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Abstract

Foundation models, such as large language models, have demonstrated success in addressing
various language and image processing tasks. In this work, we introduce a multi-modal founda-
tion model for scientific problems, named PROSE-PDE. Our model, designed for bi-modality
to bi-modality learning, is a multi-operator learning approach which can predict future states
of spatiotemporal systems while concurrently learning the underlying governing equations of
the physical system. Specifically, we focus on multi-operator learning by training distinct one-
dimensional time-dependent nonlinear constant coefficient partial differential equations, with
potential applications to many physical applications including physics, geology, and biology.
More importantly, we provide three extrapolation studies to demonstrate that PROSE-PDE
can generalize physical features through the robust training of multiple operators and that the
proposed model can extrapolate to predict PDE solutions whose models or data were unseen
during the training. Furthermore, we show through systematic numerical experiments that the
utilization of the symbolic modality in our model effectively resolves the well-posedness problems
with training multiple operators and thus enhances our model’s predictive capabilities.

1 Introduction

Partial differential equations (PDEs) are fundamental models for describing and understanding com-
plex spatio-temporal processes in the physical and computational sciences. They provide one of the
most important techniques for bridging experimental observations, physical principles, and math-
ematical properties. PDEs are effective in describing, analyzing, and predicting a wide array of
real-world phenomena, including highly nonlinear, chaotic, and/or multi-scale physics. Scientific
computing (SC) problems concerning PDE center around simulating a specific equation or class of
equations given a set of parameters, initial states, boundary conditions, etc. The objective is often
to match experimental findings with formal models, forecast state variables, understand parametric
dependencies, or obtain physical parameters.

When formulated as a machine learning task, solving PDEs amounts to approximating a mapping
between input parametric functions and output solutions, equations, or more broadly, output infor-
mation. In this work, we introduce the PROSE-PDE model, designed to be a foundation model
for solving both forward and inverse PDE problems. The model is trained across various classes of
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time-dependent PDEs, including nonlinear diffusive, dispersive, conservation laws, wave equations,
and others. The goal is to produce a neural network model that is able to generalize solutions based
on different parametrized conditions and to extrapolate important physical phenomena between dif-
ferent governing systems. This is a key step towards a foundation model for scientific applications.

Foundation models are deep learning models trained on large datasets often comprising of billions of
learnable parameters in order to serve as base models readily applicable across a broad spectrum of
applications [3]. They have significantly revolutionized natural language processing and the broader
AI landscape through models such as BERT [10], GPT [4, 44, 45], DALL-E [46, 47], Stable Diffu-
sion [48], LLAMA [57, 58], Claude, and others. Foundation models are general-purpose, allowing
fine-tuning of parameters on additional datasets for new downstream tasks. However, to ensure
their efficacy across a wide array of conditions, foundation models necessitate a significant amount
of training data (trillions of tokens [57]) and computational resources.

While generative AI has seen unprecedented success in text-based tasks and image generation, its
application to SC problems remains limited. There are several key differences that make SC problems
challenging for current large language models (LLMs). Firstly, accuracy and precision are crucial
in SC applications. For example, a small numerical error in a coefficient of a (trained) governing
equation can lead to catastrophic errors in downstream computing tasks, especially for chaotic, high-
contrast, or multi-scale systems where errors accumulate rapidly. This also holds for other SC tasks
such as forecasting state variables or optimizing structural parameters. Secondly, SC problems typi-
cally yield unique solutions, e.g., there is only one solution to a well-posed PDE given a fixed set of
conditions, whereas a sentence can convey a similar meaning with a variety of word choices. Addi-
tionally, while LLMs show some forms of reasoning abilities or emergent behaviors, they are not yet
capable of numerical or mathematical reasoning, including understanding relations, ordering, prop-
erties, and symmetries [17, 79]. Though recent efforts have focused on chain-of-thought reasoning
prompts to elucidate step-by-step reasoning processes, in [60] it was shown that a model could give
a plausible argument that is consistent with the predicted answer but is an “unfaithful explanation
of the model’s decision procedure.” For the trustworthiness of LLMs in the scientific domain, being
able to provide reasoning or certified guarantees are necessary. Lastly, SC works in the data-scarce
regime, as experimental data often requires time to acquire and is far less available compared to text
or imaging databases. Thus, numerical simulations and heterogeneous data sources play a stronger
role in training and testing foundation models for scientific applications.

1.1 Main Contributions

This work introduces a multi-modal neural network approach, PROSE-PDE, for predicting solutions
of 1D time-dependent PDE systems and for generating the underlying equations. The workflow of
PROSE-PDE is illustrated in Figure 1. The main contributions and novelties are summarized below.

• PROSE-PDE is the first multi-modal transformer-based approach that encodes and decodes
both numerical and symbolic datatypes (i.e. forward and inverse problems for multiple classes
of PDEs). PROSE-PDE addresses the challenging problem of multi-operator learning.

• We propose an approach that can generalize to new model/physical parameter values not
encountered during training, to unseen timestamps or further into the future, to new initial
condition distributions, to unseen physical systems, and to new physical features, all without
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Figure 1: PROSE-PDE Workflow Illustration: The inputs are the initial data (short-time
observations) and a guess of the partial differential equation itself. The inputs are mapped into
raw features (modality-specific) and then fused together. The fusion process couples cross-modality
information. The decoders output a prediction of the data (as an operator) and write a complete
mathematically valid equation.

fine-tuning. Three detailed studies, which include thirteen experimental settings, demonstrate
the model’s extrapolation capabilities.

• We conduct two ablation experiments varying (1) the input length in time and (2) adjusting
the weighting between the losses (data and symbolic), in order to examine the contribution of
each of the two symbolic modalities (input and output) to the learning process. The results
demonstrate the benefit of multi-modal information and the model’s consistency under different
training settings.

2 Overview

In this section, we introduce operator learning, provide an overview of the main technical aspects of
the proposed model, and discuss related works.

2.1 Multi-Operator Learning (MOL)

Let G : U Ñ V be an operator, where U and V represent function spaces. Single operator learning
(SOL) aims to construct one neural operator Gθ parameterized by θ to approximate the operator
G. In [6, 7], the authors proved the first universal approximation theorem for nonlinear operators,
which has led to several recent approaches in operating learning. For example, the popular Deep
Operator Neural Network (DON) [20, 31, 32, 35, 36] and its variants [74, 75, 77] approximate the
operator by learning the function bases and have the benefit of not requiring a fixed discretization
for the output function. Fourier Neural Network (FNO) [26, 27, 28, 29, 63] utilizes Fourier layers
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within the network architecture and thus are invariant to the input discretization. These advance-
ments have led to successes in applying neural operators to various real-life engineering challenges;
for example, those in climate [19, 42], earth structural [78], physics and astronomy [11, 38, 39], biol-
ogy [71], power systems [32], optimization and UQ [31, 41], multi-fidelity modeling [16, 23, 37, 76], etc.

