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Abstract

Hamilton-Jacobi partial differential equations (HJ PDEs) play a central role in many applications
such as economics, physics, and engineering. These equations describe the evolution of a value function
which encodes valuable information about the system, such as action, cost, or level sets of a dynamic
process. Their importance lies in their ability to model diverse phenomena, ranging from the propagation
of fronts in computational physics to optimal decision-making in control systems. This paper provides a
review of some recent advances in numerical methods to address challenges such as high-dimensionality,
nonlinearity, and computational efficiency. By examining these developments, this paper sheds light on
important techniques and emerging directions in the numerical solution of HJ PDEs.

1 Introduction

Hamilton-Jacobi partial differential equations (HJ PDEs) are foundational mathematical tools that arise
in diverse areas such as optimal control, geometric optics, and computational physics [30, 5, 22]. These
equations are commonly written in the form{

∂tS(x, t) +H(∇xS(x, t), x, t) = 0, x ∈ Ω, t > 0,

S(x, 0) = J(x), x ∈ Ω,
(1)

where S(x, t) is the value function, H is the Hamiltonian encoding the system’s dynamics, J(x) represents the
initial condition, and Ω ⊆ Rn is the spatial domain. If Ω is a bounded domain, certain boundary conditions
are imposed on S. If Ω is the whole space Rn, the value S(y, T − t) is the optimal value of the following
optimal control problem:

min

{∫ T

t

L(u(s), x(s), s)ds+ J(x(T )) : ẋ(s) = f(u(s), x(s), s) ∀s ∈ [t, T ], x(t) = y

}
, (2)

where u is the control function taking value in Rm. In these two problems, the running cost L, the dynamical
source term f , and the Hamiltonian H are connected by

H(p, x, t) = sup
u∈Rm

{−⟨p, f(u, x, T − t)⟩ − L(u, x, T − t)}.

HJ PDEs are notable for their ability to capture complex dynamics in high-dimensional and nonlinear
systems [33, 63]. They are central to modeling phenomena such as the propagation of wavefronts [58], the
computation of geodesics, and decision-making in optimal control problems [5]. Despite their theoretical
significance and wide applicability, solving HJ PDEs efficiently, especially in high dimensions, remains a
challenging task, particularly in high-dimensional settings, where traditional grid-based methods face the
curse of dimensionality [7, 55].

Recent years have seen significant progress in the development of numerical methods for solving HJ PDEs.
These advances have been driven by the need for computationally efficient, accurate, and scalable algorithms
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to tackle high-dimensional problems and non-smooth solutions [28]. Techniques leveraging variational prin-
ciples [17], level-set methods [58], and modern machine learning [48, 54, 65] have opened new avenues for
addressing these challenges.

This paper reviews some of the recent advances in numerical methods for HJ PDEs, highlighting their
theoretical underpinnings, practical implementations, and limitations. We review a series of approaches
including grid-based methods (Section 2), methods based on representation formulas (Section 3), Monte-
Carlo-based methods using Laplace’s Method (Section 4), and Deep Learning methods (Section 5). While
not comprehensive, our review of these developments aims to provide insights into the current numerical
landscape and to identify promising directions for future research.

2 Grid-based Methods

Grid-based numerical methods have been the cornerstone of computational approaches for solving HJ
PDEs [21, 58, 59, 50, 3, 66]. Recent advances have focused on improving accuracy, computational efficiency,
and handling of discontinuities in the solution gradients. This section provides an overview of some key
developments in grid-based methods over the past decade. For a more comprehensive review of grid-based
numerical methods for HJ PDEs, we refer to [31].

2.1 High-Order ENO and WENO Schemes

While monotone schemes [21, 58, 59] are inherently limited to first-order accuracy, high-order Essentially
Non-Oscillatory (ENO) schemes [67] and their Weighted ENO (WENO) variants [50] have been developed to
achieve uniform high-order accuracy in smooth regions while robustly capturing discontinuities in derivatives.
In the context of one-dimensional finite difference methods for solving HJ PDEs (1), for simplicity consider
the case where H(∇xS(x, t), x, t) = H(∇xS(x, t)), the ENO or WENO method takes the form

d

dt
Si + Ĥ(p−i , p

+
i ) = 0,

where Si approximates the value of S(xi, t). Here Ĥ(·) is a monotone Hamiltonian and p−i , p
+
i represents the

approximation to the derivative Sx(xi, t) computed with stencils biased to the left and right, respectively.
For ENO scheme, the approximation of p−i starts with a stencil containing only {Si−1, Si}, then the ENO
method adaptively extends this stencil by adding points that yield the “smoothest” local reconstruction,
thereby avoiding interpolation across discontinuities, until the desired number of points has been reached.
In the end, a single, optimally chosen stencil is used to approximate the term S−

x (xi, t). As for WENO
scheme, it forms a convex combination of candidate approximations computed on several stencils. A typical
approximation to the spatial derivatives can be written as:

