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Abstract

Symbolic encoding has been used in multi-operator learning as a way to embed additional
information for distinct time-series data. For spatiotemporal systems described by time-
dependent partial differential equations, the equation itself provides an additional modality
to identify the system. The utilization of symbolic expressions along side time-series samples
allows for the development of multimodal predictive neural networks. A key challenge with
current approaches is that the symbolic information, i.e. the equations, must be manually
preprocessed (simplified, rearranged, etc.) to match and relate to the existing token library,
which increases costs and reduces flexibility, especially when dealing with new differential
equations. We propose a new token library based on SymPy to encode differential equations
as an additional modality for time-series models. The proposed approach incurs minimal cost,
is automated, and maintains high prediction accuracy for forecasting tasks. Additionally,
we include a Bayesian filtering module that connects the different modalities to refine the
learned equation. This improves the accuracy of the learned symbolic representation and the
predicted time-series.

1 Introduction

Operator learning, initially developed as an application of a universal approximation property
in [2,3], aims to approximate maps between functions. Many mathematical and scientific problems
can be formulated as the approximation of operators; for instance, forecasting time-series or solving
time-dependent partial differential equations (PDEs). This has made operator learning a crucial
tool in computational science and scientific machine learning (SciML) [11,13,14,20,23–28,37].
Many deep neural operators (DNOs) [12,13,15,20,21,32,39,40] have been developed and show
effectiveness in solving different types of problems relating to time-dependent prediction. For
example in [20], the authors introduced the Deep Operator Network (DeepONet) for approximating
the solution map for ordinary differential equations (ODEs) and PDEs. In [8, 16], the authors
utilize DNOs to predict time-series recursively followed by numerical stabilization.

Though successful in many applications, a key challenge for DNOs is their limited ability to
generalize, as they can only handle one operator at a time. To address generalization and
extrapolation, i.e., the ability to predict new operators and time-series beyond the training

The code is available at: https://github.com/JingminSun/prose_v1.
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Figure 1: PROSE PDE Foundation Model with Particle Filtering.

interval, multi-operator learning (MOL) [18, 19,29,30,33–35,38] has been proposed. MOL uses a
single network structure that is capable of processing data from multiple operators simultaneously.
A crucial element of MOL is the way in which the identification of the system is encoded, since
this guides the network toward understanding which operator is of interest for a given task, and
provides a foundation for extrapolation to new operators. As a result, MOL networks trained
with a diverse dataset and multiple modalities have become an approach for developing PDE
foundation models.

Among the proposed MOL approaches, the first two notable contributions include PROSE
[18,19, 29, 30] and ICON [33,35,36]. PROSE is the first multimodal PDE foundation model that
learns multiple operators and simultaneously predicts the equations that govern the physical
system. It employs a symbolic encoding approach to provide additional information on the PDE
of interest by embedding the equations into the feature space. Additionally, PROSE learns the
governing physical system [24–26,28,31,37] from the given data simultaneously as it constructs the
evaluation operator used in forecasting. The learned systems are represented as time-dependent
PDEs written by symbols and can be used to predict time-series beyond the training time interval.

Symbolic encoding has proven effective in various scenarios, including challenging extrapolation
settings [29, 30]. Additionally, PROSE’s symbolic encoding can be fine-tuned for downstream
tasks and enables zero-shot prediction for new operators [30]. However, a challenge with symbolic
encoding is that PDEs may be written in inconsistent orders and formats. For instance, the
expressions x − 1 + 1 + y and y + x are mathematically equivalent but would be represented
differently in token sequences. To address this issue, we propose a standardization approach
that utilizes SymPy [22] for creating consistent token sequences for the symbolic modality. Our
approach demonstrates effectiveness at automatically standardizing the token sequences and
improving the encoding process.

To enhance the prediction accuracy of the physical system, we propose a sequential Monte
Carlo (SMC) particle filter module [1, 5–7,17] to refine the learned PDEs within the foundation
model framework. Notably, only the coefficients of the PDEs require refinement, as PROSE has
demonstrated reliability in correctly identifying the terms in the governing equation, i.e., terms
such as uxx and ux. This also holds in the presence of noise or when terms are either missing or
mistakenly included. The pipeline of our model is illustrated in Figure 1.

Our main contributions are as follows.

• We propose a new symbolic encoding method that can include a general equation modality.
The new method allows the equations to be inputted without a specific format, thus leading
to a more flexible model. Compared to the manual standardization methods, the proposed
symbol encoding method significantly improves efficiency.

2



• We examine the ability of PROSE-PDE to generate consistent outputs when given incomplete
symbolic inputs. In the experiments, we test the inclusion of placeholder coefficients on the
equations and the addition of incorrect terms in the equations.

