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Abstract

We study Transformers through the perspective of optimal control theory, using
tools from continuous-time formulations to derive actionable insights into training
and architecture design. This framework improves the performance of existing
Transformer models while providing desirable theoretical guarantees, including
generalization and robustness. Our framework is designed to be plug-and-play,
enabling seamless integration with established Transformer models and requiring
only slight changes to the implementation. We conduct seven extensive experiments
on tasks motivated by text generation, sentiment analysis, image classification, and
point cloud classification. Experimental results show that the framework improves
the test performance of the baselines, while being more parameter-efficient. On
character-level text generation with nanoGPT, our framework achieves a 46%
reduction in final test loss while using 42% fewer parameters. On GPT-2, our
framework achieves a 5.6% reduction in final test loss, demonstrating scalability
to larger models. To the best of our knowledge, this is the first work that applies
optimal control theory to both the training and architecture of Transformers. It
offers a new foundation for systematic, theory-driven improvements and moves
beyond costly trial-and-error approaches.

1 Introduction

Transformers have achieved state-of-the-art performance in various applications, including natural
language processing [77, 63], computer vision [21], program synthesis [14], computational biol-
ogy [39], speech processing [4], reinforcement learning [13, 52], operator learning [51, 89] and
climate modeling [30, 55, 56].

The popularity of Transformers has led to myriad architectural variants [19, 17, 81], each developed to
exhibit certain advantages. Practitioners, however, often discover effective Transformer architectures
through a trial-and-error approach. The objective function used to train Transformers admits a natural
formulation as an optimal control problem, with the loss serving as a terminal cost and model depth



corresponding to time. By examining the optimality conditions of this formulation, optimal transport
(OT) emerges as a principled regularizer that ensures well-posedness. This optimal control framework
informs both the structure of the loss — through regularization — and the design of the final layer,
grounding these architectural choices in control-theoretic principles rather than heuristics.

Guided by this framework, we propose OT-Transformer, a plug-and-play model grounded in optimal
control theory. Our model is flexible and straightforward to implement in the sense that one can
directly insert a predefined Transformer architecture into the OT-Transformer model. This requires
only slight modifications to existing code and allows seamless integration with established models.
An illustration of our framework is given in Figure 1.
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Figure 1: Schematic Illustration of our Plug-and-Play Model (8). Given an existing Transformer,
we construct a continuous-time formulation by using the Transformer to parametrize the velocity field
of a dynamical system. Optimal control theory informs the learning of the velocity field by imposing
regularity, in particular, through the use of optimal transport regularization. Empirical performance
improvements (Section 6) are consistent with our theoretical guarantees (Section 4).

Empirically, our model consistently improves the test performance of the original models across
seven diverse experiments and demonstrates the following benefits.

• Efficiency
– Impementation Efficiency: Our optimal control framework can be directly applied

to existing models, improving their performance while bypassing the costly and time-
consuming trial-and-error approach to manual parameter tuning.

– Parameter Efficiency: In our comprehensive experiments across various applications,
we show that our framework can improve the performance of the original model with a
reduced parameter count. This also improves memory efficiency during inference.

A subset of our experimental results is reported in Table 1. We show that for a variety of text
generation tasks with nanoGPT and GPT-2, our OT-Transformer consistently improves the test
performance using models of the same or smaller size.

Table 1: Results for text generation experiments in Section 6.4.

Experiment Method Para. Count Test Loss

nanoGPT on Shakespeare (Char.-level) Baseline 10.65M 2.68± 0.006
OT-Trans. (Ours) 6.16M 1.44± 0.005

GPT-2 on Shakespeare (Word-level) Baseline 123.7M 5.18± 0.032
OT-Trans. (Ours) 123.7M 4.96± 0.012

GPT-2 on OpenWebText (9B tokens) Baseline 123.7M 3.21
OT-Trans. (Ours) 123.7M 3.03

The empirical findings are further supported by theoretical analysis in Section 4. Our main theorem,
Theorem 2, which we present a simplified version below, shows that OT-Transformer exhibits stable
forward propagation [36, 67].
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Theorem (Stable Forward Propagation). For input-target output pairs (x1,y1) and (x2,y2), the
corresponding output of the optimally trained model ỹ1 and ỹ2 satisfy

∥ỹ1 − ỹ2∥ ≤ C∥x1 − x2∥+ C ′∥y1 − y2∥, (1)

where C,C ′ > 0 are constants that can be controlled by adjusting the strength of the regularization.
In the absence of the regularization, these constants become unbounded, and the model can exhibit
unstable forward propagation.

This stability induces highly favorable properties in practice, highlighted as follows.

• Robustness
– Robustness to Input Perturbations: On a data level, (1) controls the extent to which

input perturbations are amplified in the output. As a result, this enhances robustness
against input perturbations, such as those caused by noise or adversarial attacks.

– Distributional Robustness: On a distribution level, (1) guarantees that distributional
perturbations in the input space are not disproportionately amplified at the output level,
which we show in Theorem 3. Distributional robustness induces robustness to training
data perturbation. In particular, it ensures that a model trained on perturbed data maintains
good predictive performance on the original data, with the prediction error controlled by
the degree of the perturbation.

• Generalization
– In-Distribution Generalization: Stable forward propagation improves generalization

to test inputs resembling the training data, as (1) ensures that similar inputs are mapped
to similar outputs. Also, distributional robustness ensures that model trained on the
training distribution (sampled from the true distribution) can generalize well to data
drawn from the true distribution. Combined with distributionally robust optimization
(DRO), this robustness result produces non-asymptotic generalization bounds for the
learned Transformer model [23, 69, 70].

– Out-of-Distribution Generalization: Stable forward propagation combined with DRO
also provides bounds on expected test loss for distributions within a Wasserstein ball
around the empirical training distribution, offering principled insight into the model’s
performance on out-of-distribution samples.

We summarize our contributions as follows:

• We analyze the training and architecture of Transformers using optimal control theory. To the
best of our knowledge, this is the first such analysis of Transformers from this perspective.

• Based on optimal control methods, we propose a plug-and-play model called OT-Transformer
(8)-(9), which formulates Transformers in a continuous-time setting and incorporates an
OT regularization into the training objective. Our framework is versatile, allowing for easy
adaptation of existing Transformer architectures. We remark that previous attempts to apply
OT to the design of Transformer models remain underexplored and have achieved limited
success [5].

• Our theoretical analysis demonstrates that the OT-Transformer model confers highly beneficial
theoretical properties. The most notable property is its stable forward propagation, which
induces generalization and robustness of the learned model. These properties are further
supported by our experimental results. We emphasize that our use of optimal control theory
represents only an initial step in analyzing Transformers, and our framework provides a new
foundation for future theoretical extensions to many other aspects of these models.

• We conduct seven extensive experiments across different fields and applications. Our frame-
work improves the performance of the original architecture. In particular, it yields better test
performance and is better at avoiding overfitting while using a reduced number of parameters.

2 Background

This section provides background on Transformers and continuous-time neural networks.
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Notation. We use bold uppercase letters (e.g., X) to denote matrices and bold lowercase letters
(e.g., x) to denote vectors. We also use xj (resp. xi,j) to represent the jth column of X (resp. Xi).

Transformers. Let {zi}ni=1, where zi ∈ Rdf , be a sequence of n vectors. In the language of
Transformers, each vector zi is referred to as a token. Transformers are mappings which take in
inputs Z = [z1, . . . , zn] ∈ Rdf×n, with the specific form of the output depending on the downstream
application. Each token is first embedded into Rd through the mapping

x0,j = gl(zj ;γl), for j = 1, 2, ..., n, (2)

where x0,j ∈ Rd. The input embedding gl, parametrized by weights γl, embeds each token into
a d-dimensional space and incorporates positional encoding into each token. Then, it is processed
through a series of Transformer blocks, where the output of each block serves as the input to the next.
At each step, the model sequentially applies the operation Xi+1 = fi+1(Xi) where fi+1 : Rd → Rd

is given by1

ui,j = xi,j +

H∑

h=1

Wh
i V

h
i Xi softmax

(
(Kh

i Xi)
⊤Qh

i xi,j√
k

)
, (3)

xi+1,j = ui,j + gf (ui,j ;θi), (4)

for j = 1, 2, ..., n, and i = 0, 1, ..., D − 1, where D is the total number of Transformer blocks. Here,
each summand of (3) are called self-attention heads where H is the number of heads, Qh

i ,K
h
i ,V

h
i ∈

Rk×d are known as query, key, and value matrices, and Wh
i ∈ Rd×k are weight matrices. In (4),

a fully connected layer gf : Rd → Rd, parametrized by weights θi, is applied individually to
each of the n tokens. This layer is common for all embedded tokens but changes for each i. The
first equation (3) is known as multihead self-attention layers and is the key feature of Transformer
architectures. A detailed derivation of (3) is given in Appendix A. This self-attention mechanism
enables the model to focus on the most relevant parts of an input sequence of tokens, adapting
dynamically to the context. The model can flexibly capture complex, long-distance relationships in
sequential data. Such features make Transformers particularly powerful for tasks such as language
processing and image recognition. In addition, the self-attention mechanism can be implemented
efficiently as the manner in which the matrices are applied to process input data can be done in
parallel, rendering them particularly effective for handling long sequences of tokens, i.e., when n is
large. In encoder-only and encoder-decoder setups, the series of Transformer blocks is referred to as
the encoder; in decoder-only setups, it is referred to as the decoder.

For sequence generation tasks, the final output XD is then either passed to a decoder (in the
encoder-decoder setup), which consists of another series of Transformer blocks and then a multilayer
perceptron (MLP). More commonly, the output feeds directly to an MLP (in the encoder-only or
decoder-only setup) in downstream tasks including sequence generation, classification, or regression.
Irrespective of the setup, the Transformer output ỹ is given by

ỹ = go(XD;γo), (5)

where go is either the composition of a decoder and an MLP or just an MLP, parametrized by γo.

Continuous-time Neural Networks. Continuous-time models use neural networks to define the
dynamics of the model’s hidden states. In particular, the hidden state x(t) evolves according to

dx(t)

dt
= fNN(x(t), t), (6)

where t ∈ [0, T ]. The model takes x(0) as input and produces x(T ) as output, with the velocity field
parametrized by the neural network fNN. Various architectures have been proposed and successfully
applied in [15, 25, 88, 59, 78, 37, 92]. A notable and relevant advantage of continuous-time archi-
tectures is their parameter efficiency, as the continuous formulation allows them to model complex
transformations over time with fewer parameters compared to discrete models. However, the use
of Transformers in a continuous-time setting remains largely unexplored, with existing approaches
showing limited success.

1Layer normalization is commonly applied in each Transformer block [85]. We omit layer normalization in
this exposition for brevity, but it is included in our experiments.
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3 OT-Transformers

In this section, we introduce OT-Transformer, a model that can be flexibly combined with existing
Transformers. The model inserts a given Transformer into a continuous-time architecture and
incorporates an optimal transport (OT)-regularization into the training objective, which are motivated
from the theoretical analysis using optimal control theory in Section 4.