S−
x (xi, t) =

r−1∑
k=0

ωkŜ
k
xi
, ωk =

αk∑r−1
l=0 αl

, αk =
dk

(ϵ+ βk)p
,

where Ŝk
xi

is the k-th stencil approximation of S−
x (xi, t), ωk are non-linear weights satisfying

∑r−1
k=0 ωk = 1.

The coefficients dk are the linear weights that form the approximation
∑r−1

k=0 ωkŜ
k
xi

as the r-th degree poly-
nomial reconstruction over the full stencil. βk are smoothness indicators that measure the local variation
of the solution, and ϵ is a small positive number to avoid division by zero. Based on the spatial discretiza-
tions discussed above, time discritization can be performed using either explicit total variation diminishing
Runge–Kutta methods or multi-step schemes. Hermite polynomials are used to develop Hermite-type WENO
schemes for solving HJ PDEs [64, 75].

These methods have undergone continuous refinements to improve their performance, robustness, and
computational efficiency. Significant advances in WENO methodology include the development of exponen-
tial polynomial-based schemes by [40], achieving third-order accuracy with improved handling of discontinu-
ities. In the same year, [2] introduced innovative RBF-ENO/WENO schemes combined with Lax-Wendroff
type time discretizations, demonstrating superior performance for problems with complex solution struc-
tures. Recent efforts have emphasized adaptivity and computational efficiency. In [1], a fifth-order WENO
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scheme based on Legendre polynomials is constructed for simulating HJ equations in a finite difference
framework. Most recently, [74] introduced a third-order, fifth-order, and seventh-order finite difference ghost
multi-resolution WENO (GMR-WENO) schemes that only utilize the information defined on one four-point,
one six-point, or one eight-point spatial stencil for designing high-order spatial approximations without
introducing any other smaller stencils.

2.2 Discontinuous Galerkin Methods

The discontinuous Galerkin (DG) finite element method is a flexible, high-order finite element method using
discontinuous piecewise polynomial spaces for both the numerical solution and test functions [20]. DG
methods are developed for solving the derivatives in the HJ PDEs in [38, 46] and then recover the solution
from its derivatives. In [13, 47, 14], DG methods are applied to directly approximate the solution variable.
Local DG methods are studied in [72]. An adaptive sparse grid local DG method is introduced in [36] for
solving HJ equations in high-dimensional setup. The alternating evolution DG method proposed in [49] is
based on an alternating evolution system for the HJ equation and achieves high order accuracy. In [43], an
arbitrary Lagrangian–Eulerian local DG method is developed for HJ equations, leveraging a time-dependent
approximation space defined on a moving mesh.

3 Solutions Based on Representation Formulas

For certain classes of HJ PDEs, viscosity solutions can be efficiently computed using representation formulas.
A key advantage of this approach is that it transforms the problem of solving a PDE into an optimization
problem, which helps mitigate the curse of dimensionality. In this section, we focus on HJ PDEs defined on
the entire space Ω = Rn and explore how these representation formulas leverage intrinsic problem structures,
such as constant or piecewise constant velocities or momenta, to facilitate computation.

Firstly, we consider the case when the Hamiltonian only depends on the momentum ∇xS. In this case,
the viscosity solution has two representation formulas, namely Lax-Oleinik and Hopf formula [6]. When the
Hamiltonian H is convex, the solution is given by the Lax-Oleinik formula

S(x, t) = inf
u∈Rn

{
J(u) + tH∗

(
x− u

t

)}
, (3)

where in the remainder of this paper, we denote by f∗ the Fenchel–Legendre transform of a convex lower-
semicontinuous function f , defined by f∗(p) = supx∈Rn{⟨x, p⟩ − f(x)}. On the other hand, when the initial
condition J is convex, the solution is given by the Hopf formula

S(x, t) = sup
p∈Rn

{⟨x, p⟩ − tH(p)− J∗(p)} . (4)

These formulas can be used to compute the viscosity solution at a given point (x, t) by solving an optimization
problem. In this way, the algorithm can mitigate the curse of dimensionality. Moreover, the value on each
point is independent from each other, making the computation easy to parallel. When the Hamiltonian is
1-homogeneous, [28] designed fast solver by using the split Bregman iterative method to solve these two
representation formulas. Later, in [45], the authors use these formulas to compute the redistancing problem,
which, after using the level set method, can be solved by solving an Eikonal equation. In Fig. 1 1 we show a
numerical result in [28] where the initial condition is J(x) = 1

2∥x∥21 and the Hamiltonian is H(x) =
√

⟨x,Dx⟩
with certain diagonal positive definite matrix D.