• A particle filter is introduced to the outputs of the decoders to further refine the learned
coefficients, which leads to improved accuracy of the discovered equations. The refined
model can be used for stable long-term predictions.

The code is available at https://github.com/JingminSun/prose_v1.

2 Methods

Suppose we are given data from Nop operators Gi : Ui → Vi, where Ui and Vi are function spaces.
MOL uses a single neural network Gθ to approximate Gi, i.e., Gθ(Gi, u) ≈ Gi(u), where u ∈ Ui is
a given input function for Gi, i = 1, ..., Nop, and θ is the network parameters. A key component
of MOL is the encoding structure used to identify the system of interest as it informs the network
of the particular PDE. Our focus is on PDE solution operators, which are crucial for many
scientific computing problems. Therefore, we encode the governing equations directly to inform
the network of Gi. PROSE introduces a symbolic encoding approach for this purpose. To encode
the equations, PROSE represents each equation as a tree with nodes corresponding to operations
and leaves to variables or coefficients. This tree is then converted into a sequence (in Polish
notation), with each entry consisting of learnable tokens. For example, cos(1.5x1) + x22 − 2.6
is converted to sequence [+ cos × 1.5 x1 − pow x2 2 2.6], where each entry is a trainable
token. This is referred to as the PROSE tree.

PROSE’s symbolic encoding proves effective even in challenging noisy extrapolation settings.
However, the equations must be: (1) manually ordered into a particular format and (2) simplified
to a standard expression. For example, the equation ut − (ux)x = 0 would need to be manually
formatted as ut−uxx = 0 to ensure that all tokens (operations and variables) fit within the existing
library. This could lead to challenges in the testing phase when an equation is presented with a
different order. It may become an issue for generalization, as determining the appropriate order
when faced with new equations or terms can be difficult. Figure 2 is an example of the standard
order used in PROSE and a possible alternative ordering. Notably, manually standardizing
the tree for new equations with different orders can resolve the problem. However, the manual
standardization process is time-consuming and costly.

To address these challenges, we first leverage SymPy to unify the expressions. This approach is
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Figure 2: PROSE Tree Examples: The left tree is an example of a manually standardized
PROSE tree for the viscous Burgers’ equation ut + kuux = ϵ

πuxx. In the experiments, to generate
the randomized trees (or a tree encountered in testing), we randomly switch the order of any
branch of the tree with probability 0.5, leading to different orders of the same symbolic expressions.
The right tree is an example of an altered tree for the same equation.
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both fast and cost-effective. Note that SymPy processes a mathematical equation using the same
symbolic encoding procedure as PROSE but with an added tree-based transformation to simplify
equations, i.e., the process is: equation-to-tree, simplified tree, sequence, and SymPy tokens. We
refer to this as the SymPy tree. Notably, the family of SymPy tokens is larger than the useful
tokens needed for encoding PDEs. To address this, we process the SymPy trees by simplifying
unnecessary tokens, allowing the updated tokens to be used directly without manual adjustment.
For instance, u(x, t) is tokenized as “u”, “(”, “x”, “, ”, “t”, and “)” in SymPy. We simplify this
to “u(x, t)”, significantly improving both efficiency and accuracy. Figure 3 is an illustration of
the Korteweg–De Vries equation SymPy tree.
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Figure 3: SymPy Tree Example: KdV equation uux + ut + δ2uxxx = 0. Here, ∂(u(x, t), (x, 3))
is used in the tree structure to embed the term uxxx and similarly. Other derivatives are written
using this notation.

Bayesian Particle Filter: We propose a refinement module that utilizes the SMC particle filter
applied to the symbolic outputs to improve the accuracy of the learned equation. For a coefficient
estimated by the symbolic decoder, we first set α0 := αPROSE and the initial distribution g0(α0)
for the particle filter to be a uniform distribution centered at α0, i.e., g0(α0) = Unif.(0.9α0, 1.1α0).
The parameter refinement update rule for αk is defined as: αk = αk−1 + ν where ν ∼ N (0, ϵ2)
is zero-mean Gaussian noise. Using the Chapman-Kolmogorov equation, we compute the prior
belief distribution:

gk|k−1(αk) =

∫ ∞

−∞
fν(ν)gk−1(αk−1)dαk−1 (1)

Bayes’ theorem then gives the posterior belief with normal coefficient η:

gk(αk) = p(αk|u(tk, ·)) = ηp(u(tk, ·)|αk)gk|k−1(αk). (2)

This process is known as the Bayesian Filtering [4], and in practice, we implement it using a SMC
particle filter simulation [1, 6, 7, 10,17]. The details appear in Section 2.1 and Figure 4.

