
DeepONet as a Multi-Operator Extrapolation Model:

Distributed Pretraining with Physics-Informed Fine-Tuning

Zecheng Zhang∗, Christian Moya†, Lu Lu‡, Guang Lin§, Hayden Schaeffer ¶

Abstract

We propose a novel fine-tuning method to achieve multi-operator learning through train-
ing a distributed neural operator with diverse function data and then zero-shot fine-tuning
the neural network using physics-informed losses for downstream tasks. Operator learning
effectively approximates solution operators for PDEs and various PDE-related problems, yet
it often struggles to generalize to new tasks. To address this, we investigate fine-tuning a
pretrained model, while carefully selecting an initialization that enables rapid adaptation to
new tasks with minimal data. Our approach combines distributed learning to integrate data
from various operators in pre-training, while physics-informed methods enable zero-shot fine-
tuning, minimizing the reliance on downstream data. We investigate standard fine-tuning
and Low-Rank Adaptation fine-tuning, applying both to train complex nonlinear target op-
erators that are difficult to learn only using random initialization. Through comprehensive
numerical examples, we demonstrate the advantages of our approach, showcasing significant
improvements in accuracy. Our findings provide a robust framework for advancing multi-
operator learning and highlight the potential of transfer learning techniques in this domain.

1 Introduction

In recent years, neural operators [1, 2, 3, 4, 5] and deep operator learning [1, 6, 7] have emerged as
powerful tools for approximating mappings between function spaces, particularly in the context
of solving partial differential equations (PDEs) [8, 9, 10, 11] and ordinary differential equa-
tions (ODEs) [12, 13]. These techniques hold great promise for various applications, including
physics simulations and engineering problems [14, 15, 16, 17, 18, 19, 20, 21, 22]. However,
traditional approaches often face significant challenges, primarily due to the requirement for ex-
tensive datasets [23, 24] and their inability to effectively handle heterogeneous input spaces [25].
As operators become increasingly complex, the need for more efficient learning methodologies
grows [26, 27].

To address the data limitations inherent in operator learning, physics-informed DeepONets [28,
29, 30, 31] have been developed. These models are designed to incorporate physical laws that
govern the behavior of PDEs and ODEs, thereby reducing the amount of training data needed

∗Department of Mathematics, Florida State University, Tallahassee, FL 32304, USA. (Email:
zecheng.zhang.math@gmail.com)

†Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA. (Email: cmoya-
cal@purdue.edu)

‡Department of Statistics and Data Science, Yale University, New Haven, CT 06511, USA. (Email:
lu.lu@yale.edu)

§Department of Mathematics and Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.
(Email: guanglin@purdue.edu)

¶Department of Mathematics, UCLA, Los Angeles, CA 90095, USA. (Email: hayden@math.ucla.edu)

1

ar
X

iv
:2

41
1.

07
23

9v
1

 [
cs

.L
G

]
 1

1
N

ov
 2

02
4

while enhancing model interpretability. Despite their advantages, training physics-informed
DeepONets presents its own difficulties, particularly in identifying appropriate initial training
points. The complexity of the underlying physical systems often complicates the selection of
these points, which can hinder the overall training process.

Apart from data limitations, another key challenge in neural operator learning lies in handling
extrapolation. This involves leveraging a pretrained model to predict test samples that exhibit
properties distinct from the training examples. For instance, in [32], the authors address the
challenge of predicting downstream tasks with variations in input functions or function do-
mains, and they propose methods to quantify differences between input function distributions.
To tackle generalization and extrapolation for new operators—such as solution operators asso-
ciated with unseen PDEs — MOL approaches [33, 34, 35, 36, 37, 38, 39, 40, 41, 42] have been
developed. MOL aims to use a unified framework to learn multiple operators simultaneously. By
incorporating structures that encode operator-specific information, such as symbolic encodings
[36, 33, 39, 38, 43], MOL may have the ability to extrapolate to different input distributions and
unseen operators.

However, most MOL frameworks are computationally intensive, requiring extensive datasets, and
still face challenges in generalizing to PDEs with entirely new physical properties. To address
downstream tasks of arbitrary forms, fine-tuning with streaming data [39] can be an effective
strategy. The success of this technique relies on a well-initialized model and the quality of the
downstream task data. In scientific applications related to solving PDE; however, selecting a
suitable initialization or identifying a model that closely resembles the new tasks is challenging
[44]. Additionally, sufficient downstream data may not be available. In this work, we employ
distributed learning algorithms to achieve a robust initialization adaptable to downstream tasks.
Furthermore, we use physics-informed training techniques to enable zero-shot tuning, allowing
for effective adjustment without the need for downstream data.

Federated learning [45, 46], Deep Distributed Neural Operators (D2NO) [47], and Multi-Operator
Learning with Distributed Neural Operator (MODNO) [35] were introduced to address the chal-
lenges posed by heterogeneous multiscale input spaces and multi-operator learning (MOL). In
particular, D2NO and MODNO facilitate distributed learning by enabling the construction of
distinct operators tailored to specific input spaces. This modular framework not only enhances
flexibility but also leverages the collective contributions of all operators within a D2NO, ef-
fectively capturing a wide range of responses. These empirical properties make it an ideal
foundation for training operators in complex scenarios. Some recent advancements in scientific
machine learning indicate that training with a diverse dataset could produce a pretrained model
that adapts quickly to downstream tasks [39, 48]. For example, in [39], the authors demon-
strate that including data from diverse PDE solution operators improves the model’s capacity
for extrapolation and fine-tuning. In this work, we utilize the capabilities of D2NO/MODNO to
combine data from different operators, generating a robust pretrained model that is adaptable
for new tasks.

