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 A B S T R A C T

In the growing domain of scientific machine learning, in-context operator learning has shown notable potential 
in building foundation models, as in this framework the model is trained to learn operators and solve 
differential equations using prompted data, during the inference stage without weight updates. However, the 
current model’s overdependence on function data overlooks the invaluable human insight into the operator. 
To address this, we present a transformation of in-context operator learning into a multi-modal paradigm. 
In particular, we take inspiration from the recent success of large language models, and propose using 
‘‘captions’’ to integrate human knowledge about the operator, expressed through natural language descriptions 
and equations. Also, we introduce a novel approach to train a language-model-like architecture, or directly 
fine-tune existing language models, for in-context operator learning. We beat the baseline on single-modal 
learning tasks, and also demonstrated the effectiveness of multi-modal learning in enhancing performance and 
reducing function data requirements. The proposed method not only significantly enhanced the development 
of the in-context operator learning paradigm, but also created a new path for the application of language 
models.
1. Introduction

Recently, in-context operator learning and the corresponding model 
In-Context Operator Networks (ICON) (Yang et al., 2023) has been 
proposed as a new paradigm for scientific machine learning.

As in classic operator learning tasks, an operator maps a single input 
function or a tuple of input functions, referred to as the ‘‘condition’’, 
to an output function, referred to as the ‘‘quantity of interest (QoI)’’. In 
practice, we usually have no access to the analytical expression of these 
functions, but instead can collect function data in the form of key–value 
pairs, where the keys are discrete function inputs and the values are the 
corresponding function outputs.

A wide variety of scientific machine learning tasks can be concep-
tualized as operator learning problems. Consider the task of solving 
partial differential equations (PDEs) for instance, where the coefficient 
function serves as the condition, and the solution is the QoI. Conversely, 
for inverse problems, these roles are swapped. When dealing with 
problems involving temporal evolution, the condition can be the initial 
function, while the QoI represents the function at a later time. For 
control problems, the condition could correspond to the cost function 
and the initial state, while the QoI embodies the control signal. It is 
evident that the relationship between the condition and the QoI highly 
depends on the operator, which is defined by the task at hand and the 
particular system in question.

I All code is deposited in https://github.com/LiuYangMage/in-context-operator-networks.
∗ Corresponding author.
E-mail address: sjo@math.ucla.edu (S.J. Osher).

In classic operator learning approaches (Bhattacharya et al., 2021; 
Chen & Chen, 1995a, 1995b; Khoo et al., 2021; Kovachki et al., 2023; 
Li, Kovachki, et al., 2021; Li, Zheng, et al., 2021; Long et al., 2018; 
Lu et al., 2021; Subramanian et al., 2023; Wang et al., 2021; Zhu & 
Zabaras, 2018), a neural network is limited to approximate a specific 
operator, and thus need to be trained every time a new operator is 
encountered. In contrast, in-context operator learning aims to train the 
model as an ‘‘operator learner’’ instead of an ‘‘operator approximator’’. 
In particular, the model is trained to learn the operator from the 
prompted condition-QoI pairs, referred to as ‘‘examples’’, and apply the 
learned operator to the question condition to predict the correspond-
ing QoI. After training, the above learning process can be performed 
through one forward pass of the model, in the inference stage with-
out weight update. This approach offers a ‘‘train-once-apply-multiple’’ 
paradigm and paves the way for large-scale foundation models (Bom-
masani et al., 2021) for a broad array of scientific machine learning 
tasks.

The study of ICON showcases the successful implementation of in-
context operator learning, which relies solely on numerical function 
data. However, a crucial aspect of scientific machine learning is over-
looked in this approach, namely, the human knowledge of the operator, 
which can span from vague natural language explanations to explicit 
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Fig. 1. Diagram for multi-modal in-context operator learning.
differential equations. There is a strong case for incorporating such 
knowledge into the learning system alongside numerical data, as this 
could potentially enhance learning performance with a fixed budget of 
numerical data. Moreover, sometimes we may not have any numerical 
examples available. For these cases, i.e., zero-shot learning, human 
knowledge would be necessary for the model to identify the problem.

Past research on the topic of scientific machine learning typically 
integrates human knowledge into the learning system by designing 
special loss functions or neural network architectures based on the 
differential equations or symmetry/conservation laws that govern the 
system. While these approaches have witnessed significant success, they 
are not without limitations. Firstly, it may not always be practical to 
design special loss functions or architectures, as the system might not be 
fully understood by humans, or the operator might be too complicated 
to be described by equations. Secondly, these bespoke loss functions or 
architectures are tailored for specific systems or tasks. When confronted 
with a new system, there is a requirement not only to design new 
loss functions or architectures but also typically to retrain the neural 
network. Thirdly, these loss functions or architectures integrate human 
knowledge in the training stage, and is not straightforward to be 
applied in the inference stage, thus limiting the application of these 
methods in the ‘‘train-once-apply-multiple’’ paradigm.

In this paper, we explore an entirely different approach to infusing 
human knowledge into the learning system. Inspired by the recent suc-
cess of large language models (LLMs), we introduce a new component 
to in-context operator learning: the ‘‘caption’’. A caption is a string 
serving as a descriptor of the operator, and can take various forms such 
as equations written in LaTeX forms, natural language descriptions, or 
a combination of both. Rather than crafting special loss functions or 
architectures, we simply feed the caption into the neural network as 
input alongside the examples. We thus evolve the in-context operator 
learning to be multi-modal, meaning that the neural network can 
learn the operator from numerical data, captions, or a combination of 
both, as illustrated in Fig.  1. Multi-modal in-context operator learning 
improves the accuracy given a fixed number of numerical examples, 
and more importantly, enables zero-shot learning with no numerical 
examples. Moreover, captions overcome the limitations of the afore-
mentioned methods of integrating human knowledge, in that (1) the 
integrated human knowledge can range from vague to precise, (2) the 
method is general and flexible to be applied to various systems or 
tasks, and (3) the method is applicable in the inference stage, aligning 
seamlessly with the ‘‘train-once-apply-multiple’’ paradigm.

We also introduce a novel approach to train a language-model-like 
architecture, or directly fine-tune existing language models, for single-
modal and multi-modal in-context operator learning. The improved 
training scheme mimics the ‘‘next-token prediction’’ in LLMs: the model 
predicts the QoI in each example based on previous examples. We call 
it ‘‘next-function prediction’’. The main deviation (and also the key 
challenge) is the necessity to design the input sequence and formulate 
a specialized mask to accommodate in-context operator learning tasks. 
Following the name ‘‘In-Context Operator Networks (ICON)’’, we refer 
2 
to our architecture and training scheme as ‘‘ICON-LM’’, where ‘‘LM’’ 
stands for ‘‘language model’’.

The adoption of language models for in-context learning is crucial 
for two reasons. First, it enables us to utilize existing ecosystem devel-
oped for language models for in-context operator learning. Second, it 
paves the way to broaden the capability of language models to scientific 
machine learning tasks with heavy numerical computations.

Our contributions are summarized as follows:

1. We transform the in-context operator learning into a multi-
modal framework by introducing ‘‘captions’’ as a means to in-
corporate human knowledge about the operator, in the form of 
natural language descriptions and equations.

