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Abstract
Transformers have achieved state-of-the-art per-
formance in numerous tasks. In this paper, we
propose a continuous-time formulation of trans-
formers. Specifically, we consider a dynamical
system whose governing equation is parametrized
by transformer blocks. We leverage optimal trans-
port theory to regularize the training problem,
which enhances stability in training and improves
generalization of the resulting model. Moreover,
we demonstrate in theory that this regularization
is necessary as it promotes uniqueness and regu-
larity of solutions. Our model is flexible in that
almost any existing transformer architectures can
be adopted to construct the dynamical system with
only slight modifications to the existing code. We
perform extensive numerical experiments on tasks
motivated by natural language processing, im-
age classification, and point cloud classification.
Our experimental results show that the proposed
method improves the performance of its discrete
counterpart and outperforms relevant comparing
models.

1. Introduction
Transformers were first introduced in (Vaswani et al., 2017)
for natural language processing (NLP) tasks. The key fea-
ture of the model is the self-attention mechanism, which
can capture dependencies of long sequences of data in a
parallel manner. This renders the training of transformers
more efficient than other architectures, such as RNNs and
CNNs, especially when long sequences of data are involved.
Since then, not only did it achieve state-of-the-art results
in NLP (Radford et al., 2019), but it also found various
successful applications, including computer vision (Doso-
vitskiy et al., 2021), program synthesis (Chen et al., 2021b),
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computational biology (Jumper et al., 2021), speech pro-
cessing (Baevski et al., 2020), reinforcement learning (Chen
et al., 2021a; Lin et al., 2024), operator learning (Li et al.,
2023; Yang et al., 2023) and climate modeling (Gao et al.,
2023; Nguyen et al., 2023; 2024).

The basic structure of a transformer architecture is trans-
former blocks, where self-attention is a key characteristic.
In each transformer block, the self-attention layer can cap-
ture relationships within the input data in a parallel and
efficient manner. The parallel computation of self-attention
enhances the transformer’s efficiency while preserving its
representational power.

Each transformer block also incorporates a skip-connection
structure. Inspired by the popular Neural ODE frame-
work (Chen et al., 2018), we propose a continuous-time
formulation for transformers, where the hidden states evolve
over time according to an ODE. We further leverage optimal
transport theory to regularize the hidden state dynamics. We
justify this regularization both theoretically and experimen-
tally.
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Figure 1. A schematic comparison between the transformer blocks
of a left: vanilla transformer and right: OT-Transformer. OT-
Transformer can directly reuse the pre-defined architecture fi’s to
parametrize the continuous-time dynamics, which only requires
slight modification in the existing program.
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We name our model OT-Transformer. Our approach is flexi-
ble and straightforward to implement in the sense that one
can directly use a predefined transformer architecture to
parametrize the ODE. This requires only slight modifica-
tions to existing code and opens up possibility for adapting
existing architecture. When a single step forward Euler inte-
gration scheme is used, our model coincides with the origi-
nal discrete transformer. Hence, OT-Transformer includes
the original transformer as a special case. See Figure 1 for a
schematic comparison between the transformer blocks of a
pre-defined transformer and OT-Transformer.

We summarize our contributions as follows:

• We propose a continuous-time architecture of trans-
formers. We composite transformer blocks to formu-
late an ODE governing the dynamics of the hidden
states of the transformer. To the best of our knowledge,
our approach is distinct from existing transformer mod-
els.

• Leveraging optimal transport theory, we use a regu-
larization term penalizing the square arc length of the
hidden state trajectory. We remark that the application
of optimal transport to the design of transformer ar-
chitecture remains underexplored and has shown very
limited success.

• We demonstrate the effectiveness of the regulariza-
tion. On the theoretical side, we apply optimal control
theory to show that the unregularized training prob-
lem is ill-posed, that is, the solution is not unique and
hence can be highly irregular. On the empirical side,
our experimental results show that the regularization
term improves generalization and leads to significantly
more numerically stable training across different appli-
cations.

• Our experimental results show that our approach im-
proves the performance of the vanilla architecture. In
particular, it yields better performance with a reduced
number of parameters, which leads to better memory
efficiency at inference. In addition, our model outper-
forms existing continuous-time transformer models.

2. Background
In this section, we discuss the related work that motivate
our approach.

Notations In this paper, we use bold uppercase letter (e.g.,
X) to denote matrices and bold lowercase letter (e.g., x)
to denote vectors. Moreover, we use xj (resp. xi,j) to
represent the jth column of X (resp. Xi).