Symbol
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Figure 4: Particle Filter Module: A discretized version of the Bayesian filter process.
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2.1 Particle Filter

In this section, we discuss a particle filter algorithm to approximate the distribution for α. We
can construct p(u(·, tk)|αk) from the evolution of u:

u(·, tk) = H(αk, u(·, tk−1)) + σ (3)

where H is a (deterministic) numerical scheme for solving the PDE and σ is the observation
noise. In our case σ ∼ fσ(σ) is sampled from a zero-mean Gaussian distribution with variance ϵ2.
Since σ is the source of randomness in the dynamics, inserting the distributions into Equation (2)
yields:

gk(αk) = ηfσ(σ)gk|k−1(αk). (4)

To compute this, we utilize a SMC particle method where we generate M particles and approximate
(1) by:

gk|k−1(αk) ≈
1

M

M∑
i=1

α
(i)
k−1 + ν =

1

M

M∑
i=1

α
(i)
k|k−1. (5)

Thus, we take the samples from the initial distribution of α plus the process noise. Next, we
calculate importance weights [9], which are given by:

wi ∝
gk(α

(i))

gk|k−1(αk)
= fσ(σ), pi =

wi

w0
(6)

with normalization factor w0 =
∑M

i=1wi. This allows for discrepancy between the distribution
of interest and the distribution from which the samples are drawn. Finally, we compute the
cumulative distribution function for α:

Gk(α) =

∫ αk

−∞
gk(ζ)dζ

=

∫ αk

−∞
ηfσ(σ)gk|k−1(ζ)dζ

≈ 1∑M
i=1 fσ(σ)

M∑
i=1

fσ(σ)I(−∞,αk)(α
(i)
k|k−1) (7)

=
M∑
i=1

pi I(−∞,αk)(α
(i)
k|k−1) (8)

where IA is the indicator function on the set A. Once this is constructed, we can resample αk

from this new distribution Gk(α), then we repeat this process to construct the next step αk+1.

In this work, the particle-based refinement process uses M = 500 particles and uses 10 refinement
steps. At the last step, we output the mean of G10(α) as the refined parameter, i.e. αrefined =
1
M

∑M
i=1 α

(i)
10 . The process noise is modeled as a normal distribution with variance equal to 10−5.

Furthermore, the noise introduced by the numerical scheme is also modeled as Gaussian noise,
with variance proportional to the initial L2-norm of the state u, i.e., ϵ = 0.05∥u(·, t = 0)∥2.
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3 Numerical Experiments

We present numerical experiments to demonstrate that our proposed standardized symbol modality
enhances prediction performance. We investigate five different symbolic encoding settings for
PDEs and evaluate the trained model’s performance on equations that are not preprocessed, i.e.,
not simplified or formatted in a specific order. The five settings used for testing (after pretraining)
are: (1) PROSE Tree: defined in Section 2 and [29]; (2) Swapping PROSE tree: PROSE tree
with randomized ordering for addition and subtraction (with −1 multiplied) with probability
0.5; (3) Noisy Swapping PROSE tree: PROSE tree with random erroneous terms added with
probability 0.5, and the noisy trees are swapped with probability 0.5; (4) SymPy tree: defined
in Section 2; and (5) Noisy SymPy tree: SymPy tree with random erroneous terms added with
probability 0.5. We present an example of swapping terms and randomized ordering in Figure 2.

Table 1: PROSE-PDE with Two Modalities. Noisy: Erroneous terms in the input. Swapping:
Rearranged order for terms. L2 and R2 errors are for the data predictions while Symbolic Error
and Valid Fraction are metrics for the learned equations, see Appendix A.2 for details. PROSE
Tree* uses manual formatting and thus not a direct comparison.

Noise Testing Tree Structure Relative L2 error R2 score Symbolic Error Valid Fraction

Noise-Free
PROSE Tree* 2.18% 0.995 1.24% 99.90%

Swapping PROSE Tree 3.26% 0.983 1.43% 85.94%
SymPy Tree 1.42% 0.996 1.40% 99.95%

Noisy Tree
Noisy Swapping PROSE Tree 4.53% 0.968 2.06% 76.01%

Noisy SymPy Tree 3.81% 0.973 3.21% 83.23%

From Table 1, we observe that if the order of the terms in the testing equations does not match
the training order, the errors increase to 3.26% and 1.43% respectively for the prediction and
learned equations. In contrast, the SymPy tree achieves the best prediction errors at 1.42% and
1.40%, primarily due to the standardization of the format and the token library. This automated
process is also faster compared to the manual standardization of the PROSE tree, which resulted
in an error of 2.18%. Although the Symbolic Error increases between the Noisy PROSE tree
and the Noisy SymPy tree, the valid fraction increases as well, showing more robust knowledge
distillation. To further enhance the prediction accuracy of the physical system and utilize the
learned equations to evaluate the time-series, we test the particle filter. Using the model obtained
from the previous experiment with the SymPy tree, we randomly select 100 equations from each
type for refinement. The results are presented in Table 2, with some corresponding predictions
illustrated in Figure 5.