2. We introduce a novel approach, namely ‘‘ICON-LM’’, to train a 
language-model-like architecture, or directly fine-tune existing 
language models, for in-context operator learning. We outper-
formed the baseline on single-modal learning tasks, and also 
demonstrated the effectiveness of multi-modality with ICON-LM 
in enhancing performance and reducing numerical data require-
ments.

3. By bridging language models with data-driven differential equa-
tion solvers, we have not only achieved substantial advance-
ments in this specific domain of operator learning, but also 
opened up a new avenue for the application of language models 
in scientific machine learning tasks that require heavy numerical 
computations.

The rest of the paper is organized as follows. In Section 2, we review 
the related work. We introduce the dataset in Section 3. In Section 4, we 
introduce the ICON-LM architecture and training scheme. In Section 5, 
we present the experimental results. We conclude in Section 6.

2. Related work

2.1. Operator learning and in-context operator learning

Numerous neural network methods have been proposed for ap-
proximating operators, i.e., mappings that take functions as input and 
output. The early works of Chen and Chen (1995a, 1995b) employed 
shallow neural networks for the approximation of nonlinear operators. 
A deep neural network approach to tackle parametric PDE challenges 
was suggested in Khoo et al. (2021). PDE-Net, as presented in Long 
et al. (2018) enables forward predictions of PDE solutions using the 
inferred forward map. The study in Zhu and Zabaras (2018) presented 
a Bayesian method to address uncertainty quantification in stochastic 
PDE scenarios. The Deep Operator Network (DeepONet), referenced 
in Lu et al. (2021), introduces a neural network design that approxi-
mates the solution operator, mapping parameters or initial/boundary 
conditions to their corresponding solutions. The Fourier Neural Oper-
ator (FNO) from Kovachki et al. (2023), Li, Kovachki, et al. (2021) 
leverages the Fourier space’s integral kernel to approximate the solu-
tion operator. Drawing inspiration from neural networks and model 
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reduction, Bhattacharya et al. (2021) estimates input–output maps 
between infinite-dimensional spaces for parametric PDEs. Additional 
contributions can be found in Goswami et al. (2022), Kissas et al. 
(2022), Kochkov et al. (2021), Subel et al. (2023), Zhu, Zhang, et al. 
(2023).

Recently, a different paradigm, namely in-context operator learning, 
is proposed in Yang et al. (2023), which is an extension of in-context 
learning introduced in GPT-2 (Radford et al., 2019) and GPT-3 (Brown 
et al., 2020). Instead of approximating specific operators, in-context 
operator learning trains the neural network as an operator learner, 
which can learn and apply the operator through one forward pass of the 
model, in the inference stage without weight update. Such in-context 
learning capability can even generalize to new equations (Liu, Erichson, 
et al., 2023; Yang & Osher, 2024).

2.2. Physics-informed machine learning

In the literature, two approaches are commonly employed to incor-
porate physical knowledge in neural networks: hard constraints and 
soft constraints. We refer readers to the survey paper (Karniadakis 
et al., 2021) on this topic. Hard constraints involve designing neural 
network architectures in a way that ensures any solution generated 
by the network meets the specified constraints, for example, Jin et al. 
(2020), Ling et al. (2016), Lusch et al. (2018), Mattheakis et al. (2019), 
Pfau et al. (2020), Pun et al. (2019), Zhang et al. (2018). While 
solutions with specifically designed architectures are guaranteed to 
be compliant to the physical constraints, creating such architectures 
demands extensive domain knowledge and may not be easily adaptable 
to other problems. Additionally, the expressivity and training complex-
ity could be limited in these cases. Soft constraints are implemented 
by incorporating physics-informed terms into the loss function. For 
example, E et al. (2017), E and Yu (2018), Han et al. (2018), Li, Zheng, 
et al. (2021), Raissi et al. (2019), Ruthotto et al. (2020), Sirignano and 
Spiliopoulos (2018), Wang et al. (2021), Zang et al. (2020). While more 
flexible in terms of neural network architecture design, this approach 
still requires precise knowledge of physics in the form of differential 
equations, variational problems, etc., which are not always available, 
especially when the system is not fully understood by humans.

In-context operator learning excels at addressing a broad range of 
physical problems using a single neural network. The limited flexibility 
and generalizability of the previously mentioned approaches hinder 
their application to in-context operator learning. This limitation moti-
vates our exploration in this paper, where we introduce a new method 
to incorporate physical knowledge: through ‘‘captions’’.

2.3. Multi-modal models

Unimodal language models solely rely on text data for training, 
limiting their ability to comprehend the visual world. In contrast, 
multimodal language models are trained on data in multiple forms, 
including texts and images, enabling them to understand the visual 
world. We refer readers to the survey Yin et al. (2023) on this topic.

To fuse different modal data, one approach involves combining 
the extracted features or embeddings from different modal data and 
then feeding these embeddings into the same model (Alayrac et al., 
2022; Brohan et al., 2023; Driess et al., 2023; Li, Li, et al., 2023; 
Liu, Li, et al., 2023; Pi et al., 2023; Tsimpoukelli et al., 2021; Zhang, 
Han, et al., 2023; Zhang, Li, & Bing, 2023; Zhang, Wu, et al., 2023; 
Zhu, Chen, et al., 2023). Another approach converts other modal data 
into language data and uses these language representations as inputs 
for language models (Yang et al., 2022). Some studies combine both 
techniques, utilizing both extracted features and converted language 
data as inputs to language models (Gao et al., 2023; Li, He, et al., 2023).

In the domain of scientific machine learning, multi-modal learning 
is also applied to merge numerical and symbolic data (Liu, Zhang, & 
Schaeffer, 2023; Ye et al., 2024).
3 
3. Dataset

The dataset in this research work consists of two modes: numerical 
data and textual captions. For single-modal learning, only numerical 
data are used, while multi-modal learning involves both modes.

In this study, we use the numerical dataset from Yang et al. (2023). 
This dataset contains 19 types of operator learning problems, including 
forward and inverse ordinary differential equations (ODEs), partial 
differential equations (PDEs), and mean-field control (MFC) problems. 
Notably, each type is characterized by a set of hidden parameters 
that define the operator, meaning that each type comprises an infinite 
number of operators. We list the 19 types of problems in Table  1.

Within the training dataset, each problem type comes with 1000 
distinct operators characterized by hidden parameters. For every op-
erator, there are 100 condition-QoI pairs governed by such a shared 
operator. During training, one can randomly sample from these pairs 
as ‘‘examples’’ to build an instance of prompt and label.

In the testing dataset, each problem type is represented by an 
additional 100 unique operators. Every operator is associated with 5 
sets of condition-QoI pairs, and each set has 6 such pairs. For testing 
purposes, the initial 𝐽 pairs in each set can serve as ‘‘examples’’, while 
the final pair acts as the ‘‘question’’ for 𝐽 -shot learning, with 𝐽 ranging 
from zero to five. This means the testing dataset consists of 19 × 100 × 5 
sets, translating to 19 × 100 × 5 learning cases for every value of 𝐽 .

In these problems, the condition/QoI function is in a 1D or 2D 
domain, depending on the problem type. We can sample data points 
from discrete grids for each function to construct data prompts that 
represent the function.