Transformers In general, a transformer architecture is for-
mulated as follows. Given an input Z = [z1, z2, ..., zn] ∈
Rdf×n, where n is the number of tokens and df is their
dimension, it first computes the input embedding of each
token by

x0,j = gl(zj ;γl), for j = 1, 2, ..., n. (1)

Here x0,j ∈ Rd. The input embedding gl parametrized by
weights γl embeds each token into a d-dimensional space
and incorporates sequential order information into each to-
ken. Then, it is processed through a series of transformer
blocks, where the output of each block serves as the input
to the next. At each step, the model sequentially applies the
operation Xi+1 = fi+1(Xi) given by (Thickstun, 2021)1

ui,j = xi,j +

H∑

h=1

Wh
i V

h
i Xi softmax

(
(Kh

i Xi)
⊤Qh

i xi,j√
k

)
,

(2)

xi+1,j = ui,j + gf (ui,j ;θi), (3)

for j = 1, 2, ..., n, and i = 0, 1, ..., D − 1, where D is the
total number of transformer blocks, H is the number of self-
attention heads, Qh

i ,K
h
i ,V

h
i ∈ Rk×d are known as query,

key, and value matrices, and Wh
i ∈ Rd×k. In (3), a fully

connected layer gf , parametrized by weights θi, is applied
individually to each of the n tokens. The first equation (2)
is known as self-attention layers and is the key feature of
transformer architectures. Their matrix multiplication for-
mulation enables the parallel computation of dependencies
among tokens, rendering them particularly effective for han-
dling long sequences of tokens, that is, when n is large.
This self-attention mechanism enables models to focus on
the most relevant parts of an input sequence, adapting dy-
namically to the context. Its flexibility allows it to capture
complex, long-distance relationships within data, different
from CNNs which primarily focus on local patterns, and
RNNs, which experience a sharp performance decrease with
long sequences. Such features make transformers particu-
larly powerful for tasks such as language understanding and
image recognition. This series of transformer blocks is also
called an encoder in the literature.

Eventually, XD is either passed to a decoder comprising
another series of transformer blocks and then a multilayer
perceptron (MLP) for sequence generation tasks or directly
to an MLP for various downstream tasks, including classifi-
cation and regression. The transformer output ỹ is therefore
computed by

ỹ = go(XD;γo), (4)

where go is either the composition of a decoder and an MLP
or an MLP, parametrized by weights γo.

1Layer normalization is commonly applied in each transformer
block (Xiong et al., 2020). For brevity of exposition, it is omitted
in the discussion. But it is included in our experiments.

2



OT-Transformers

ResNets and Neural ODEs Residual networks
(ResNets) (He et al., 2016) are an extensively employed
model which features a skip-connection structure in their
layers. Given input x0, the output of the ith layer is
computed by

xi+1 = xi + gi(xi). (5)

Here, gi is a network layer, and the skip-connection (5)
is a key feature of ResNet. This architecture is often
compared with the explicit Euler discretization of an or-
dinary differential equation (ODE) (Weinan, 2017; Haber &
Ruthotto, 2017; Ruthotto & Haber, 2020). Based on this in-
sight, (Chen et al., 2018) proposed Neural ODEs (NODEs),
whose formulation is given by

dx(t)

dt
= fNODE(x(t), t). (6)

Here t ∈ [0, T ] is artificial time and fNODE is a neural net-
work parametrizing the dynamics. Given an input x(0), the
final output x(T ) is obtained by integrating (6). A notable
and relevant advantage of Neural ODEs is their parame-
ter efficiency, as the continuous formulation allows them
to model complex transformations over time with fewer
parameters compared to traditional architectures.

OT-based CNFs A prominent application of NODEs is
continuous normalizing flows (CNFs) (Chen et al., 2018).
CNFs use (6) to paramtrize invertible mappings between a
standard Gaussian distribution and an unknown target dis-
tribution. The ill-posed nature of the CNF formulation can
often add to the complexity and computational cost for solv-
ing a problem. Optimal transport (OT) based regularization
has prominent applications in CNFs and is a powerful tool
in improving accuracy and at times reducing cost. Among
the infinitely many mappings between the two distributions,
OT-based CNFs (Finlay et al., 2020; Yang & Karniadakis,
2020; Onken et al., 2021; Vidal et al., 2023) target to find the
optimal transport mapping. This is done by incorporating
into the training objective regularization term(s) enforcing
straight trajectories in (6). This renders the training problem
well-posed (Huang et al., 2023; Zhang & Katsoulakis, 2023).
The straight trajectories also offer numerical advantages, as
they make the numerical integration of (6) more tractable.

3. OT-Transformers
In this section, we introduce the continuous-time
transformer with optimal transport regularization (OT-
Transformer). A key feature of OT-Transformer is that, the
model uses a combination of transformer blocks and NODE
formulation. Specifically, the model parametrizes an ODE
using transformer blocks, with the embedded inputs (1) serv-
ing as the initial state of the ODE, and the terminal state
will be passed to the output layer (4). An optimal trans-

port regularization is used in the training problem, and we
demonstrate its benefits empirically and theoretically.

Model Formulation Motivated by the connection be-
tween ResNet and neural ODEs, and the inherent skip-
connection structure of transformer blocks (2) and (3), we
formulate a continuous-time transformer.