The Hopf representation formulas are further generalized to linear dynamics, which is proposed as a
future direction in [28] and then developed in [42]. To be specific, they consider the class of optimal control
problems with linear dynamics in the following form

ν(y, t) = min

{∫ T

t

L(u(s), s)ds+ J(x(T )) : ẋ(s) = Ax(s) +B(s)u(s) ∀s ∈ [t, T ], x(t) = y

}
.

1This figure was obtained from [28] without modification under the terms of the Creative Commons Attribution 4.0 Inter-
national License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).
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Figure 1: Evaluation of the solution S((x1, x2, 0, 0, 0, 0, 0, 0)
T , t) of the HJ-PDE with initial data J = 1

2∥ · ∥21
and Hamiltonian H = ∥ · ∥D, for (x1, x2) ∈ [−20, 20]2 for different times t = 0, 5, 10, 15.

The function x, t 7→ ϕ(x, t) = ν(x, T − t) solves the HJ PDE with initial condition J and the Hamiltonian
defined by

H(x, p, t) = sup
u∈Rm

{−⟨p,Ax+B(T − t)u⟩ − L(u, T − t)} = −⟨p,Ax⟩+ sup
u∈Rm

{⟨−B(T − t)T p, u⟩ − L(u, T − t)}

= −⟨p,Ax⟩+ L∗(−B(T − t)T p, T − t),

where L∗(·, t) is the Fenchel-Legendre transform of L(·, t). To solve the HJ PDE and the corresponding
optimal control problem, a change of variable z(t) = e−tAx(t) is applied to the optimal control formulation
to get

ν(y, t) = min

{∫ T

t

L(u(s), s)ds+ J(eTAz(T )) : ż(s) = e−sAB(s)u(s) ∀s ∈ [t, T ], z(t) = e−tAy

}
.

After setting ν̃(e−tAy, t) = ν(y, t), the function x, t 7→ ϕ̃(x, t) = ν̃(x, T − t) solves the HJ PDE with an initial
condition z 7→ J̃(z) := J(eTAz) and Hamiltonian

H̃(p, t) = sup
u∈Rm

{
−⟨p, e−(T−t)AB(T − t)u⟩ − L(u, T − t)

}
= L∗(−B(T − t)T e−(T−t)AT

p, T − t).

In this case, the Hamiltonian H̃ only depends on the momentum variable p and the time variable t. Therefore,
the viscosity solution to the HJ PDE can be represented by the generalized Hopf formula:

ϕ̃(x, t) = − min
p∈Rn

{
J̃∗(p) +

∫ t

0

H(p, s)ds− ⟨x, p⟩
}
,

which is solved by discretizing over time axis and then applying some optimization method, such as a relaxed
Newton’s method in [42]. Moreover, in [42] the authors also studied differential games with linear dynamics,
which corresponds to more complicated non-convex Hamiltonians. Following this line, in [15, 16, 41], different
optimization methods, such as primal-dual method or coordinate descent method, have been applied to the
generalized Hopf formula to solve more complicated non-convex Hamiltonians or differential game problems.
More complicated problems have been solved with a more general form of Hopf formula, such as HJ PDEs
with state-dependent non-convex Hamiltonian [17], and HJ equation in density spaces [18].

Besides these general formulas, some other special cases are studied. For instance, [12] proposes the
representation formula for the class of HJ PDEs with Hamiltonian in the form of H(p, x) = K(p) − 1

2 (x −
v0)

TM(x− v0) for piecewise affine positively 1-homogeneous convex function K, symmetric positive definite
matrix M , and a vector v0 ∈ Rn, with assumptions relating M to the level set of K. These HJ PDEs
correspond to optimal control problems with a quadratic running cost on the state variable and a rectangular
constraint on velocity, which makes the optimal trajectory in a piecewise linear form. Then, the viscosity
solution can be represented by a minimization problem of a piecewise third order polynomial function
adding with the initial condition. The dual case is presented in [11], which considers the HJ PDEs with
Hamiltonian H(p, x) = 1

2 ⟨p,Mp⟩ − U(x), where U is a positive 1-homogeneous convex function whose level
set is determined by the matrix M . This corresponds to the optimal control problem with running cost to
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be a combination of kinetic energy and potential energy U . Under these assumptions, the optimal trajectory
is a piecewise quadratic function, and the viscosity solution to the HJ PDE is a supremum of difference of a
piecewise polynomial function with the Fenchel-Legendre transform of the initial condition.