SOL has been used in solving mathematical and scientific computing problems. For example, SOL
can construct the solution operator of PDEs and learn the mapping from the initial condition of the
system to the solution. Specifically, let us denote a parametrized PDE system S as,

Lpupx, t; qqq “ 0, x P Ω,

Bpupx, t; qqq “ 0, x P BΩ,

upx, 0; qq “ Gpx; qq, x P Ω, q „ D,

where L and B denote the governing equations and boundary conditions. The initial condition G
is a generating function, q denotes the parameters that determine the initial conditions, and D is
the distribution. Thus, one task in SOL is to train the mapping from Gpx; qq to upx, t; qq, i.e. learn
G « Gθ.

A central goal in scientific machine learning is to develop methods that are able to extrapolate,
i.e. to solve tasks beyond those encountered during training. While a trained SOL model may effec-
tively address a specific operator and task, it could encounter difficulties when presented with new
tasks. For instance, if Gθ learns an approximation to the solution operator Gp0q for system Sp0q, it
may struggle to handle a new task represented by a different operator Gp1q associated with a new
system Sp1q. Thus to address this challenge, we develop a multi-operator learning (MOL) approach,
which entails training a single foundation model to learn multiple operators. Specifically, the objec-
tive is to establish an umbrella mapping that can map many distinct encoded operators (with their
corresponding input functions) to an accurate approximation of their output function.

Several MOL methods [33, 40, 52, 67, 68, 69, 70, 73] have recently been proposed. Most of these meth-
ods provide a label (either implicitly or explicitly) to the inputs, signaling to the model which among
the many operators to use. The label is one approach for dealing with the issue of well-posedness, i.e.
disambiguating different equations with similar initial values. The PROSE (Predicting Operators
and Symbolic Expression) approach [33] is a multi-modal foundation model capable of constructing
operators while simultaneously learning equations. Utilizing trainable symbols to encode operators,
PROSE has demonstrated efficacy in encoding high-dimensional dynamical systems and for learning
mathematical representation of the data.

The In-Context Operator Network (ICON) [67, 68, 69] uses an in-context learning approach for
MOL, where existing data from the encountered system is used as implicit labels for the model.
In [70], the model uses a graph transformer to process the graph representation of the equation,
which may suffer from long-range dependency issues and is limited to forward problems. In [52], a
pretrained LLM is used to generate equation labels for the model, and the model’s ability to reason
about equations is thus dependent on how well the LLM understands mathematical and numerical
values. Multiple Physics Pretraining (MPP) [40] directly learns from only the history of the system.
Since no labels are used, MPP may suffer from the well-posedness issues.

While many of these methods show some ability to generalize to new system parameters outside
of the training range; none have demonstrated an ability to generalize to unseen systems and extrap-
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olate physical phenomena without the use of fine-tuning. As the training dataset is rarely exhaustive,
this is a natural requirement for SC foundation models. In this work, we propose a multi-modal sci-
entific foundation model, PROSE-PDE, in the context of 1D PDE problems and we show the model’s
extrapolation capabilities.

2.2 Multi-Modal Machine Learning (MMML)

Multi-modal machine learning (MMML) trains models using data from heterogeneous sources [25,
34, 53, 56, 66] and solves multiple tasks simultaneously. For example, for visual-language reasoning
[24, 53, 56], models utilize visual content, i.e. images or videos, combined with the semantics of lan-
guage [56] associated with these visual elements, such as captions or descriptions. This has lead to
the development of models with richer information [24]. MOL tasks inherently belong to the realm of
MMML tasks, specifically characterized as bi-modal tasks involving functions and operator encoding
as two heterogeneous inputs.

The PROSE-PDE model takes a further step: it also generates a governing equation of the system,
making it a bi-modal input bi-modal output model. We present the details in Section 3. Numerous
innovations contribute to the efficacy of large-scale foundational multi-modal models, with one pivotal
advancement being the integration of attention and transformer structures. The attention mecha-
nism allows for complex sequence encodings, adept at capturing sequential dependencies within data
[2, 8, 62]. When processing features, this mechanism evaluates the significance of various segments
within the sequence, generating distinct encodings for each segment. It then utilizes these encodings
to attend to different parts of the sequence by varying the weights, fostering intra-sequence connec-
tivity. The classic transformer architecture leverages self-attention [1, 65], enabling it to capture
intricate relationships within lengthy sequential data. Conversely, cross-attention enables the model
to discern connections between distinct sequences, thereby facilitating the learning of inter-modality
relationships. More details are included in Appendix C.

2.3 Extrapolation of Physical Features (EPF)

Abstraction is a fundamental aspect of the scientific method, in particular, the pursuit of a deeper
understanding of the underlying mechanisms behind observed phenomena. In this work, we validate
our approach by assessing its ability to generalize across different input conditions and its capabilities
of extrapolation of physical features, which we will refer to as EPF. In the setting of foundation models
for scientific domain problems, extrapolation entails evaluating whether the model has learned the
underlying physical laws to a sufficient extent to generalize to either new physical systems or new
conditions, possibly through a transfer of fundamental rules or key features. While there is no clear
definition to the extent one expects a neural network to extrapolate spatiotemporal systems, some
useful capabilities include:

• Generalize to new model/physical parameter values not encountered during training,

• Predict variables at unseen timestamps or further into the future (forecasting),

• Handle new condition classes, such as changes in the smoothness of the initial state or the form
of the parametric input functions,

• Generalize to new physical systems not seen in training.
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In addition, a scientific foundation model should have the EPF property, since physical phenomena
are often shared across systems that have similar underlying laws. For this work, we focus on the
generalization of physical features in conservative systems, specifically, we show that our model has
the EPF property by:

• Training the model on a dataset containing simulations with only single observed shocks, while
testing it on settings with multiple shocks (extrapolating shock interactions),

• Varying the training sets with mixtures of shocks and rarefactions (with differing amounts
per physical system) and asking the model to predict a shock or rarefaction on a new system
(transferring physical laws to a new system).

All of these EPF tests are challenging for classical and current techniques; however, they are essen-
tial for demonstrating progress toward developing a general-purpose large-scale model for physical
systems. We focus on smaller-scale problems to show that these properties hold even with (1) lim-
ited data or (2) a smaller amount of trainable parameters as compared to standard LLMs. Notably,
these tests provide insights into PROSE-PDE’s capacity for abstraction or can at least measure its
potential to extract underlying rules from PDE data.

3 Methodology

The main components of the PROSE-PDE architecture include transformers, symbolic encoding, and
multi-modal inputs and outputs. We summarize some key elements in this section and provide an
overview of the PROSE-PDE architecture and workflow. More architecture details are in Appendix
B.

3.1 Equation Encoding via Polish Notation

A central challenge in MOL is encoding operators so that the encoded representations can seamlessly
adapt to new, unseen operators. We will employ symbolic encoding to address this challenge. The
symbolic encoding of mathematical operators has been studied in [33] and it is also used in other
mathematical problems [18, 30]. However, its extrapolation abilities to new operators have undergone
limited investigation. Through numerical experiments in Section 5.1, we demonstrate that the use
of symbolic encoding facilitates extrapolation. We illustrate the symbolic encoding of an equation in
Figure 2. This encoding involves representing the equation in a tree structure, where nodes represent
operations and leaves represent variables and constants. We then convert the tree structure into Polish
notation [43]. Throughout the training process, all symbols in the Polish notation are considered
trainable tokens and are updated accordingly. For further details, please refer to [5, 9, 12, 21, 33,
54].