Given an input sequence Z = [z1, z2, ..., zn] of length n,
we first apply the input embedding (1) to obtain the initial
state X(0) = X0 ∈ Rd×n. The dynamics of the hidden
state is then governed by the ODE2

dX(t)

dt
= f(X(t), t;θ), for t ∈ [0, T ], (7)

where f is the composition of a sequence of transformer
blocks defined in (2) and (3), that is, f = fD◦fD−1◦...◦f1,
and θ collectively denotes their trainable parameters θi, Kh

i ,
Vh

i , Qh
i and Wh

i for all h and i. In real implementation,
we adopt a discretize-then-optimize approach (Onken &
Ruthotto, 2020; Onken et al., 2021) and compute the termi-
nal state X(T ) by using numerical integration schemes such
as forward Euler or Runge–Kutta methods (Butcher, 2016).
Finally, we obtain the transformer output ỹ by applying (4)
to the terminal state X(T ).

Our framework is flexible in that it can be applied to al-
most any existing transformer architectures. It can directly
reuse the architecture of an existing transformer’s input
embedding, decoder and output layers and use its trans-
former blocks fi’s to construct the ODE (7)3. This only
requires slight modifications to existing code. Our frame-
work generalizes the discrete formulation of transformer
blocks to continuous-time, effectively enables a continuous-
depth formulation of transformer blocks. When T = 1 and
a single step forward Euler integration scheme is used, our
framework is identical to the original discrete transformer
formulation. Hence, our framework is consistent with the
standard transformer architecture.

Problem Formulation We formulate the training objec-
tive as

min
θ,γ

E

{
L(X(T ),y;γ) +

λ

2dn

∫ T

0

∥f(X(t), t;θ)∥2F dt

}
.

(8)
2We found that including the time variable t as an input yields

similar performance to excluding it. Therefore, in our implementa-
tion, we do not include the time variable t. That is, the right-hand
side of the ODE is f(X(t); θ). This simpler option allows us to
directly reuse pre-defined transformer block architecture.

3It is possible to construct a continuous-time formulation for
the decoder, where the decoder is used to formulated a second
ODE. In this work, we focus on the continuous-time formulation
for the encoder only and leave that for future work.
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Here, the expectation is taken over the input-output pairs
(Z,y), ∥ · ∥F denotes the Frobenius norm, γ collectively
denotes the weights of the input embedding γl and output
layer γo, θ collectively denotes the weights of the trans-
former blocks Wh

i , Qh
i , Kh

i , Vh
i , and θi’s. The loss func-

tion L measures the difference between the target output
y and model output ỹ(X(T);γ). For instance, in classi-
fication (Dosovitskiy et al., 2021) and sequence genera-
tion (Vaswani et al., 2017) tasks, one commonly uses the
softmax loss. The second term is a transport cost regulariza-
tion penalizing the squared norm of the velocity (the right
hand side of the ODE). It enhances the regularity of the hid-
den state dynamics (7) by promoting more constant speed
and straighter state trajectories. In practice, this regulariza-
tion term is computed easily as it is calculated alongside the
numerical integration of the ODE (7). The regularization
term is normalized by 1/dn, where dn is the dimension of
f . This normalization accounts for the size of f , ensuring
the regularization term remains consistent across different
dimensions. The regularization parameter λ balances the
effects of the two terms.

Empirical Benefits of Transport Cost As we will demon-
strate empirically in our experiments, the transport cost im-
proves the model’s effectiveness. The transport cost serves
as a regularizer and can stabilize the training process; with-
out it, the model is more prone to experiencing exploding or
vanishing gradients. Moreover, the generalization (i.e., per-
formance on unseen data) of the model is enhanced, thanks
to the more regular hidden state dynamics. Interestingly,
the regularized model can also achieve a lower data-fitting
loss for the training data, despite the incorporation of the
regularization term. This occurs because the optimization
process is stochastic, with each model update based on a
batch of data rather than the entire training set. The regular-
ization term, however, encourages broader generalization
across the entire dataset.

Theoretical Benefits of Transport Cost We theoretically
demonstrate the purpose of the transport cost. Specifically,
using optimal control theory (Kirk, 2004; Liberzon, 2011),
we show that the training problem is ill-posed without the
transport cost regularization. In particular, the solution is not
unique and thus can be highly irregular. We build upon the
anaylses of (Zhang & Katsoulakis, 2023; Gu et al., 2024),
which study OT-based CNFs for learning a marginal distri-
bution. We modify their approach to adapt to the case where
the solution is conditional on y.

For a given target output y, optimal control theory (Fleming
& Rishel, 2012; Liberzon, 2011) states that there exists a
potential function Φy : Rd×n × [0, T ] → R, where the

optimal f for (8) can be represented by

f(X, t) = −dn

λ
∇Φy(X, t), (9)

where the gradient ∇Φy(X, t) is taken with respect to the
first argument X. This is analogous to classical physics,
where X moves in a manner to minimize its potential. Opti-
mal control theory further states that the Hamilton-Jacobi-
Bellman (HJB) equation (Bellman, 1954; Evans, 2010) is
an optimality condition characterizing the optimal value Φy

and is given by

−∂tΦy(X, t) +H(X,∇Φy(X, t)) = 0,

Φy(X, T ) = L(X,y),
(10)