For multi-modal learning, per problem type, we produced 160 
captions for training and an additional 40 for testing. These captions 
are evenly split into two categories: vague and precise, depending on 
whether they reveal the actual parameter values that determine the 
operator, e.g., the decay rate of a damped oscillator, the boundary 
condition of PDEs, or the terminal cost in a mean-field control problem.

These caption data are generated with the assistance of GPT-4. In 
short, the GPT-4 model is prompted to rephrase a few handcrafted 
captions following instructions, with parameter placeholders in pre-
cise captions. The technical details of caption data generation in Ap-
pendix  A. All the captions are open-sourced alongside code, with some 
examples listed in Appendix  B.

An illustration of training and testing datasets is provided in Fig.  2.

4. ICON-LM model

4.1. Overview

The original ICON architecture consists of two transformers: an 
encoder and a decoder. For every prompt instance, the model is solely 
trained to prediction one QoI function, with a given number of exam-
ples. Specifically, the encoder processes these examples along with an 
additional ‘‘question condition’’ to produce a sequence of embeddings. 
Following this, the decoder ingests these embedding and ‘‘queries’’, 
which represent the spatial–temporal coordinates, to predict the QoI 
function associated to the question condition and evaluated at these 
query points.

We identified this architecture and training method as inefficient. 
In this paper, we propose to replace the encoder–decoder architecture 
with a decoder-only transformer architecture, and perform in-context 
operator learning in an autoregressive manner. In particular, the model 
predicts each QoI function in the prompt conditioned on previous 
examples, and optionally the caption. We term this training scheme 
as ‘‘next-function prediction’’, in parallel to the‘‘next-token prediction’’ 
training scheme in language models. ‘‘next-function prediction’’ is more 
efficient than the original ICON, as for each prompt instance, the 
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Table 1
List of differential equation problems studied in this work.
 # Problem type Differential equations Parameters Conditions QoIs  
 1 Forward ODE 1 𝑑

𝑑𝑡
𝑢(𝑡) = 𝑎1𝑐(𝑡) + 𝑎2for 𝑡 ∈ [0, 1] 𝑎1 , 𝑎2

𝑢(0), 𝑐(𝑡), 𝑡 ∈ [0, 1] 𝑢(𝑡), 𝑡 ∈ [0, 1]  
 2 Inverse ODE 1 𝑢(𝑡), 𝑡 ∈ [0, 1] 𝑐(𝑡), 𝑡 ∈ [0, 1]  
 3 Forward ODE 2 𝑑

𝑑𝑡
𝑢(𝑡) = 𝑎1𝑐(𝑡)𝑢(𝑡) + 𝑎2for 𝑡 ∈ [0, 1] 𝑎1 , 𝑎2

𝑢(0), 𝑐(𝑡), 𝑡 ∈ [0, 1] 𝑢(𝑡), 𝑡 ∈ [0, 1]  
 4 Inverse ODE 2 𝑢(𝑡), 𝑡 ∈ [0, 1] 𝑐(𝑡), 𝑡 ∈ [0, 1]  
 5 Forward ODE 3 𝑑

𝑑𝑡
𝑢(𝑡) = 𝑎1𝑢(𝑡) + 𝑎2𝑐(𝑡) + 𝑎3

for 𝑡 ∈ [0, 1]
𝑎1 , 𝑎2 , 𝑎3

𝑢(0), 𝑐(𝑡), 𝑡 ∈ [0, 1] 𝑢(𝑡), 𝑡 ∈ [0, 1]  
 6 Inverse ODE 3 𝑢(𝑡), 𝑡 ∈ [0, 1] 𝑐(𝑡), 𝑡 ∈ [0, 1]  
 7 Forward damped 

oscillator 𝑢(𝑡) = 𝐴 sin( 2𝜋
𝑇
𝑡+ 𝜂)𝑒−𝑘𝑡 for 𝑡 ∈ [0, 1] 𝑘

𝑢(𝑡), 𝑡 ∈ [0, 0.5) 𝑢(𝑡), 𝑡 ∈ [0.5, 1]  

 8 Inverse damped 
oscillator

𝑢(𝑡), 𝑡 ∈ [0.5, 1] 𝑢(𝑡), 𝑡 ∈ [0, 0.5)  

 9 Forward Poisson 
equation

𝑑2

𝑑𝑥2
𝑢(𝑥) = 𝑐(𝑥) for 𝑥 ∈ [0, 1] 𝑢(0), 𝑢(1)

𝑐(𝑥), 𝑥 ∈ [0, 1] 𝑢(𝑥), 𝑥 ∈ [0, 1]  

 10 Inverse Poisson 
equation

𝑢(𝑥), 𝑥 ∈ [0, 1] 𝑐(𝑥), 𝑥 ∈ [0, 1]  

 11 Forward linear 
reaction–diffusion

−𝜆𝑎 𝑑2

𝑑𝑥2
𝑢(𝑥) + 𝑘(𝑥)𝑢(𝑥) = 𝑐

for 𝑥 ∈ [0, 1], 𝜆 = 0.05
𝑢(0), 𝑢(1), 𝑎, 𝑐

𝑘(𝑥), 𝑥 ∈ [0, 1] 𝑢(𝑥), 𝑥 ∈ [0, 1]  

 12 Inverse linear 
reaction–diffusion

𝑢(𝑥), 𝑥 ∈ [0, 1] 𝑘(𝑥), 𝑥 ∈ [0, 1]  

 13 Forward nonlinear 
reaction–diffusion

−𝜆𝑎 𝑑2

𝑑𝑥2
𝑢(𝑥) + 𝑘𝑢(𝑥)3 = 𝑐(𝑥)

for 𝑥 ∈ [0, 1], 𝜆 = 0.1
𝑢(0), 𝑢(1), 𝑘, 𝑎

𝑐(𝑥), 𝑥 ∈ [0, 1] 𝑢(𝑥), 𝑥 ∈ [0, 1]  

 14 Inverse nonlinear 
reaction–diffusion

𝑢(𝑥), 𝑥 ∈ [0, 1] 𝑐(𝑥), 𝑥 ∈ [0, 1]  

 15 MFC 𝑔-parameter 
1D → 1D

inf𝜌,𝑚 ∬ 𝑐
𝑚2

2𝜌
𝑑𝑥𝑑𝑡+∫ 𝑔(𝑥)𝜌(1,𝑥)𝑑𝑥

s.t. 
𝜕𝑡𝜌(𝑡, 𝑥) + ∇𝑥 ⋅ 𝑚(𝑡, 𝑥) = 𝜇𝛥𝑥𝜌(𝑡, 𝑥)
for 𝑡 ∈ [0, 1], 𝑥 ∈ [0, 1],
𝑐 = 20, 𝜇 = 0.02, 
periodic spatial boundary 
condition

𝑔(𝑥), 𝑥 ∈ [0, 1]
𝜌(0, 𝑥), 𝑥 ∈ [0, 1] 𝜌(1, 𝑥), 𝑥 ∈ [0, 1]  

 16 MFC 𝑔-parameter 
1D → 2D

𝜌(0, 𝑥), 𝑥 ∈ [0, 1] 𝜌(𝑡, 𝑥), 𝑡 ∈ [0.5, 1], 𝑥 ∈ [0, 1] 