3.2 Model Overview

The PROSE-PDE architecture contains five main components: Data Encoder, Symbol Encoder,
Feature Fusion, Data Decoder, and Symbol Decoder. All of these components use variations of the
attention structure. In this section, we present the workflow of PROSE-PDE and illustrate how
information is processed in the network (see Figure 3). Technical details of each component are
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Figure 2: Two equivalent tree encodings of the example expression cosp1.5x1q ` 2ux2 ´ 2.6. The left
tree directly uses the partial derivative symbol ux2 , while the right tree uses a differential operator
symbol Bx2 . We adopt the left approach for the tests in this work.

discussed in Appendix B.

There are two types of inputs to the PROSE-PDE network: the initial data sequence and the symbolic
equation guesses. The two input modalities are first transformed into sequences of feature vectors,
making them more suitable for subsequent tasks. A small feedforward network independently up-
samples each element in the input data sequence, generating a sequence of high-dimensional feature
vectors. The sequence is then processed by the Data Encoder, allowing information to flow across ele-
ments in the sequence (e.g. the Data Encoder can locate the minimum/maximum, find peaks/modes,
and detect patterns in the sequence).

The symbolic equation guesses are transformed into a sequence of symbol tokens, which is pro-
cessed in the same way as a sentence in language tasks. That is, the tokens are first independently
transformed into trainable feature vectors and then processed using a transformer structure in the
Symbol Encoder. Similar to the Data Encoder, the transformer structure allows for information ex-
change across elements in the sequence and for the construction and interpretation of mathematical
structures from the symbolic guess inputs.

The processed data and symbol sequences are then concatenated and fed into the Feature Fusion
block, where modality interaction and fusion occur. The data features obtain information from the
symbolic input (e.g., aspects of the equation underlying the data), and the symbolic features are
refined using the data (e.g., rough parameter ranges based on the data provided). After the infor-
mation exchange, the fused features are ready to be decoded into corresponding outputs.

The Data Decoder constructs the operator by synthesizing two independent input sources. One
source is the fused features from the Feature Fusion block, which can be interpreted as basis func-
tions for the output space. The other source is the query time points, which are separate from the
main information flow of the network. Together, the Data Decoder learns to evaluate the output
basis functions at locations specified by the query time points and combines them to generate the
output predictions.

The Symbol Decoder is a standard encoder-decoder transformer for sentence generation, where
the fused features act as the context guiding the output expression generation. The Symbol De-
coder autoregressively generates the output sentence [13, 62] from scratch, until it encounters the
end-of-sentence signal. As the output sentence is starting from scratch, the model has the ability
for self-correction and refinement. More specifically, it can simultaneously remove incorrect terms,
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Figure 3: PROSE-PDE Network and the Workflow. Data input and symbolic guess input
are transformed into feature vectors, which are then processed by data and symbol encoders. The
processed feature vectors are combined through the feature fusion block to allow information exchange
and interaction. The resulting fused features contain information from both sources and are inputs to
the output structures. The upper right data decoder structure constructs the output operator based
on fused features, where a separate set of query time points serve as evaluation points. PROSE-PDE
generates symbolic expressions in the lower-right portion autoregressively.

generate missing terms, and identify unknown coefficients, without the need for post-processing or
task-specific modules.

4 Experimental Setup

We study a diverse set of 20 PDEs with distinct physical features. To expand our study, we create
a family for each PDE by randomly sampling PDEs’ parameters from a uniform distribution within
the range of r0.9qc, 1.1qcs, where qc is the point-of-interest with an additional ˘10% value variation.
This process generates a dataset containing 10.24K PDEs. To provide a closure of the PDEs, we
equip each PDE with 50 initial conditions. Consequently, we create and investigate a dataset with
10.24Kˆ50 “ 512K systems in total. We refer to Appendix A for details.

The output of the model is a prediction of the solution at (future) time points given some short-time
observations and, simultaneously, a refinement of the equation guess. The input function is sampled
at 16 timestamps from r0, tf{2s and on a spatial grid of 128 points in r0, xf s. The final time tf may
vary between different PDE, but the spatial grid length is set to xf “ 2 for all systems except for the
Fokker-Planck equation. We re-scale and normalize all the equations via change of variables to share
the same tf and xf for the same experiment. The target operator maps the inputs to the solution at
timestamps in the later half of the interval t P rtf{2, tf s with the same spatial grid.
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4.1 Evaluation Metrics

We use four evaluation metrics to assess the behavior of PROSE-PDE in data prediction and
symbolic learning. For measuring the error for the data, the relative L2 error and the R2 score
´

R2 “ 1 ´
ř

i }vi´ui}
2
2

ř

i }vi´meanpviq}22

¯

are used, where ui is the ith predicted solution and vi is the ith target

solution.

For the symbolic expression output, we first decode the symbolic Polish notation into trees rep-
resenting functions, then the percentage of decoded output that can be transferred to valid mathe-
matical expressions is reported. The valid expressions (which are differential operators) are applied
to a set of functions randomly generated from the span of some basis set and then evaluated on
a uniform space-time grid. Common choices of basis functions are polynomials and trigonometric
functions [49, 50, 51, 61]. We use tensorized polynomials with degree four in space and degree two
in time. More precisely, suppose fp¨q and f̂p¨q are the target and PROSE-PDE generated solutions,

the relative L2 error, }fpP q´f̂pP q}2

}f̂pP q}2
is reported, where P is randomly generated. In particular, we de-

fine P px, tq :“ P1pxqP2ptq, where P1p¨q is a degree four polynomial, P2p¨q is quadratic, and all the
coefficients are randomly sampled from the uniform distributions on r´5, 5s. The relative L2 error is
approximated on a uniform 128 ˆ 64 grid in the region x P r0, 2s and t P r0, 2s.

4.2 PROSE-PDE Modality Configurations

We explore three different modality configurations for PROSE-PDE across various tasks. The first
configuration, known as the 2-to-2 model, incorporates all five structures: Data Encoder, Symbol
Encoder, Feature Fusion, Data Decoder, and Symbol Decoder, as illustrated in Figure 3, and thus
learns the solution operator and predicts the equations. This model demonstrates PROSE-PDE’s
capability to accurately reconstruct symbolic expressions.

The second configuration, the 2-to-1 model, omits the Symbol Decoder and utilizes the remain-
ing four components of PROSE-PDE. The 2-to-1 model is used to investigate PROSE-PDE’s ability
to generalize to unseen operators with complete equations encoded as trainable symbols.

The final configuration, referred to as the 1-to-1 model, only uses the Data Encoder and Data
Decoder. This model serves as a reference in assessing the significance of the symbolic component in
enhancing our understanding of the operator and used in the ablation tests. For the sake of clarity,
we also refer to operator I/O as data I/O and symbolic expression I/O as symbol I/O.

5 Results

We first evaluate the performance of PROSE-PDE by assessing two 2-to-2 model settings: the
“Known” and the “Skeleton” cases. For the “Known” case, we provide the network with com-
plete knowledge of the input equation. Thus, we expect that the network uses the encoded equation
(symbol part) as an identifier and the primary evaluation is on predicting the output data. In the
“Skeleton” case, the symbolic input to the network is the equation with the coefficients replaced by
a placeholder, i.e. the numerical values in the equation are unknown. The objective is to simul-
taneously construct the data and learn the equation. We observe in Table 1 that in both cases, a
low relative (data) prediction error pă 1.06%q and high R2 score is achieved. The “Skeleton” case
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recovers the unknown equation with a low error p0.768%q. Detailed results for each operator are
presented in Appendix E.