In addition to the representation formulas above, there is a technique for HJ PDEs called max-plus or
min-plus algebra [51]. Specifically, under certain assumptions, if the initial condition J for an HJ PDE
is the minimum of several functions J1, . . . , JM , i.e., J = mini=1,...,M Ji, then the solution S to the HJ
PDE with initial condition J is also the minimum of the corresponding solutions S1, . . . , SM to the HJ
PDEs with initial conditions J1, . . . , JM , i.e., we have S = mini=1,...,M Si. This property has been used
in [28, 12, 11, 23, 34, 32, 29] to solve HJ PDEs with more complicated initial conditions.

4 Monte-Carlo Sampling via Laplace’s Method

Laplace’s method is a classical analytical technique often used in asymptotic analysis to approximate inte-
grals [44]. In the context of HJ PDEs, this method can be employed to derive approximate solutions in cases
where the solution exhibits an exponential form, commonly seen in problems of optimal control or short-time
asymptotics. Formally, Laplace’s method can be explained as follows. Let φ : Rd → R be twice continuously
differentiable and h : Rd → R be a continuous function. Laplace’s method provides an asymptotic equiva-
lence for an integral that becomes increasingly peaked around the global minimizer u⋆ of φ, assumed to be
unique: ∫

h(u) exp(−φ(u)/δ)du ∼ (2πδ)d

exp(φ(u⋆)/δ)

h(u⋆)√
det(∇2φ(u⋆))

, (5)

where a(δ) ∼ b(δ) is a short hand for a(δ)/b(δ) → 1 as δ → 0. The primary implication of (5) is that one
can use Laplace’s method in two different ways: one may estimate the global minimizer of a function φ by
estimating an integral or vice-versa. The latter is a common technique found in statistical inference [39]. In
most situations, either approach can be difficult, as one must either estimate a high-dimensional integral or
solve a non-convex optimization problem.

Recent works studied the connection between Laplace’s method and infimal convolutions [68] with ap-
plications in zeroth-order [57] and global [37, 73] optimization. It also provides an approach (via self-
normalization) to avoid computing the determinant seen in (5). In particular, one may estimate the mini-
mizer of φ as

u⋆ ∼
∫
u exp(−φ(u)/δ)du∫
exp(−φ(u)/δ)du

. (6)

In the context of HJ PDEs, this normalized version of Laplace’s method can used to approximate the
solution to the Lax-Oleinik formula given in (3) by setting φ(u) = J(u) + tH∗ (x−u

t

)
. After approximating

u∗ via Laplace’s using (6), we may plug it back into the objective function to obtain S(x, t). [57] shows
convergence of (6) in the setting where J(u) is t-weakly convex with 1

tH
⋆(x−u

t ) = 1
2t∥x − u∥2. This result

is generalized in [68, Theorem 2] to the case where φ is Hölder continuous.
Thus, Laplace’s method offers a different perspective based on Monte Carlo techniques for approximating

solutions to HJ PDEs, setting it apart from grid-based discretization or optimization of the Hopf and Lax-
Oleinik formulas. Unlike traditional numerical methods that rely on fixed grids and often struggle with
scalability in high-dimensional settings, Laplace’s method avoids the use of grids entirely by employing
probabilistic sampling to approximate the integral (6). In particular, Laplace’s method can potentially be
more efficient if approximation of the integral is easier to compute than traditional methods, e.g., ENO
and WENO [58]. We show some results based on [68] in Fig. 2, where the effect of the choice of the
smoothing parameter δ is varied for HJ equations with H(·) = 1

p∥ · ∥pp for p = 2, 5, and 10. We note these
connections between infimal convolutions and HJ PDEs have also been explored in the context of posterior
mean estimation and denoising [26, 24].