where the Hamiltonian H : Rd×n ×Rd×n → R is given by

H(X,P) = sup
f

−⟨P, f(X, t)⟩ − λ

2dn
∥f(X, t)∥2F , (11)

with ⟨·, ·⟩ representing the Frobenius inner product, P is
the adjoint variable to the system and is introduced by the
Pontryagin Maximum Principle (Mangasarian, 1966; Flem-
ing & Rishel, 1975). We see that when λ = 0, i.e., when
the transport cost is absent, the Hamiltonian cannot be de-
fined properly and equals infinity. Therefore, there is no
well-defined HJB equation, and the training problem (8) be-
comes degenerate. As such there are infinitely many choices
of f that minimize the data fidelity term in (8), including
some highly irregular ones. For instance, f can produce a
zig-zagging hidden state trajectory or move to the target lo-
cation instantly and then remain stationary. These irregular
paths can pose challenges in numerical integration and re-
sult in numerical instability during training, as demonstrated
by our experiments. On the other hand, the addition of the
transport cost promotes the uniqueness and regularity of the
solution. In short, the training problem is well-posed only
if the corresponding HJB equation is well-posed (Lasry &
Lions, 2007; Bensoussan et al., 2013).

4. Related Work
This section provides a review of relevant work.

Continuous-time Architecture There has been some
works on a continuous-time interpretation of transform-
ers. And there is a key distinction between the formu-
lations of OT-Transformer and existing models. In OT-
Transformer, we use the composition of all transformer
blocks to parametrize a single dynamical system (7) gov-
erning the hidden states. To the best of our knowledge, the
existing works use each transformer block to parametrize
a dynamical system. For a transformer with D transformer
blocks, the continuous-time model is represented as the out-
put of D different dynamical systems. In particular, it is
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formulated as

X0(0) = X0,

Xi(0) = Xi−1(T ), for 1 ≤ i ≤ D − 1,

dXi(t)

dt
= f̂i(Xi(t), t; θ̂i), for t ∈ [0, T ], 0 ≤ i ≤ D − 1,

(12)
where f̂i is the ith transformer block parametrized by
weights θ̂i and defined in (2) and (3), except that the fully-
connected layer (3) has no skip-connection.

This formulation is introduced in (Baier-Reinio & De Sterck,
2020), the model of which is conceptually the closest to our
approach. Here, we highlight several key differences be-
tween their work and ours. Firstly, they only conduct the
simple task of determining the parity of a binary sequence,
rather than investigating its performance in general applica-
tions. When their approach is applied, it fails to improve
performance over the vanilla transformer and instead de-
grades it. While they also propose the use of the transport
cost, the regularization cannot improve the performance of
their model when the sequence length exceeds eight. We
observe similar issues when testing their model on other
applications; see Section 5. This is potentially due to their
choice of formulation. Specifically, in (12), as the model
transitions from one transformer block to the next, it effec-
tively switches to a different dynamical system, introducing
non-smoothness to the overall dynamics. This undermines
the purpose of the transport cost regularization, which seeks
to obtain a continuous and more constant velocity. In con-
trast, our model is formulated using only one dynamical
system. The resulting dynamics is smoother and thus inher-
ently better suited to incorporate the transport cost regular-
ization. This is evident in our experimental results, while
the regularization can always improve the generalization of
OT-Transformer to a significant extent, this is not the case
with their model; in certain scenarios, the regularization
may even degrade their model’s performance. Moreover,
they do not provide theoretical analysis to the regularization
or demonstrate its numerical advantages. We also mention
that, while (Baier-Reinio & De Sterck, 2020) proposes al-
ternative formulations for further investigation, it does not
consider ours, highlighting the novelty and non-triviality of
our approach.

Since then, there have been a number of follow-up works
that build on the formulation Equation (12) to perform dif-
ferent tasks, including sequence generation (Lu et al.; Li
et al., 2021; 2022; Zhong et al., 2022), time series fore-
casting (Xu et al., 2023; Cheng et al., 2024), and image
classification (Niu et al., 2024; Okubo et al., 2024). But
most of these methods only use the formulation (12) as mo-
tivation and are discrete architectures in nature, and none
of them consider transport cost regularization in their ap-
proach. Moreover, these models focused on a specific type

of application and not general-purpose.

In order to access the performance of our OT-Transformer
more comprehensively, we also include the existing trans-
former formulation (12) as a benchmark in our experiments.
It is referred to as “N-ODE Transformer” in our experimen-
tal results, following the terminology in (Baier-Reinio &
De Sterck, 2020).

Mathematical Analysis There have been works that the-
oretically analyze a continuous-time formulation of trans-
formers. In (Geshkovski et al., 2023; 2024a), they show
that a continuous-time formulation can be interpreted as
an interacting particle system, where each token can be
perceived as a particle. They demonstrate that there is a
clustering behavior among the tokens. Since then, there has
been a number of works that further investigate the dynam-
ics of tokens through this interpretation, including (Adu &
Gharesifard, 2024; Bruno et al., 2024; Biswal et al., 2024;
Geshkovski et al., 2024b; Karagodin et al., 2024), to name
a few. However, we note that the aforementioned work is
primarily theoretical and lacks evaluations beyond toy exper-
iments. In (Sander et al., 2022), they show that, under some
restriction on the weights, a continuous-time formulation
of self-attention layers can be interpreted as a gradient flow.
However, no experiments have been conducted following
this analysis.