In this paper, we propose the use of fine-tuning as a form of transfer learning to improve op-
erator training. While fine-tuning has been extensively utilized in natural language processing
(NLP) [49], its application in the domain of operator learning remains very limited [32]. We
classify fine-tuning into two categories: full fine-tuning, where all parameters of the pretrained
model are updated during the training process, and parameter-efficient fine-tuning [50, 51, 52],
which updates only a small subset of parameters while keeping the majority of the model fixed.
Our objective is to leverage these fine-tuning techniques to enhance the training of complex non-
linear target operators that are often challenging to learn from random initialization, whether
due to their complexity or insufficient data. By leveraging pretrained physics-informed Deep-
ONets and D2NOs as starting points, we aim to establish a zero-shot fine-tuning approach and

2

a robust pretraining model tailored for the downstream extrapolation tuning process.

We summarize the contributions of our paper below.

1. Enhanced Physics-Informed Operator Learning: We present a fine-tuning method that
extends pretrained DeepONets to achieve more accurate zero-shot operator fine-tuning
extrapolation. This approach leverages the physical principles embedded in both the pre-
trained and target operators, enabling models that not only outperform those trained from
random initialization but also produce predictions consistent with fundamental physical
laws. Remarkably, this is achieved without requiring additional supervised fine-tuning
data, facilitating physics-informed zero-shot extrapolation.

2. Fine-Tuning Deep Distributed Neural Operators: We introduce a fine-tuning strategy tai-
lored for D2NOs, showcasing how these operators can use prior knowledge from diverse
multiple pretrained models. This approach enhances flexibility and adaptability, enabling
the model to accurately approximate complex target operators across diverse scenarios
through physics-informed zero-shot extrapolation.

3. Low Rank Adaptation for Efficient Fine-Tuning: We implement LoRA techniques for both
physics-informed DeepONets and D2NOs, significantly reducing the number of parameters
that need to be trained during fine-tuning. This improves computational efficiency while
preserving the core strengths of the original pretrained models, making them more viable
for application in resource-constrained environments. The potential trade-off comes from
a reduction in the model’s expressiveness in certain operator contexts.

We organize the rest of the paper as follows. Section 2 reviews DeepONets, physics-informed
DeepONets, and D2NOs. Section 3 describes the proposed fine-tuning methods, including LoRA,
for both DeepONet and D2NO. In Section 4, we provide three examples that demonstrate the
advantages of the proposed method compared to training new operators from random initializa-
tion. Finally, Section 5 concludes the paper and discusses our future work.

2 Background

This section reviews the related operator networks: DeepONets, Physics-Informed (PI) Deep-
ONets, and D2NO/MODNO.

2.1 Deep Operator Networks

DeepONets [6, 1], are a novel class of neural network architectures designed to learn operators
that map functions to functions. They are particularly advantageous in applications involving
PDEs, where the operator is often complex and difficult to describe analytically. Formally, let
U be a space of functions and let V be the corresponding output space. A typical operator
G : U → V maps a function u ∈ U to another function v ∈ V.
The architecture of a DeepONet consists of two main networks: the branch network and the
trunk network. The branch networks take as input a discretization û of the input function
u, discretized using m sensors (sampled values). In contrast, the trunk network captures the
spatial or temporal domain of the output function, receiving a set of input coordinates x ∈ Rd

and learning to map these coordinates to the corresponding output values. The outputs of
the branch and trunk networks are combined (via a dot product) to yield the output of the

3

DeepONet with trainable parameters denoted as θ as follows:

G[u](x) ≈ Gθ[û](x) =
K∑
k=1

pk(û)bk(x), u ∈ U , (1)

where G[u](x) is the predicted output function evaluated at the coordinates x, and pk denotes the
branch nets while bk(x) is the trunk basis net. The training procedure for DeepONets involves
using pairs of input-output function data to learn the underlying operator. Given a dataset of
triplets (ui, xi, vi) where ui is a function from U and vi = G[ui](xi) is the corresponding output
evaluated as xi, the network parameters θ ∈ Rp are optimized by minimizing a loss function
defined as:

L(θ) = 1

N

N∑
i=1

∥vi −Gθ[ui](xi)∥2 ,

where Gθ[ui](yi) is the output of the DeepONet for the input function ui at the coordinates xi,
and N is the total number of training samples. Once trained, DeepONets can efficiently evaluate
the learned operator on new input functions, making them a powerful tool for approximating
complex function mappings in various applications [53].

2.2 Deep Distributed Neural Operators

D2NOs [47, 35] are an advanced framework developed to efficiently learn mappings between
function spaces in distributed computing environments. D2NO was initially proposed to address
input function spaces with heterogeneous properties by processing functions with similar char-
acteristics locally. This framework was later extended to MODNO (Multi-Operator learning
with Distributed Neural Operators) [35] to tackle the challenge of multi-operator learning by
managing distinct output functions associated with different operators in a localized manner.

Consider we have C sub-datasets, D1, D2, . . . , DC , where each sub-dataset corresponds to a
unique set of data. In D2NO setting, one sub-dataset contains the input functions presenting
similar properties; while in MODNO settings, it is the data associated with one operator. Each
local client c manages its own local dataset Dc, and in the D2NO setting, the local loss function
for client c can be defined as:

Lc(αc;β) =

Nc∑
i=1

∥G[uc,i](·)−Gαc,β[ûc,i](·)∥2, uc,i ∈ Dc

where Nc is the number of input functions in dataset Dc and αc and β are the local and global
parameters for the branch networks to learn dedicated function encoding and trunk networks to
learn the shared output function basis, respectively. Notably, with a slight abuse of notation, we
will always use αc to denote the local parameters and β to denote the globally shared parameters.
For MODNO multi-operator learning setting, the c-th local loss for operator Gc can be defined
as,

Lc(αc;β) =

Nu∑
i=1

∥Gc[uc,i](·)−Gαc,β[ûc,i](·)∥2,

where uc,i is the input function of the operator Gc, αc represents the local parameters for the
trunk networks, which learn the basis for the output functions of different operators, while β
denotes the shared parameters used to encode the input functions. The global loss function

4

which is used to update the shared parameters β across all clients using all data is then defined
as:

L(β;α) =
C∑
c=1

Lc(αc;β).

The training procedure for D2NO/MODNO involves the following steps:

1. Initialization: Initialize the weights and trainable parameters for each branch network and
the trunk network.

2. Local Updates: For each client c:

• Compute the local loss Lc(αc;β) using its dedicated dataset Dc.