Model Formulation. Given an input sequence Z = [z1, z2, ..., zn] of length n, we first apply (2)
to obtain the embedded input X0 ∈ Rd×n. The dynamics of the hidden state are then governed by
the dynamical system

dX(t)

dt
= f(X(t), t;θ), for t ∈ [0, T ], with X(0) = X0, (7)

where f is the composition of a sequence of Transformer blocks defined in (3) and (4), that is,
f = fD ◦ ... ◦ f1, and θ collectively denotes their trainable parameters θi, Kh

i , Vh
i , Qh

i and Wh
i for

all h and i. Finally, we obtain the Transformer output ỹ by applying (5) to the terminal state X(T ).

Plug-and-Play Formulation. We formulate the discretized training problem as

min
θ,γ

E(X0,y)

{
G(XM ,y;γ) +

λ∆t

2

M−1∑

m=0

∥f(Xm, tm;θ)∥2F
}

(8)

subject to Xm+1 = Xm +∆t · f(Xm, tm;θ), m = 0, 1, . . . ,M − 1. (9)

Here, we adopt a discretize-then-optimize approach [60, 59], where (9) represents the discretized form
of the continuous dynamics in (7), obtained by splitting the time interval [0, T ] into M uniform steps
with step size ∆t = T/M and tm = m∆t. The optimization problem (8)-(9) is the discretization of
the continuous-time training problem (10) over a parametrized family of Transformer models.The
expectation is taken over the embedded input-output pairs (X0,y), ∥ · ∥F denotes the Frobenius
norm, γ collectively denotes the weights of the input embedding γl and output layer γo. The loss
function G measures the discrepancy between the target output y and model output ỹ(XM ;γ) in
(5). For instance, in classification [21] and sequence generation [77] tasks, one commonly uses the
softmax loss. The second term is an OT regularization penalizing the squared norm of the velocity
(the right hand side of the dynamical system (7)) at every time step. It enhances the regularity of
the hidden state dynamics (7); see Section 4. We highlight that our model is plug-and-play and
easy to implement in the sense that it can be flexibly applied to almost any existing Transformer
architectures. In particular, it can directly reuse the architecture of an existing Transformer’s input
embedding, encoder/decoder and output layers and use its Transformer blocks fi’s to construct the
dynamical system (9). In practice, the OT regularization term is computed efficiently and incurs
negligible overhead, as it is calculated alongside each Xm in (9). A schematic illustration of our
model is shown in Figure 1. The regularization parameter λ balances the effects of the two terms. Our
model generalizes the vanilla formulation of Transformer blocks to continuous-time. Specifically,
when T = 1 and M = 1, our model is consistent with the original discrete Transformer formulation.

On one hand, the training formulation (8) is derived from the optimal transport problem arising from
the Benamou-Brenier formulation [6], as shown in Appendix B. The derivation reveals that for an
appropriate choice of λ > 0, the solution to the training problem corresponds to the optimal solution
of the Benamou–Brenier problem. On the other hand, we will demonstrate in the next section that the
training problem can be understood through optimal control theory. And our extensive theoretical
analysis shows that our model confers highly advantageous properties.

4 Theoretical Analysis

We provide theoretical analysis demonstrating the benefits of our model. The theoretical benefits
presented in this section and the empirical evidence in Section 6 elucidate and support each other.

Assumptions and Practical Relevance. Our assumptions specified in Appendix C.1, are realistic in
that they hold for encoder-only and decoder-only Transformer models in the continuous-time settings.
They are also general and hold for other continuous-time models, including Neural ODEs [15].
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These settings cover many leading models, including Vision Transformers [21], and language
models including BERT [20], the GPT series [63, 10, 64] of OpenAI, PaLM [18], GLaM [22],
and LaMDA [73] of Google, OPT [93] of Meta AI, and Granite of IBM [35], among others.

One of our key assumptions in deriving the theoretical advantages is for the loss function G to be
convex with respect to its first argument. Surprisingly, this holds for encoder-only and decoder-only
Transformer architectures; see Appendix C.1. Generally, the convexity does not hold for encoder-
decoder models. We remark that this distinction is not just theoretical, it is consistent with empirical
findings from the literature. In particular, decoder-only models can match or even surpass the
performance of encoder-decoder models for various large-scale language modeling tasks [27, 82, 87],
despite having a simpler architecture. Moreover, current industry trends [11, 1, 74, 75] also suggest
that decoder-only Transformers are replacing encoder-decoder models for LLMs. Meanwhile, in
areas such as image classification or time series forecasting, encoder-only models remain a popular
option, as pointed out in [38, 44, 90]. The alignment between our theoretical analysis and reported
empirical performance further shows that our assumptions are relevant in practice. Our analysis
offers a possible explanation for the performance gap between encoder-only/decoder-only models and
encoder-decoder models, a distinction that arises from our convexity assumption. For more details,
see Section 5 and Appendix C.1.

Non-parametric Formulation. We consider a continuous-time non-parametric formulation of (8)

min
f

E(X0,y)

{
G(X(T ),y) +

λ

2

∫ T

0

∥f(X(t), t)∥2F dt

}
, subject to (7), (10)

where the velocity f is optimized over some admissible class of functions instead of model weights.
The analysis of the non-parametric formulation is justified by the universal approximation property
of Transformers [91, Theorem 3], which ensures that, with enough model complexity, they can
represent the optimal velocity. A central component of our approach is that the non-parametric
formulation can be equivalently cast as a mean-field control problem, enabling theoretical analysis
via optimal control theory. In the following, we highlight key theorems that show the benefits of OT-
Transformer, including well-posedness of the training objective, regularity of the learned Transformer,
and non-asymptotic generalization bounds. For detailed results and proofs, see Appendices C and E.

Well-posedness of Training Problem. We first show that the training problem is ill-posed without
regularization and that the OT regularization renders the problem well-posed.
Theorem 1. There exists a unique solution to the optimization problem (10) if and only if λ > 0.

The ill-posedness of (10) that arises when λ = 0 is because there exists infinitely many velocities that
are optimal. Among the infinitely many optimal velocities for the unregularized problem, some are
highly irregular or have arbitrarily large magnitudes. This phenomenon has been noted in flow-based
generative modeling [25, 59]. In particular, highly irregular velocities fields can produce winding
hidden state trajectories which can pose challenges in numerical integration and result in numerical
instability during training, as demonstrated by our experiments.

Our analysis is sufficiently general to apply to other continuous-time models beyond the Transformer
architecture. In particular, Theorem 1 provides insight into the training of any neural network model
under a continuous-time formulation. In the absence of regularization, such training is, in general,
ill-posed. OT regularization is only one strategy that can ensure well-posedness, and optimal control
methods can be used to construct other regularizations that ensures well-posedness [92].

A detailed proof is provided in Appendix C.4. The core idea is to inspect the optimality conditions
for the training problem (10), which is a Hamilton-Jacobi-Bellman (HJB) partial differential equation
(PDE) coupled with a continuity equation. When λ = 0, the HJB PDE is not well-defined. On the
other hand, λ > 0 if and only if the HJB PDE is well-defined, and the well-posedness of the resulting
PDE system is, in turn, equivalent to the well-posedness of the training problem [46, 7].

Stable Forward Propagation. Furthermore, we show that λ > 0 not only renders the optimal
velocity unique, but also guaranteed that it is highly regular; see Appendices C.5 and C.6 for details.
Leveraging this regularity, we prove our main result: stable forward propagation.
Theorem 2. Assume that λ > TL2, where T is the terminal time and L is the 2-operator norm of
the output layer weights (5). Under the assumptions in Appendix C.1, for embedded input-output
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pairs (X1(0),y1) and (X2(0),y2), the corresponding model outputs ỹ1 and ỹ2 satisfy

∥ỹ1 − ỹ2∥2 ≤
(
1− TL2

λ

)−1(
L∥X1(0)−X2(0)∥F +

TL2

λ
∥y1 − y2∥2

)
. (11)

This shows that the model, as a function of the embedded input and target output data, is Lipschitz
continuous. In particular, any perturbation in the input leads to a uniformly and proportionally
bounded change in the model output. This theorem also informs the selection of the hyperparameter
λ > 0. On one hand, it should not be too large that the model outputs are insensitive to the input. On
the other hand, it should be large enough to satisfy λ > TL2. In practice, the condition λ > TL2 can
be enforced, and the bound (11) can be controlled through increasing λ or imposing a weight-decay
regularization on the output layer weights (5), which reduces its operator norm2 L.

The proof of Theorem 2 is given in Appendix C.7. The core mathematical novelty of our paper is the
use of regularity theory of HJB PDEs to prove stable forward propagation of the Transformer map
in Theorem 2, which yields the distributional robustness result in Theorem 3; see Appendices C.5
and C.6. Crucially, we also use the regularity assumptions on G, such as its convexity.

Generalization and Distributional Robustness. Stable forward propagation informs out-of-
distribution performance, generalization bounds, and the robustness of learned Transformers to
adversarial attacks. For each target output y, we study the regularity of the flow map of the learned
dynamical system that evolves inputs X(0) to predictions ỹ. In this setting, Theorem 2 implies that
the flow map is Lipschitz with constant L(1− λ−1TL2)−1. This result shows that while the map is
not explicitly enforced to be Lipschitz during training, the OT regularization nevertheless induces
this property. The Lipschitzness of the learned map implies distributional robustness, which we state
formally as follows.
Theorem 3. Denote the pushforward operator under the trained Transformer to be T♯ and
W p

p (µ, ν) = infγ∈Γ(µ,ν)

∫
Rd×Rd ∥x − x′∥ppdγ to be the p-Wasserstein distance. Under the as-

sumptions of Theorem 2, there exists a constant Ĉ(p) > 0 that depends on p such that for any p ≥ 1
and any distributions µ and ν,

Wp(T♯µ,T♯ν) ≤ Ĉ(p)L

(
1− TL2

λ

)−1

Wp(µ, ν). (12)

This is a classic optimal transport result [80, Chapter 6], which holds under the Lipschitzness of the
trained model proved in Theorem 2. See Appendix E.1 for a detailed proof. The bound (12) quantifies
how perturbations to the input distributions ν and µ propagate to the model output distributions. The
perturbations can be due to noise, new data, or adversarial modifications. Here, Wasserstein distances
are crucial, as they are able to measure discrepancies between empirical distributions, which is not
possible for probability divergences (e.g., Kullback-Leibler, or f -divergences). Crucially, (12) also
depends on the convexity assumption on G and the magnitude of OT regularization.

The bounds (11) and (12) induce highly desirable practical properties—namely, robustness and
generalization. Due to space constraints, we refer the reader to the detailed discussion in Section 1.
For details of the derivation, see Appendix E.

5 Related Work

This section provides a review of relevant work.