 17 MFC 𝑔-parameter 
2D → 2D

𝜌(𝑡, 𝑥), 𝑡 ∈ [0, 0.5), 𝑥 ∈ [0, 1] 𝜌(𝑡, 𝑥), 𝑡 ∈ [0.5, 1], 𝑥 ∈ [0, 1]  

 18 MFC 𝜌0-parameter 
1D → 1D

𝜌(0, 𝑥), 
𝑥 ∈ [0, 1]

𝑔(𝑥), 𝑥 ∈ [0, 1] 𝜌(1, 𝑥), 𝑥 ∈ [0, 1]  

 19 MFC 𝜌0-parameter 
1D → 2D

𝜌(𝑡, 𝑥),𝑡 ∈ [0.5, 1],𝑥 ∈ [0, 1]  
Fig. 2. Illustration of (a) training dataset and (b) testing dataset.
model simultaneously performs in-context operator learning with vary-
ing numbers of examples, ranging from zero (with a caption) or one 
(without a caption) up to the maximum capacity. This is written as 

{prediction of QOI𝑖}𝐼𝑖=1 = 𝜃[{CAPT, ⟨COND𝑖,QOI𝑖⟩}𝐼𝑖=1],
prediction of QOI𝐽+1 = 𝜃[CAPT,COND𝐽+1, {⟨COND𝑖,QOI𝑖⟩}𝐽𝑖=1], (1)

𝐽 = 0, 2,… , 𝐼 − 1.

4 
for in-context operator learning with captions, and 
{prediction of QOI𝑖}𝐼𝑖=1 = 𝜃[{⟨COND𝑖,QOI𝑖⟩}𝐼𝑖=1],
prediction of QOI𝐽+1 = 𝜃[COND𝐽+1, {⟨COND𝑖,QOI𝑖⟩}𝐽𝑖=1],
𝐽 = 1, 2,… , 𝐼 − 1.

(2)

for in-context operator learning without captions, where 𝜃 is the ICON-
LM model, CAPT is the caption, COND  and QOI  are the condition and 
𝑖 𝑖
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Table 2
The tokens for the 𝑗th example for the one-dimensional forward ODE problem.
 condition QoI query

 term ⎛

⎜

⎜

⎜

⎜

⎝

0 0 … 0 1
𝑡1 𝑡2 … 𝑡𝑛𝑗−1 0
0 0 … 0 0

𝑐(𝑡1) 𝑐(𝑡2) … 𝑐(𝑡𝑛𝑗−1) 𝑢(0)

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

0 0 … 0
𝜏1 𝜏2 … 𝜏𝑚𝑗

0 0 … 0
𝑢(𝜏1) 𝑢(𝜏2) … 𝑢(𝜏𝑚𝑗

)

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

0 0 … 0
𝜏1 𝜏2 … 𝜏𝑚𝑗

0 0 … 0
0 0 … 0

⎞

⎟

⎟

⎟

⎟

⎠

 
 key time  
 space  
 value  
QoI in 𝑖th example, respectively. For 𝐽 = 0, {⟨COND𝑖,QOI𝑖⟩}𝐽𝑖=1 means 
no examples. 

While drawing parallels between language models and in context 
operator learning, it is essential to underscore the distinctions and 
unique requirements of in-context operator learning: (1) The model 
should be invariant to the permutation of tokens within a function, 
since these tokens are unordered. (2) The prediction of a QoI function 
should not be limited to a preset collection of function inputs but is 
applicable to any inputs. (3) For a QoI function, the outputs corre-
sponding to specific queries should not be generated sequentially as in 
language models. Rather, these predictions should be made in parallel 
and independent of each other.

To address these challenges, we need to design customized input 
and output sequences, as well as a transformer mask, which will be 
discussed in the following subsections.

4.2. Input tokens

The input sequence, or ‘‘prompt’’, of ICON-LM model consists of 
two parts: textual captions and numerical function data. The textual 
captions are tokenized in the same ways as in language models. As 
for the numerical part, each condition or QoI function is represented 
by a sequence of numerical tokens, each representing a data point for 
the function. In particular, each numerical token is the concatenation 
of a key–value pair, where conceptually the key is the function in-
put, including temporal and spatial coordinates, and the value is the 
corresponding function outputs. Sometimes a condition/QoI consists of 
multiple terms. For example, in forward ODE problems, the condition 
consists of the control function as well as the initial condition. To 
handle such scenarios, we also include a ‘‘term’’ indicator to the key 
to distinguish multiple terms. 

In the original ICON, apart from the key–value pair, a one-hot 
index vector is also included in each numerical token, but no positional 
encodings is applied. Actually, ‘‘concatenating the one-hot index vector 
in tokens’’ is equivalent to ‘‘adding positional encodings suitable’’ (as 
introduced later). We thus drop the index vector and only use the key 
and value in function tokens for simplicity.

The model predicts each QoI function based on the previous ex-
amples. Crucially, these predictions should be made for any function 
inputs, in parallel and independent of each other. To address such 
requirements, in addition to the condition and QoI function tokens, we 
also include the ‘‘query tokens’’ in the sequence, which are the vectors 
representing the keys of the QoI function. Unlike the approach in the 
encoder–decoder ICON, where queries are created solely for the last 
example, in our method, queries are created for each example.

As a demonstration, in Table  2, we show the tokens of the 𝑗th 
example for the one-dimensional forward ODE problem, where the 
condition consists of the control 𝑐 ∶ [0, 𝑇 ] → R and the initial condition 
𝑢(0); the QoI is the state 𝑢∶ [0, 𝑇 ] → R. In the table, each column 
represents a token. We use 𝑛𝑗 − 1 key–value pairs to represent 𝑐, one 
key–value pair for 𝑢(0), and 𝑚𝑗 key–value pairs for 𝑢. In the first row, we 
use the indicators 0 and 1 to distinguish different terms in the condition, 
i.e., 𝑐 and 𝑢(0). The third row is populated with zeros since there are no 
spatial coordinates in this problem. During training, the keys in query 
tokens are the same as those for QoIs, but the values are populated with 
zero.
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4.3. Model and attention mask

As in language models, every caption token is transformed into an 
embedding vector via an embedding layer. Similarly, every condition, 
QoI, and query token is transformed into an embedding vector via a 
linear embedding layer shared by these numerical tokens. All these 
embedding vectors are concatenated to a sequence.

Before being supplied to the transformer, the sequence is added with 
positional encodings. For the caption part, we apply positional encod-
ings as in the GPT-2 model. We also add learnable positional encodings 
for the function part. Notably, we not only need to distinguish different 
examples and different types of tokens (whether condition, QoI, or 
query), but also ensure that the model remains invariant to the order 
of tokens within a function. Therefore, all the tokens within the same 
condition/QoI/query share the same positional encoding. For example, 
with five condition-QoI pairs (𝐼 = 5 in Eq.  (1) and Eq.  (2)), there would 
be a total of 15 learnable positional encoding vectors designated for 
functions: five each for condition tokens, QoI tokens, and query tokens.

After being added with positional encodings, the input sequence is 
supplied to a transformer. The output sequence of the transformer is 
then fed into a head layer (e.g., a linear layer in this paper), to align 
the dimensions with those of the QoI values.