Data- Unknown Relative (Data) R2 Relative Symbol Valid

Expression Noise Coefficients Prediction Errors % Scores Expression Errors % Fraction

Known ✓ ✗ 0.92 0.998 0.01 100.00%
Skeleton ✓ ✓ 1.06 0.998 0.768 99.94%

Table 1: Experiment Settings and Results. Data-noise: 2% additive noise on data. For the
“Known” case, the equation input is known thus the relative symbol expression error measures the
ability to correctly encode and re-generate the symbol space. For the “Skeleton” case, the symbolic
inputs have unknown numerical values in the equation.

5.1 Extrapolation Studies

Classical numerical methods have reliable and highly-accurate performance on many SC tasks, e.g.
solving the initial boundary value problem. Machine learning methods on the other hand have su-
perior performance in improving repeated computations and for utilizing large amounts of data.
However, the reliance on training data leaves ML’s scientific extrapolating abilities open. The con-
cept of extrapolation has various interpretations across scientific disciplines. In computer vision, for
image classification tasks it takes the form of classifying an image belonging to a class the model
has not seen before. To achieve this, a model is trained on a dataset containing N classes, where
each class has K samples. If we then present the model with a new dataset containing M completely
different classes, and the model successfully classifies an image from this new dataset into one of
those classes, this is considered a zero-shot extrapolation task.

We formulate several extrapolation settings related to SC tasks and examine the ability of PROSE-
PDE (2-to-1) model to extrapolate in these settings. We first demonstrate the robustness of our
model through four different types of extrapolation presented in Table 2. We will focus on the data
prediction capabilities so the network is given full equation information. The following are the four
settings used in Study 1.

Temporal Grid. During the testing phase, the trained model should be able to predict the output
function at different points t in the domain, that is t ‰ tk where tk is from the training set. This
is the standard setting used in validating all our numerical experiments (including Table 1). This is
also a measure of extrapolation since t is sampled outside of the training domain.

Time Marching. During the training stage, the model takes data input from tin P r0, 1s and
predicts the solution in tpred P r1, 2s. During testing, we rollout the model to obtain solutions for
longer intervals as follows. After obtaining predictions for times r1, 2s, we use them as the input
and repeat the predictions for tpred P r2, tends. We present the results for tend “ 2.25 in Table 2.
As expected, the L2 error increases as we increase tend: when tend “ 2.5, Epred “ 7.09%, and when
tend “ 3, Epred “ 10.09%, where Epred stands for the relative L2 prediction error.

Out-of-Distribution (OoD). We study the model’s ability to generalize beyond the training dis-
tribution. During testing, we sample q „ D1, where D1 represents a distribution larger than the

10



Extrapolation
Settings Training Dataset Testing Dataset

Testing Metrics
Rel-𝑳𝟐 𝑹𝟐

Temporal 
Grid 0.92% 0.998

Time 
Marching 5.22% 0.893

Out-of-
Distribution

𝑞!	 ∈ (0.9	𝑞!,$	 , 1.1	𝑞!,$	 ) 𝑞!	 ∈ (0.8	𝑞!,$	 , 0.9	𝑞!,$	 ) ∪ (1.1	𝑞!,$	 , 1.2	𝑞!,$	 ) 2.36% 0.986

Input 
Function 

Class
2.78% 0.987

Unseen 
Operators

𝑢%+𝑞&	 (𝑢')(	= 𝑞)	 𝑢((
	 𝑢%+𝑞&	 sin 𝑢 (	 = 𝑞)	 𝑢((
	 𝑢%+𝑞&	 (𝑢')(	= 0
	 𝑢%+𝑞&	 sin 𝑢 (	 = 0	
	 𝑢%+𝑞&	 (𝑢))(= 0	

𝑢% + 𝑞&	 (𝑢))(= 𝑞)	 𝑢((	 5.41% 0.945

Sinusoidal

GRF

Unseen during training:

Data 
Decoder

𝑡!"#	𝑡!"$   …  𝑡%&#

Fused Data 
Feature Data 

Decoder
𝑡*+)	𝑡*+,    …  𝑡-

Fused Data 
Feature

𝑡!.!#$𝑡% 𝑡$ 𝑡!$Input Prediction Extrapolation𝑡% 𝑡$ 𝑡!$Input Prediction Extrapolation

Table 2: Study 1: Various Extrapolation Results. Temporal Grid (Basic setting for all ex-
periments): Different query points (independent variables of the output functions) in training and
testing. Time marching : Predict further steps from training. Out-of-Distribution: Disjoint range of
free coefficients in testing. Input Function Class : Periodic initial condition in training, 1D guassian
random field (GRF) in testing. Unseen Operators : Test on an unseen equation.

training parameter distribution D. Specifically, we choose the random coefficients by sampling
q „ Uniformpλ1qc, λ2qcq, where qc are the points of interest. The values for pλ1, λ2q are chosen
to be p0.9, 1.1q in the training phase, where as pλ1, λ2q “ p0.8, 0.9q, p1.1, 1.2q are used during testing.
This shows the model can be used to predict solutions even if the coefficients are not seen in training.

Input Function Class. We extend the concept of OoD by changing the generating function, i.e.,
testing samples are produced using a distinct generation function G 1 along with a different parameter
distribution D1. For Table 2, in training we used periodic initial conditions generated as sums of
sinusoidal functions, whereas in testing, the initial conditions are generated using Gaussian random
fields (GRF). The testing case has larger variations and is thus less regular than the training set. We
refer to Appendix A and Table 6 for details.

Unseen Operators. We aim to assess whether the trained neural operator can adapt to opera-
tors unseen during training. Specifically, we test the model with operators G1 that are not included
in the training operator set tGiu

No
i“1. We use five operator families tGiu

5
i“1 in training, and evaluate

the operator on the viscous Burgers’ equation G1 in testing. We randomly sample the free parameters
of the PDEs and generate 128K systems for training and 102.4K systems for testing. These results
show the capability of PROSE-PDE to learn a new operator G1 without any fine-tuning.

Extrapolation of Physical Features Studies

In this section, we demonstrate the EPF property of the proposed network. We show that PROSE-
PDE can transfer unknown physics features by learning similarities from other operators and predict
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such physical features even in the absence of exposure during the training phase.

In the Input Function Class extrapolation tests, changes in the initial conditions can led to new
phenomena in the outputs. However, this directly depends on the equation and the input function
class. As an example, consider the case where the training set is generated by randomizing the (finite)
Fourier series and where we test on the Reimann problem, e.g., the initial data in the testing phase
is generated by a step function:

fpxq “

#

0 if x P r´π, 0s

1 if x P r0, πs.

Then although this initial condition was not seen during training, it could be approximated by, for
example, hpxq “ 1

2
` 2

π
sinpxq ` 2

3π
sinp3xq which may be seen in the training phase. While still an

extrapolation test, the testing samples may bear some resemblance to the training samples. In Study
2 and 3, we propose a more demanding extrapolation test. Specifically, we pick the testing generator
such that the output functions exhibit fundamentally different physical characteristics.