• Update the local parameters αc:

αc ← αc − ηc∇αcLc(αc;β),

where ηc is the learning rate for client c.

3. Global Synchronization: After local updates, the centralized server aggregates the local
parameters and updates the shared network:

β ← β − η∇βL(β;α),

where η is the learning rate for the shared networks.

4. Iteration: Repeat the local updates and global synchronization for a predetermined number
of iterations or until convergence.

This distributed approach allows D2NO/MODNO to efficiently learn operators while accom-
modating heterogeneous input functions and MOL ultimately achieving improved predictive
accuracy and computational efficiency in various numerical experiments.

Finally, to facilitate the use of D2NO/MODNO for fine-tuning, we average the weights of the
local networks. This process effectively conserves information from a diverse set of responses of
an operator across multiple input spaces. The pretrained weights are computed as follows:

α =
1

C

C∑
c=1

αc.

This merging process not only captures the variability of responses but also provides a beneficial
warm start for fine-tuning, yielding a robust initialization that enhances the model’s adaptability
to target operators.

2.3 Physics-Informed Learning

Physics-Informed Neural Networks (PINN) is a data-free neural network approach for solving
PDEs [54, 55]. This technique can be applied to DeepONet, enabling it to approximate opera-
tors. For instance, consider a one-dimensional PDE ut − uxx = f defined on [0, 1] with periodic
boundary conditions. Here, we aim to learn the operator that maps the initial condition (IC)
to the solution at a later time. Let ui denote the i-th discretized input functions in the training

5

dataset, we then denote the j-th point in its output function’s domain as (xij , tij), i.e. the quan-
tity G[ui](xij , tij), which is used for training the neural operator. We then solve the following
minimization problem:

min
θ

ω1

Nu∑
i=1

Nx∑
j=1

|ADt{Gθ[ui](xij , tij)} − ADxx{Gθ[ui](xij , tij)} − f(xij , tij)|2

+ ω2

Nu∑
i=1

Nic∑
j=1

|Gθ[ui](xij , 0)− ui(xij)|2

+ ω3

Nu∑
i=1

Nbc∑
j=1

|Gθ[ui](0, tij)−Gθ[ui](1, tij)|2.

Here, ADxx denotes the second-order derivative with respect to the network’s spatial input x
(the trunk input), while ADt represents the first-order derivative with respect to the network’s
temporal input t (also a trunk input); both derivatives are implemented using automatic dif-
ferentiation. The variable ωi represents the weights. The last term enforces periodic boundary
conditions.

Since optimizing DeepONet with PI training only needs the IC and boundary conditions (BC)
and does not require data, PI offers a supervised approach to approximate the operator. How-
ever, directly applying PI to a randomly initialized neural operator can lead to performance
challenges for many problems, such as slow convergence. In this work, we demonstrate that
with a MODNO/D2NO-initialized neural operator, PI can optimize the network in a zero-shot
setting (without data) and significantly enhance prediction accuracy.

3 Methodology

In this section, we introduce our proposed methods, including adopting a MODNO/D2NO
pretrained and averaged neural operator as well as PI fine-tuning.

3.1 Full Fine-Tuning of DeepONets

Full fine-tuning is a conventional approach utilized to adapt pretrained neural networks for
specific tasks by updating all model parameters during the training process. This method allows
the model to leverage the knowledge acquired during pretraining while also incorporating task-
specific information, resulting in improved performance on target datasets. The main idea
behind full fine-tuning is to refine the entire set of model parameters, enabling the model to
capture complex features relevant to the new task.

In the context of a neural network layer with weight matrix W ∈ Rm×n, full fine-tuning involves
directly updating the weights during the training process. The updated weight matrix can be
represented as:

W̃ = W +∆W,

where ∆W represents the changes applied to the weight matrix during fine-tuning. This ap-
proach allows the model to effectively adjust to the nuances of the new data, improving its
ability to approximate complex operators.

To implement full fine-tuning in the linear layers of the branch and trunk networks in a DeepONet
or merged D2NO, we first identify the linear trainable layers within these networks. Let B and

6

T denote the branch and trunk networks, respectively, containing linear layers with weights WB
and WT . During the fine-tuning process, both WB and WT are updated as follows:

W̃B = WB +∆WB,

W̃T = WT +∆WT .

In this context, ∆WB and ∆WT are computed based on the gradients obtained from the physics-
informed loss function with respect to the target operators. This process allows the model to
effectively adapt its weights to the specific characteristics of the target data, thereby enhancing
its performance. During training, we optimize all parameters of WB and WT simultaneously,
enabling the fine-tuned DeepONet to learn the required adjustments for the target functions.
This approach leads to improved convergence and performance on complex operator approxima-
tions compared to training from random initialization. Once the full fine-tuning is completed,
we evaluate the model on new input functions and target operators, capitalizing on the pre-
trained knowledge encapsulated in the updated parameters. This comprehensive adaptation
ensures that the model can generalize effectively while accurately approximating the desired
target operators.

3.2 Low Rank Adaptation Finetuning of DeepONets

LoRA [50] is a technique designed to efficiently fine-tune pretrained neural networks by adding
low-rank parameter matrices to the existing model parameters. This approach enables the model
to adapt to new tasks with significantly fewer trainable parameters, reducing computational
costs while maintaining performance. The main idea behind LoRA is to decompose the weight
updates of the network into low-rank matrices, allowing for the capture of task-specific features
without the need for full fine-tuning of all model parameters. In the context of a neural network
layer with weight matrix W ∈ Rm×n, LoRA introduces two low-rank matrices, A ∈ Rm×r and
B ∈ Rr×n, where r is much smaller than m and n. During fine-tuning, instead of updating W
directly, the model learns the updates as follows:

W̃ = W +AB,

where W̃ is the adapted weight matrix used during inference. This structure allows the model
to leverage the pretrained knowledge while efficiently learning task-specific adjustments, leading
to enhanced adaptability with reduced computational overhead.