5 Deep Learning Methods

Deep learning methods have gained traction in solving high-dimensional HJ PDEs. Neural networks serve
as flexible function approximators, leveraging optimization frameworks to approximate solutions. Without
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Figure 2: Median along with the 20th and 80th percentiles of HJ residuals in dimension 10 and Hamiltonians given
by H = 1

p
∥ · ∥pp, p = 1, 5, 10, from left to right. In these experiments, 105 samples are used for the Monte Carlo

approximation of the integrals in (6).

the need for discretization, these neural network methods are able to mitigate the curse of dimensionality.
While deep learning methods for solving general PDEs [7] can be used here, we focus on works that are more
specific to HJ PDEs.

5.1 Actor Critic Methods

In [76], the authors propose a numerical method for solving high-dimensional static HJ equations using
an actor-critic framework combined with neural networks. The convergence of this method is analyzed
in [77, 78]. The central equation they tackle takes the form:

inf
u∈U

[
1

2
Tr(σσ⊤Hess(V ))(x, u) + b(x, u)⊤∇V (x) + f(x, u)

]
− γV (x) = 0 in Ω,

where V is the value function, u is the control, and γ is the discount rate. Their key methodological
contribution is a variance-reduced least squares temporal difference (VR-LSTD) method for policy evaluation.
The critic step involves minimizing a loss functional L1(V ) = E[TDu

1 ]
2 with a quadratic loss term on boundary

condition, where

TDu
1 =

∫ T

0

e−γsf(Xs, u(Xs))ds−
∫ T

0

e−γs∇V (Xs)
⊤σ(Xs, u(Xs))dWs + e−γTV (XT )− V (X0).

The actor step involves the following loss:

EX0∼µ,u

[∫ T∧τ

0

f(Xs, u(Xs))e
−γs ds+ V (XT∧τ )e

−γ(T∧τ)

]
.

They show that this VR-LSTD method has better convergence properties than standard LSTD approaches.
To improve numerical accuracy near domain boundaries, they introduce an adaptive step size scheme

when the sampled state is near the boundary. This scheme, combined with their neural network param-
eterization of both value and control functions, enables them to solve the equation up to 20 dimensions
with relative errors typically around 1-5%. They demonstrate the effectiveness of their approach on several
challenging problems including linear quadratic regulators, stochastic Van der Pol oscillators, and diffusive
Eikonal equations, showing significant improvement over traditional numerical methods that struggle with
the curse of dimensionality. For instance, they tested on the following diffusive Eikonal equation:ϵ∆V (x) + inf

u∈B1

(
c(x)u⊤∇V (x)

)
+ 1 = 0 in BR,

V (x) = a3 − a2 on ∂BR,

where c(x) is set to be c(x) =
3(d+ 1)a3

2da2(2a2 − 3a3|x|)
> 0, and they choose a2 = 1.2, a3 = 0.2, and R = 1.

The numerical results are shown in Fig. 3. This methodology also applies to other formulations of control
problems, such as finite-horizon settings, time-inhomogeneous systems, control without discounting, and
problems without boundary conditions.
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Figure 3: Top: density of the value of V for the diffusive Eikonal equation with d = 5 (left), d = 10 (middle),
and d = 20 (right). Bottom: associated error curves in the training process with d = 5 (left), d = 10
(middle), and d = 20 (right).

Another actor-critic approach [48] solves HJ PDEs with a viscosity term on the right-hand side. Here, a
neural network method for solving high-dimensional stochastic mean-field games (MFGs) is proposed. Their
framework tackles the coupled system of HJ PDEs and Fokker-Planck (FP) equations that characterize
MFGs:

−∂tϕ− ν∆ϕ+H(x,∇ϕ) = f(x, ρ), ∂tρ− ν∆ρ− div(ρ∇pH(x,∇ϕ)) = 0, (7)

with initial condition ρ(x, 0) = ρ0(x) and terminal condition ϕ(x, T ) = g(x, ρ(·, T )). The authors reformulate
this system as a convex-concave saddle-point problem, which they express as:

inf
ρ(x,0)=ρ0(x)

sup
ϕ

∫ T

0

∫
Ω

(∂tϕ+ ν∆ϕ−H(x,∇ϕ))ρ(x, t) dx+ F (ρ(·, t)) dt

+

∫
Ω

ϕ(x, 0)ρ0(x) dx−
∫
Ω

ϕ(x, T )ρ(x, T ) dx+G(ρ(·, T )),

where the first variations of F and G are the functions f and g in (7). This variational structure allows them
to parameterize ρ and ϕ (the actor and the critic) with neural networks and train them in an alternating
fashion, similar to generative adversarial networks (GANs) [35]. The resulting algorithm can approximate
solutions to high-dimensional HJ PDEs, and in their experiments, HJ PDEs of dimensions up to 100 are
solved efficiently [48, Section 5].