Study 2: Transferring Physical Features: The two prevalent physical phenomena that are
observed in conservation laws are shocks and rarefaction waves. The objective of Study 2 is to inves-
tigate PROSE-PDE’s ability to generalize these physical phenomena between distinct equations. To
test this, we design a series of experiments in which we change the proportion of shocks and rarefac-
tion waves sampled in training data and measure the model’s ability to predict unseen rarefaction
waves in testing.

The data is generated using the Riemann problem with initial conditions located within the interval
r0, 1s, and with homogeneous Neumann boundary conditions. All testing is done on the rarefaction
setting for the viscous Burgers’ equation, which is not used in training. The shock setting for the
viscous Burgers’ equation is included in the training set to help link it to other conservation laws, i.e.,
help with the transferring process. For instance, in Experiment 1 (first row of Table 3) the training
dataset includes rarefaction waves from all equations except the target equation and shocks only
from the target equation. Conversely, in Experiment 5 (last row of Table 3), the only equation in the
training dataset exhibiting a rarefaction solution is the Cosine Flux equation. Note that each row
of Table 3 includes about 3K randomly generated systems in the listed types for a total of 153.6K
systems for training and 20.48K random systems for testing.

We observe from the Table 3 that PROSE-PDE can construct rarefaction waves for viscous Burgers’
systems without directly observing them. This shows the model’s generalization and EPF capabil-
ities. Specifically, PROSE-PDE likely learns the mechanism behind the rarefaction wave based on
the training data of other systems and generalizes it to the viscous Burgers’ setting.

Remark 5.1. To check if the network memorizes rarefaction features from other equations and
applies those directly to the target equation during testing, we measure the similarity of the training
systems as follows. We generate the solutions for the target equation and the solutions of the other
randomly sampled systems by reusing the same initial conditions. We define the similarity ei by

ei “ }Gtargetrusp¨q ´ Girusp¨q}2{}Gtargetrusp¨q}2, (5.1)

where u is the initial condition (leading to rarefaction waves), Gtarget is the true viscous Burgers’
solution operator, and Gi is the true solution operator of the ith training equations.
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Exp No.

Training Sample Testing Sample

Rel-𝑳𝟐 Error
Viscous 

Burgers’ Burgers’ Viscous 
Cubic Flux Cubic Flux Viscous 

Cosine Flux 
Cosine 

Flux Viscous Burgers’

Exp 1 0.49%

Exp 2 0.54%

Exp 3 0.49%

Exp 4 0.55%

Exp 5 2.34%

RarefactionShock

Table 3: Study 2: Transferring Physical Features. Each row in the table represents a distinct
experiment. The purple region indicates that the training data corresponding to the listed PDE
type (the columns) consists of shock solutions, while the blue region indicates that the training data
corresponding to the listed PDE type consists of rarefaction waves. As a reference, in Exp. 5 the
prediction error 2.34% is lower than directly using a fitted cosine flux as a prediction, which yields
3.59% error.

The computed similarities over the training equations are 1.38% for Burgers’, 14.16% for viscous
cubic flux, 13.66% for cubic flux, 1.85% for viscous cosine flux, and 3.59% for cosine flux, respec-
tively. Note that the prediction errors for each experiment in Table 3 are consistently lower than the
minimum of these values over the corresponding experiment. This suggests that the PROSE-PDE
model extrapolates the data rather than merely replicating the best (training) operator.

Study 3: Generalizing to Multiple Shocks: We examine the model’s ability to generalize single
shocks to multiple shock interactions, specifically concentrating on four PDE types all in polynomial
flux forms. In particular, PROSE-PDE is trained using data that leads to one shock (purple region
of Table 4) or multiple shocks (blue region of Table 4). The initial conditions are set within the range
r0, 1s, with homogeneous Neumann boundary conditions.

Table 4 details each experiment setting and demonstrates the model’s ability to accurately resolve
the behavior of two shocks in the viscous cubic flux setting, even when the exact physical feature
is not present during training. We verify that the network is not memorizing the training data by
checking the similarities as defined in Equation (5.1), with Gtarget representing the true viscous cubic
flux solution operator. The recorded similarities are 1.15% for cubic flux, 16.06% for viscous Burgers’,
and 15.74% for Burgers’ equation. The prediction errors shown in Table 4 remain consistently below
these similarity values, indicating that PROSE-PDE effectively extrapolates to two shock interac-
tions for the target operator, rather than simply repeating what is observed in the training dataset.

5.2 Ablation Studies

The PROSE-PDE model is a bi-modal to bi-modal model, specifically, it maps the data and symbols
to predicted data and symbols. In this section, we will show that both symbolic input and output
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Exp No.
Training Sample Testing Sample

Rel-𝑳𝟐 ErrorViscous 
Cubic Flux Cubic Flux Viscous 

Burgers’ Burgers’ Viscous Cubic 
Flux

Exp 1 0.77%

Exp 2 1.02%

Exp 3 2.35%

Exp 4 4.48%

One Shock

Two Shocks
Table 4: Study 3: Shock Interactions. Each row in the table represents a distinct experiment.
For each listed PDE type (the columns), a purple region indicates that the training data of this PDE
type are single-shock solutions, while a blue region indicates that the training data of this PDE type
are multi-shock solutions. As a reference, in Exp. 3 the prediction error 2.35% is lower than directly
using the Burgers’ equation with the same initial conditions, which yields 16.06% error.

modalities enhance the learning of data prediction.

5.2.1 Ablation Study: Symbolic Encoder-Decoder

In PROSE-PDE, trainable tokens are used to represent the input equation and thus help to identify
the operator. In this section, our objective is to illustrate that such representation can effectively dis-
cern between different operators. We conduct a comparison between the PROSE-PDE 2-to-1 models,
the model utilizing only the data modality (1-to-1 model), and two single operator learning models
(FNO and DeepONet). Note that the input functions are only sampled at the initial timestamp, thus
the learning problem is ill-posed for a model relying solely on the data modality. Since the 2-to-1
model leverages the equation information, we expect the learning to remain well-posed. As shown
in Table 5, PROSE-PDE 2-to-1 (first row) produces reliable predictions with small errors (1.03%)
even when supplied with only the initial conditions as data input, showing that benefit of the symbol
encoder.

To test the model’s dependency on the number of timestamps for the input function, we test the
PROSE-PDE 2-to-2 model with “Skeleton” inputs and vary the number of timestamps, i.e., the input
size. Figure 4 shows the consistent behavior of our model over the input size, which indicates the
stability induced by the Symbol Encoder-Decoder in providing additional information for the data
prediction.