In the output sequence, we only keep the ones corresponding to the 
query tokens, since these parts aim to predict the QoI function values 
evaluated at the queries. For example, if the QoI represents function 𝑢, 
the output corresponding to the query token 𝑥 aims to predict 𝑢(𝑥).

The input/output sequence and the model architecture are depicted 
in Fig.  3.

The design of the transformer mask is the key challenge in the ICON-
LM model due to the following constraints. (1) The model predicts the 
QoI value, taking into account all the caption tokens, all the conditions 
and QoI tokens from previous examples, all the condition tokens of the 
current example, as well as the current query token. (2) When making 
the prediction, it is crucial to prevent inadvertent leakage of the QoI 
tokens in the current example, which contain the prediction targets. 
(3) Also, the queries should not attend to each other, as the predictions 
should be independent. (4) The invariance to the permutation of tokens 
within a function should be maintained. (5) In the end, we need 
to ensure that there is no unintentional information leakage due to 
indirect attention. This can be verified by 𝑏𝑜𝑜𝑙(𝑀𝑀) = 𝑀 where 𝑀
is the attention matrix and 𝑏𝑜𝑜𝑙(⋅) converts each entry of the matrix to 
bool.

We carefully designed the mask that satisfies all the constraints 
above, illustrated in Fig.  4. The mask block for caption tokens is lower 
triangular, in consistency with the existing generative language model. 
The other blocks are not lower triangular for the sake of permutation 
invariance. The blocks for queries are diagonal, indicating that the 
query tokens do not attend to each other.

Since the model architecture is similar to that of language models, 
we can directly fine-tune existing language models for in-context op-
erator learning, especially for multi-modal learning. The only changes 
are the embedding layer for function tokens and the head layer, as well 
as the customized transformer mask.
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Fig. 3. Depiction of the input/output sequence and model architecture of ICON-LM. The connections in the transformer block are a simplified illustration of the attention mask.
Fig. 4. The transformer mask for ICON-LM with three condition-QoI pairs. White cells representing ones, and gray cells representing zeros.
4.4. Training and inference

We can train the ICON-LM model to execute in-context operator 
learning, with the option of including or excluding captions. The loss 
function is the mean squared error between the predicted QoI values 
and the ground truth. For training inclusive of captions, the loss func-
tion is calculated from the first example prediction up to the last, with 
the first example prediction being a zero-shot – a prediction solely 
based on the caption and condition, excluding any other examples. 
When training without captions, we exclude the caption from the input 
sequence and calculate the loss function from the second example’s 
predictions to the last, bypassing zero-shot learning as predicting the 
6 
QoI value without any example or caption is not meaningful. The total 
loss for multi-modal training comprises the losses from both options.

During inference, provided with a few example condition-QoI pairs 
and a question condition, we want to predict the QoI corresponding to 
the question condition. Importantly, the prediction of the QoI should 
be feasible at any location within the domain, rather than being limited 
to predetermined fixed positions. ICON-LM efficiently achieves this by 
constructing question query tokens, where the keys represent where 
we aim to evaluate the predicted QoI. Owing to a carefully designed 
mask, these query tokens operate independently, and a flexible number 
of them is allowed. The question condition and query tokens are 
then appended to the input sequence as the ‘‘last example’’. The QoI 
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Fig. 5. Comparison of ICON-LM (ours) and encoder–decoder ICON for single-modal 
in-context operator learning. We calculate the relative testing error averaged over all 
19 types of problems, and take the mean and standard deviation over three runs, shown 
as the solid line and the shaded area, respectively.

tokens for the question are not required, so are all the query tokens 
in examples since we do not need to predict example QoIs during 
inference.

5. Experiments

5.1. ICON-LM v.s. Encoder-decoder ICON

This section serves to show the performance of ICON-LM for single-
modal in-context operator learning, i.e., without captions, and compare 
it with the baseline, the encoder–decoder ICON model.

The encoder–decoder ICON is trained with 𝐽 examples alongside 
one question, with 𝐽 randomly selected between one and five for each 
prompt instance. In contrast, ICON-LM is trained with six examples per 
instance, allowing for concurrent one-shot to five-shot learning. During 
both training and testing, each condition or QoI has 41 to 50 tokens. 
We emphasize that although the number of examples varies between 
the two models, the total training dataset remains consistent for both, 
which are presented in Section 3.

Both models are trained with the same setups for optimizer and 
learning rate schedule. More details on the model sizes and train-
ing configurations are given in Appendix  C. The encoder–decoder 
ICON encompasses approximately 31.6 million parameters, whereas the 
ICON-LM has nearly half that number, at around 15.8 million. This 
substantial reduction is credited to the ICON-LM’s simplified architec-
ture, which employs a single transformer encoder roughly equivalent 
in size to the encoder or decoder in the baseline ICON. Compared 
with the baseline ICON, the larger sequence length (about ×1.5) in 
ICON-LM requires more GPU memory, but this is largely offset by the 
single transformer encoder design, and slightly smaller batch size (32 
for encoder–decoder ICON, and 24 for ICON-LM). With such setups, 
both models take about 19 GB GPU memory, and can fit in one 
NVIDIA GeForce RTX 4090 GPU with 24 GB memory. As for the time 
consumption, the training takes about 41.5 h for the encoder–decoder 
ICON, and about 37.5 h for ICON-LM.

We compare the relative testing error from one-shot to five-shot 
learning. Here the relative error is defined in the same way as in Yang 
et al. (2023): the absolute error is the mean difference between the 
predicted QoI values and the ground truth, the relative error is the 
absolute error divided by the mean of the absolute values of the ground 
truth. The comparison results are shown in Fig.  5. It is clear that 
ICON-LM consistently outperforms baseline encoder–decoder ICON.

As an illustration, an instance of Problem #17 is illustrated in Fig. 
6. In this case, we need to infer the operator defined by the hidden 
terminal cost 𝑔(𝑥) from merely three examples (without captions), and 
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then apply it to the question condition, the density field during 𝑡 ∈
[0, 0.5], to make predictions of the density field during a later time 
interval. Note that in the prompt, there are only 41 to 50 scattered data 
points for each condition/QoI function, but we can make the prediction 
in the whole domain of (𝑡, 𝑥) ∈ [0.5, 1] × [0, 1].

5.2. In-context operator learning v.s. Classic operator learning

How does in-context operator learning compare with classic opera-
tor learning, especially when the data is limited? We examine ICON-LM 
against classic operator learning methods, including FNO (Li, Kovachki, 
et al., 2021) and DeepONet (Lu et al., 2021). Specifically, we use the 
example of Problem #14 out of 19 types, namely the inverse nonlinear 
reaction–diffusion PDE problem, and focus on the five-shot learning 
scenario. Each condition 𝑢(𝑥) and QoI 𝑐(𝑥) is represented by 101 evenly 
spaced data points in 𝑥 ∈ [0, 1].

The ICON-LM model is inherited from Section 5.1. While trained 
with 41 to 50 tokens for each condition/QoI, it can generalized to 101 
tokens without any fine-tuning. Such generalization capability can be 
attributed to the flexible input sequence length of transformers, and is 
also reported in Yang et al. (2023).

