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1. [10 points] For x(t) ∈ Rn and real n × n matrices A (a constant matrix) and B(t), consider
the system

ẋ = Ax+B(t)x+ f(x) ,

where

sup
t∈R

∥B(t)∥ ≤ δ

and f is locally Lipschitz, such that

∥f(x)∥ ≤ R∥x∥2

holds for ∥x∥ ≤ 1 and for some R > 0.

(a) (5 pts) Assume that A is symmetric and negative definite. Show that the origin is an
asymptotically stable equilibrium provided δ is chosen sufficiently small by studying the
time derivative of ∥x(t)∥2 and showing for initial data sufficiently small that ∥x(t)∥2 is
a Lyapunov function that exponentially decreases to 0 along trajectories.

(b) (5 pts) This time, use a fixed-point argument to prove that you only need to assume
that σ(A) ⊂ {z ∈ C : Re(z) < 0} (where σ(A) denotes the spectrum of A, i.e., the set of
eigenvalues) to conclude that the origin is an asymptotically stable fixed point provided
δ is sufficiently small.

2. [10 points] Derive power-series representations of the two linearly independent solutions of
the following differential equation on x > 0:

y′′ +
( c
x
+ d

)
y = 0 ,

where c and d are real-valued constants.

3. [10 points] Consider the deconvolution problem K ∗ u + n = f , where K ∈ C∞
0 (R2) is a

blurring kernel, n (a noise term) is continuous with compact support, f ∈ C0(R
2) is a blurred

signal (e.g., blurred data), and we recall that a convolution has the form

A ∗B =

∫
A(x− y)B(y) dy .
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To solve this inverse problem, we consider solving the following variational problem:

min
u∈H1

0 (R
2)

[∫
R2

|K ∗ u− f |2 dx dy +
∫
R2

|∇u|2 dx dy
]
, (1)

which minimizes the L2 norm of the difference between the data f and the blurred signal
K ∗ u plus the H1 seminorm of the signal.

(a) (5 pts) Compute the first variation of the energy in (1).

[As a reminder, the first variation arises from looking at perturbations ϵv of the signal u
and linearizing in powers of ϵ.]

Write the answer as a nonlocal elliptic problem of the form ∆u = NL(u), where the
nonlocal operator NL involves the convolution operator K.

[Here it may be helpful to recall the identity
∫
gK ∗ h =

∫
hK ∗ g.]

(b) (5 pts) Compute the Fourier transform of the variational problem (1) and write the
solution in Fourier space in terms of Fourier modes.

4. [10 points]

(a) (5 pts) Characterize the region in R2 for which

Lu = −xuxx + (2 + y)uxy − 2uyy (2)

is uniformly elliptic.

(b) (5 pts) Find the smallest c ∈ R for which L given by

Lu = −xuxx + uxy + uyy (3)

is uniformly elliptic in {(x, y) ∈ R2|x > c+ ϵ} for all ϵ > 0.

[For the 2nd-order PDE

−
n∑

i,j=1

∂i(aij(x)∂ju) = f

with x ∈ Ω, the associated condition of uniform ellipticity is that

n∑
i,j=1

aij(x)ξiξj ≥ θ|ξ|2

for some θ > 0, all x ∈ Ω, and all ξ ∈ Rn.]
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5. [10 points] Consider the semilinear heat equation

ut = ∆u+ (1− u)u , x ∈ S1 (the circle) , t > 0 . (4)

(a) (5 pts) Prove for any C2 initial condition u0 ∈ (0, 1) that if there exists a solution of (4)
in the space C1[0, T ]∩C2(S1), then it satisfies 0 < u(x, t) < 1 on the entire time interval
[0, T ].

(b) (5 pts) Prove that any solution of (4) that satisfies the conditions of part (a) is unique.

6. [10 points] Consider the heat equation

ut −∆u = 0 , x ∈ U ⊆ Rn , t > 0 , (5)

where U is an open set.

By considering dilation scaling

u(x, t) 7→ λαu(λβx, λt) (6)

for all λ > 0, x ∈ Rn, t > 0, and appropriate α and β (which you will determine) and
normalizing

∫
R u dx = 1, derive the so-called “fundamental solution” of (5).

7. [10 points] Consider the problem

vtt = c2vxx ,

v(x, 0) = ϕ(x) , vt(x, 0) = ψ(x) ,

v(0, t) = v(ℓ, t) = 0 . (7)

Derive the solution v(x, t), which you should express as a sum of traveling waves, and draw
an associated space-time diagram that clearly conveys domains of dependence and wave re-
flections in this system.

8. [10 points] Solve

x2ψx + xyψy = ψ2 (8)

for ψ(x, y), subject to the boundary condition ψ = 1 on the curve Γ defined by x = y2 ̸= 0.

Sketch the characteristics that pass through Γ.

Describe the set of points in the (x, y) plane that can be reached from the curve Γ by following
characteristics.
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