Continuous-time Architecture. There has been some applications of continuous-time formulations
of Transformers. However, we note that they do not provide theoretical analysis to justify their
modeling choice or to demonstrate its advantages. In contrast, our work proposes a foundational
framework for understanding and designing effective Transformer architectures grounded in optimal
control theory. Moreover, our work offers extensive theoretical analysis—supported by strong

2The squared Frobenius norm of the weight matrix equals to the sum of its squared singular values, while the
operator norm of the matrix is its largest singular value. Therefore, applying a weight decay regularization can
decrease its operator norm L.
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empirical results across diverse experiments—that motivates and substantiates the advantages of
our model. Moreover, there is a key distinction between our and existing model formulations. In
OT-Transformer, we use the composition of all Transformer blocks to parametrize a single dynamical
system (7) governing the hidden states. To the best of our knowledge, the existing works use each
Transformer block to parametrize a dynamical system. For a Transformer with D Transformer
blocks, the continuous-time model is represented as the output of D different dynamical systems. In
particular, it is formulated as

X0(0) = X0,

Xi(0) = Xi−1(T ), for 1 ≤ i ≤ D − 1,

dXi(t)

dt
= f̂i(Xi(t), t; θ̂i), for t ∈ [0, T ], 0 ≤ i ≤ D − 1,

(13)

where f̂i is the ith Transformer block parametrized by weights θ̂i and defined in (3) and (4), except
that the fully-connected layer (4) has no skip-connection.

This formulation is introduced in [5]. Here, we highlight several key differences between their work
and ours. First, they only conduct the simple task of determining the parity of a binary sequence in
their work, rather than investigating its performance in general applications. More importantly, when
their approach is applied, it fails to improve performance over the vanilla Transformer and instead
degrades it. In their experiments, the optimal transport regularization cannot improve the performance
of their model when the sequence length exceeds eight. We observe similar issues when testing their
model on other applications; see Appendix F. This is potentially due to their choice of formulation.
Specifically, in (13), as the model transitions from one Transformer block to the next, it effectively
switches to a different dynamical system, introducing non-smoothness to the overall dynamics. This
undermines the purpose of the optimal transport regularization and violates the regularity properties
proved in Appendix C. In contrast, our model is formulated using only one dynamical system. The
resulting dynamics is smoother and thus inherently better suited to incorporate the optimal transport
regularization. In particular, our modeling choice is consistent with the regularity properties proved
in Appendices C.5 and C.6. This is also evident in our experimental results, while the regularization
can always improve the generalization of OT-Transformer to a significant extent, this is not the case
with their model; in certain scenarios, the regularization may even degrade their model’s performance.
We also mention that, while [5] proposes alternative formulations for further investigation, it does not
consider ours, highlighting the novelty and non-triviality of our approach.

Since then, there have been a number of follow-up works that build on the formulation Equation (13)
to perform different tasks, including sequence generation [53, 50, 49, 94], time series forecasting [86,
16], and image classification [57, 58]. Most of these methods only use the formulation (13) as
motivation, and none of them consider optimal transport regularization in their approach. Moreover,
these models focused on a specific type of application and not general-purpose.

In order to access the performance of our OT-Transformer more comprehensively, we also include
the existing Transformer formulation (13) as a benchmark in our experiments; see Appendix F for
detailed experimental results. It is referred to as “N-ODE Transformer" in our experimental results,
following the terminology in [5].

OT-based CNFs. A prominent application of continuous-time neural networks is continuous
normalizing flows (CNFs) [15]. CNFs use (6) to paramtrize invertible mappings between a standard
Gaussian distribution and an unknown target distribution. The ill-posed nature of the CNF formulation
can often add to the complexity and computational cost for solving a problem. Optimal transport (OT)
based regularization has prominent applications in CNFs and is a powerful tool in improving accuracy
and at times reducing cost. Among the infinitely many mappings between the two distributions,
OT-based CNFs [25, 88, 59, 78] target to find the optimal transport mapping. This is done by
incorporating into the training objective regularization term(s) enforcing straight trajectories in (6).
This renders the training problem well-posed [37, 92]. The straight trajectories also offer numerical
advantages, as they make the numerical integration of (6) more tractable.

Mathematical Analysis. There have been works that theoretically analyze a continuous-time
formulation of Transformers. In [31, 32], they show that a continuous-time formulation can be
interpreted as an interacting particle system, where each token can be perceived as a particle. They
demonstrate that there is a clustering behavior among the tokens. Since then, there has been a number
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of works that further investigate the dynamics of tokens through this interpretation, including [2, 12,
8, 33, 42], to name a few. However, we note that the aforementioned work is primarily theoretical
and lacks evaluations beyond toy experiments. In [68], they show that, under some restriction on the
weights, a continuous-time formulation of self-attention layers can be interpreted as a gradient flow.
However, no experiments have been conducted following this analysis. To the best of our knowledge,
existing theoretical analyses have not been conducted on continuous-time Transformers with OT
regularization.

Relevance of Assumptions. We highlight the relevance of our assumptions and their alignment
with recent developments in the literature and industry. In a recent survey [87] on LLM models, since
the inception of GPT-style models, there has been a clear trend of decoder-only architectures taking
popularity over encoder-only and encoder-decoder architectures due to their superior performance
despite having a simpler architecture, with many of the industry standard such as GPT models [11, 1],
Llama [74, 75] falling under the category. Similar observation is also discussed in [27, 82]. Going
beyond LLMs, survey work such as [38] suggest encoder-only models are most popular for image
classification tasks. While for time series problems, encoder-only architecture has been the norm with
exploration of decoder-only architectures emerging, as pointed out in [44, 90]. While our proposed
approach is applicable to any architecture, these trends underscore the importance of our theoretical
guarantees on both encoder-only and decoder-only models, as they continue to define the state of the
art across diverse domains and tasks.

6 Experimental Results

We demonstrate the effectiveness of OT-Transformers through seven experiments spanning diverse
applications, including point cloud classification, image classification, sentiment analysis, and text
generation. Our model performs competitively and generalizes well across all tasks.

For each task, we use commonly adopted Transformer models as baselines, including encoder-
only, decoder-only, and encoder-decoder architectures. This ensures a comprehensive evaluation.
Moreover, while our theoretical analysis provides guarantees for encoder-only and decoder-only
architectures, the empirical results demonstrate that our model also performs well with encoder-
decoder architectures. We base our experiments on the setups from [68, 43], building on their code
and closely following their experimental protocols. Hyperparameters, including model architectures,
number of training epochs, learning rates, and layer normalization, closely follow the original setups.

For the OT-Transformer, we employ the same architectures as the baselines but with a reduced hidden
dimensions, number of attention heads, and/or number of Transformer blocks. Through this, we
demonstrate that OT-Transformers can achieve better performance across various tasks while having
reduced model sizes. To demonstrate the effectiveness of the OT regularization, we also perform
the experiments with λ = 0 in (8), effectively creating an unregularized model. We label this model
unregularized OT-Transformer in the reported results.

See Appendix F for experimental details. The source code will be publicly available upon publication.

6.1 Point Cloud Classification

We use the ModelNet 40 dataset [83], which is among the most widely used benchmark for point
cloud classification [76]. The dataset contains roughly 10,000 Computer-Aided Design (CAD)
models that are categorized into 40 distinct classes, including common objects such as airplanes,
cars, and furniture. We experiment with the Set Transformer model [48], which notably has an
encoder-decoder architecture.

6.2 Image Classification

To further demonstrate the applicability of our proposed method, we perform experiments on imaging
tasks. We use the Vision Transformer (ViT) [21], which is an encoder-only model. Since then, the
model and its variants have achieved state-of-the-art performance in computer vision tasks [65, 84].
The key feature of ViTs is that they divide an image into fixed-size patches, which are treated as
sequences of data. ViTs then apply self-attention mechanisms to capture relationships between these
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patches, enabling it to learn complex structures across the entire image. We perform two image
classification experiments following the same setup as in [68].

MNIST Classification. We first conduct a small-scale image classification experiment with the
MNIST dataset [47]. The dataset consists of hand-written digit images, with 50,000 images used for
training and 10,000 images reserved for testing. Each image is of size 28 by 28.

Cats and Dogs Classification. We perform experiments on a binary cats and dogs image classifi-
cation task, following [68]. The dataset contains 25, 000 training samples and 12, 500 test samples,
each image in the dataset is an RGB image of size 460× 320.

6.3 Sentiment Analysis

We perform sentiment analysis on the IMDb movie review dataset [54], which aims to predict whether
each movie review is positive or negative. The dataset is balanced and contains a total of 50, 000
different reviews. The model used in the experiment is an encoder-only Transformer [68].

Table 2: Results for experiments from Sections 6.1 to 6.3.

Experiment Method Para. Count Test Accuracy

Point Cloud Classification Baseline 0.86M 87.4%± 0.45%
OT-Trans. (Ours) 0.65M 89.9% ± 0.42%

Image Classification (MNIST)
Baseline 93K 93.0%± 0.69%
Unreg. OT-Trans. 18K 96.8%± 0.23%
OT-Trans. (Ours) 18K 97.1% ± 0.16%

Image Classification (Cats & Dogs)
Baseline 1.77M 77.6%± 0.86%
Unreg. OT-Trans. 1.48M 78.2%± 0.39%
OT-Trans. (Ours) 1.48M 79.0% ± 0.31%

Sentiment Analysis
Baseline 4.74M 83.9%± 0.26%
Unreg. OT-Trans. 2.37M 82.7%± 0.38%
OT-Trans. (Ours) 2.37M 84.6% ± 0.55%

6.4 Text Generation

To further demonstrate the capabilities of the OT-Transformer, we conduct experiments on text
generation. We use nanoGPT [43] and GPT-2 [63], both of which are decoder-only models with
10.7 million and 124 million parameters, respectively. We conduct three different text generation
experiments using different data. The goal is to evaluate the performance of OT-Transformer on text
generation tasks and assess its scalability to large models with over 100 million parameters. The
results are reported in Table 1 of Section 1.

Shakespeare Dataset with nanoGPT. We first conduct experiments using the smaller-sized
nanoGPT architecture on the benchmark Shakespeare dataset. The source text is taken from Shake-
speare’s works, and the goal is to make predictions at the character level based on input sequences.

Shakespeare Dataset with GPT-2. We next perform in-depth experimentation on the Shakespeare
dataset using the much larger GPT-2 architecture, which contains over 100 million trainable parame-
ters. Note that for this experiment, token prediction is performed at the word level, making the task
more difficult compared to the previous example

OpenWebText Dataset with GPT-2. Lastly, to demonstrate the applicability of our model to
large-scale problems, we conduct experiments using the GPT-2 architecture as a baseline on the
OpenWebText dataset. This dataset, originally curated in [34] from Reddit posts, includes a training
set of approximately 9 billion tokens and a validation set of around 4 million tokens. This experiment
is large-scale in both model and dataset size, representing a realistic application setting.
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6.5 Summary of Numerical Results

We present the compiled numerical results in Tables 1 and 2, and summarize the main findings
as follows. First, our proposed model demonstrates competitive performance across all seven test
examples, ranging from small-scale to large-scale experiments, highlighting its ability to consistently
improve performance over baseline models. Second, OT-Transformer outperforms baseline models
across various examples while using significantly smaller models, showcasing its parameter efficiency.
Finally, OT-Transformer avoids overfitting more effectively, resulting in improved generalization and
lower test loss compared to the baseline; see Figures 5 to 7 in Appendix F.

Note that while our experiments focus on generalization metrics like test loss and accuracy, strong
performance in these settings also reflects robustness. In real-world scenarios, test data often differ
from training data due to noise, sampling variability, or distribution shifts. The consistent results
across different experiments support our theory Theorems 2 and 3 on robustness to input, distributional
and training data perturbations.