5.2 Neural Network Architectures Inspired by Representation Formulas

In this section, we review several works that propose neural network architectures inspired by representation
formulas for HJ PDEs under different assumptions. These architectures, when assigned appropriate parame-
ters based on their theoretical correspondence, inherit rigorous guarantees from HJ theory—eliminating the
need for a traditional training process.

In [25, 27, 23], different neural network architectures are designed based on the representation formulas
of solution to certain classes of HJ PDEs. In [25], inspired by the Hopf formula (4), a shallow neural network
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with a max activation function is proposed to solve HJ PDEs. Specifically, the formula for the neural network
is

ϕ(x, t; {(pi, θi, γi)}mi=1) = max
i=1,...,m

{⟨pi, x⟩ − tθi − γi} ,

where {(pi, θi, γi)}mi=1 denotes the parameters in the neural network. Moreover, it is proven that, under
certain technical assumptions, if there exists a convex interpolation for (pi, γi) and the points p1, . . . , pm are
distinct, then the function represented by the neural network is the viscosity solution to the HJ PDE with
the initial condition J given by

J(x) = max
i=1,...,m

{⟨pi, x⟩ − γi} ,

and the Hamiltonian H defined as

H(p) =

 inf
α∈A(p)

{
m∑
i=1

αiθi

}
, if p ∈ dom J∗,

+∞, otherwise.

(8)

Here, the set A(p) is characterized as

A(p) = argmin
α1,...,αm≥0∑m

i=1 αi=1∑m
i=1 αipi=p

{
m∑
i=1

αiγi

}
.

Moreover, for a fixed set of parameters {(pi, θi, γi)}mi=1, the neural network representation is capable of
solving multiple HJ PDEs. Specifically, it solves the HJ PDE with a spatially and temporally independent
Hamiltonian H̃ if and only if the conditions H̃(pi) = H(pi)∀i = 1, . . . ,m and H̃(p) ≥ H(p)∀p ∈ dom J∗ are
both satisfied. Here, the function H is the Hamiltonian defined in (8).

In [27], based on the Lax-Oleinik formula (3), the authors propose two neural network architectures that
solve two classes of HJ PDEs, respectively. The first architecture is designed as

ϕ(x, t; {(ui, ai)}mi=1) = min
i=1,...,m

{
tL

(
x− ui

t

)
+ ai

}
.

This is a two-layer neural network employing an activation function L and a minimum operator. Under
certain assumptions, this architecture computes the viscosity solution of an HJ PDE whose Hamiltonian is
given by the convex conjugate L∗, independent of the spatial and temporal variables (x, t). The corresponding
initial condition is expressed as the minimum of shifts of the asymptotic function associated with L. Similarly,
the second architecture utilizes an activation function J combined with a minimum operator. Under suitable
conditions, this network solves the HJ PDE characterized by a piecewise affine Hamiltonian and a concave
initial condition given by J .

In [23], the authors propose a ResNet-type deep neural network based on the linear-quadratic regulator
framework and min-plus algebra to solve HJ PDEs. These PDEs have quadratic Hamiltonians H(p, x, t)
with respect to (p, x), whose coefficients depend on time t, and initial conditions expressed as the minimum
of several quadratic functions. Additionally, the authors design a neural network architecture to compute
the optimal control and corresponding optimal trajectories associated with these control problems. The
numerical results for HJ PDEs exhibiting Newtonian dynamics, originally presented in [23], are reproduced
in Figs. 4 and 5. Specifically, the simulations consider the dimension setting n = 2m = 16, with the
Lagrangian L defined by

L(u, x, t) =
1

2

∥∥∥∥x− 5 sin t

(
1
0

)
+ 5 cos t

(
0
1

)∥∥∥∥2 + 1

2000
∥u∥2, (9)

and the source term f given by

f(u, x, t) =

(
O I
O O

)
x+

(
O
I

)
u, (10)
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for u ∈ Rm, x ∈ Rn, and t ∈ [0, T ]. Here, 1 and 0 represent the one and zero constant vectors in Rm, while
O and I denote the m×m zero and identity matrices, respectively. The terminal cost function J : Rn → R
is defined as

J(x) = min

{
1

320

(
(x1 + 2)2 +

n∑
i=2

x2
i

)
,

1

320

(
(x1 − 2)2 +

n∑
i=2

x2
i

)}
, (11)

for x = (x1, x2, . . . , xn) ∈ Rn. Fig. 4 shows two-dimensional slices of the computed HJ PDE solutions at
different times. Furthermore, Fig. 5 displays the optimal trajectories corresponding to terminal times T = 1,
T = 5, and T = 10 from various initial positions x0 = (x,0) ∈ R16 (where 0 ∈ R15 is the zero vector).