5. Experimental Results
We demonstrate the advantage of our proposed OT-
transformers through four extensive experiments arising
from point cloud classification, image classification, and
text sentiment analysis.

For each task, we use commonly used transformer architec-
tures as baselines. All the hyperparameters of the experi-
ments, including architectures of baseline models, number
of epochs, learning rates, layer normalization, etc., are iden-
tical to those used in (Sander et al., 2022). We also com-
pared against N-ODE Transformer, an existing continuous-
time transformer formulation which is introduced in (Baier-
Reinio & De Sterck, 2020) and has been considered in other
works. For details about the formulation and specific ap-
plications, see the discussion in Section 4. In the reported
results, we refer to N-ODE Transformer with and without
transport cost as unregularized N-ODE Transformer and
regularized N-ODE Transformer, respectively.

For the continuous-time models, we employ the same archi-
tectures as the baselines but with a reduced hidden dimen-
sions or number of layers for the transformer blocks. This is
for investigating their parameter efficiency. To demonstrate
the effectiveness of the transport cost on OT-Transformer,
we also perform the experiments with λ = 0 in (8), effec-

5



OT-Transformers

tively creating an unregularized model. We label this model
unregularized OT-transformer in the reported results. For
the continous-time models, we use an explicit Euler scheme
to numerically integrate the dynamical systems.

For more details of the experiments, we refer our read-
ers to Appendix B. Our program is implemented using Py-
Torch (Paszke et al., 2017) and executed using NVIDIA
A100 GPUs.

5.1. Point Cloud Classification

We use the ModelNet 40 dataset (Wu et al., 2015), which
is among the most widely used benchmark for point cloud
classification (Uy et al., 2019). The dataset contains roughly
10,000 Computer-Aided Design (CAD) models that are cat-
egorized into 40 distinct classes, including common objects
such as airplanes, cars, and furniture.

We experiment with the Set Transformer model (Lee et al.,
2019). It has an encoder-decoder architecture and is specif-
ically designed to process unordered data, such as point
clouds, ensuring that the output remains permutation invari-
ant to its input. Following the setup of (Sander et al., 2022),
we use the baseline architecture with two Induced Self At-
tention Blocks (ISABs) (Lee et al., 2019) in the encoder,
where each ISAB contains two transformer blocks, and
experiment with 5,000 uniformly sampled points for each
shape. For the continuous-time models, we use the same ar-
chitecture except that we put a fully-connected layer before
the transformer blocks so that the dimension is consistent
for continuous-time dynamics. Also the hidden dimensions
d and k of the ISABs are reduced from 256 to 200. This
reduces the number of parameters for the ISABs by 24%.

We perform the experiment over five random trials and re-
port the best test accuracies in Table 1. The unregularized
continuous-time models encountered gradient explosion, re-
sulting in NaN outputs, and the issue persists even with
slight regularization. We found that the models never suf-
fered from gradient explosion with sufficient regularization,
indicating that transport cost effectively stabilizes the train-
ing process. Hence, we only report the performance of
the regularized models. The baseline Set Transformer ob-
tains an average test accuracy of 87.4%. The regularized
N-ODE Transformer achieves an accuracy of 87.5%, indi-
cating negligible improvement over the vanilla model. Our
OT-Transformer shows a sizable improvement and reports
an average 89.9% test accuracy even with a smaller model.
From the learning curves in Figure 2, we see that our model
reports a lower data-fitting loss for training data compared
to the vanilla model, despite the inclusion of a regularization
term,

Table 1. Number of parameters for the transformer blocks, mean
test accuracy and standard deviation (std) over five trials for the
point cloud experiment.

Method/Exp. Para. Count Test Accuracy

Baseline 0.86M 87.4%± 0.45%
Reg. N-ODE Trans. 0.65M 87.5%± 0.51%
OT-Trans. (Ours) 0.65M 89.9% ± 0.42%
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Figure 2. Accuracy and data-fitting loss for the point cloud experi-
ment (averaged over five trials)

5.2. Image Classification

To further demonstrate the applicability of our proposed
method, we also perform experiments on imaging tasks. We
consider the Vision Transformer (ViT), which was intro-
duced in (Dosovitskiy et al., 2021). Since then, the model
and its variants have achieved state-of-the-art performance
in computer vision tasks (Ruan et al., 2022; Xia et al., 2024).
The key feature of ViTs is that they divide an image into
fixed-size patches, which are treated as sequences of data.
ViTs then apply self-attention mechanisms to capture rela-
tionships between these patches, enabling it to learn com-
plex structures across the entire image. We perform two
image classification experiments following the same setup
as in (Sander et al., 2022).