To apply LoRA fine-tuning to the linear layers of the branch and trunk networks in a DeepONet,
we first identify the linear transformations in these networks. Let B and T represent the branch
and trunk networks, respectively, which contain linear layers with weights WB and WT . Instead
of fine-tuning WB and WT directly, we introduce low-rank matrices AB, BB for the branch
network and AT , BT for the trunk network. The updated weights for these layers during fine-
tuning are then expressed as:

W̃B = WB +ABBB,

W̃T = WT +AT BT .

During training, we only optimize the parameters of the low-rank matrices AB, BB, AT , BT ,
while keeping WB and WT frozen. This approach enables the DeepONet to adaptively learn
additional operators for the target functions with a fraction of the parameters typically required,
allowing for faster convergence and improved efficiency in training. Once the LoRA parameters
are trained, we can evaluate the finetuned on new input functions and target operators while
still maintaining the benefits of the pretrained knowledge encapsulated in the frozen layers.

7

Figure 1: Methodology demonstration for downstream PDE ut − uxx = f with initial condition
(IC) and Dirchlet boundary conditions (BC). AD denotes the auto-differentiaiton of the modern
machine learning software,

⊗
denotes the inner product.

3.3 MODNO/D2NO Pretraining and PI Fine Tuning

A strong initialization is crucial for downstream tasks, where a “good” initialization means the
model can quickly adapt to the new task with minimal data. In operator learning, a well-suited
initialization would be a neural operator trained on data from an operator with behavior similar
to the downstream task. However, there is limited research comparing different operators for
this purpose. Even when the pretraining and downstream operators exhibit similar behavior,
differences in the input function distributions can hinder performance if the pretrained operator
is directly used for initialization.

Recent work in multi-operator learning foundation models offers valuable insights for achieving
robust initialization by training on data from multiple operators. The key idea is to train a model
on a diverse set of operators, enabling it to adapt quickly to new tasks. However, since DeepONet
is designed for single-operator learning, it approximates only one operator at a time, limiting
its use with multi-operator data. To address this limitation, we adopt the MODNO/D2NO
algorithm. Specifically, since training requires mixing data from different operators to achieve
MOL, we will use the MODNO approach. In MODNO pretraining, we train a shared data
encoder (branch network) for the input function and use separate trunk networks to represent
output functions for different operators. After pretraining, we average the models to create an
effective initialization. As D2NO was introduced before MODNO, we will use D2NO in our
naming conventions in the numerical example sections. To adapt to downstream tasks, we will
use PI tuning, enabling zero-shot adaptation for extrapolation tasks involving new operators.
The numerical results in the next section validate the effectiveness of the proposed method. We
present a workflow of our methods in Figure 1.

4 Numerical Examples

This section presents four numerical examples that illustrate the advantages of our proposed
fine-tuning methods over fine-tuning/retraining a neural network trained with one operator
data and training new neural networks from random initialization to approximate operators. In

8

our notation, PI-LoRA refers to physics-informed LoRA fine-tuning in a zero-shot setting, while
PI-Full denotes the standard zero-shot fine-tuning approach.

4.1 Example 1: Extrapolation of Burgers’-Type Equations

In the first example, we focus on the extrapolation of Burgers’-type equations. Specifically, we
investigate the mapping from the initial condition to the solution at the terminal simulation
time for the following PDE:

ut + ν

(
u2

2

)
x

= µuxx, t ∈ [0, T], x ∈ [0, 2π], (2)

with periodic boundary conditions. The initial conditions are generated using the Gaussian
mixture model described in Section 4.1.2. To obtain models that will serve as the initialization
for fine-tuning to the target operator, we consider operators from three different equations: (1)
Equation 2 with parameters µ = 0.02, ν = 0.5, T = 1; (2) Equation 2 with µ = 0.03, ν = 0.5, T =
1; and (3) equation 2 with µ = 0.05, ν = 0.5, T = 0.5. The target operator corresponds to the
mapping from the initial condition to the solution of equation 2 with µ = 0.01, ν = 0.5, T = 1.

We compared three pretraining models: (1) pretraining using the D2NO/MODNO algorithm, (2)
pretraining with data from a single operator with µ = 0.05, ν = 0.5, and (3) random initialization
without pretraining. For each setting, we conducted experiments independently with different
random seeds, running each experiment 10 times, and presenting the average results in Table 1
and training error decay trajectory in Figure 2.

Fine-tune
Pretrain

D2NO µ = 0.05, ν = 0.5 Random

PI-LoRA 3.11% 3.49% -

PI-Full 4.99% 3.74% 21.14%

Table 1: Average relative errors across all testing samples. The errors represent the mean of 8
independent runs with different random seeds. The standard deviations for various experimental
settings are as follows: 0.15 for LoRA D2NO pretraining, 0.31 for LoRA single-operator pretrain-
ing, and 4.02 for random initialization. All numerical experiments follow the same experimental
settings, including training epochs, loss weights, learning rate scheduler, and other parameters.
The relative error decay with respective to the training epochs is presented in Figure 2.

Figure 2: Left: Relative error (in log scale) decay with respect to training epochs. Three full
tuning curves are dashed lines, and two LoRA training curves are solid lines. The final relative
errors are presented in Table 1. Right: A demonstration of the predictions.

9

4.1.1 Analysis of Results

Firstly, We can observe from Figure 2 that all model trainings have been stabilized. As seen in
the last column of Table 1, a randomly initialized model fails to provide accurate predictions
in a zero-shot setting, underscoring the importance of fine-tuning. Second, when fine-tuning
a model trained with data from an operator exhibiting similar properties, the performance
shows a significant improvement over random initialization or training from scratch. However, a
search algorithm for an operator with properties similar to the target operator remains underex-
plored in the research. Therefore, training an initialization using data from multiple operators
may provide a better starting point for downstream tasks. The table shows that the proposed
D2NO/MODNO, which averages data from multiple operators, provides a robust initialization,
enabling the fine-tuned model to achieve optimal performance. This highlights the effectiveness
of using federated algorithms for model pretraining, as demonstrated in [56] for an engineering
problem. Additionally, we observe an improvement in accuracy when using PI-LoRA for this
experiment. As outlined in Section 4.1.2, PI-LoRA tunes far fewer parameters than PI-Full,
with a parameter count of 32.9K compared to 65.2K. This indicates a substantial reduction in
computational device memory usage.