(a) t = 1 (b) t = 0.995 (c) t = 0.95 (d) t = 0.75

Figure 4: Visualization of the viscosity solution to the 16-dimensional HJ PDE with initial condition (11),
corresponding to the running cost L defined by (9), dynamics f defined by (10), and terminal time T = 1.
Two-dimensional slices at times t = 1 (terminal cost), t = 0.995, t = 0.95, and t = 0.75 are displayed in
subfigures (a), (b), (c), and (d), respectively. Each subfigure shows solution values (indicated by color) at
points of the form (x1,0, x2,0) ∈ R16, where x1 and x2 correspond to the horizontal and vertical axes, and
0 denotes a 7-dimensional zero vector.

6 Saddle Point Methods

In this section, we review recent numerical methods [52, 53] for solving HJ PDEs based on saddle-point
formulations. These approaches exploit connections between HJ PDEs and problems in optimal transport and
mean-field games by reformulating the PDEs as components of certain saddle-point problems. Upon spatial
discretization, the resulting optimization problems can be efficiently solved using primal-dual algorithms,
such as the Primal-Dual Hybrid Gradient (PDHG) algorithm [10]. Specifically, we consider the HJ PDE (1)
defined on a rectangular spatial domain Ω =

∏n
i=1[ai, bi] with periodic boundary conditions.

In [52], the solution ϕ is represented as a part of the saddle point to the following problem

min
ϕ

ϕ(x,0)=J(x)

max
ρ

∫ T

0

∫
Ω

ρ(x, t)

(
∂ϕ(x, t)

∂t
+ max

v∈Rn
{⟨v,∇xϕ(x, t)⟩ −H∗ (v, x, t)}

)
dxdt− c

∫
Ω

ϕ(x, T )dx,

where c > 0 is a hyperparameter, and H∗(·, x, t) is the Fenchel-Legendre transform of H(·, x, t). If we further
assume the function ρ in the saddle point is non-negative, then the problem becomes

min
ϕ

ϕ(x,0)=J(x)

max
ρ,v
ρ≥0

∫ T

0

∫
Ω

ρ(x, t)

(
∂ϕ(x, t)

∂t
+ ⟨v(x, t),∇xϕ(x, t)⟩ −H∗ (v(x, t), x, t)

)
dxdt− c

∫
Ω

ϕ(x, T )dx,

which is in the form of simple mean-field games. After applying a first-order monotone scheme with a
numerical Hamiltonian Ĥ : (Rn)2n×Rn× [0, T ] → R, the corresponding discretized saddle point formulation
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(a) x∗
1, T = 1 (b) x∗

9, T = 1 (c) x∗
1, T = 5 (d) x∗

9, T = 5

(e) x∗
1, T = 10 (f) x∗

9, T = 10

Figure 5: Visualization of optimal trajectories x∗ for the 16-dimensional optimal control problem with
running cost L given by (9), dynamics given by (10), terminal cost (11), and terminal times T = 1, 5, 10.
Panels (a), (c), and (e) display the evolution of the first component x∗

1 of the optimal trajectories, while
panels (b), (d), and (f) display the corresponding evolution of the ninth component x∗

9. In each panel,
different curves represent trajectories originating from different initial conditions x0 = (x,0) ∈ R16, where 0
is the zero vector in R15.

can be solved using PDHG. In [52], the 1-dimensional saddle point formula is discretized as

min
ϕi,k∀i,k

ϕi,1=J(xi)

max
ρi,k,v

+
i,k,v

−
i,k∀i,k

ρi,k≥0

nx∑
i=1

nt−1∑
k=1

ρi,k

(
(D−

t ϕ)i,k+1 + v+i,k(D
+
x ϕ)i,k+1 + v−i,k(D

−
x ϕ)i,k+1

−Ĥ∗
(
v+i,k, v

−
i,k, xi, tk+1

))
− c

∆t

nx∑
i=1

ϕi,nt
.

