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Qualifying Exam, Spring 2025

Numerical Analysis

DO NOT FORGET TO WRITE YOUR SID NO. ON YOUR EXAM.

There are 8 problems. Problems 1-4 are worth 5 points and problems 5-8 are worth
10 points. All problems will be graded and counted towards the final score. You have
to demonstrate a sufficient amount of work on both groups of problems [1-4] and [5-8]
to obtain a passing score.

Problem [1] (5 Pts.) Let f : Rn0 → R be defined as

f = gL ◦ gL−1 ◦ · · · ◦ g2 ◦ g1

where gi : Rni−1 → Rni for i = 1, . . . , L and nL = 1. Assume 1 = nL ≤ nL−1 ≤ · · · ≤ n1 ≤ n0.
Assume the computational cost of evaluating gℓ and its Jacobian Dgℓ is cℓ for ℓ = 1, . . . , L. Given
an x ∈ Rn, describe an algorithm for computing ∇f(x) that has complexity

O
( L−1∑

ℓ=1

nℓnℓ−1 +
L∑

ℓ=1

cℓ

)
.

Hint. This problem is asking you to describe the implementation details of the chain rule.

Problem [2] (5 Pts.) Consider the approximation of∫ 1

−1

∫ 1

−1

f(x, y) dxdy ≈
n∑

i=1

f(xi, yi)wi

with nodes {(xi, yi)}ni=1 and weights {wi}ni=1. Assume we wish to integrate bivariate polynomials of
degree up to 5 exactly. Describe a construction using n = 9 nodes.

Hint. Gauss quadrature integrates univariate polynomials of degree up to 5 using 3 nodes.

Problem [3] (5 Pts.) Show that g(x) = π + 0.5 sin(x/2) has a unique fixed point on the interval
[0, 2π]. Give the fixed-point iteration algorithm for finding an approximation to the fixed point that
is accurate to within 10−2. Estimate the number of iterations required to achieve this accuracy.
Justify your answers.



Problem [4] (5 Pts.) The forward-difference formula can be expressed as

f ′(x0) =
f(x0 + h)− f(x0)

h
− h

2
f ′′(x0)−

h2

6
f ′′′(x0) +O(h3).

(a) Prove the above formula when f is a smooth function.

(b) Use extrapolation to derive an O(h3) approximation formula for f ′(x0).

Problem [5] (10 Pts.) Consider the autonomous ODE

y′ = f(y), y(0) = y0

for t ≥ 0, where y ∈ Rd. Assume f(·) and y(·) are smooth. Let φh for h ∈ R (so h is not necessarily
positive) be the exact flow map. Let

Ψh(yn) 7→ yn+1

for h ∈ R be a Runge–Kutta (RK) method of maximal order p, i.e.,

Ψh(y) = φh(y) + C(y)hp+1 +O(hp+2) as h → 0

for any y ∈ Rd, where C(y) is a smooth function of y. Define the adjoint method Ψ∗
h as

Ψ∗
h(yn) = Ψ−1

−h(yn)

for h ∈ R. Assume Ψ∗
h is well defined when |h| is small enough. Show that

Ψ∗
h(y) = φh(y) + (−1)p+1C(y)hp+1 +O(hp+2) as h → 0

for any y ∈ Rd.

Hint. Let y1 = Ψ∗
h(y0). Apply Ψ−h and then φh to both sides.

Problem [6] (10 Pts.) Consider the equation

du

dt
= x

∂u

∂x
− y

∂u

∂y
,

to be solved for u(x, y, t), −1 < x, y < 1, t > 0, with u(x, y, 0) = h(x, y) given and smooth.

(a)What boundary conditions are needed on x = −1, x = 1, y = −1, y = 1 to make this well-posed?

(b) Construct a convergent finite difference approximation for this initial-boundary value problem.

Justify your answers.



Problem [7] (10 Pts.) Consider the equation

du

dt
= a

∂u

∂x
+ b

∂2u

∂x2
,

for a, b positive constants, to be solved for u(x, t), 0 < x < 1, t > 0, periodic boundary conditions
in x, u(x, 0) = h(x) given and smooth.

Obtain a second order accurate explicit convergent approximation of the form

v(i, n+ 1) = c(−2)v(i− 2, n) + c(−1)v(i− 1, n) + c(0)v(i, n) + c(1)v(i+ 1, n) + c(2)v(i+ 2, n)

for the constant coefficients, c(j), j = −2, −1, 0, 1, 2. Justify your answers.

Problem [8] (10 pts) Consider the following problem in a domain Ω ⊂ R2, with Γ = ∂Ω:

−△u+ β1
∂u

∂x1

+ β2
∂u

∂x2

+ u = f in Ω,

u = 0 on Γ,

where βi are constants.

(a) Choose an appropriate space of test functions V , and give a weak formulation of the problem.

(b) For any v ∈ V , show that ∫
Ω

(
β1

∂v

∂x1

+ β2
∂v

∂x2

)
= 0.

(c) By analyzing the corresponding linear and bilinear forms, show that the weak formulation has
a unique solution. Specify the necessary assumptions on f and Ω.

(d) Set up a convergent, finite element approximation using P1 elements, and discuss the linear
system thus obtained. Show that the linear system has a unique solution.

(e) Give the rate of convergence of your approximation.
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