R. Pestourie, S. G. Johnson, and G. Romano. Multifidelity deep neural operators
for efficient learning of partial differential equations with application to fast inverse design
of nanoscale heat transport. Physical Review Research, 4(2):023210, 2022.

17



[31] C. Moya, S. Zhang, G. Lin, and M. Yue. Deeponet-grid-uq: A trustworthy deep operator
framework for predicting the power grid’s post-fault trajectories. Neurocomputing, 535:166–
182, 2023.

[32] O. Na, Z. Zhang, and G. Lin. A replica exchange preconditioned crank-nicolson langevin
dynamic mcmc method for bayesian inverse problems. arXiv preprint arXiv:2210.17048,
2022.

[33] K. Newton, Q. Li, and A. M. Stuart. Diffusive optical tomography in the bayesian frame-
work. Multiscale Modeling & Simulation, 18(2):589–611, 2020.

[34] J. Pathak, S. Subramanian, P. Harrington, S. Raja, A. Chattopadhyay, M. Mardani,
T. Kurth, D. Hall, Z. Li, K. Azizzadenesheli, et al. Fourcastnet: A global data-driven
high-resolution weather model using adaptive fourier neural operators. arXiv preprint
arXiv:2202.11214, 2022.

[35] B. Peherstorfer, K. Willcox, and M. Gunzburger. Optimal model management for multifi-
delity monte carlo estimation. SIAM Journal on Scientific Computing, 38(5):A3163–A3194,
2016.

[36] B. Peherstorfer, K. Willcox, and M. Gunzburger. Survey of multifidelity methods in uncer-
tainty propagation, inference, and optimization. Siam Review, 60(3):550–591, 2018.

[37] A. F. Psaros, X. Meng, Z. Zou, L. Guo, and G. E. Karniadakis. Uncertainty quantification in
scientific machine learning: Methods, metrics, and comparisons. Journal of Computational
Physics, page 111902, 2023.

[38] T. Robinson, M. S. Eldred, K. E. Willcox, and R. Haimes. Surrogate-based optimization
using multifidelity models with variable parameterization and corrected space mapping.
AIAA journal, 46(11):2814–2822, 2008.

[39] H. Schaeffer. Learning partial differential equations via data discovery and sparse optimiza-
tion. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,
473(2197):20160446, 2017.

[40] H. Schaeffer, R. Caflisch, C. D. Hauck, and S. Osher. Sparse dynamics for partial differential
equations. Proceedings of the National Academy of Sciences, 110(17):6634–6639, 2013.

[41] S. Wang, H. Wang, and P. Perdikaris. Learning the solution operator of parametric partial
differential equations with physics-informed deeponets. Science advances, 7(40):eabi8605,
2021.

[42] G. Wen, Z. Li, K. Azizzadenesheli, A. Anandkumar, and S. M. Benson. U-fno—an enhanced
fourier neural operator-based deep-learning model for multiphase flow. Advances in Water
Resources, 163:104180, 2022.

[43] Z. Zhang, W. T. Leung, and H. Schaeffer. Belnet: Basis enhanced learning, a mesh-free
neural operator. arXiv preprint arXiv:2212.07336, 2022.

[44] Z. Zhang, W. T. Leung, and H. Schaeffer. A discretization-invariant extension and analysis
of some deep operator networks. arXiv preprint arXiv:2307.09738, 2023.

18


	Introduction
	Problem Formulation
	A Brief Review of Deep Operator Networks
	Proposed Methodology
	Bayesian, Multiscale Operator Learning
	Sampling the M-ensemble {k}k=1M

	Numerical experiments
	1D Elliptic
	2D Elliptic Equation with 1 Fast Variable
	2D Elliptic with Multiple Scales
	Radiative Transfer Equation

	Conclusion
	Acknowledgement