To enable few-shot learning, we pretrain the FNO and DeepONet 
models using the training dataset designated for Problem #14, which 
comprises a distribution of operators denoted as  . In the pretrain-
ing, these models aim to approximate the mean operator and predict 
E𝑇∼𝑇 (𝑢) for a given condition 𝑢. Then for each testing operator 
𝑇 ∗ ∼  , we fine-tune the pretrained models using five examples to 
approximate 𝑇 ∗. The details of operator learning models, pretraining 
and fine-tuning configurations are in Appendix  C. We note that the 
parameter numbers of FNO and DeepONet are comparable to or slightly 
larger than ICON-LM. The comparison is illustrated in Fig.  7.

The pretrained operator learning models effectively approximate 
the mean operator, and as a result, the fine-tuned models show a sat-
isfactory approximation of the testing operator 𝑇 ∗ when 𝑇 ∗ is close to 
the mean operator, as shown in Fig.  7(b). However, their performance 
deteriorates when attempting to approximate 𝑇 ∗ that deviates from the 
mean, as shown in Fig.  7(c). In contrast, ICON-LM consistently performs 
well due to its in-context learning capability for a distribution of oper-
ators. This is highlighted when considering the relative error averaged 
over 500 testing cases, as depicted in Fig.  7(a). The error of ICON-LM 
with just one forward pass for each testing case is substantially lower 
compared with FNO and DeepONet fine-tuned for each testing case.

5.3. Multi-modal in-context operator learning

In this section, we demonstrate the effectiveness of multi-modal 
in-context operator learning. We full-parameter fine-tuned the GPT-2 
model with 124M parameters (Radford et al., 2019) in the ICON-LM 
framework. The training setup is the same as ICON-LM in Section 5.1, 
except that the total loss for multi-modal training comprises the losses 
with captions and without captions, and the batch size is reduced to 10. 
The training takes about 5.5 days on dual NVIDIA GeForce RTX 4090 
GPUs.

In Fig.  8, we show the relative testing errors averaged over all 
19 types of problems from one-shot to five-shot learning, examining 
the performance when prompted without captions, with vague cap-
tions, and with precise captions. A comprehensive comparison for each 
specific problem type can be found in Fig.  9.

In Fig.  8 we can see that precise captions improve the performance 
with a fixed number of numerical examples. In particular, precise 
captions significantly improves the zero-shot learning performance. 
This is because for most of the problems, there is no way to identify 
the operator just from a question condition, but the precise captions can 
switch the operators to be identifiable. Indeed, we can see from Fig.  9 
that for most of the problems, zero-shot learning with precise captions 
achieves accuracy comparable to using five examples. This suggests 
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Fig. 6. Illustration of an in-context learning case in Problem #17. The blue/red round dots represent the data points for example conditions/QoIs in the prompt; the black square 
dots represent the data points for the question condition in the prompt.
Fig. 7. Comparison of ICON-LM against FNO and DeepONet. (a) relative error during fine-tuning FNO and DeepNet. (b) prediction for a testing operator close to the mean operator. 
(c) prediction for a testing operator far from the mean operator. (d) five examples and the question condition for the testing operator in (c).
that the model can infer nearly the full information of the operator 
solely from the captions. For mean-field problems, zero-shot learning 
with precise captions is less effective. In these cases, the parameters 
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are functions represented by 10 discrete points in the captions, which 
are insufficient to capture the full information of the operator.

The results with vague captions are also very interesting. If we take 
a close look at Fig.  9, we can see that vague captions also significantly 
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Fig. 8. Comparison of multi-modal ICON-LM with vague captions, precise captions, 
and no captions.

Table 3
Zero-shot relative errors of ICON-LM with pretrained and unpretrained GPT-2 model.
 Model Train (%) Test (%) Gap (%) 
 Pretrained 2.30 2.44 0.14  
 Unpretrained 2.07 3.08 1.01  

improve the performance of zero shot learning for some problems. 
e.g. the forward and inverse damped oscillator series problems, and the 
inverse Poisson equation problem. This is because for these problems, 
once the problem type is identified with the vague captions, the oper-
ator parameters can be inferred from the conditions provided. In other 
words, the operators become identifiable with the combination of vague 
captions and numerical conditions. For instance, the decay rate of the 
damped oscillator can be computed from a segment of the time series 
in the given condition, and the boundary conditions of the Poisson 
equation are encapsulated within the conditions of 𝑢(𝑥). These examples 
highlight the impressive capabilities of the ICON-LM framework in 
combining multi-modal information to learn the operator. 

5.4. Ablation study

Here we conduct an ablation study to inspect the differences be-
tween pretrained and unpretrained language models within the multi-
modal in-context operator learning framework. The training setup is 
the same as in Section 5.3, with the sole variable being the initial state 
of the GPT-2 model: either pretrained or initialized randomly.

In Table  3 we show the results for zero-shot learning with precise 
captions, where the relative error is averaged across all 19 problem 
types. The results reveal that while the unpretrained GPT-2 model 
performs better on the training captions, it generalizes poorly to the 
testing captions. Meanwhile, the generalization gap is much smaller 
for the pretrained GPT-2 model. This shows that a pretrained language 
model enhances the ICON-LM’s capability in zero-shot multi-modal 
learning. Meanwhile, we also found that the unpretrained GPT-2 model 
outperforms the pretrained GPT-2 when condition-QoI examples are 
included in the prompts, i.e. few-shot learning. This may be attributed 
to that the pretrained language models are specialized in language 
understanding, while weak in numerical in-context operator learning. 
We leave this issue to future research.

6. Summary

We present a novel approach to transform in-context operator learn-
ing for scientific machine learning into a multi-modal framework, 
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meaning that the model can learn the operator from captions, nu-
merical function data, or a combination of both. These captions in-
corporate human knowledge about the operator, in the form of nat-
ural language descriptions and equations. We also introduce a more 
efficient model architecture for multi-modal in-context operator learn-
ing, namely ‘‘ICON-LM’’. This architecture closely aligns with lan-
guage models, with carefully designed input sequences and transformer 
masks.

In the experiments, we compared the ICON-LM model with the 
baseline encoder–decoder ICON model, in the single-modal learning 
scenario. The proposed ICON-LM model, comprising approximately half 
the number of parameters, surpasses the performance of the baseline 
ICON model with less training time. We also showed the advantage 
of ICON-LM for in-context operator learning compared with FNO and 
DeepONet for classic operator learning, especially when the data is 
limited for the operators.

We also fine-tuned GPT-2 model for multi-modal in-context operator 
learning. We found that captions’ presence, especially precise ones 
that disclose the parameters in the operators, significantly improved 
learning performance when the number of examples was limited. The 
model performance is improved even with vague captions that only 
disclose the operator type, showing impressive capabilities of the ICON-
LM framework in combining multi-modal information to learn the 
operator.

In this paper, we focused on the transition to the multi-modal 
framework and the autoregressive training scheme, with the function 
representation limited to scattered points. Since transformers suffer 
from quadratic complexity in the number of input tokens, the cur-
rent method may not be suitable in cases with dense data points, 
for example, fluid dynamics with grid data. However, the proposed 
multi-modal framework and ‘‘next function prediction’’ autoregres-
sive training scheme should be able to generalize to other function 
representations, which are left to future work.
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Fig. 9. Relative testing error for cases from zero-shot to five-shot learning, for each type of problem. (a) Testing without captions. (b) Testing with vague captions. (c) Testing 
with precise captions.
Appendix A. Caption data generation

We prompted the GPT-4 model to generate caption data, where the 
prompt consists of PDE descriptions in human language and LaTeX, 
instructions for captions, and several handcrafted caption examples. 
Most of the captions were suitable, though a few required slight manual 
adjustments. After proper post-processing, these captions were fed into 
the ICON-LM model.