5.2.2 Ablation Study: Loss Weights

Lastly, we want to demonstrate the robustness of the model with respect to the importance of
minimizing the loss for each output modality. This is done by varying the weights between the two
output losses. Specifically, in Figure 5, we change the weights assigned to the data and symbol losses.
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Modality
Testing Metrics for Data Prediction

Rel-𝐿! error (%) 𝑅! score

Data/Symbol encoder + Fusion + Data decoder
(2-to-1) 1.03/3.03/3.52 0.997/0.982/0.972

Data encoder + Data decoder
(1-to-1) 29.5/41.21/30.86 -1.095/-0.56/-0.99

FNO 34.86/37.32/35.42 -2.82/-1.82/-2.28

DeepONet 32.07/37.88/32.82 -2.08/-1.22/-2.00

Table 5: Ablation Study: Comparing the 2-to-1 model to data-only architecture and two single
operator learning networks (FNO and DeepONet) using the data-prediction error. Note that the
input functions are only sampled at initial timestep to predict all future states. The error are
indicated as Extrapolation in Temporal Grid/ Input function class/ Out-of-Distribution

as described in Section 5.1. The results indicate the need for symbolic information to discern
operators in MOL.

We observe a slight increase in the error for the data output when we reduce the weight ratio (data
weight over symbol weight) from 5 to 0.2. However, the overall data-prediction error remains low.
This suggests that the output symbol modality contributes to the overall improvement through the
Fusion layers. That is, by including some symbolic information, the model’s data prediction remains
resilient to changes in the training hyperparameters.

To illustrate this, Figure 6 shows the gradient information flow for the PROSE-PDE model during the
training phase. Assigning a larger weight to the symbol component enhances the learning of the lower
portion of the PROSE-PDE model. However, this adjustment negatively impacts the Data Decoder
for data learning. We hypothesize that the inclusion of the symbol modality enhances the learning
of the Fusion structure, thereby generating a stronger encoding for the operator (data prediction).
Consequently, we only observe a slight decrease in performance for data prediction which underscores
the advantages of the symbol modality.

6 Discussion

The PROSE-PDE approach is a bi-modality to bi-modality model for solving forward and inverse
tasks in multi-operator learning of spatiotemporal systems. The main focus of this work is on pre-
senting and testing an architecture for a PDE foundation model for time-dependent nonlinear partial
differential equations that can generalize. Through detailed experiments, the PROSE-PDE approach
is shown to generalize in various settings without the need of fine-tuning. Most importantly, the
model is able to extrapolate some physical features as verified by testing the extrapolation capa-
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Figure 4: Comparing the PROSE-PDE 2-to-2 model with varying amounts of input timestamps, i.e.
input sizes and fixed output grid, i.e. t ą tf{2. The equations are in “Skeleton” form and thus have
unknown coefficients.
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Figure 5: Relative L2 errors and R2 scores with varying ratio of data/symbol loss weight. The results
are reported using the model with the lowest symbol error in the validation set.
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Figure 6: Gradient Information Flow: We illustrate the gradient information flow for the PROSE-
PDE model during the training phase. The training phase couples the modalities’ parameters.

bilities for rarefactions and multi-shock interaction. We expect stronger capabilities with a larger
training set. The ablation results demonstrated the importance of multi-modal information for
generating consistent and robust results. A future direction is to extend the PROSE-PDE architec-
ture to multi-dimensional nonlinear partial differential equations and to include non-time dependent
PDE.
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A Dataset Details

A.1 PDE Types

The parameter-of-interest is listed for each type. Note that the training and testing data randomizes
the values of the parameters.

A.1.1 Diffusion Equation

ut ´ cuxx “ 0

where c “ 3 ˆ 10´3, tfinal “ 2.
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A.1.2 Porous Medium Equation

ut ´ pum
qxx “ 0

where m “ 2, 3, 4 and tfinal “ 0.1.

A.1.3 Klein-Gordon Equation

utt ´ c2uxx ` m2c4u “ 0

where c “ 1, m “ 0.1, and tfinal “ 1.

A.1.4 Sine-Gordon Equation

utt ´ uxx ` c sinpuq “ 0

where c “ 1, and tfinal “ 1.

A.1.5 Cahn-Hilliard Equation

ut ` ϵ2uxxxx ` 6puuxqx “ 0

where ϵ “ 0.01, and tfinal “ 0.5.

A.1.6 Korteweg–De Vries (Kdv) Equation

ut ` δ2uxxx ` uux “ 0

where δ “ 0.022, and tfinal “ 1.

A.1.7 Advection Equation

ut ` βux “ 0

where β “ 0.5 and tfinal “ 2.

A.1.8 Wave Equation

utt ´ βuxx “ 0

where β “ 0.5 and tfinal “ 1.
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A.1.9 Diffusion Reaction Equation

ut ´ νuxx ´ ρRpuq “ 0

where ν “ 3 ˆ 10´3, and ρ “ 1 for R “ R1, R3, R4; and ρ “ 0.1 for R2, and tfinal “ 2.

R1puq “ up1 ´ uq

R2puq “ u

R3puq “ u2
p1 ´ uq

R4puq “ u2
p1 ´ uq

2

A.1.10 Viscous Conservation Law

ut ` kfpuqx ´
ϵ

π
uxx “ 0

where k “ 1, ϵ “ 0.01, and tfinal “ 2.

f1puq “
1

2
u2 Burgers’ equation

f2pxq “ u

f3pxq “
1

3
u3

f4pxq “ sinpxq

A.1.11 Inviscid Conservation Law

ut ` kfpuqx “ 0

where k “ 1 and tfinal “ 2.

f1puq “
1

2
u2 Inviscid Burgers’ equation

f2pxq “
1

3
u3

f3pxq “ sinpxq

A.1.12 Fokker-Planck Equation

ut “ Duxx ´
D

kBT
p∇Upxquqx

where D “
kBT
γ

, where kB « 1.380649 ˆ 10´23 is the Boltzmann constant, T “ 300 is absolute

temperature, and γ “ 6πηr represent the drag coefficient, η “ 10´3 is the fluid viscosity (randomized),
and r “ 0.1 ˆ 10´6. Upxq “ c cos

`

x
L

˘

, where c “ 5 ˆ 10´21, and L “ 0.1 ˆ 10´6. Set tfinal “ 0.1, and
xfinal “ 2 ˆ 10´6.

25



A.2 Initial Conditions

We mainly consider periodic boundary conditions unless specified, and we use different types of initial
conditions for different types of equations:

Super-position of sinusoidal waves

This is derived from PDEBench [55]:

u0pxq “
ÿ

k“k1,¨¨¨ ,kN

Ai sinpkix ` ϕiq (A.1)

where ki “ 2πni{Lx, ni is randomly selected integers from r1, nmaxs, Lx is the spatial domain size.
The amplitude Ai is random float uniformly chosen in r0, 1s, and ϕi is the randomly chosen phase in
p0, 2πq. For all equations except advection and wave equation, after calculating (A.1), we enforced
absolute value with random signature and the window function with 10% probability.

Gaussian Process

u0pxq „ N p0, Kxq (A.2)

where the covariance matrix Kx is obtained by the RBF kernel with x1 “ x2 “ x, and the RBF
kernel is described as

kRBF px1, x2q “ σ2 exp

ˆ

}x1 ´ x2}2

2l2

˙

(A.3)

Gaussian Distribution

u0pxq “

N
ÿ

i“1

Ai exp

ˆ

´
|x ´ µi|

2

2σ2
i

˙

(A.4)

Uniform Distribution

u0pxq „ Uniformpxl, xrq (A.5)

Quadratic function

u0pxq “ max

ˆ

´A
px ´ µq2

2σ2
` A, 0

˙

(A.6)

Periodization and normalization

We enforced periodicity for initial condition u0pxq by removing the linear function lpxq that passes
through the endpoints of the domain, hence the modified initial condition is given by

u1
0pxq “ u0pxq ´ lpxq. (A.7)

We also normalize the initial condition in two distinct ways:

• Adjust u1
0pxq so that the range falls within p0, umaxq.