4.1.2 Pretraining and Fine-Tuning Details

To generate the pretraining data, we create the initial conditions using normal distributions with
random means and variances. The means and standard deviations are uniformly sampled from
the intervals [2π, 4π] and [0.3, 1], respectively. For the testing data, or the initial conditions for
the testing operator, we follow the same process but shift the distribution by 0.01 to increase
the difficulty of the extrapolation. In the PI fine-tuning process, we use 17 temporal points and
40 spatial points, uniformly sampled, to construct the equation loss. For sampling the initial
condition, we use 26 points along with 200 input-output function pairs. No additional data is
used during the fine-tuning process.

The network consists of 10 basis functions. Each branch network has a fully connected structure
with dimensions Ni×100→ 100×1, where Ni = 13 represents the input dimension or discretiza-
tion mesh size. For the LoRA implementation in the branch networks, we set the rank to 10.
The trunk network follows a fully connected structure with layers sized Ni×100→ 100×100→
100 × 100 → 100 × 100 → 100 × 100 → 100 × 10. For the LoRA implementation in the trunk
network, we set the rank to 10 for all layers except the last, where the rank is set to 4. This
network structure is used in all subsequent experiments.

4.2 Example 2: Extrapolation of the Porous Media Equations

In this example, we consider the porous media equations of different orders, specifically:

ut − (uxx)
m = f, x ∈ [0, 2], t ∈ [0, 0.01]. (3)

We investigate the D2NO pretrained model, which is trained using data from three operators
that map the initial condition to the solution at later times: equation (3) with (1) m = 1 and
f(x) = 1

5 sin(2πx), (2) m = 3 and f(x) = 1
5 cos(2πx), and (3) m = 4 and f(x) = 1

10 sin(2πx).
We test the target operator with m = 2 and f(x) = 1

5 sin(2πx).

10

Fine-tune
Pretrain

D2NO m = 1 porous media Random

PI-LoRA 5.49% 6.14% -

PI-Full 6.57% 8.51% 12.57%

Table 2: Average relative errors for all testing samples in the porous media equation example.
The errors represent the average of 10 independent runs with different random seeds. The
standard deviations for various experimental settings are as follows: 0.26 for PI-LoRA D2NO
pretraining, 0.25 for PI-LoRA single-operator pretraining, and 2.50 for random initialization. All
numerical experiments use the same settings (training epochs, loss weights, etc.). Notably, the
training and testing operators do not share the same input function distributions, as described
in Section 4.2.2.

4.2.1 Analysis of Results

From Table 2, we observe that using PINN-DeepONet to directly solve the target operators
results in a relatively high error of 12.57%. However, when we use a pretrained model that
closely approximates the target, as proposed, the error significantly decreases to 6.14%, as
shown in the third column. Selecting an operator with similar properties can be challenging,
though. To address this, we applied the MODNO/D2NO-based method, which pretrains an
averaged model. This approach further reduces the error to 5.49%, demonstrating that the
proposed methods provide a robust initialization for downstream tasks.

4.2.2 Pretraining and Fine-Tuning Details

In this example, the training and testing input functions (initial conditions of the PDEs) are
generated by different functions. Specifically, the input functions for the training and testing
operators are defined as: u(x;w) = w1 sin(πx) + w2 sin(2πx) + w3 sin(4πx) + w4 sin(6πx) +
w5 cos(πx)+w6 cos(2πx)+w7 cos(4πx)+w8 cos(6πx)+w9, where wi ∼ U(−2, 2) for i = 1, . . . , 8
and w9 ∼ U(0.1, 2). In the PI fine-tuning process, we use a 17×40 temporal-spatial discretization
and study 250 input-output function pairs.

4.3 Example 3: Extrapolation of the Diffusion-Reaction Equations

In this example, we consider the diffusion-reaction equations, given by:

ut − uxx + g(u) = f(x), x ∈ [0, 2], t ∈ [0, 0.01], (4)

with Dirichlet boundary conditions u(0) = u(2) = 1. The D2NO pretrained model is based on
three operators that map the initial condition to the solutions at later times: (1) g(u) = −u and
f(x) = expx, (2) g(u) = −5u2 and f(x) = x2, and (3) g(u) = −u(1−u) and f(x) = sin(x). The
target operator corresponds to the solution operator of the equation g(u) = −(u − 0.5)(u − 1)
and f(x) = cos(πx). The results are presented in Table 3.

11

Fine-tune
Pretrain

D2NO g(u) = −5u2, f(x) = x2 Random

PI-LoRA 3.24% 3.41% -

PI-Full 3.43% 5.14% 4.66%

Table 3: Average relative errors for all testing samples in the diffusion-reaction equation example.
The errors represent the average of 10 independent runs with different random seeds. The
standard deviations for various experimental settings are as follows: 0.04 for LoRA D2NO
pretraining, 0.24 for LoRA single-operator pretraining, and 0.46 for random initialization. All
numerical experiments use the same settings (training epochs, loss weights, etc.). Notably, the
training and testing operators do not share the same input function distributions, as detailed in
Section 4.3.2.

4.3.1 Analysis of Results

Similar to the first two examples, the model pretrained using the proposed MODNO/D2NO
approach outperforms both single-operator data pretraining and random initialization. Further-
more, PI-LoRA fine-tuning outperforms PI-Full in both time/memory efficiency and prediction
accuracy. Specifically, in terms of computational time, PI-LoRA slightly outperforms PI-Full,
taking 187 seconds compared to 191 seconds. However, the difference in computational mem-
ory is more significant, with PI-LoRA requiring only 32,860 parameters, while PI-Full requires
65,200 parameters.