MNIST Classification We first conduct a small-scale im-
age classification experiment with the MNIST dataset (Le-
Cun, 1998). Following (Sander et al., 2022), the baseline
model ViT has one transformer block with a single-head
self-attention layer and no fully-connected layer. Since it
has only one transformer block, N-ODE Transformer and
our OT-Transformer share the same formulation, and we
report the results as OT-Transformer.

The OT-Transformer uses the same model architecture as
the baseline model, except that the hidden dimensions d
and k of the self-attention layer are reduced to 64 from 128.
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This reduces the number of parameters by over 80%. The
experiments are conducted over five random trials. The best
test accuracies are reported in Table 2. OT-Transformer
demonstrates significant improvements over the baseline in
both accuracy and model efficiency. The baseline model
achieved a test accuracy of 93.0%. The unregularized OT-
Transformer improves the test accuracy to 96.8%, although
it uses a much smaller model architecture. The transport
cost regularization further improves the test accuracy to
97.1% while maintaining the same reduced parameter count.
Notably, OT-Transformer also exhibits significantly lower
standard deviation across five trials when compared to the
baseline and unregularized model, indicating enhanced sta-
bility and reliability in its performance. Interestingly, when
we compare the learning curves of the unregularized and
regularized OT-Transformers in Figure 3, we observe that
including the transport cost regularization also reduces the
training loss for data-fitting and accuracy.

Table 2. Number of parameters for different models, mean test
accuracy and standard deviation over five trials for the MNIST
image classification experiment.

Method/Exp. Para. Count Test Accuracy

Baseline 93k 93.0%± 0.69%
Unreg. OT-Trans. 18k 96.8%± 0.23%
OT-Trans. (Ours) 18k 97.1% ± 0.16%
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Figure 3. Accuracy and data-fitting loss for the MNIST image
classification experiment (averaged over five trials)

Cats and Dogs Classification We perform experiments
on a binary cats and dogs image classification task, follow-
ing (Sander et al., 2022). The baseline ViT has six lay-
ers of transformer blocks. We choose the continuous-time
counterparts to have five layers; this reduces the number
of parameters for the transformer blocks by around 20%.
We report in Table 3 the test accuracies after the last epoch,
which demonstrate a more significant improvement. The

best test accuracy is also reported in Appendix B, where
our model also performs best. We observe again that our
OT-Transformer has the best performance and obtains a test
accuracy of 79.0%, improving from the baseline’s 77.6%.
The standard deviation of the test accuracy, at 0.31%, is sig-
nificantly lower than the baseline value of 0.86%, showing
our proposed approach is more robust and reliable. We also
observe that incorporating the transport cost regularization
improves generalization and stability of OT-Transformer;
without it, the average and standard deviation of test accu-
racy worsen to 78.2% and 0.39%, respectively. Both the
unregularized and regularized N-ODE Transformers report
a test accuracy of 75.6%, which is worse than the baseline
model, making them undesirable methods for the problem.
Unlike our model, incorporating the regularization also has
little effect on the performance of N-ODE Transformer. This
is likely due to the incompatibility of N-ODE Transformer
and the regularization; see Section 4. We report the learning
curves in Figure 4. When we compare the learning curves of
the unregularized and regularized OT-Transformers, we see
that including the transport cost regularization also improves
the training loss for data-fitting and accuracy.

Table 3. Number of parameters for the transformer blocks, mean
test accuracy after the last epoch and standard deviation over three
trials for the cats and dogs image classification experiment.

Method/Exp. Para. Count Test Accuracy

Baseline 1.77M 77.6%± 0.86%
Unreg. N-ODE Trans. 1.48M 75.6%± 0.48%
Reg. N-ODE Trans. 1.48M 75.6%± 0.03%
Unreg. OT-Trans. 1.48M 78.2%± 0.39%
OT-Trans. (Ours) 1.48M 79.0% ± 0.31%
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Figure 4. Accuracy and data-fitting loss for the cats and dogs image
classification experiment

5.3. Sentiment Analysis

We perform sentiment analysis on the IMDb movie review
dataset (Maas et al., 2011), aiming to predict whether each
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movie review is positive or negative. We use an identi-
cal baseline transformer architecture as in (Sander et al.,
2022), which has six layers of transformer blocks. The
OT-Transformer counterpart has only 3 layers, reducing the
number of parameters of the transformer blocks by half.

We repeat the experiment for five random trials. In all trials,
the unregularized N-ODE Transformer and OT-Transformer
experienced issues with exploding gradients, resulting in
NaN outputs. In order to estimate how the unregularized
model would perform under more stable conditions, we im-
pose a slight transport cost with λ = 0.01. We note that the
continuous-time models with slight and standard regular-
ization completed all trials without issues. This shows the
effectiveness of the transport cost regularization in stabiliz-
ing the training process and avoiding exploding gradients.