• When the initial condition is represented by a probability distribution, we adjusted u0pxq such
that the sum of probability is 1.
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Equation type Training Initial Condition Testing Initial Condition
Heat

(A.1): nmax “ 2

(A.2): σ “ 1, l “ 0.2

Diff-React
Klein-Gordon
Sine-Gordon
Cahn-Hilliard

Viscous Conservation
Inviscid Conservation

Kdv
(A.4): N “ 2Advection

Wave
Fokker-Planck

(A.4): N “ 1
(A.5)

Porous medium (A.6)

Table 6: Choice of Training and Evaluation Initial Condition for different types of equations

Equation type Generator
Heat

Method of Line
Klein-Gordon
Sine-Gordon

Porous medium
Cahn-Hilliard
Diff-React

PDEBench [55]Viscous Conservation
Inviscid Conservation

Advection
Exact solution defined by IC

Wave
Kdv Fourier Spectral Method [72]

Fokker-Planck Matrix Numerical Method [15]

Table 7: Solvers for different types of equations

A.3 Solvers

As detailed in Table 7, we use different solvers for different types of equations. For the diffusion-
reaction equation and all types of conservation laws, we employ PDEBench [55]. The Matrix Numer-
ical Methods (MNM) introduced in [15] are used for solving the Fokker-Planck equation, while the
pseudo-spectral method from [72] is applied to the KdV equation. For advection and wave equations,
we utilize the exact solution defined by the initial conditions. The method of lines, which discretizes
the PDE in space and solves the ODE in time, is used for the rest of the equations.

B Architecture Details

Our network uses hierarchical attention for feature processing and fusion, and two transformer de-
coders for two downstream tasks. Figure 7 provides an overview of the architecture. The PROSE-
PDE architecture contains five main components trained end-to-end: data encoder, symbol encoder,
feature fusion, data decoder, and symbol decoder.
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Figure 7: PROSE-PDE Architecture Details. Data Input and Symbol Input are embedded into
Data Feature and Symbol Feature respectively before encoding and fusion through Feature Fusion.
PROSE-PDE uses Cross-Attention to construct the operator (upper-right structure) from Fused
Data Feature, and evaluate it at Query Locations. PROSE-PDE generates symbolic expressions in
the lower-right portion autoregressively. Attention blocks are displayed in Appendix C, where each
layer also includes a feedforward network.

B.1 Encoders

Two separate transformer encoders are used to obtain domain-specific features. Given numerical data
inputs and symbolic equation guesses (possibly empty or erroneous), the data encoder and symbol
encoder first separately perform feature aggregation using self-attention. For a data input sequence
upt0q, ¨ ¨ ¨ ,uptnq, each element uptiq, together with its time variable ti, goes through a linear layer to
form the Data Feature (purple feature sequence in Figure 7). PROSE-PDE then uses self-attention to
further process the Data Feature, where the time variables ti serve as the positional encoding.

The symbolic input (in Polish notation) is a standard word sequence, which can be directly processed
with self-attention layers. The word embedding (for operations, sign, mantissa, etc.) is randomly
initialized and trainable. Sinusoidal positional encoding [62] is used for the symbol encoder.

B.2 Feature Fusion

Hierarchical attention (multi-stream to one-stream) is used in this model for feature fusion. Separately-
processed data and symbol features are concatenated into a feature sequence, and further processed
through self-attention layers where modality interaction occurs. Following [22], a learnable modality-
type embedding is added to the fused features, signaling the source modality of each token. Positional
encoding is not needed since it is already included in the individual encoders.
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B.3 Data Decoder

The data decoder constructs the operator via the cross-attention mechanism, establishing a link be-
tween the input-encoded time sequence (fused data features) and the output functions. The query
locations, representing the independent variables of these output functions, serve as the evaluation
points. Importantly, these query locations operate independently of each other, meaning that assess-
ing the operator at one point, ti, does not impact the evaluation of the operator at another point,
tj. As a result, the time and space complexity scales linearly with the number of query locations. In
addition, since the evaluation points are independent of the network generation, this resembles the
philosophy of the branch and trunk nets, see Operator Learning Structure in Section 3.

B.4 Symbol Decoder

The symbol decoder is a standard encoder-decoder transformer, where the fused symbol feature is the
context for generation. The output equation is produced using an autoregressive approach [13, 62]: it
starts with the start-of-sentence token and proceeds iteratively, generating each term of the equation
based on prior predictions, until it encounters the end-of-sentence token for that specific equation.
During evaluation time, greedy search (iterative selection of symbol with maximum probability) is
used for efficient symbol generation. While beam search [64] can be used to improve the performance
(e.g. percentage of valid expression outputs), we empirically find that greedy search is sufficient for
obtaining valid mathematical expressions using the Polish notation formulation.

C Preliminary

C.1 Transformers

A transformer operates on the principle of attention, adept at identifying long-range dependencies
within data sources, as noted by [2, 8, 62]. It processes input by assigning varying degrees of
importance to different segments of the data sequence, thereby focusing or “attending” to particular
portions of the input for decision-making or output generation. The standard transformer model
employs a self-attention framework, as described by [1, 65], which allows it to discern complex
patterns in extensive time series data.

Specifically, let us denote the input time series data as X P Rnˆd, where n is the number of time steps
and d is the dimension of each element in the time series. Self-attention first computes the projections:
query Q “ XWQ, key K “ XWK and value V “ XW V , where WQ P Rdˆdk , WK P Rdˆdk , and
W V P Rdˆdv . It then outputs the context C P Rnˆdv via

C “ softmax

ˆ

QKT

?
dk

˙

V, (C.1)

where the softmax function is calculated over all entries of each row. Self-attention discovers re-
lationships among various elements within a time sequence. Predictions often depend on multiple
data sources, making it crucial to understand the interactions and encode various time series data
(see Section 2.2 for details). The self-attention is also used in the development of the cross-attention
mechanism [25, 34, 59]. Given two input time series data X, Y , cross-attention computes the query,
key, and value as Q “ XWQ, K “ YWK , and V “ YW V . In the case where Y represents the output
of a decoder and X represents the output of an encoder, the cross-attention, which directs its focus
from X to Y , is commonly referred to as encoder-decoder attention [62]. Encoder-decoder attention
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Multi-Head
Attention

Linear

Add & Norm

Output

N×

Add & Norm

Q K V

Q=K=V for Self-Attention

(a) Cross-attention (b) Encoder-decoder attention

Figure 8: Attention Block Details. Self-attention is a special case of cross-attention with the
same source.

serves as a crucial component within autoregressive models [14, 25, 62]. The autoregressive model
operates by making predictions for a time series iteratively, one step at a time. To achieve this, it
utilizes the previous step’s generated output as additional input for the subsequent prediction. This
approach has demonstrated the capacity for mitigating accumulation of errors [13], which makes it
desirable for longer-time predictions.