In summary, the OT-Transformer results provide evidence — backed up by our theory in Section 4 —
that optimal transport, acts as a unifying regularization principle across text, image, and 3D modalities.
For more details, we direct readers to Appendix F.

7 Discussion and Summary

In this work, we analyze the Transformer architecture and training through a proposed optimal
control framework. Based on this, we propose OT-Transformer, a plug-and-play model which can be
flexibly applied to established Transformers with minimal code changes. OT-Transformer improves
the performance of existing models while conferring strong theoretical guarantees. These include
generalization and robustness, established through our optimal control-based analysis. We highlight
that key theoretical results rely on the novel application of the regularity theory of HJB PDEs to prove
stable forward propagation and distributional robustness of the learned Transformer. This further
proves non-asymptotic generalization bounds through DRO. These theoretical results are supported
by extensive experiments that demonstrate the effectiveness of the optimal control framework and
further show that the resulting OT-Transformer model improves parameter efficiency. Overall, our
framework provides a foundation for systematic and theory-driven improvements for Transformers.

We emphasize that this work represents only a first step toward building a control-theoretic foundation
for designing and analyzing Transformer architectures and training. Many additional components of
Transformers — such as layer normalization, attention mechanism, and others — present promising
directions for future investigation through optimal control methods. In addition, exploring alternative
numerical integration schemes may offer a path toward improving training efficiency; we leave this
for future work.
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A Derivation of the Transformer Equation

We present the derivation of (3), the equation for the multihead self-attention layer. Recall that
Xi ∈ Rd×n denotes the input to the (i + 1)th Transformer block for i = 0, ..., D − 1, where n is
the number of tokens, d is their dimension, and D is the total number of Transformer blocks. And
xi,j ∈ Rd denotes the jth column of Xi.

Using the notation defined in Section 2, the first four equations in [72] are given by

Q
(h)
i (xi,j) = Qh

i xi,j , K
(h)
i (xi,j) = Kh

i xi,j , V
(h)
i (xi,j) = Vh

i xi,j , where Qh
i ,K

h
i ,V

h
i ∈ Rk×d,

(14)

α
(h)
j,j′ = softmaxj′

(
⟨Q(h)

i (xi,j),K
(h)
i (xi,j′)⟩√

k

)
, (15)

u′
i,j =

H∑

h=1

Wh
i

n∑

j′=1

α
(h)
j,j′V

(h)
i (xi,j′), where Wh

i ∈ Rd×k,

(16)

ui,j = LayerNorm(xi,j + u′
i,j). (17)

Here, H is the number of attention heads, and softmaxj′ denotes the softmax function applied on a
d-dimensional vector indexed by j′.

Substituting (14) into (15) and (16), and plugging (16) into (17), we obtain

α
(h)
j,j′ = softmaxj′

( ⟨Qh
i xi,j ,K

h
i xi,j′⟩√

k

)
= softmaxj′

((
Qh

i xi,j

)⊤ (
Kh

i xi,j′
)

√
k

)

= softmaxj′

((
Kh

i xi,j′
)⊤ (

Qh
i xi,j

)
√
k

)
,

(18)

ui,j = LayerNorm


xi,j +

H∑

h=1

Wh
i

n∑

j′=1

α
(h)
j,j′V

h
i xi,j′




= LayerNorm


xi,j +

H∑

h=1

Wh
i

n∑

j′=1

Vh
i xi,j′α

(h)
j,j′


 .

(19)

Here, in the last step, we used the fact that α(h)
j,j′ ’s are scalars. We then plug (18) into (19) and obtain

ui,j = LayerNorm


xi,j +

H∑

h=1

Wh
i

n∑

j′=1

Vh
i xi,j′ softmaxj′

((
Kh

i xi,j′
)⊤ (

Qh
i xi,j

)
√
k

)


= LayerNorm

(
xi,j +

H∑

h=1

Wh
i V

h
i Xi softmax

((
Kh

i Xi

)⊤ (
Qh

i xi,j

)
√
k

))
, (20)

where in the last step we used the fact that xi,j′ is the j′th column of Xi. Recall that in the main
text, we omitted layer normalization for simplicity of exposition. The formulation (20) becomes the
self-attention layer formulation (3) when we omit the layer normalization function. Thus, we have
derived the multihead self-attention layer formulation (3).

B Optimal Transport Background and Derivation of Training Problem

We review the relevant optimal transport background and then derive the training objective (8).
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Optimal Transport Background. We consider the space Rn×d, to which the hidden states of
OT-Transformer belong. Let P2(Rn×d) be the space of Borel probability measure on Rn×d with finite
second-order moments and ρ0, ρ1 ∈ P2(Rn×d), which specify the initial and terminal distributions.
The Monge-Kantorovich problem with quadratic cost [79, Chapter 1] is given by

W 2
2 (ρ0, ρ1) = inf

π∈Γ(ρ0,ρ1)

∫∫

Rn×d×Rn×d

∥X−Y∥2F dπ(X,Y), (21)

where Γ(ρ0, ρ1) is the set of joint probability measures with on Rn×d × Rn×d with X- and Y-
marginal distributions ρ0 and ρ1, respectively. Here, the quadratic ∥X−Y∥2F quantifies the cost of
transporting one unit of mass from location X to location Y. We note that the Wasserstein space
(P2(Rn×d),W2) equipped with the Wasserstein metric W2 is a complete separable metric space [80,
Theorem 6.18].

The Benamou-Brenier formulation of (21) is given by [6]

inf
f,ρ

∫ T

0

∫

Rd×n

1

2
∥f(X, t)∥2F ρ(X, t) dXdt (22)

subject to ∂tρ(X, t) +∇ · (ρ(X, t)f(X, t)) = 0, (23)
and ρ(X, 0) = ρ0(X), ρ(X, T ) = ρ1(X). (24)

This is a dynamic formulation of (21), which describes optimal transport as a dynamical system. In
particular, the probability density ρ : Rd×n × [0, T ] → R≥0 evolves continuously over time under
the velocity field f : Rd×n × [0, T ] → Rd×n, as governed by the continuity equation (23). The
initial and terminal conditions (24) require that the probability density evolve from ρ(X, 0) = ρ0(X)
to ρ(X, T ) = ρ1(X). The optimal velocity field has several important and favorable properties.
Mass induced by the optimal velocity travels in straight lines at constant speed [80][Corollary 7.22].
Moreover, under standard conditions on ρ0 and ρ1, the optimal velocity field is unique [45, 9].

Since the velocity field f governs the movement of mass, given an initial position X0 ∼ ρ0, the
evolution of X(t) is governed by the ODE

dX(t)

dt
= f(X(t), t), for t ∈ [0, T ], with X(0) = X0. (25)

Denote the solution operator of (25) by S : Rn×d × [0, T ] → Rn×d such that S(X0, t) = X(t).
Under suitable regularity conditions [3][Lemma 8.1.6], the solution of the continuity equation (23)
is given by ρ(·, t) = S(·, t)#ρ0, the pushforward of the probability measure ρ0 by S(·, t). Hence,
(22)-(24) can be rewritten to3

inf
f

∫ T

0

∫

Rd×n

1

2
∥f(X(t), t)∥2F ρ0(X0) dX0dt

subject to
dX(t)

dt
= f(X(t), t) for t ∈ [0, T ], X(0) = X0, S(·, T )#ρ0 = ρ1.

(26)

Derivation of Training Problem. Under the setup of OT-Transformer, f is the Transformer blocks,
and X0 and ρ0 are the embedded input and its distribution, respectively. The probability measure ρ1
specifies the target distribution of the terminal state X(T ). The terminal condition of (26) requires
that the distributions of the target output y and corresponding terminal state X(T ) to match. That
is, it requires G(X(T ),y) = 04 for each pair (X(T ),y), where G is the loss function defined in (8).
Thus, (26) becomes

inf
f

EX0,y

∫ T

0

1

2
∥f(X(t), t)∥2F dt

subject to
dX(t)

dt
= f(X(t), t) for t ∈ [0, T ], X(0) = X0, G(X(T ),y) = 0.

(27)

3For clarity of presentation, we slightly abuse notation by using X0 both as a random variable and as a
dummy variable of integration.

4For the commonly used cross-entropy [41][Section 1] and mean-squared error, the loss is zero when the
model output equals the target output y.
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Here, we used Fubini’s theorem [71, Theorem 3.1] to swap the order of the integrations, the ex-
pectation is taken over the joint distribution of the input-output pairs (X0,y) with an X0-marginal
distribution ρ0. Further, we make the following remarks on (27):

• The optimization is over f which is non-parametric. In OT-Transformer, we parametrize
f using Transformer blocks with weights θ, and the weights of the embedding and output
layers are γ.

• The optimization problem is intractable in general when the terminal condition
G(X(T ),y) = 0 is imposed as a hard constraint. We relax this constraint by incorpo-
rating it as a penalty term in the objective function.

Thus, we obtain the training problem

min
θ,γ

EX0,y

{
µG(X(T ),y;γ) +

∫ T

0

1

2
∥f(X(t), t;θ)∥2F dt

}

subject to
dX(t)

dt
= f(X(t), t;θ) for t ∈ [0, T ], X(0) = X0.

(28)

Here, when we set µ = 1
λ , under discretization (28) is equivalent to the OT-Transformer training

problem (8) in the continuous-time setting subject to the dynamics (7). It is noteworthy that the
hyperparameter µ can be interpreted as the Lagrange multiplier for the terminal condition of (27).
This reveals that the regularization hyperparameter λ is inversely proportional to the Lagrange
multiplier. When we have λ = 1

µ∗ , where µ∗ is the optimal Lagrange multiplier, and assuming that
the Transformer blocks parametrizing f are sufficiently expressive, the solution of the OT-Transformer
training problem (8) corresponds to the solution of the hard-constrained problem (27).

C Proofs of Theorems

In this section, we report in detail the assumptions and derivations of the theorems in Section 4.

C.1 Assumptions and Justification

In the following, we list the assumptions of the training problem (8), on which our theoretical analysis
is based. We then justify our assumptions by showing that they are satisfied in common applications.

1. the function G is proper, convex, and twice continuously differentiable in its first argument;
2. the function ∇G(·, ·) is Lipschitz continuous in both arguments, where the gradient is taken

with respect to its first argument.

Here, the function G is the first term in the training objective (8), which is the composition of the
output layer (5) and the loss function.

The assumptions are valid for encoder-only and decoder-only continuous-time Transformer training
problems for classification, next-token prediction, and regression tasks. These settings apply to
many common Transformer architectures in the continuous-time settings, including Vision Trans-
formers [21], and language models including the GPT series [63, 10, 64] of OpenAI, PaLM [18],
GLaM [22], and LaMDA [73] of Google, OPT [93] of Meta AI, and Granite of IBM [35].

Next, we will demonstrate in detail why the assumptions hold under these settings. In this subsection,
for clarity of presentation, we vectorize the terminal hidden states and denote their vectorizations
by x(T ) = vec(X(T )). Accordingly, we denote functions originally defined on matrices (e.g.,
G(X(T ),y)) by functions of their vectorized forms (e.g., G(x(T ),y)). This is a slight abuse of
notation, which will significantly simplify expressions and derivations.