We have two groups of captions. For the vague group, we instructed 
GPT-4 to use natural language to describe the equation or indicate its 
form without revealing the specific parameter values of the operators. 
For the precise group, we instructed GPT-4 to leave placeholders for 
the actual parameters, which were replaced with the actual parameter 
values during the post-processing stage. It is worth noting that for 
mean-field control problems, where the parameters are functional, we 
adopted a discretization approach to represent parameters.

Here, we present an example prompt for GPT-4 to generate vague 
and precise captions for ODE 1. The GPT-4 needs to be called multiple 
times to generate a sufficient number of captions.
10 
Generate captions for an ordinary differential equation (
ODE).

---
Here are some example captions:
An ODE with a state variable $u$ and control variable $c$.
$du(t)/dt = a \\cdot c(t) + b$.
An ODE $du(t)/dt = a \\cdot c(t) + 0.002$, with $a = 0.001$.
$du(t)/dt = b + a \\cdot c(t) $, where $a = 0.001$ and $b =

0.002$.
---
Now please design two groups of captions based on the above

examples.
---
In the group 1, you can use human language or tell the form

of the equation with parameters, but do not tell the
value of the parameters. For example:

An ODE with a state variable $u$ and control variable $c$.
Function $u$ change over time with the rate of $a \cdot c(t

) + b$.
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The differential equations is $du(t)/dt = a \cdot c(t) + b$
.

---
In the group 2, you should tell all the values of the

parameters $a$ and $b$. We give that $a = 0.001$, $b =
0.002.$ In the expression, you should specify the
parameters values. The following examples are good:

$du(t)/dt = a \cdot c(t) + b$, where $b = 0.002, a = 0.001$.
The differential equations is $du(t)/dt = 0.001 \cdot c(t)

+ 0.002$.
---
Requirements:
0, You are an expert in the field of PDEs and ODEs. You have

several publications in peer-reviewed journals. You
are familiar with the notations and the equations.

1, In all examples, you should introduce the notations $u(
t)$ and $c(t)$.

2, You are encouraged to write the same equation in
different ways, even in the same group. For example,
you can either use $du(t)/dt$ or $\frac{du(t)}{dt}$
to represent the time derivative of $u$.

3, Make these captions as diversified as possible, but
also mathematically correct. You can reuse the
example provided.

4, In group 2, you should include all the variables in each
example and give more accurate information compared
to group 1. Do not write ‘‘the parameter needs to be
determined’’ or similar sentences.

5, group 1 should contain no specific values for the
parameters.

---
In each group, using one line for each example. Do not use

any format. Do not number them or use lists. Do not
write ‘‘group 1’’ or related words. Do not use quotes.
The answer should only contain the examples and the
empty lines. Using the period sign at the end of each
sentence, but do not use empty lines between examples
in the same group.

---
Design and list all 20 examples for group 1 and 20 examples

for group 2; First you list all 20 examples of group 1,
then use one empty line to separate group 1 and group

2, next list all 20 examples for group 2.

Appendix B. Caption examples

Here we show several examples of training and testing captions 
for three characteristic problem types: ODE 3 forward problem, PDE 
3 forward problem, and MFC 𝑔-parameter 1D → 1D. For each type, we 
show four vague captions and four precise captions, with the former 
two used in training, and the latter two for testing.

1. Caption examples for ODE 3 forward problem.
----Vague----
Variable $u$’s time derivative is $du(t)/dt = a_1 \

cdot u(t) + a_2 \cdot c(t) + a_3$. Condition: $u
(0)$ and $c(t), t\in[0,1]$, QoI: $u(t), t\in
[0,1]$.

The ordinary differential equation represents the
growth rate of variable $u(t)$ in relation to
itself and the control function $c(t)$.
Condition: $u(0)$ and $c(t), t\in[0,1]$, QoI:
$u(t), t\in[0,1]$.

Derivation of $u(t)$ in time following the formula
$du/dt = a_1u(t) + a_2c(t) + a_3$. Condition: $u
(0)$ and $c(t), t\in[0,1]$, QoI: $u(t), t\in
[0,1]$.

An ordinary differential equation with respect to
time using a state variable $u(t)$ and a control
variable $c(t)$. Condition: $u(0)$ and $c(t), t
\in[0,1]$, QoI: $u(t), t\in[0,1]$.
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----Precise----
Knowing that $a_1 = -0.0124, a_2 = 1.06, a_3 = 0.105$,

the derivative $du(t)/dt = -0.0124 \cdot u(t) +
1.06 * c(t) + 0.105$. Condition: $u(0)$ and $c(t
), t\in[0,1]$, QoI: $u(t), t\in[0,1]$.

The state variable changes according to $du(t)/dt =
0.347 \cdot u(t) + 0.535 \cdot c(t) + 0.459$.
Condition: $u(0)$ and $c(t), t\in[0,1]$, QoI:
$u(t), t\in[0,1]$.

Express an ODE as $\frac{du(t)}{dt} = -0.85 \cdot u(t
) + 1.13 \cdot c(t) + -0.779$. Condition: $u(0)$
and $c(t), t\in[0,1]$, QoI: $u(t), t\in[0,1]$.

This differential equation $du(t)/dt = 0.167 * u(t) +
1.02 * c(t) + 0.457$ shows how $u(t)$ changes
with time. Condition: $u(0)$ and $c(t), t\in
[0,1]$, QoI: $u(t), t\in[0,1]$.

2. Caption examples for PDE 3 forward problem.

----Vague----
The nonlinear PDE, written as $-\lambda\frac{d^2u}{

dx^2} + a * u^3 = c(x)$, includes the variables
$u(x)$ and $c(x)$. Condition: $c(x), x\in[0,1]$
, QoI: $u(x), x\in[0,1]$.

The nonlinear PDE, $u’’(x) - a \cdot u(x)^3 = c(x)$
roping in $u(x)$ and $c(x)$. Condition: $c(x),
x\in[0,1]$, QoI: $u(x), x\in[0,1]$.

Ponder upon this nonlinear PDE, involving the
dependent variable $u(x)$ and the term $c(x)$
constituting the source. Condition: $c(x), x\in
[0,1]$, QoI: $u(x), x\in[0,1]$.

This PDE, $-\lambda d^2u/dx^2 + a \cdot u^3 = c(x)$,
involves the variables $u(x)$ and $c(x)$.
Condition: $c(x), x\in[0,1]$, QoI: $u(x), x\in
[0,1]$.

----Precise----
For the given equation $- 0.101 * \frac{d^2u}{dx^2} +

1.16 * u^3 = c(x)$, we have the boundary
conditions $u(0) = -0.517$ and $u(1) = -0.689$.
Condition: $c(x), x\in[0,1]$, QoI: $u(x), x\in
[0,1]$.