4.3.2 Pretraining and Fine-Tuning Details

We first present the input functions used for training and testing. Specifically, for all operators
involved in pretraining and testing, the input functions are generated by the following series:
u(x;w) = w1 sin(πx) + w2 sin(2πx) + w3 sin(4πx) + w4 sin(6πx) + w5 cos(πx) + w6 cos(2πx) +
w7 cos(4πx)+w8 cos(6πx)+w9, where wi ∼ U(−2, 2) for i = 1, . . . , 8 and w9 ∼ U(0.1, 2). In the
physics-informed fine-tuning process, we use a 17×40 temporal-spatial discretization and study
250 input-output function pairs. The network structures and LoRA training details remain the
same as in the first experiment.

4.4 Example 4: Extrapolation of Two Different PDE Families

In this example, we consider the case where the pretraining operators and downstream operators
belong to two different PDE families. Specifically, we pretrain using operators from three porous
media equations, as outlined in Section 4.2, and then apply a diffusion-reaction type downstream
operator, as discussed in Section 4.3. We present the solutions of these two operators in Figure
3 and summarize the results in Table 4.

12

Figure 3: Demonstration for two solution operators: (1) diffusion-reaction system (4) with
g(u) = −(u − 0.5)(u − 1) and f(x) = cos(πx), (2) Porous media system (3) with degree 2 and
f(x) = 1

5 sin(2πx). Porous media solutions are utilized in constructing the MODNO/D2NO
pretraining model, while the downstream task is the reaction-diffusion system. We ran the
numerical experiments for 8 times with different random seeds, and the standard deviations
for various experimental settings are as follows: 0.04 for RD pretrained model, 0.05 for PM
pretrained model, and 0.46 for random initialization.

Fine-tune
Pretrain

RD PM Random

PI-LoRA 3.24% 3.33% 4.66%

Table 4: Average relative errors for all testing samples in the reaction-diffusion (RD) example
from Section 4.4. Notably, we study the pretraining model derived from porous media (PM)
equations, which differ from the downstream target tasks (RD). The errors represent the average
of 10 independent runs with different random seeds. All numerical experiments use the same
settings (training epochs, loss weights, etc.)

5 Conclusion

In this work, we have presented an innovative framework for fine-tuning operator learning
methodologies by integrating physics-informed DeepONets and Deep Distributed Neural Op-
erators. By addressing the limitations of traditional operator learning approaches, we have
shown that pretrained models can be effectively used to reduce data requirements and enhance
the accuracy of operator approximations. Our use of fine-tuning techniques offers flexibility in
training complex nonlinear target operators, enabling efficient adaptations to various scenarios.
In our future work, we plan to extend this framework to scientific foundation models by combin-
ing fine-tuning with uncertainty quantification, ensuring proper adaptability in diverse contexts.
Our findings support a shift towards leveraging pretrained models in multi-operator learning,
promoting more efficient and interpretable machine learning solutions in complex scientific and
engineering applications.

13

Acknowledgement

ZZ would like to thank the U.S. Department of Energy (DOE) Office of Science Advanced Sci-
entific Computing Research program DE-SC0025440. GL and CM would like to thank the sup-
port of the National Science Foundation (DMS-2053746, DMS-2134209, ECCS-2328241, CBET-
2347401 and OAC-2311848), and U.S. Department of Energy (DOE) Office of Science Advanced
Scientific Computing Research program DE-SC0023161, the Uncertainty Quantification for Mul-
tifidelity Operator Learning (MOLUcQ) project (Project No. 81739), and DOE–Fusion Energy
Science, under grant number: DE-SC0024583. LL was supported by the U.S. DOE Office of Ad-
vanced Scientific Computing Research under Grants No. DE-SC0025593 and No. DE-SC0025592,
and the U.S. National Science Foundation under Grant No. DMS-2347833. HS was supported
in part by NSF DMS 2427558 and NSF DMS 2331033.

References

[1] Tianping Chen and Hong Chen. Universal approximation to nonlinear operators by neural
networks with arbitrary activation functions and its application to dynamical systems. IEEE
Transactions on Neural Networks, 6(4):911–917, 1995.

[2] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,
Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial
differential equations. arXiv preprint arXiv:2010.08895, 2020.

[3] Zecheng Zhang, Wing Tat Leung, and Hayden Schaeffer. Belnet: Basis enhanced learning,
a mesh-free neural operator. arXiv preprint arXiv:2212.07336, 2022.

[4] Lu Lu, Xuhui Meng, Shengze Cai, Zhiping Mao, Somdatta Goswami, Zhongqiang Zhang,
and George Em Karniadakis. A comprehensive and fair comparison of two neural operators
(with practical extensions) based on fair data. Computer Methods in Applied Mechanics
and Engineering, 393:114778, 2022.

[5] Anran Jiao, Haiyang He, Rishikesh Ranade, Jay Pathak, and Lu Lu. One-shot learning for
solution operators of partial differential equations. arXiv preprint arXiv:2104.05512, 2021.

[6] Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learn-
ing nonlinear operators via deeponet based on the universal approximation theorem of
operators. Nature Machine Intelligence, 3(3):218–229, 2021.

[7] Pengzhan Jin, Shuai Meng, and Lu Lu. Mionet: Learning multiple-input operators via
tensor product. SIAM Journal on Scientific Computing, 44(6):A3490–A3514, 2022.

[8] Guang Lin, Christian Moya, and Zecheng Zhang. B-deeponet: An enhanced bayesian
deeponet for solving noisy parametric pdes using accelerated replica exchange sgld. Journal
of Computational Physics, 473:111713, 2023.

[9] Christian Moya Calderon and Guang Lin. Bayesian, multifidelity operator learning for
complex engineering systems-a position paper. Journal of Computing and Information
Science in Engineering, pages 1–9, 2023.

[10] Zecheng Zhang, Christian Moya, Wing Tat Leung, Guang Lin, and Hayden Schaeffer.
Bayesian deep operator learning for homogenized to fine-scale maps for multiscale pde.
Multiscale Modeling & Simulation, 22(3):956–972, 2024.