The best test accuracies are reported in Table 4. The baseline
architecture achieved a test accuracy of 83.9%. The N-ODE
Transformers with slight and standard regularization report
a test accuracy of 83.6% and 83.9%, respectively, which are
not better than the baseline model. The N-ODE Transformer
with slight regularization reports a test accuracy of 83.6%.
With a standard regularization, the test accuracy slightly
increases to 83.9%. However, both results are not better than
that of the baseline model. The OT-Transformer with slight
regularization reported a test accuracy of 82.7%, which is
subpar compared to the baseline model. On the other hand,
the standard OT-Transformer achieves the best test accuracy
of 84.6%, which is 0.7% higher than the baseline model, in
spite of using a smaller model. The test accuracy is also
0.7% higher than that of the N-ODE Transformer’s. We note
that with the incorporation of transport cost, the accuracy of
N-ODE Transformer is improved by only 0.3%. In contrast,
the accuracy of OT-Transformer is boosted by 1.9%. Again,
this is likely due to that our continuous-time formulation
is inherently more suited for transport cost regularization
than that of N-ODE Transformer; see Section 4 for the more
detailed discussion.

The learning curves are reported in Figure 5. When we
compare the results of the unregularized and regularized
OT-Transformers, we see that the regularization effectively
reduces overfitting by increasing training loss while simul-
taneously lowering test loss. Overall, we see that the combi-
nation of our continuous-in-time formulation and transport
cost regularization enhances parameter efficiency and gen-
eralization of transformers.

6. Discussion and Summary
We proposed OT-Transformer, a continuous-time formu-
lation of transformers. OT-Transformer is flexible and is
general-purpose, as it can be easily adapted to different
variations of the vanilla transformer architecture, making it
suitable for a wide class of tasks. It is also distinctive from

Table 4. Mean test accuracy and standard deviation over five tri-
als for the sentiment analysis experiment. ∗: The unregularized
continuous-time models experienced gradient explosion. And
we estimate their performance by using a slight regularization
λ = 0.01.

Method/Exp. Para. Count Test Accuracy

Baseline 4.74M 83.9%± 0.26%
Unreg. N-ODE Trans. 2.37M 83.6%± 0.40%∗

Reg. N-ODE Trans. 2.37M 83.9%± 0.48%
Unreg. OT-Trans. 2.37M 82.7%± 0.38%∗

OT-Trans. (Ours) 2.37M 84.6% ± 0.55%
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Figure 5. Accuracy and data-fitting loss for the sentiment analysis
experiment

existing continuous-time transformer architecture. Our train-
ing objective includes a transport cost regularization, which
we justified through theory and extensive experimentation.
In particular, we showed that the training problem is ill-
posed without the regularization. We also illustrated that the
regularization stabilizes the training process and enhances
the generalization of our model. Through multiple tests
across different applications, we demonstrate that our model
improves the baseline transformer architecture in terms of
parameter efficiency and accuracy, while reducing the vari-
ance among trials at the same time. This is particularly
beneficial during inference; without the need for gradient
tracking, our smaller models are more memory efficient.
Contributing to the point, we also notice that it is possible
to reduce the number of time steps at the cost of minor de-
crease in performance during inference, see Appendix A.
Most importantly, it outperforms the existing continuous-
time transformer architecture. These results showcase the
effectiveness and potential of our model.
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A. Different Time Stepping at Inference
In this section, we briefly discuss the numerical results of selecting different time step sizes at inference and the changes in
model performance. It is evident in the Neural ODE literature, such as (Chen et al., 2018; Onken & Ruthotto, 2020) that
using smaller step sizes in time discretization improves integration accuracy and can enhance overall model performance.
However, in (Onken et al., 2021) it is also pointed out that such requirement can be relaxed if the underlying dynamics is
sufficiently regular, particularly at inference. We here use the aforementioned MNIST experiment in Section 5 to verify the
performance change when using different time step sizes to evaluate a pretrained model. Note that the models reported
in Section 5 are trained using 20 time steps from time 0 to T = 1.

Table 5. Results for the MNIST example, tested using different number of time steps over trained models, here we use accuracy on the test
data set to indicate performance.

method
number of time steps

1 2 4 8 16 20

Unregularized OT-Transformer 18.2% 42.0% 85.1% 96.3% 96.7% 96.8%
OT-Transformer 17.9% 46.8% 87.1% 96.6% 97.0% 97.1%

We display the results in Table 5. Here, we test different number of time steps from 1 to 20 for both the unregularized
model and the OT-Transformer model. Notice here first regularized models performance consistently better than that of the
unregularized model, indicating the importance of OT regularization. More importantly we find that it is possible to reduce
the number of time steps in evaluation with little decrease in model performance. Specifically we note that decreasing the
number of time steps from 20 to 8 only resulted in about 0.5% decrease in test accuracy. We believe this finding can be
meaningful, as it suggests further efficiency improvement at the model deployment stage. However, additional testing may
be required for other examples, we will leave further investigation of this point for future work.

B. Experimental Details and Results
We report the detailed experimental setups here. We adapted the code provided by (Sander et al., 2022), maintaining the
same default data processing setup, hyperparameters, and other experimental settings as used in their implementation.