The nonlinear PDE is $-0.0504 d^2u/dx^2 + 0.705 \cdot
u^3 = c(x)$, with $u(0) = -0.319$ and $u(1) =
-0.667$. Condition: $c(x), x\in[0,1]$, QoI: $u(
x), x\in[0,1]$.

Equation $- 0.116 \frac{d^2u}{dx^2} + 0.586 \cdot u
^3 = c(x)$, is our PDE with $u(0) = 0.322$ and $u
(1) = -0.749$. Condition: $c(x), x\in[0,1]$,
QoI: $u(x), x\in[0,1]$.

Let us examine this PDE $- 0.139 \frac{d^2u}{dx^2} +
1.25 \cdot u^3 = c(x)$, imposing $u(0) = -0.351$
, $u(1) = 0.597$. Condition: $c(x), x\in[0,1]$,
QoI: $u(x), x\in[0,1]$.

3. Caption examples for MFC 𝑔-parameter 1D → 1D.

----Vague----
Investigating Mean Field Control Problem involving

an interplay between density $\rho$ and an
uncertain function $g$ inside the terminal cost
. Condition: $\rho(0,x), x\in[0,1]$, QoI: $\rho
(1,x), x\in[0,1]$.

In the mean field control problem, we minimize $\int
\int \frac{10m^2}{\rho} dx dt + \int g(x)\rho
(1,x) dx$, subject to $\partial_{t}\rho + \
nabla_{x}\cdot m = 0.02 \Delta_{x}\rho$, with $
\rho(0,x)=\rho_{0}(x)$, where $g$ is an unknown
function. Condition: $\rho(0,x), x\in[0,1]$,
QoI: $\rho(1,x), x\in[0,1]$.
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Consider the mean field control problem with density
function $\rho(t,x)$ and terminal cost $\int g(
x)\rho(1,x) dx$ where $g$ is an unknown function
. Condition: $\rho(0,x), x\in[0,1]$, QoI: $\rho
(1,x), x\in[0,1]$.

The mean field control problem formulates $\inf_{\
rho, m}\iint \frac{10m^2}{\rho} dx dt + \int g(x
)\rho(1,x) dx$ subject to $\partial_t \rho(t,x)
+ \nabla_x m(t,x) = 0.02 \Delta_x \rho(t,x)$,
where $g(x)$ is undefined. Condition: $\rho(0,x
), x\in[0,1]$, QoI: $\rho(1,x), x\in[0,1]$.

----Precise----
The analysis of $\inf_{\rho, m}\iint \frac{10m^2}{\

rho} dx dt + \int g(x)\rho(1,x) dx$ for $t \in
[0,1]$, $x \in [0,1]$ and periodic spatial
boundary condition, under constraint of $\
partial_t \rho(t,x) + \nabla_x m(t,x) = 0.02 \
Delta_x \rho(t,x)$, with the function $g$
acting as terminal cost is defined as $g(0), g
(0.1), ..., g(0.9)$ = 0.903, 0.957, 0.459,
-0.178, -0.83, -1.5, -1.39, -0.189, 0.857,
0.909. Condition: $\rho(0,x), x\in[0,1]$, QoI:
$\rho(1,x), x\in[0,1]$.

Analyzing mean field control problem $\inf_{\rho, m
}\iint \frac{10m^2}{\rho} dx dt + \int g(x)\rho
(1,x) dx$, subject to the constraints, for $t \
in [0,1], x \in [0,1], and terminal function $g$
defined as $g(0), g(0.1), ..., g(0.9) = -0.244,
0.326, 0.598, 0.571, 0.287, 0.0734, 0.00921,
-0.299, -0.67, -0.652$. Condition: $\rho(0,x),
x\in[0,1]$, QoI: $\rho(1,x), x\in[0,1]$.

We solve a mean field control problem that seeks to
minimize $\inf_{\rho, m}\iint \frac{10m^2}{\
rho} dx dt + \int g(x)\rho(1,x) dx$ while
adhering to $\partial_t \rho(t,x) + \nabla_x m(
t,x) = 0.02 \Delta_x \rho(t,x)$ and $\rho(0,x)
=\rho_0(x)$. A known function $g$ is given by $g
(0), g(0.1), ..., g(0.9)$ = 0.535, 0.976, 1.35,
1.49, 0.135, -1.86, -1.66, -0.692, -0.305,
0.0242. Condition: $\rho(0,x), x\in[0,1]$, QoI:
$\rho(1,x), x\in[0,1]$.

Studying the mean field control problem $\inf_{\rho,
m}\iint \frac{10m^2}{\rho} dx dt + \int g(x)\
rho(1,x) dx$, where $t \in [0,1], x \in [0,1],
and $g$ is given as $g(0), g(0.1), ..., g(0.9) =
-0.0268, 0.196, 0.08, -0.0463, 0.145, 0.126,
0.169, 0.0845, -0.313, -0.413$. Condition: $\
rho(0,x), x\in[0,1]$, QoI: $\rho(1,x), x\in
[0,1]$.

Appendix C. Neural network and training configurations

The transformer used in Section 5.1 is configured as in Table  C.4. 
Both the embedding layer and head layer are linear layers. For fine-
tuning the GPT-2 model in Section 5.3, we apply shallow multilayer 
perceptrons as the input embedding layer for function data as well as 
the output head layer, with one hidden layer of dimension 1024. We 
utilize the AdamW optimizer with a warmup-cosine-decay schedule, 
employing the configuration in Table  C.5.

In Section 5.1, we pretrained and fine-tuned the FNO and Deep-
ONet. The FNO model is adopted from the official implementation 
(https://github.com/neuraloperator/neuraloperator), with n_modes
= 16, hidden_channels = 512, in_channels = 2 (one for 𝑥, 
one for 𝑢(𝑥)), and out_channels = 1. Other parameters are default. 
The total number of trainable parameters is about 20.2 million. In the 
DeepONet, both the trunk net and branch net are 6-layer multilayer 
perceptrons, with hidden and output widths of 1024. The total number 
of trainable parameters is about 14.8 million. The pretraining of FNO 
12 
Table C.4
Configuration of the transformer in single-modal ICON-LM.
 Layers 6  
 Heads in Multi-Head Attention 8  
 Input/Output Dimension of Each Layer 256  
 Dimension of Query/Key/Value in Attention Function 256  
 Hidden Dimension of Feedforward Networks 1024  
 Total Trainable Parameters 15.8 Million 

Table C.5
Configuration of optimizer and learning rate schedule.
 Initial learning rate 0.0  
 Peak Learning Rate 1e−4  
 End Learning Rate 0.0  
 Total Training Steps 1 million  
 Warmup Steps First 10% of Total Steps 
 Cosine Annealing Steps Remaining Steps  
 Global Norm Clip 1.0  
 Adam 𝛽1 0.9  
 Adam 𝛽2 0.999  
 Adam Weight Decay 1e-4  

and DeepONet has a batch size of 32, following the same configuration 
as in Table  C.5, except that the total training steps are reduced to 0.1 
million, which is sufficient for convergence. As for fine-tuning FNO and 
DeepONet, we use all the available five examples in the training batch, 
employing the AdamW optimizer with a constant learning rate 1e-5, 
weight decay 1e-4, and global norm clip 1.0.

Data availability

We have shared the link to the code in the manuscript.
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