On one hand, for regression tasks, the output layer (5) consists of a linear transformation
ŷ = ψox(T ), (29)

where ψo ∈ Rc×dn are the weights of the output layer. The loss function is the mean-squared loss
(MSE)

MSE(ŷ,y) =
1

2
∥ŷ − y∥22. (30)
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Given a target output y ∈ Rc, the loss function G is given by

G(x(T ),y) = MSE(ψox(T ),y)

=
1

2
∥ψox(T )− y∥22.

(31)

It is easy to see that G is proper, convex, and smooth (hence twice continuously differentiable). This
satisfies the first assumption. Its gradient is given by

∇G(x(T ),y) = ψ⊤
o (ψox(T )− y), (32)

which is Lipschitz continuous in each of its two arguments, with Lipschitz constants L2 and L,
respectively, where

L = ∥ψo∥2 = ∥ψ⊤
o ∥2, (33)

with ∥ψo∥2 denoting the 2-operator norm of ψo. And we used the fact that ∥ψo∥2 = ∥ψ⊤
o ∥2. This

satisfies the second assumption.

On the other hand, for classification and next-token prediction tasks, the output layer is

ŷ = Softmax(ψox(T )) =
eψox(T )

1⊤
c e
ψox(T )

, (34)

and the loss function is the cross-entropy loss

CrossEntropy(ŷ,y) = −y⊤ log(ŷ). (35)

Here, c is the number of classes, 1c ∈ Rc is a vector of all ones, and ŷ,y ∈ ∆c−1, which lie in the
(c − 1)-dimensional simplex, represent the model output and target output, respectively. The loss
function is the log-sum-exp function plus a linear term [41]

G(x(T ),y) = CrossEntropy(Softmax(ψox(T )),y) = −y⊤ log
eψox(T )

1⊤
c e
ψox(T )

= −y⊤ψox(T ) + (y⊤1c) log
(
1⊤
c e
ψox(T )

)

= −y⊤ψox(T )︸ ︷︷ ︸
linear term

+ log
(
1⊤
c e
ψox(T )

)

︸ ︷︷ ︸
log-sum-exp

.

Here, in the last step, we used the fact that (y⊤1c) = 1, because y ∈ ∆c−1. Since the log-sum-exp
function is convex and smooth (hence twice continuously differentiable) [41], so is G. Moreover, G
is proper because its value is always nonnegative and has nonempty effective domain. This shows
that the first assumption is satisfied. Next, the gradient of G is

∇G(x(T ),y) = −ψ⊤
o y +ψ⊤

o diag(eψox(T ))1c
1

1⊤
c e
ψox(T )

= −ψ⊤
o y +ψ⊤

o

eψox(T )

1⊤
c e
ψox(T )

= −ψ⊤
o y +ψ⊤

o Softmax(ψox(T )).

Here diag(z) denotes a diagonal matrix with diagonal entries equal to z. It is straightforward to
verify that ∇G is Lipschitz continuous with respect to its second arguement with Lipschitz constant
L = ∥ψ⊤

o ∥2. Note that the softmax function Softmax(z) = ez

1⊤
c ez

is Lipschitz continuous with a
Lipschitz constant 1 [28]. For any x1(T ),x2(T ),

∥∇G(x1(T ),y)−∇G(x2(T ),y)∥2
= ∥−ψ⊤

o y +ψ⊤
o softmax(ψox1(T ))− (−ψ⊤

o y +ψ⊤
o softmax(ψox2(T )))∥2

= ∥ψ⊤
o (softmax(ψox1(T ))− softmax(ψox2(T ))) ∥2

≤ ∥ψ⊤
o ∥2 ∥softmax(ψox1(T ))− softmax(ψox2(T ))∥2

≤ ∥ψ⊤
o ∥2 ∥ψox1(T )−ψox2(T )∥2 (since softmax has Lipschitz constant 1)

≤ ∥ψ⊤
o ∥2 ∥ψo∥2 ∥x1(T )− x2(T )∥2

= L2∥x1(T )− x2(T )∥2.

21



Therefore, ∇G is Lipschitz continuous in both arguments, and the second assumption is satisfied.

Our derivation also reveals that for regression, classification and next-token prediction tasks, ∇G is
Lipschitz continuous in each of its two arguments, with the same Lipschitz constants in all cases. We
summarize this finding in the following lemma.
Lemma 1. ∇G(·, ·) is Lipschitz continuous in each of its two arguments, with Lipschitz constants L2

and L, respectively, where L is the 2-operator norm of the output layer weights ψo.

C.2 Mean Field Control Formulation

We first recall the non-parametric formulation of the training problem (10):

min
f

E(X0,y)

{
G(X(T ),y) +

λ

2

∫ T

0

∥f(X(s), s)∥2F ds

}
,

subject to
dX(t)

dt
= f(X(t), t), for t ∈ [0, T ],

and X(0) = X0.

(36)

Here, for clarity of exposition, we denote s as the dummy variable for time integration.

The formulation (36) can be rewritten into a mean field control problem given by

min
f,ρ

G(ρ(·, ·, T )) + λ

2

∫ T

0

∫

Rd×n

∥f(X, s)∥2F ρ(X,y, s) dXds, (37)

subject to ∂tρ(X,y, t) +∇ · (ρ(X,y, t)f(X, t)) = 0, for t ∈ [0, T ], (38)

and ρ(X,y, 0) = ρ0(X,y), for X ∈ Rd×n. (39)

Here, a mean field perspective is adopted by modeling the evolution of the density function ρ :
Rd×n × Rc × [0, T ] → R≥0, which characterizes the distribution of the hidden state for t ∈ [0, T ]
given the target output y. In particular, the probability density of the hidden state evolves continuously
over time under the velocity field f , as governed by the continuity equation (38). The initial density
ρ0 : Rd×n × Rc → R≥0 defines the joint distribution of the target output y and the hidden states at
t = 0 (that is, the embedded input (2)). The first term of the objective is given by

G(ρ(·, ·, T )) = E(X,y)∼ρ(·,·,T )G(X,y) . (40)

C.3 Optimal Control Theory

We review optimal control theory that will be used in our analysis.

We first recall the definition of the variational derivative of a functional. For a test function w ∈
L2(Rdn+c), the variational derivative δG

δρ of G with respect to ρ is defined as

lim
h→0

G(ρ+ hw)− G(ρ)
h

=

∫

Rc

∫

Rd×n

δG(ρ)
δρ

(X,y)w(X,y) dXdy. (41)

Evaluating (41) using the definition of G (40), we have

δG(ρ(·, T ))
δρ

(X,y) = G(X,y). (42)

Consider the mean field control problem (37)-(39). Under Lagrangian formulation, for a hidden state
at location X and time t with target output y, its potential function Φy : Rd×n × [0, T ] → R is given
by [46]

Φy(X, t) = inf
f,ρ

{
δG(ρ(·, ·, T ))

δρ
(X(T ),y) +

λ

2

∫ T

t

∥f(X(s), s)∥2F ds
}

= inf
f

{
G(X(T ),y) +

λ

2

∫ T

t

∥f(X(s), s)∥2F ds
}
.

(43)
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Here, we used (42) in the last step.

Under standard regularity assumptions [24][Section 10.3.1], the potential function is bounded and
Lipschitz continuous in both arguments [24]. Moreover, when λ > 0, the potential function is the
unique solution to the Hamilton-Jacobi-Bellman (HJB) partial differentiation equation (PDE)

−∂tΦy(X, t) +H(∇Φy(X, t)) = 0, (44)

Φy(X, T ) =
δG(ρ(·, T ))

δρ
(X,y), (45)

where the gradient ∇yΦ(X, t) is taken with respect to the spatial variable. And the Hamiltonian
H : Rd×n → R is given by

H(P) = sup
f

{
−⟨P, f⟩ − λ

2
∥f∥2F

}
, (46)

where P is the costate variable and ⟨·, ·⟩ denotes the Frobenius inner product. When λ > 0, the
objective is strictly concave, and thus the supremum is uniquely attained when f = − 1

λP. The
Hamiltonian becomes

H(P) =
1

2λ
∥P∥2F . (47)

Substituting (42) into (45), and (47) into (44), the HJB equation becomes

−∂tΦy(X, t) +
1

2λ
∥∇Φy(X, t)∥2F = 0, (48)

Φy(X, T ) = G(X,y). (49)

Moreover, the derivation of the HJB equation reveals that the optimal velocity field f∗ of the mean
field control problem (37) to (39) attains the supremum in the Hamiltonian when P = ∇Φ(X, t),
thus we have

f∗(X, t) = − 1

λ
∇Φy(X, t). (50)

C.4 Well-posedness of Training Problem

We prove Theorem 1. We first restate the theorem.

Theorem 1. There exists a unique solution to the optimization problem (10) if and only if λ > 0.

Proof. When λ = 0, the Hamtiltonian (46) is degenerate and unbounded above, and the optimal
velocity can have an arbitrarily large magnitude. This implies that the HJB PDE is not well-defined.
As such, (37)-(39) reduces to a degenerate mean field control problem that has infinitely many
solutions.

We note that λ > 0 if and only if the Hamiltonian (46) is well-defined and admits a unique maximizer.
Furthermore, the HJB PDE (44)-(45) is well-defined if and only if the Hamiltonian is well-defined.
In this case, the potential function is the unique solution to the HJB PDE [24]. Thus, the optimal
velocity, which is given by the gradient of the potential function (50), is also unique.

C.5 Highly Regular Trajectory

Next, we show that the unique velocity guaranteed by Theorem 1 when λ > 0 is highly regular. In
particular, the OT-Transformer produces exactly straight trajectories.

Proposition 1. When λ > 0, under the optimal velocity f∗, each hidden state X(t) travels along a
straight trajectory at a constant speed.

Proof. We prove that the optimal velocity f∗(X(t), t) remains constant for t ∈ [0, T ], which induces
straight trajectories and constant speed.
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From the Pontryagin Maximum Principle [62], we have that

dX(t)

dt
= −∇PH(P(t)), (51)

dP(t)

dt
= ∇XH(P(t)) = 0, (52)

P(T ) = ∇G(X(T ),y). (53)

Here X(t) denote the trajectory induced by f∗, and P(t) is the corresponding costate variable. The
gradient ∇G(X(T ),y) is taken with respect to the first argument. In the second step of (52), we
used the fact that H(P(t)) is independent of X.

From (52), we see that P(t) remains constant for all t ∈ [0, T ]. Thus, we have

P(t) = P(T ) = ∇G(X(T ),y) for all t ∈ [0, T ], (54)

where we applied (53) in the final step. Differentiating the formula of the Hamiltonian (47), we have

∇PH(P) =
1

λ
P. (55)

Substituting (54) and (55) into (51), we obtain

dX(t)

dt
= − 1

λ
P(t) = − 1

λ
P(T ) = − 1

λ
∇G(X(T ),y), (56)

for all t ∈ [0, T ]. This shows that the velocity for each hidden state is constant for all t ∈ [0, T ]. This
implies each hidden state travels along a straight line at constant speed.