Point Cloud Classification We use the ModelNet40 dataset. For each instance, we uniformly sample 5000 points from
each element in the dataset. We use a Set Transformer (Lee et al., 2019) with two Induced Self Attention Blocks (ISABs) in
the encoder, where each ISAB contains two transformer blocks, and with a Pooling by Multihead Attention (PMA) Module
in the decoder. We use an Adam optimizer, with batch size 64, 200 training epochs, and learning rate of 1× 10−3. For the
baseline transformer model, the hidden dimensions of the ISABs are d, k = 256, and for the continuous-time models, they
are reduced to 200. For the regularized N-ODE Transformer and OT-Transformer, the regularization hyperparameters are
λ = 0.1 and λ = 1, respectively, as they provide the optimal performance in our tests. We use T = 1 and a total of 8 time
steps for the numerical integration.

Table 6. Number of parameters for the transformer blocks, best and final test accuracies (with standard deviation) across five trials for the
point cloud experiment.

Method/Exp. Para. Count Best Test Accuracy Final Test Accuracy

Baseline 0.86M 87.4%± 0.45% 86.6%± 0.67%
Reg. N-ODE Trans. 0.65M 87.5%± 0.51% 86.7%± 0.43%
OT-Trans. (Ours) 0.65M 89.9% ± 0.42% 89.3% ± 0.69%

MNIST Classification We use a Vision Transformer (ViT) (Dosovitskiy et al., 2021) with self-attention layer with a
single head. The patch size is 7× 7. We use an Adam optimizer. The number of epochs is 45 and the batch size is 100. The
learning rate is set to 5× 10−4 for the first 35 epochs, then decreased to 5× 10−5 until the 41st epoch, at which point it
is reduced to 5× 10−6. For the baseline model, the hidden dimensions d and k are 128. For the continuous-time models,
they are reduced to 64. For OT-Transformer, the regularization hyperparameter is λ = 0.01 as it provides the optimal
performance in our tests. We use T = 1 and a total of 20 time steps for the numerical integration.
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OT-Transformers

Table 7. Number of parameters for the transformer blocks, best and final test accuracies (with standard deviation) across five trials for the
MNIST image classification experiment.

Method/Exp. Para. Count Best Test Accuracy Final Test Accuracy

Baseline 93k 93.0%± 0.69% 93.0%± 0.67%
Unreg. OT-Trans. 18k 96.8%± 0.23% 96.8%± 0.25%
OT-Trans. (Ours) 18k 97.1% ± 0.16% 97.1% ± 0.15%

Cats and Dogs Classification We again use ViT. The patch size is 16× 16. We use an Adam optimizer. The learning
rate is 3× 10−5. The number of epochs is 250, and the batch size is 64. The hidden dimensions d and k are 128. For the
baseline model, it has 6 transformer blocks. For the continuous-time models, the number of transformer blocks is reduced to
5. For the regularized N-ODE Transformer and OT-Transformer, the regularization hyperparameters are λ = 0.005 and
λ = 0.01, respectively, as they provide the optimal performance in our tests. We use T = 1 and a total of 20 time steps for
the numerical integration.

Table 8. Number of parameters for the transformer blocks, best and final test accuracies (with standard deviation) across three trials for
the cats and dogs image classification experiment.

Method/Exp. Para. Count Best Test Accuracy Final Test Accuracy

Baseline 1.77M 79.3%± 0.52% 77.6%± 0.86%
Unreg. N-ODE Trans. 1.48M 76.4%± 0.37% 75.6%± 0.48%
Reg. N-ODE Trans. 1.48M 76.4%± 0.30% 75.6%± 0.03%
Unreg. OT-Trans. 1.48M 78.8%± 0.63% 78.2%± 0.39%
OT-Trans. (Ours) 1.48M 79.5% ± 0.46% 79.0% ± 0.31%

Sentiment Analysis We follow (Sander et al., 2022) to use a baseline model with 6 layers of transformer blocks. For the
continuous-time models, the number of transformer blocks is reduced to 3. We use an Adam optimizer with 15 epochs. The
learning rate is 1× 10−4 for the first 12 epochs and 1× 10−5 afterward. The batch size is 64. The hidden dimensions d
and k are 256. The batch size is 64. For both the regularized N-ODE Transformer and OT-Transformer, the regularization
hyperparameter is λ = 0.5, as it provides the optimal performance in our tests. We use T = 1 and a total of 8 time steps for
the numerical integration.

Table 9. Number of parameters for the transformer blocks, best and final test accuracies (with standard deviation) across five trials for for
the sentiment analysis experiment. ∗: The unregularized continuous-time models experienced gradient explosion. And we estimate their
performance by using a slight regularization λ = 0.01.

Method/Exp. Para. Count Best Test Accuracy Final Test Accuracy

Baseline 4.74M 83.9%± 0.26% 83.7% ± 0.21%
Unreg. N-ODE Trans. 2.37M 83.6%± 0.40%∗ 83.4%± 0.40%∗

Reg. N-ODE Trans. 2.37M 83.9%± 0.48% 83.5%± 0.84%
Unreg. OT-Trans. 2.37M 82.7%± 0.38%∗ 82.1%± 0.89%∗

OT-Trans. (Ours) 2.37M 84.6% ± 0.55% 83.7%± 0.86%
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