Table 2: Comparison of Symbolic Modality Errors with and without Particle Filter.
We evaluate PDEs using the learned systems and calculate the Time-Series Errors (see Appendix
A.2). (I)CL: (Inviscid) Conservation Law.

Type of equation Expression
Symbolic Error Time-Series Error

Without Filtering With filtering Without Filtering With filtering

Burgers’ ut + q1(u2)x = q2uxx 1.02% 0.88% 1.50% 1.38%

Inviscid Burgers’ ut + q(u2)x = 0 1.11% 0.65% 3.47% 2.12%

CL w. cubic flux ut + q1(u3)x = q2uxx 3.07% 2.79% 3.94% 3.62%

ICL w. cubic flux ut + q(u3)x = 0 2.31% 1.73% 3.61% 2.97%

ICL w. sine flux ut + q(sin(u))x = 0 0.50% 0.29% 3.94% 2.22%
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Figure 5: Various examples of the symbolic modality for inviscid conservation law with sine
flux. Target equation: ut + 0.955 cos(u)ux = 0. For PROSE tree, the model is trained for the
order [?]ut + [?] cos(u)ux, and for SymPy tree, the input expression is automatically uniformed
into [?] cos(u)ux + [?]ut. The generated symbols use 3 significant digits while the refinement is a
standard float. Notably the SymPy tree removes the erroneous term in prediction. See Table 2
for error details.

4 Conclusion

In this work, we propose an automatic equation encoding modality for enhancing the time-series
prediction of PDEs within the PROSE foundation model. This approach eliminates the need
for costly manual ordering and simplification of PDEs, leading to significant improvements in
prediction accuracy. To further refine the governing system learned by PROSE, we include a
filter-based module that refines the learned expression. This refinement is possible due to the
additional modality in the PDE foundation model. In future work, we will explore alternative
refinement techniques to produce accurate and stable long-term predictions.
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A Experiment Setup

A.1 Dataset

The dataset utilizes the conservation laws from [29]. To summarize, it consists of 6 families of
conservation laws: Inviscid/ viscous Burgers’, inviscid/ viscous conservation law with cubic flux,
and inviscid/ viscous conservation law with sine flux. The parameters are randomly sampled
from ±10% of the original value and 50 initial conditions leading to 153.6K separate equations
used in training. Then 30.72K equations with different parameters are used for testing.

The initial data sequence is obtained from the PDE dataset using 16 timestamps from [0, tf/2]
(tf specified per equation) with 128 points for the spatial grid on [0, xf ] for a fixed xf . Note that
a change of variables is used to re-scale and normalize the PDEs so that their solutions reside on
a specified interval. We perform data normalization during the training process. Given the data
input sequence {u(ti, ·)}0≤i<T0 , we compute the mean and standard deviation, which are used
to normalized both the input and ground truth label. The loss function is the standard mean
squared error in this normalized space.

A.2 Evaluation Metrics

Since we use two modalities, we utilize four evaluation metrics from [29]. For metrics on the data,
we use the relative L2 error: ∥u−ũ∥2

∥u∥2 , and the R2 score:

R2 := 1−
∑

i ∥ui − ũi∥22∑
i ∥ui − mean(ui)∥22

where u is the target, ũ is the model’s prediction, and i is the index for sample.

A valid generated expression is considered as the one with true mathematical meanings (i.e. can
be decoded into an equation) and with (relative) error less than 100%. The percentage of valid
expressions are reported and the symbolic error is computed by inputting randomized-coefficient
polynomials of the form P (x, t) = (c0 + c1t+ c2t

2)(c3 + c4x+ c5x
2 + c6x

3 + c7x
4) into the learned

PDE and the true PDE then taking the relative L2 error between them. The degree of the
polynomials were chosen to avoid the true PDEs from being identically zero. The Time-Series
error is the relative L2 error using the prediction generated using the (particle filtered) refined
PDE and initial conditions in the input data.

A.3 Training

The models are trained using the AdamW optimizer with batch size of 512 for 30 epochs, where
each epoch is 2K steps. The learning rate scheduler is set to have 10% warmup and a cosine
scheduler. We use a learning rate of 10−4 and weight decay of 10−4. On a single NVIDIA GeForce
RTX 4090 GPUs with 24 GB memory, the training takes about 3.0 hours with PROSE tree and
11.5 hours using SymPy tree.
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