The regularized trajectories present a stark contrast to those of the unregularized case. Thanks to such
highly regular trajectories, the numerical integration of the dynamical system (7) is particularly easy
to perform. Practically, it requires fewer time steps to achieve accurate integration. Furthermore, since
there are no fluctuations or abnormal magnitude changes in the velocity (as is for the unregularized
case), numerical stability during integration, and consequently during training, is significantly
improved. This effect is evident in our experiments, where the unregularized training exhibits
instability, while the regularized training does not encounter such issues.

We note that the straight trajectories and constant speeds are not immediately apparent and are not
guaranteed to hold in general. On one hand, the training problem is a relaxed optimal transport
problem (see Appendix B for details), which does not guarantee such regularity in general. On the
other hand, this regularity is guaranteed only under our assumptions; see Appendix C.1. The proof
applies the Pontryagin Maximum Principle [62] and leverages the regularity assumptions on the loss
function G; see Appendix C.5 for details.

C.6 Regularity of Potential Function

Next, we show that for each given target output y, the hidden states trajectories never intersect.

Proposition 2. For two hidden states with different initial conditions X0 and X̃0 and the same target
output y, their trajectories never intersect.

This proposition implies that the solution to the HJB PDE (48)-(49) does not develop shocks. In other
words, the gradient of the potential function ∇Φy is continuous in space.

Proof. Integrating (56) from t to T , the trajectory of a hidden state X(t) is given by

X(t) = X(T ) +
(T − t)

λ
∇G(X(T ),y), (57)

for all t ∈ [0, T ]. We first show that the trajectories corresponding to two different terminal states
XT and X̃T at t = T and the same target output y cannot intersect. That is,

XT +
(T − t)

λ
∇G(XT ,y) = X̃T +

(T − t)

λ
∇G(X̃T ,y) (58)
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cannot hold for any t ∈ [0, T ] if XT ̸= X̃T . To this end, consider the function

Ft(X) =
1

2
∥X∥2F +

T − t

λ
G(X,y), (59)

which is strictly convex with respect to X for all t ∈ [0, T ], as G is convex with respect to X by
assumption. Note that its gradient with respect to X is

∇Ft(X) = X+
T − t

λ
∇G(X,y), (60)

which coincides the trajectory formulation in (57). By the strict convexity of Ft, its gradient ∇Ft is
injective. Thus, (58) does not hold for any XT ̸= X̃T .

Next, we argue that for two hidden states with different initial conditions, the corresponding terminal
states at t = T are different. Combining (57) and (60), at t = 0 we have

X(0) = ∇F0(X(T )). (61)

Since ∇F0 is the gradient of a strictly convex function, its inverse (∇F0)
−1, defined by

X(T ) = (∇F0)
−1(X(0)), (62)

exists and is also the gradient of a strictly convex function (Lemma 2 of Appendix D). Using the
same injectivity arguments on (62), we have that for two hidden states with different initial conditions
X0 and X̃0, their terminal states XT and X̃T are different. And we have established in the previous
paragraph that trajectories with different terminal states XT and X̃T cannot intersect. Thus, we have
proven that trajectories with different initial states cannot intersect.

C.7 Stable Forward Propagation

Theorem 2. Assume that the OT regularization hyperparameter is such that λ > TL2, where T
is the terminal time and L is the 2-operator norm of the output layer weights (5). For embedded
input-output pairs (X1(0),y1) and (X2(0),y2), the corresponding model outputs ỹ1 and ỹ2 satisfy

∥ỹ1 − ỹ2∥2 ≤
(
1− TL2

λ

)−1(
L∥X1(0)−X2(0)∥F +

TL2

λ
∥y1 − y2∥2

)
. (63)

Proof. By Proposition 1 and Proposition 2, the optimal velocity f∗ remains constant along the
trajectory X(t). Thus, by (56), the trajectory is given by

dX(t)

dt
= f∗(X(t), t) = − 1

λ
∇G(X(T ),y). (64)

Integrating (64) from t = 0 to t = T , we obtain

X(T ) = X(0)− T

λ
∇G(X(T ),y). (65)

25



We now bound the difference between the terminal states X1(T ) and X2(T ) as follows

∥X1(T )−X2(T )∥F =

∥∥∥∥X1(0)−
T

λ
∇G(X1(T ),y1)−

(
X2(0)−

T

λ
∇G(X2(T ),y2)

)∥∥∥∥
F

(66)

≤ ∥X1(0)−X2(0)∥F +
T

λ
∥∇G(X1(T ),y1)−∇G(X2(T ),y2)∥F (67)

= ∥X1(0)−X2(0)∥F

+
T

λ
∥∇G(X1(T ),y1)−∇G(X2(T ),y1)

+∇G(X2(T ),y1)−∇G(X2(T ),y2)∥F

(68)

≤ ∥X1(0)−X2(0)∥F

+
T

λ
∥∇G(X1(T ),y1)−∇G(X2(T ),y1)∥F

+
T

λ
∥∇G(X2(T ),y1)−∇G(X2(T ),y2)∥F

(69)

≤ ∥X1(0)−X2(0)∥F

+
T

λ
L2∥X1(T )−X2(T )∥F

+
T

λ
L∥y1 − y2∥2, by Lemma 1.

(70)

By the assumption that λ > TL2, we have TL2

λ < 1. Thus, (70) becomes
(
1− TL2

λ

)
∥X1(T )−X2(T )∥F ≤ ∥X1(0)−X2(0)∥F +

TL

λ
∥y1 − y2∥2 (71)

∥X1(T )−X2(T )∥F ≤
(
1− TL2

λ

)−1(
∥X1(0)−X2(0)∥F +

TL

λ
∥y1 − y2∥2

)
.

(72)

Recall that for the case of regression, the model output (5) is given by

ỹ = go(X(T );ψo) = ψovec(X(T )), (73)

which is obviously Lipschitz continuous with respect to vec(X(T )) with a Lipschitz constant L =
∥ψo∥F . For the case of classification and next-token generation, the model output (5) is given by

ỹ = go(X(T );ψo) = Softmax(ψovec(X(T ))) =
eψovec(X(T ))

1⊤
c e
ψovec(X(T ))

. (74)

Since the softmax function is Lipschitz continuous with Lipschitz constant 1 [28], the model output ỹ
is also Lipschitz continuous with respect to vec(X(T )) with the same Lipschitz constant L = ∥ψo∥F .

Thus, the corresponding model outputs ỹ1 and ỹ2 satisfy

∥ỹ1 − ỹ2∥2 ≤ L∥vec(X1(T ))− vec(X2(T ))∥2
= L∥X1(T )−X2(T )∥F

≤
(
1− TL2

λ

)−1(
L∥X1(0)−X2(0)∥F +

TL2

λ
∥y1 − y2∥2

)
, by (72).

D Auxiliary Lemma

We state and prove an auxiliary lemma, which is used in the proof of Proposition 2 in Appendix C.
The proof modifies the argument from [40, Proposition 1].
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Lemma 2. Let D ⊆ Rk be open, H : D → R be a strictly convex and continuously differentiable
function and h be its gradient. Then h−1 exists and is the gradient of a strictly convex function.

Proof. The strict convexity and continuous differentiability of H implies the existence of h−1 and
that ∇h(x) is symmetric positive definite (SPD) for all x ∈ D. Since h is continuously differentiable
and ∇h(x) is SPD for all x ∈ D, by the Inverse Function Theorem [66, Theorem 9.24], h−1 is also
continuously differentiable and

∇h−1(h(x))∇h(x) = Ik for all x ∈ D.
Here Ik is the k × k identity matrix. This implies ∇h−1(y) is also SPD for all y ∈ h(D). Thus, by
the symmetry of ∇h−1(y), we have

∂[h−1]i
∂yj

=
∂[h−1]j
∂yi

for all i, j = 1, 2, ..., k. (75)

Here, yj denotes the jth entry of y. Let ψ(y) =
∑k

j=1 yj
∫ 1

0
[h−1]j(ty)dt. Consider its partial

derivative

∂ψ

∂yi
(y) =

∫ 1

0

[h−1]i(ty)dt+

∫ 1

0

k∑

j=1

yjt
∂[h−1]j
∂yi

(ty)dt

using (75), we get

=

∫ 1

0

[h−1]i(ty)dt+

∫ 1

0

k∑

j=1

yjt
∂[h−1]i
∂yj

(ty)dt

applying the chain rule ∂
∂t

(
[h−1]i(ty)

)
=
∑k

j=1 yj
∂[h−1]i
∂yj

(ty), we obtain

=

∫ 1

0

[h−1]i(ty)dt+

∫ 1

0

t
∂

∂t

(
[h−1]i(ty)

)
dt

performing integration by parts, we have

=
�������∫ 1

0

[h−1]i(ty)dt+ t[h−1]i(ty)
∣∣t=1

t=0��������
−
∫ 1

0

[h−1]i(ty)dt

= [h−1]i(y), for i = 1, 2, ..., k.

Therefore, ∇ψ = h−1. Moreover ψ is strictly convex because its Hessian ∇h−1(y) is SPD for all
y ∈ h(D). Therefore, h−1 is the gradient of the strictly convex function ψ.

E Derivations for Robustness and Generalization

In this section, we provide detailed derivations for the robustness and generalization properties
discussed in Section 1 and Section 4.

Recall the stability in forward propagation inequality

∥ỹ1 − ỹ2∥2 ≤ C∥X1(0)−X2(0)∥F + C ′∥y1 − y2∥2, (76)

where C =
(
1− TL2

λ

)−1

L and C ′ =
(
1− TL2

λ

)−1
TL2

λ .

E.1 Distributional robustness

We first provide a proof of Theorem 3, the distributional robustness inequality

Wp(T#µ,T#ν) ≤ C̃Wp(µ, ν), for any p ≥ 1, (77)

where T# denotes the pushforward operator under the trained Transformer.
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Proof. Define x1 = vec(X1(0)) and x2 = vec(X2(0)), and note that ∥X1(0) − X2(0)∥F =
∥x1 −x2∥2. Suppose x1 ∼ µ and x2 ∼ ν. Holding the output data to be the same, the stable forward
propagation inequality gives us ∥T(x1)−T(x2)∥2 ≤ C∥x1 − x2∥2. By equivalence of p-norms we
have that there exists a constant Ĉ(p) > 0 such that

∥T(x1)−T(x2)∥p ≤ Ĉ(p)L(1− TL2λ−1)−1∥x1 − x2∥p. (78)

For a fixed p, let π ∈ Γ(µ, ν) to be the optimal coupling between µ and ν. Then the pushforward of
π under the map (T⊗T)(x1,x2) = (T(x1),T(x2)) is a suboptimal coupling between measures
T♯µ and T♯ν. Therefore, we have

W p
p (T♯µ,T♯ν) ≤

∫
∥x1 − x2∥ppd(T⊗T)♯π(x1,x2)

=

∫
∥T(x1)−T(x2)∥ppdπ(x1,x2)

= Ĉ(p)pLp(1− TL2λ−1)−pW p
p (µ, ν).

Taking the p-th root on each side, we obtain the desired result.

E.2 Derivation of Robustness Under Sampling Error or Data Perturbation

Note that the data used for training always come from the underlying true distribution in theory;
however, sampling error and perturbation error may occur when generating the training dataset. We
show here that the forward model remains accurate when such errors are small.