14

[11] Anran Jiao, Qile Yan, Jhn Harlim, and Lu Lu. Solving forward and inverse pde
problems on unknown manifolds via physics-informed neural operators. arXiv preprint
arXiv:2407.05477, 2024.

[12] Christian Moya, Amirhossein Mollaali, Zecheng Zhang, Lu Lu, and Guang Lin.
Conformalized-deeponet: A distribution-free framework for uncertainty quantification in
deep operator networks. arXiv preprint arXiv:2402.15406, 2024.

[13] Guang Lin, Christian Moya, and Zecheng Zhang. Learning the dynamical response of non-
linear non-autonomous dynamical systems with deep operator neural networks. Engineering
Applications of Artificial Intelligence, 125:106689, 2023.

[14] Christian Moya, Shiqi Zhang, Guang Lin, and Meng Yue. Deeponet-grid-uq: A trustworthy
deep operator framework for predicting the power grid’s post-fault trajectories. Neurocom-
puting, 535:166–182, 2023.

[15] Christian Moya, Guang Lin, Tianqiao Zhao, and Meng Yue. On approximating the dynamic
response of synchronous generators via operator learning: A step towards building deep
operator-based power grid simulators. arXiv preprint arXiv:2301.12538, 2023.

[16] Shunyuan Mao, Ruobing Dong, Lu Lu, Kwang Moo Yi, Sifan Wang, and Paris Perdikaris.
Ppdonet: Deep operator networks for fast prediction of steady-state solutions in disk–planet
systems. The Astrophysical Journal Letters, 950(2):L12, 2023.

[17] Min Zhu, Shihang Feng, Youzuo Lin, and Lu Lu. Fourier-deeponet: Fourier-enhanced deep
operator networks for full waveform inversion with improved accuracy, generalizability, and
robustness. Computer Methods in Applied Mechanics and Engineering, 416:116300, 2023.

[18] Izzet Sahin, Christian Moya, Amirhossein Mollaali, Guang Lin, and Guillermo Paniagua.
Deep operator learning-based surrogate models with uncertainty quantification for optimiz-
ing internal cooling channel rib profiles. International Journal of Heat and Mass Transfer,
219:124813, 2024.

[19] Shunyuan Mao, Ruobing Dong, Kwang Moo Yi, Lu Lu, Sifan Wang, and Paris Perdikaris.
Disk2planet: A robust and automated machine learning tool for parameter inference in
disk-planet systems. arXiv preprint arXiv:2409.17228, 2024.

[20] Jonathan E Lee, Min Zhu, Ziqiao Xi, Kun Wang, Yanhua O Yuan, and Lu Lu. Efficient and
generalizable nested fourier-deeponet for three-dimensional geological carbon sequestration.
arXiv preprint arXiv:2409.16572, 2024.

[21] Minglang Yin, Nicolas Charon, Ryan Brody, Lu Lu, Natalia Trayanova, and Mauro Mag-
gioni. Dimon: Learning solution operators of partial differential equations on a diffeomor-
phic family of domains. arXiv preprint arXiv:2402.07250, 2024.

[22] Zhongyi Jiang, Min Zhu, and Lu Lu. Fourier-mionet: Fourier-enhanced multiple-input
neural operators for multiphase modeling of geological carbon sequestration. Reliability
Engineering & System Safety, 251:110392, 2024.

[23] Lu Lu, Raphaël Pestourie, Steven G Johnson, and Giuseppe Romano. Multifidelity deep
neural operators for efficient learning of partial differential equations with application to
fast inverse design of nanoscale heat transport. Physical Review Research, 4(2):023210,
2022.

15

[24] Patricio Clark Di Leoni, Lu Lu, Charles Meneveau, George Em Karniadakis, and Tamer A
Zaki. Neural operator prediction of linear instability waves in high-speed boundary layers.
Journal of Computational Physics, 474:111793, 2023.

[25] Chensen Lin, Zhen Li, Lu Lu, Shengze Cai, Martin Maxey, and George Em Karniadakis.
Operator learning for predicting multiscale bubble growth dynamics. The Journal of Chem-
ical Physics, 154(10), 2021.

[26] Shengze Cai, Zhicheng Wang, Lu Lu, Tamer A Zaki, and George Em Karniadakis.
Deepm&mnet: Inferring the electroconvection multiphysics fields based on operator ap-
proximation by neural networks. Journal of Computational Physics, 436:110296, 2021.

[27] Zhiping Mao, Lu Lu, Olaf Marxen, Tamer A Zaki, and George Em Karniadakis.
Deepm&mnet for hypersonics: Predicting the coupled flow and finite-rate chemistry behind
a normal shock using neural-network approximation of operators. Journal of computational
physics, 447:110698, 2021.

[28] Sifan Wang, Hanwen Wang, and Paris Perdikaris. Learning the solution operator of para-
metric partial differential equations with physics-informed deeponets. Science advances,
7(40):eabi8605, 2021.

[29] Somdatta Goswami, Minglang Yin, Yue Yu, and George Em Karniadakis. A physics-
informed variational deeponet for predicting crack path in quasi-brittle materials. Computer
Methods in Applied Mechanics and Engineering, 391:114587, 2022.

[30] Somdatta Goswami, Aniruddha Bora, Yue Yu, and George Em Karniadakis. Physics-
informed deep neural operator networks. In Machine Learning in Modeling and Simulation:
Methods and Applications, pages 219–254. Springer, 2023.

[31] Wing Tat Leung, Guang Lin, and Zecheng Zhang. Nh-pinn: Neural homogenization-
based physics-informed neural network for multiscale problems. Journal of Computational
Physics, page 111539, 2022.

[32] Min Zhu, Handi Zhang, Anran Jiao, George Em Karniadakis, and Lu Lu. Reliable ex-
trapolation of deep neural operators informed by physics or sparse observations. Computer
Methods in Applied Mechanics and Engineering, 412:116064, 2023.

[33] Jingmin Sun, Yuxuan Liu, Zecheng Zhang, and Hayden Schaeffer. Towards a foundation
model for partial differential equations: Multi-operator learning and extrapolation. arXiv
preprint arXiv:2404.12355, 2024.