(12)

Here, x1, . . . , xnx
denote the discretization points of the spatial domain [a, b], and t1, . . . , tnt

represent the
discretization points of the temporal domain [0, T ]. The values ϕi,k, v

+
i,k, v

−
i,k, ρi,k correspond to the function

values at the grid point (xi, tk). For finite difference approximations, we use D−
t , D

+
x , and D−

x to denote
the backward Euler temporal difference, right spatial difference, and left spatial difference, respectively.
Specifically, these are defined as (D−

t ϕ)i,k =
ϕi,k−ϕi,k−1

∆t , (D+
x ϕ)i,k =

ϕi+1,k−ϕi,k

∆x , and (D−
x ϕ)i,k =

ϕi,k−ϕi−1,k

∆x .

According to the theory of first-order monotone schemes, the numerical Hamiltonian Ĥ must satisfy two key
properties:

• Consistency: Ĥ(p, p, x, t) = H(p, x, t).

• Monotonicity: Ĥ must be non-increasing with respect to p+ and non-decreasing with respect to p−.

We denote the Fenchel-Legendre transform of Ĥ(·, ·, x, t) by Ĥ∗(·, ·, x, t). The PDHG method is then applied
to compute the saddle point of problem (12), where the first part of the solution provides the numerical
approximation to the corresponding HJ PDE. Fig. 6 presents a numerical result from [52], which solves the
HJ PDE with the Hamiltonian H(p, x) = ∥p∥ + 3 exp(−4∥x − 1∥2) + 1 and the initial condition J(x) =∑n

i=1 sin(πxi).
In [53], the authors proposed solving the HJ PDE and the corresponding optimal control problem using
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Figure 6: Contour plots illustrating the solution of the HJ PDE with Hamiltonian H(p, x) = ∥p∥ +
3 exp(−4∥x− 1∥2) + 1 and initial condition J(x) =

∑n
i=1 sin(πxi). The left panel shows the solution for the

one-dimensional case, while the right panel presents the level sets at t = 0.75 for the two-dimensional case.

the following saddle point formula

min
ϕ

ϕ(x,0)=J(x)

max
ρ≥0,α

∫ T

0

∫
Ω

ρ(x, t)

(
∂ϕ(x, t)

∂t
− ⟨fx,t(α(x, t)),∇xϕ(x, t)⟩ − Lx,t(α(x, t))

)
dxdt− c

∫
Ω

ϕ(x, T )dx,

(13)
where fx,t(α) and Lx,t(α) denote f(α, x, T − t) and L(α, x, T − t), and c is a positive hyperparameter. A
one-dimensional discretization gives

min
ϕ

ϕi,1=J(xi)

max
ρ≥0,α

nt∑
k=2

nx∑
i=1

ρi,k

(
(D−

t ϕ)i,k − fi,k(α1,i,k)+(D
+
x ϕ)i,k − fi,k(α2,i,k)−(D

−
x ϕ)i,k

−L̂i,k (α1,i,k, α2,i,k)

)
− c

∆t

nx∑
i=1

ϕi,nt .

Here, L̂i,k represents the numerical Lagrangian at (xi, tk), and other notations follow the conventions intro-
duced earlier in [52]. The resulting saddle-point problem is then solved using the PDHG method. Notably,
this work can be seen as a generalization of [52] for cases where f(α, x, t) ̸= α. When considering more
general dynamics, the saddle-point formulation in (13) not only yields the solution ϕ to the HJ PDE but also
provides the optimal control function α in a feedback form, making it particularly well-suited for optimal
control problems.

7 Conclusion

This review explores several recent approaches for numerically solving Hamilton-Jacobi partial differential
equations, ranging from classical grid-based methods to emerging deep learning techniques. Each approach
offers distinct advantages: grid-based methods provide robust frameworks for handling complex geometries,
representation formulas capture underlying mathematical structures, Laplace approximations provide sam-
pling based schemes, deep learning methods show promise in handling complex boundary conditions and
high-dimensional settings, and saddle point methods make connections to mean-field games and have po-
tentials to solve more complicated problems. While we highlight these recent developments, this review is
by no means comprehensive. Notable approaches like optimal control algorithms [61, 54, 60, 62], optimal
transport [56, 70, 71], and mean-field games/control [65, 19, 8, 9, 69, 4] offer alternative paths to solving
HJ PDEs. The field of numerical methods for Hamilton-Jacobi equations continues to evolve rapidly, with
substantial work existing beyond what we have covered. New hybrid approaches emerge regularly, combining
strengths from different methodological frameworks. The ongoing integration of ideas from different method-
ological approaches, combined with advances in computational capabilities, suggests a promising future for
the numerical solution of Hamilton-Jacobi PDEs.
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