To derive this property, we first specify the variables. Let µ and µ̃ denote the training distributions for
the input and output data, and ν and ν̃ the true distributions for the input and output data, respectively.
Denote T# as the pushforward operator under the trained Transformer.

Our goal is to show that Wp(T#ν, ν̃) remains bounded. That is, the pushforward (induced by the
trained Transformer) of the true distribution for input data closely approximates the true distribution
of output data.

Applying triangle inequality to (77), we obtain

−Wp(T#µ, µ̃)−Wp(µ̃, ν̃) +Wp(T#ν, ν̃) ≤Wp(T#µ,T#ν) ≤ C̃Wp(µ, ν).

The use of Wasserstein metrics is crucial in this context. The derivation above relies on the fact that
the Wasserstein distance Wp satisfies the triangle inequality—a property not shared by divergences
such as the KL divergence, for which this argument would not hold. Thus, here we have

Wp(T#ν, ν̃) ≤ C̃ Wp(µ, ν)︸ ︷︷ ︸
input distribution gap

+Wp(T#µ, µ̃)︸ ︷︷ ︸
≈training loss

+ Wp(µ̃, ν̃)︸ ︷︷ ︸
output distribution gap

. (79)

Here, on the right hand side, the first term is the input distribution gap: it measures the difference
between the training distribution and the true distribution of the input data. The third term measure
the same for output data. We can bound both these terms using sample complexity results for
Wasserstein metrics (p ≥ 1) [26], see also (82) below. Lastly, the second term in (79) quantifies the
difference between the training distribution for output data and the pushforward (induced by the
trained Transformer) of the training distribution for input data. This term is an informative surrogate
for the training loss. When the training loss decreases, this term will tend to decrease. And when the
training loss is 0, this term will be 0 too.

Assuming the Transformer model is trained with sufficient accuracy, when the sampling error or
perturbation error in the data is small, both the first and third terms will remain relatively small,
showing that Wp(T#ν, ν̃) is not only bounded but also small. Thus, Equation (79) indicates
robustness with respect to the training dataset. The model’s prediction will remain close to the
underlying true distribution even in the presence of mild sampling error or data corruption.

E.3 Out-of-Distribution Generalization

A great benefit of having Lipschitz functions is that we may obtain performance guarantees on the
quality of the model learned from finite training samples is at making predictions on out-of-distribution
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samples. Suppose map T is trained on input samples X1, . . . , XN ∼ µ that form empirical measure
µ̂N . We use ideas from distributionally robust optimization (DRO) to produce performance bounds
on out-of-sample performance and non-asymptotic generalization bounds [23, 69, 70].

Denote Wr(µ̂N ) to be the Wasserstein ball of radius r around µ̂N , i.e., Wr(µ̂N ) := {ρ ∈ P(Ω) :
W1(ρ, µ̂N ) ≤ r}. For simplicity, consider the setting where Ω is a bounded domain. Suppose we have
out-of-distribution samples from distribution ν ∈ Wr(µ̂N ), we wish to obtain bounds on the test error
of the Transformer T on the out-of-distribution samples, i.e., Eν [G(T(X), y)] = ET♯ν [G(Z, y)],
where Z = T (X) in terms of the training error Eµ̂N

[G(T(X), y)] = ET♯µ̂N
[G(Z, y)] where G is

the terminal condition of the training objective (8). As Ω is a bounded domain, G is a Lipschitz
function.

Observe that by Kantorovich duality, the 1-Wasserstein distance is given by the variational formula

W1(µ̂N , ν) = sup
φ∈Lip1(Ω)

{Eµ̂N
[φ(X)]− Eν [φ(X)]},

where Lip1(Ω) is the set of Lipschitz functions on Ω. Observe that with Theorem 3 we can obtain a
bound on the expected test error with respect to the distribution ν ∈ Wr(µ̂N )

ET♯ν [G(Z, y)]− ET♯µ̂N
[G(Z, y)] ≤ ∥G∥LipW1(T♯ν,T♯µ̂N )

≤ ∥G∥LipL(1− λ−1TL2)−1W1(ν, µ̂N ) (80)

= ∥G∥LipL(1− λ−1TL2)−1r,

which implies that

Eν [G(T(X), y)] ≤ Eµ̂N
[G(T(X), y)] + r∥G∥LipL(1− λ−1TL2)−1. (81)

This bound is deterministic and holds for any ν ∈ Wr(µ̂N ). If a statistical argument ensures this
inclusion with high probability, then this becomes a generalization guarantee. In particular, if ν = µ,
the distribution that generated the empirical distribution µ, then r is computable as a function of
samples and we can obtain a non-asymptotic generalization bound.

E.4 Generalization Bound via Concentration Inequalities

To turn the deterministic bound into a statistical generalization guarantee, first recall µ̂N to be the
empirical measure constructed from the training data. Then µ ∈ Wr(µ̂N ) with high probability–
for a computable radius r–which is ensured by the concentration of the empirical measure in the
Wasserstein distance. Indeed, under mild assumptions (e.g., bounded domains or sub-Gaussian tails),
we have a sample complexity result [26]: there exists C > 0 such that with probability at least 1− δ,

W1(µ, µ̂N ) ≤ CN−1/d +

√
log(1/δ)

N
= r(N, δ) . (82)

Choosing the radius r as a function of δ and the number of samples N accordingly, we obtain, by
combining (80) and (82), that with probability at least 1− δ,

Eµ[G(T(X), y)] ≤ Eµ̂N
[G(T(X), y)] + r(δ,N) · ∥G∥LipL(1− λ−1TL2)−1. (83)

This is a non-asymptotic generalization bound for Lipschitz losses in terms of the Wasserstein distance
between µ and µ̂N , linking distributional robustness of generalization performance. We emphasize
this is only a crude application of DRO tools for analyzing Transformers that arise from optimal
control tools. Finally, we note that Wasserstein distances are particularly well-suited for sample
complexity analysis such as (82). In contrast to KL divergence, which requires absolute continuity
between distributions, Wasserstein distances remain well-defined even when comparing an empirical
measure µ̂N—a discrete distribution—to a possibly continuous distribution µ.

F Experimental Details and Results

We report the detailed experimental setups here. We adapted the code provided by [68, 88], main-
taining the same default data processing setup, hyperparameters, and other experimental settings as
used in their implementations. Our implementation is based on PyTorch [61] and experiments are

29



conducted using NVIDIA A100 GPUs with 40GB of memory. Runtime varies by experiment. While
Proposition 1 shows that the optimally trained model yields a straight hidden state trajectory with
constant speed, in practice we use 8–20 integration steps and do not yet fully exploit this property to
reduce runtime. In practice, fewer steps may suffice, which we leave for future work.

We also compared against N-ODE Transformer, an existing continuous-time Transformer formulation
which is introduced in [5] and has been considered in other works. For details about the formulation
and specific applications, see the discussion in Section 5. In the reported results, we refer to N-ODE
Transformer with and without transport cost as unregularized N-ODE Transformer and regularized
N-ODE Transformer, respectively. The goal here is to demonstrate that our proposed approach is not
only theoretically sound, but also excels in performance when compared against the baseline method
and similar approaches.

Point Cloud Classification. Given the ModelNet40 dataset, we experiment with the Set Trans-
former model [48]. It has an encoder-decoder architecture and is specifically designed to process
unordered data, such as point clouds, ensuring that the output remains permutation invariant to its
input. Following the setup of [68], we use a Set Transformer [48] with two Induced Self Attention
Blocks (ISABs) in the encoder, where each ISAB contains two Transformer blocks, and with a
Pooling by Multihead Attention (PMA) Module in the decoder. For each instance, we uniformly
sample 5000 points from each element in the dataset. For the continuous-time models, we use the
same architecture except that we put a fully-connected layer before the Transformer blocks so that
the dimension is consistent for continuous-time dynamics. Also the hidden dimensions d and k of the
ISABs are reduced from 256 to 200. This reduces the number of parameters for the ISABs by 24%.
We use an Adam optimizer, with batch size 64, 200 training epochs, and learning rate of 1× 10−3.
For the regularized N-ODE Transformer and OT-Transformer, the regularization hyperparameters are
λ = 0.1 and λ = 1, respectively, as they provide the optimal performance in our tests. We use T = 1
and a total of 8 time steps for the numerical integration.

We perform the experiment over five random trials and report the best test accuracies in Table 3. The
unregularized continuous-time models encountered gradient explosion, resulting in NaN outputs,
and the issue persists even with slight regularization. We found that the models never suffered from
gradient explosion with sufficient regularization, indicating that transport cost effectively stabilizes
the training process. Hence, we only report the performance of the regularized models. The baseline
Set Transformer obtains an average test accuracy of 87.4%. The regularized N-ODE Transformer
achieves an accuracy of 87.5%, indicating negligible improvement over the vanilla model. Our
OT-Transformer shows a sizable improvement and reports an average 89.9% test accuracy even with a
smaller model. From the learning curves in Figure 2, we see that our model reports a lower data-fitting
loss for training data compared to the vanilla model, despite the inclusion of a regularization term.
This example also highlights the generalizability of our model: despite using an encoder-decoder
architecture, it demonstrates clear advantages and noticeable performance improvements over the
baseline.

Table 3: Number of parameters for the Transformer blocks, best and final test accuracies (with
standard deviation) across five trials for the point cloud experiment.

Method/Exp. Para. Count Best Test Accuracy Final Test Accuracy
Baseline 0.86M 87.4%± 0.45% 86.6%± 0.67%
Reg. N-ODE Trans. 0.65M 87.5%± 0.51% 86.7%± 0.43%
OT-Trans. (Ours) 0.65M 89.9% ± 0.42% 89.3% ± 0.69%

MNIST Classification. Following [68], the baseline model ViT has one Transformer block with
a single-head self-attention layer and no fully-connected layer. Since it has only one Transformer
block, N-ODE Transformer and our OT-Transformer share the same formulation, and we report the
results as OT-Transformer.

The OT-Transformer uses the same model architecture as the baseline model, except that the hidden
dimensions d and k of the self-attention layer are reduced to 64 from 128. This reduces the number
of parameters by over 80%. Adapting from the baseline setting, the patch size is 7× 7. We use an
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Figure 2: Accuracy and data-fitting loss for the point cloud experiment (averaged over five trials)

Adam optimizer. The number of epochs is 45 and the batch size is 100. The learning rate is set to
5× 10−4 for the first 35 epochs, then decreased to 5× 10−5 until the 41st epoch, at which point it
is reduced to 5 × 10−6. For OT-Transformer, the regularization hyperparameter is λ = 0.01 as it
provides the optimal performance in our tests. We use T = 1 and a total of 20 time steps for the
numerical integration.

The experiments are conducted over five random trials. The best test accuracies are reported in Table 4.
OT-Transformer demonstrates significant improvements over the baseline in both accuracy and model
efficiency. The baseline model achieved a test accuracy of 93.0%. The unregularized OT-Transformer
improves the test accuracy to 96.8%, although it uses a much smaller model architecture. The
transport cost regularization further improves the test accuracy to 97.1% while maintaining the
same reduced parameter count. Notably, OT-Transformer also exhibits significantly lower standard
deviation across five trials when compared to the baseline and unregularized model, indicating
enhanced stability and reliability in its performance. Interestingly, when we compare the learning
curves of the unregularized and regularized OT-Transformers in Figure 3, we observe that including
the transport cost regularization also reduces the training loss for data-fitting and accuracy.