[34] Liu Yang, Tingwei Meng, Siting Liu, and Stanley J Osher. Prompting in-context
operator learning with sensor data, equations, and natural language. arXiv preprint
arXiv:2308.05061, 2023.

[35] Zecheng Zhang. Modno: Multi-operator learning with distributed neural operators. Com-
puter Methods in Applied Mechanics and Engineering, 431:117229, 2024.

[36] Yuxuan Liu, Zecheng Zhang, and Hayden Schaeffer. Prose: Predicting operators and sym-
bolic expressions using multimodal transformers. Neural Networkks, 180:106707, 2024.

[37] Yuxuan Liu, Zecheng Zhang, and Hayden Schaeffer. Prose: Predicting operators and sym-
bolic expressions using multimodal transformers. arXiv preprint arXiv:2309.16816, 2023.

16

[38] Derek Jollie, Jingmin Sun, Zecheng Zhang, and Hayden Schaeffer. Time-series forecasting,
knowledge distillation, and refinement within a multimodal pde foundation model. arXiv
preprint arXiv:2409.11609, 2024.

[39] Jingmin Sun, Zecheng Zhang, and Hayden Schaeffer. Lemon: Learning to learn multi-
operator networks. arXiv preprint arXiv:2408.16168, 2024.

[40] Shashank Subramanian, Peter Harrington, Kurt Keutzer, Wahid Bhimji, Dmitriy Morozov,
Michael W Mahoney, and Amir Gholami. Towards foundation models for scientific machine
learning: Characterizing scaling and transfer behavior. Advances in Neural Information
Processing Systems, 36, 2024.

[41] Zhanhong Ye, Xiang Huang, Leheng Chen, Zining Liu, Bingyang Wu, Hongsheng Liu,
Zidong Wang, and Bin Dong. Pdeformer-1: A foundation model for one-dimensional partial
differential equations. arXiv preprint arXiv:2407.06664, 2024.

[42] Michael McCabe, Bruno Régaldo-Saint Blancard, Liam Holden Parker, Ruben Ohana, Miles
Cranmer, Alberto Bietti, Michael Eickenberg, Siavash Golkar, Geraud Krawezik, Francois
Lanusse, et al. Multiple physics pretraining for physical surrogate models. arXiv preprint
arXiv:2310.02994, 2023.

[43] Yuxuan Liu, Jingmin Sun, Xinjie He, Griffin Pinney, Zecheng Zhang, and Hayden Schaeffer.
Prose-fd: A multimodal pde foundation model for learning multiple operators for forecasting
fluid dynamics. arXiv preprint arXiv:2409.09811, 2024.

[44] Hayden Schaeffer. Learning partial differential equations via data discovery and sparse
optimization. Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 473(2197):20160446, 2017.

[45] Christian Moya and Guang Lin. Fed-deeponet: Stochastic gradient-based federated training
of deep operator networks. Algorithms, 15(9):325, 2022.

[46] Handi Zhang, Langchen Liu, and Lu Lu. Federated scientific machine learning for approxi-
mating functions and solving differential equations with data heterogeneity. arXiv preprint
arXiv:2410.13141, 2024.

[47] Zecheng Zhang, Christian Moya, Lu Lu, Guang Lin, and Hayden Schaeffer. D2no: Efficient
handling of heterogeneous input function spaces with distributed deep neural operators.
Computer Methods in Applied Mechanics and Engineering, 428:117084, 2024.

[48] Cristian Bodnar, Wessel P Bruinsma, Ana Lucic, Megan Stanley, Johannes Brandstetter,
Patrick Garvan, Maik Riechert, Jonathan Weyn, Haiyu Dong, Anna Vaughan, et al. Aurora:
A foundation model of the atmosphere. arXiv preprint arXiv:2405.13063, 2024.

[49] Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali Farhadi, Hannaneh Hajishirzi, and Noah
Smith. Fine-tuning pretrained language models: Weight initializations, data orders, and
early stopping. arXiv preprint arXiv:2002.06305, 2020.

[50] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv
preprint arXiv:2106.09685, 2021.

[51] Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu,
Soujanya Poria, and Roy Ka-Wei Lee. Llm-adapters: An adapter family for parameter-
efficient fine-tuning of large language models. arXiv preprint arXiv:2304.01933, 2023.

17

[52] Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding
Hu, Yulin Chen, Chi-Min Chan, Weize Chen, et al. Parameter-efficient fine-tuning of large-
scale pre-trained language models. Nature Machine Intelligence, 5(3):220–235, 2023.

[53] Beichuan Deng, Yeonjong Shin, Lu Lu, Zhongqiang Zhang, and George Em Karniadakis.
Approximation rates of deeponets for learning operators arising from advection–diffusion
equations. Neural Networks, 153:411–426, 2022.

[54] Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. Deepxde: A deep learning
library for solving differential equations. SIAM review, 63(1):208–228, 2021.

[55] George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and
Liu Yang. Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

[56] Amirhossein Mollaali, Gabriel Zufferey, Gonzalo Constante-Flores, Christian Moya, Can
Li, Guang Lin, and Meng Yue. Conformalized prediction of post-fault voltage trajec-
tories using pre-trained and finetuned attention-driven neural operators. arXiv preprint
arXiv:2410.24162, 2024.

18

	Introduction
	Background
	Deep Operator Networks
	Deep Distributed Neural Operators
	Physics-Informed Learning

	Methodology
	Full Fine-Tuning of DeepONets
	Low Rank Adaptation Finetuning of DeepONets
	MODNO/D2NO Pretraining and PI Fine Tuning

	Numerical Examples
	Example 1: Extrapolation of Burgers'-Type Equations
	Analysis of Results
	Pretraining and Fine-Tuning Details

	Example 2: Extrapolation of the Porous Media Equations
	Analysis of Results
	Pretraining and Fine-Tuning Details

	Example 3: Extrapolation of the Diffusion-Reaction Equations
	Analysis of Results
	Pretraining and Fine-Tuning Details

	Example 4: Extrapolation of Two Different PDE Families

	Conclusion