Figure 8 contains the transformer architecture details.

D Experiment Setup

D.1 Training

A standard cross-entropy loss Ls is used for the symbolic outputs. Mean and standard deviation of
the input sequence are computed, which are then used to normalize both the inputs and the labels.
Mean squared error (in the normalized space) Ld is used for the data predictions.

The data loss Ld and symbol loss Ls are combined to form the final loss function L “ αLd ` βLs,
where the weights α, β are hyperparameters. Unless otherwise specified, the models are trained using
the AdamW optimizer for 30 epochs where each epoch is 2,000 steps. On a single NVIDIA GeForce
RTX 4090 GPUs with 24 GB memory each, the training takes about 4.5 hours.
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Table 8: Model hyperparameters. FFN means feedforward network.

Hidden dimension for attention 512 Hidden dimension for FFNs 2048
Number of attention heads 8 Fusion attention layers 8
Data encoder attention layers 2 Data decoder attention layers 8
Symbol encoder attention layers 4 Symbol decoder attention layers 8

Table 9: Optimizer hyperparameters.

Learning rate 10´4 Weight decay 10´4

Scheduler Consine Warmup steps 10% of total steps
Batch size per GPU 512 Gradient norm clip 1.0
Data loss weight α 5.0 Symbol loss weight β 1.0

D.2 Hyperparameters

The PROSE model hyperparameters are summarized in Table 8, and the optimizer hyperparameters
are summarized in Table 9.

For the FNO model in Section 5.2, we use 4 layers of standard 2d FNO to process the input data.
The number of modes to keep in each dimension is set to 16, and the number of hidden channels is
set to 64.
For the DeepONet model in Section 5.2, we employ the unstacked DeepONet architecture, consisting
of a single trunk network and a single branch network. The input vectors are then passed through
the branch network, producing an output with a basis dimension of p ˆ dimoutput “ 20 ˆ 128.
Simultaneously, the query point is processed through the trunk network, which also outputs a vector
with the same dimension, p. Each element of output solution at the query point is obtained by taking
the inner product of the outputs from the trunk net and the corresponding element of outputs from
the branch net.

E Additional Results

We present additional results in this section. Table 10 contains the errors per equation type as well
as sample outputs.
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Type Parameters
Metrics

Worst Prediction
Rel-𝐿! 𝑅!

Diffusion 
𝑢! = 𝑞	𝑢"", 𝑡# = 2 𝑞$ = 3×10%& 0.40% 1.000

Porous Medium 
𝑢! = 𝑢' "", 𝑡# = 0.1 𝑚 ∈ 2, 3, 4 0.35% 0.995

Klein-Gordon
𝑢!! + (𝑞())))(𝑞(+)),𝑢 = (𝑞(+)))𝑢"" , 𝑡# = 1

𝑞$
+ = 1

𝑞$
) = 0.1

0.53% 1.000

Sine-Gordon
𝑢!! + 𝑞 sin(𝑢) = 𝑢"" , 𝑡# = 1 𝑞$ = 1 0.58% 1.000

Wave 
𝑢!! = 𝑞𝑢"" , 𝑡# = 1 𝑞$ = 0.5 0.33% 1.000

Cahn-Hilliard
𝑢! + 𝑞)𝑢"""" + 𝑐 𝑢𝑢" " = 0, 𝑡# = 0.5 𝑞$ = 0.01 0.38% 0.999

Korteweg–De Vries
𝑢! + 𝑞)𝑢""" + 𝑢𝑢" = 0, 𝑡# = 1 𝑞$ = 0.022 0.94% 0.999

Advection
𝑢! + 𝑞𝑢" = 0, 𝑡# = 2 𝑞$ = 0.5 0.49% 1.000

Fokker-Planck

𝑢! = 𝐷𝑢"" −
1
𝛾
𝑈 𝑥 "𝑢 " 	

𝑡# = 0.1, 𝑥# = 2×10%-

𝑈 𝑥 = 𝑐 cos
𝑥
𝐿

𝐷 =
𝑘.𝑇
𝛾

𝛾 = 6𝜋𝑞(+)𝑟

𝑐 = 5×10%)+
𝐿 = 10%/
𝑇 = 300
𝑟 = 10%/

𝑞$
(+) = 10%&

0.31% 0.998

Diffusion Reaction
𝑢! = 𝑞(+)𝑢"" + 𝑞())𝑅 𝑢

𝑡# = 2

𝑅 𝑢 = 𝑢 𝑞$
(+) = 3×10%&

𝑞$
()) = 0.1

0.44% 1.000

𝑅 𝑢 = 𝑢(1 − 𝑢)

𝑞$
(+) = 3×10%&

𝑞$
()) = 1

0.45% 0.999

𝑅 𝑢 = 𝑢)(1 − 𝑢) 0.54% 1.000

𝑅 𝑢 = 𝑢) 1 − 𝑢 ) 0.45% 1.000

Conservation Law

𝑢! = −𝑞(+)(𝑓 𝑢) " +
𝑞())

𝜋
𝑢""

𝑡# = 2

Burgers‘:

𝑓 𝑢 =
1
2
𝑢)

𝑞$
(+) = 1

𝑞$
()) = 0.01

1.16% 0.999

𝑞$
(+) = 1
𝑞$
()) = 0

2.45% 0.993

𝑓 𝑢 =
1
3
𝑢&

𝑞$
(+) = 1

𝑞$
()) = 0.01

0.90% 0.999

𝑞$
(+) = 1
𝑞$
()) = 0

2.19% 0.994

𝑓 𝑢 = sin 𝑢

𝑞$
(+) = 1

𝑞$
()) = 0.01

1.91% 0.996

𝑞$
(+) = 1
𝑞$
()) = 0

4.26% 0.987

𝑓 𝑢 = 𝑢 𝑞$
(+) = 1

𝑞$
()) = 0.01

2.14% 0.997

Table 10: Results for PROSE-PDE 2-to-2 model with “Skeleton” inputs per type. The worst case
prediction shows that the general trends and physical features are well-captured by the model.

32


	Introduction
	Main Contributions

	Overview
	Multi-Operator Learning (MOL)
	Multi-Modal Machine Learning (MMML)
	Extrapolation of Physical Features (EPF)

	Methodology
	Equation Encoding via Polish Notation
	Model Overview

	Experimental Setup
	Evaluation Metrics
	PROSE-PDE Modality Configurations

	Results
	Extrapolation Studies
	Ablation Studies
	Ablation Study: Symbolic Encoder-Decoder
	Ablation Study: Loss Weights


	Discussion
	Dataset Details
	PDE Types
	Diffusion Equation
	Porous Medium Equation
	Klein-Gordon Equation
	Sine-Gordon Equation
	Cahn-Hilliard Equation
	Korteweg–De Vries (Kdv) Equation
	Advection Equation
	Wave Equation
	Diffusion Reaction Equation
	Viscous Conservation Law
	Inviscid Conservation Law
	Fokker-Planck Equation

	Initial Conditions
	Solvers

	Architecture Details
	Encoders
	Feature Fusion
	Data Decoder
	Symbol Decoder

	Preliminary
	Transformers

	Experiment Setup
	Training
	Hyperparameters

	Additional Results