Table 4: Number of parameters for the Transformer blocks, best and final test accuracies (with
standard deviation) across five trials for the MNIST image classification experiment.

Method/Exp. Para. Count Best Test Accuracy Final Test Accuracy
Baseline 93k 93.0%± 0.69% 93.0%± 0.67%
Unreg. OT-Trans. 18k 96.8%± 0.23% 96.8%± 0.25%
OT-Trans. (Ours) 18k 97.1% ± 0.16% 97.1% ± 0.15%

Cats and Dogs Classification. We again use ViT. The patch size is 16 × 16. We use an Adam
optimizer. The learning rate is 3× 10−5. The number of epochs is 250, and the batch size is 64. The
hidden dimensions d and k are 128. For the baseline model, it has 6 Transformer blocks. For the
continuous-time models, the number of Transformer blocks is reduced to 5; this reduces the number
of parameters for the Transformer blocks by around 20%. For the regularized N-ODE Transformer
and OT-Transformer, the regularization hyperparameters are λ = 0.005 and λ = 0.01, respectively,
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Figure 3: Accuracy and data-fitting loss for the MNIST image classification experiment (averaged
over five trials)

as they provide the optimal performance in our tests. We use T = 1 and a total of 20 time steps for
the numerical integration.

We report in Table 5 the test accuracies over different seeded trials. We observe again that our
OT-Transformer has the best performance and obtains a test accuracy of 79.0%, improving from the
baseline’s 77.6%. The standard deviation of the test accuracy, at 0.31%, is significantly lower than
the baseline value of 0.86%, showing our proposed approach is more robust and reliable. We also
observe that incorporating the transport cost regularization improves generalization and stability of
OT-Transformer; without it, the average and standard deviation of test accuracy worsen to 78.2%
and 0.39%, respectively. Both the unregularized and regularized N-ODE Transformers report a
test accuracy of 75.6%, which is worse than the baseline model, making them undesirable methods
for the problem. Unlike our model, incorporating the regularization also has little effect on the
performance of N-ODE Transformer. This is likely due to the incompatibility of N-ODE Transformer
and the regularizatio. We report the learning curves in Figure 4. When we compare the learning
curves of the unregularized and regularized OT-Transformers, we see that including the transport cost
regularization also improves the training loss for data-fitting and accuracy.

Table 5: Number of parameters for the Transformer blocks, best and final test accuracies (with
standard deviation) across three trials for the cats and dogs image classification experiment.

Method/Exp. Para. Count Best Test Accuracy Final Test Accuracy
Baseline 1.77M 79.3%± 0.52% 77.6%± 0.86%
Unreg. N-ODE Trans. 1.48M 76.4%± 0.37% 75.6%± 0.48%
Reg. N-ODE Trans. 1.48M 76.4%± 0.30% 75.6%± 0.03%
Unreg. OT-Trans. 1.48M 78.8%± 0.63% 78.2%± 0.39%
OT-Trans. (Ours) 1.48M 79.5% ± 0.46% 79.0% ± 0.31%

Sentiment Analysis. We use an identical baseline Transformer architecture as in [68], which has
six layers of Transformer blocks. The OT-Transformer counterpart has only 3 layers, reducing the
number of parameters of the Transformer blocks by half. We use an Adam optimizer with 15 epochs.
The learning rate is 1× 10−4 for the first 12 epochs and 1× 10−5 afterward. The batch size is 64.
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Figure 4: Accuracy and data-fitting loss for the cats and dogs image classification experiment

The hidden dimensions d and k are 256. The batch size is 64. For both the regularized N-ODE
Transformer and OT-Transformer, the regularization hyperparameter is λ = 0.5, as it provides the
optimal performance in our tests. We use T = 1 and a total of 8 time steps for the numerical
integration.

We repeat the experiment for five random trials. In all trials, the unregularized N-ODE Transformer
and OT-Transformer experienced issues with exploding gradients, resulting in NaN outputs. In
order to estimate how the unregularized model would perform under more stable conditions, we
impose a slight transport cost with λ = 0.001. We note that the continuous-time models with slight
and standard regularization completed all trials without issues. This shows the effectiveness of the
transport cost regularization in stabilizing the training process and avoiding exploding gradients.

The best test accuracies are reported in Table 6. The baseline architecture achieved a test accuracy of
83.9%. The N-ODE Transformers with slight and standard regularization report a test accuracy of
83.6% and 83.9%, respectively, which are not better than the baseline model. The N-ODE Transformer
with slight regularization reports a test accuracy of 83.6%. With a standard regularization, the test
accuracy slightly increases to 83.9%. However, both results are not better than that of the baseline
model. The OT-Transformer with slight regularization reported a test accuracy of 82.7%, which is
subpar compared to the baseline model. On the other hand, the standard OT-Transformer achieves the
best test accuracy of 84.6%, which is 0.7% higher than the baseline model, in spite of using a smaller
model. The test accuracy is also 0.7% higher than that of the N-ODE Transformer’s. We note that
with the incorporation of transport cost, the accuracy of N-ODE Transformer is improved by only
0.3%. In contrast, the accuracy of OT-Transformer is boosted by 1.9%. Again, this is likely due to
that our continuous-time formulation is inherently more suited for transport cost regularization than
that of N-ODE Transformer.

The learning curves are reported in Figure 5. When we compare the results of the unregularized
and regularized OT-Transformers, we see that the regularization effectively reduces overfitting by
increasing training loss while simultaneously lowering test loss. Overall, we see that the combination
of our continuous-in-time formulation and transport cost regularization enhances parameter efficiency
and generalization of Transformers.

Text Generation: nanoGPT on Shakespeare (Character-level) Dataset. We use the nanoGPT
implementation provided by [43] as the baseline model. The baseline architecture uses a Transformer
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Table 6: Number of parameters for the Transformer blocks, best and final test accuracies (with
standard deviation) across five trials for for the sentiment analysis experiment. ∗: The unregularized
continuous-time models experienced gradient explosion. And we estimate their performance by using
a slight regularization λ = 0.001.

Method/Exp. Para. Count Best Test Accuracy Final Test Accuracy
Baseline 4.74M 83.9%± 0.26% 83.7% ± 0.21%
Unreg. N-ODE Trans. 2.37M 83.6%± 0.40%∗ 83.4%± 0.40%∗

Reg. N-ODE Trans. 2.37M 83.9%± 0.48% 83.5%± 0.84%
Unreg. OT-Trans. 2.37M 82.7%± 0.38%∗ 82.1%± 0.89%∗

OT-Trans. (Ours) 2.37M 84.6% ± 0.55% 83.7%± 0.86%
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Figure 5: Accuracy and data-fitting loss for the sentiment analysis experiment

model with 6 Transformer blocks, 6 self-attention heads and hidden dimension of 384, resulting in a
total parameter count of 10.65 million. In contrast, for the OT-Transformer model, we reduce both the
number of Transformer blocks and number of attention heads to 5 and hidden size to 320, in total this
reduces the total parameter count to 6.16 million. We use 10 time steps for the numerical integration
and λ = 1. We run a total of 5000 training iterations. The learning rate decays from 1 × 10−3 to
1 × 10−4 over the course of training. Model performances are measured using the test loss in all
tests. The reported results are reported in Table 7 and averaged over 3 random trials. We highlight
two main findings from the results. First, our proposed model displays significant improvement in
parameter efficiency compared to the baseline solution, this is consistent with earlier results from
different classification examples. Second, our model outperforms the baseline model in both the best
recorded test loss and final step test loss, more notably our model ensures generalization while the
baseline model overfits and shows a decline in performance, this coincides with our theoretical results
and further highlights the importance of regularization.

Text Generation: GPT-2 on Shakespeare (Word-level) Dataset. We next perform experiments
using the more popular GPT-2 architecture on the Shakespeare (Word-level) dataset. We use the same
implementation as in the first experiment, which is based on [43]. The goal for the experiment is to
test the generalizability of our proposed approach to large models of over 100M total parameters. The
baseline architecture has in total 12 layers, 12 attention heads and embedding size of 768, the models
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Table 7: Number of parameters for the models, best and final test accuracies (with standard deviation)
across three trials for for the nanoGPT experiment. We use test loss as the measure of model
performance.

Method/Exp. Para. Count Best Test Loss Final Test Loss
Baseline 10.65M 1.47± 0.005 2.68± 0.006
OT-Trans. (Ours) 6.16M 1.44± 0.004 1.44± 0.005
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Figure 6: Training and test loss for the nanoGPT on Shakespeare (character-level) experiment.

has 123.7M parameters in total. For above mentioned reasons we use the same exact architecture for
OT-Transformer testing. Its also worth mentioning that the GPT-2 model is in fact overparametrized
for the specific task, which also means reducing the model size is less significant for the task and
should not be the focus. We use 10 time steps for the numerical integration and set λ = 1 for the
example. We run a total of 500 iterations for training. The learning rate decays from 6 × 10−4 to
6× 10−5 over the course of training. Model performances are measured using the test loss in all tests.
The reported results are reported in Table 8 and averaged over 3 random trials.

The results indicate that our proposed approach comes out ahead in both the best documented test
loss as well as the test loss in the last iteration. This shows the efficacy of our method extends to
large-scale Transformer models. We also point out that while the baseline model sees fluctuations in
performance as training progresses, with proper regularization our method is more stable as training
progresses.

Table 8: Number of parameters for the models, best and final test accuracies (with standard deviation)
across three trials for the GPT-2 and Shakespeare dataset experiment. We use test loss as the measure
of model performance.

Method/Exp. Para. Count Best Test Loss Final Test Loss
Baseline 123.7M 4.91± 0.001 5.18± 0.032
OT-Trans. (Ours) 123.7M 4.87± 0.035 4.96± 0.012

Text Generation: GPT-2 on OpenWebText Dataset. Lastly, We conduct a large-scale exper-
iment on text generation using GPT-2, trained on the OpenWebText dataset [29]. The dataset is
approximately 17GB in size, with the training data containing around 9 billion tokens and the test
data containing about 4 million tokens. We use the GPT-2 model as the baseline, the Transformer
architecture has in total 12 layers, 12 attention heads and embedding size of 768, as a result, the
model has 123.7M parameters in total. We use the same architecture to parametrize OT-Transformer.
For OT-Transformer, we use 10 time steps for the numerical integration and set λ = 1. We run a total
of 60, 00 iterations for training. The learning rate decays from 6× 10−4 to 6× 10−5 over the course
of training. Given the large scale of the experiment, we perform only one seeded trial for each model.
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Figure 7: Training and test loss for the GPT-2 on Shakespeare (word-level) experiment.

We use the example to test the performance of our method on not only large models but also large
datasets.

We present the results in Table 9, we see that our OT-Transformer outperforms the baseline GPT-2 by
a sizable margin in both best test loss and final test loss. These results highlight the ability of our
model to outperform established baselines in large-scale and realistic experimental settings.

Table 9: Number of parameters for the models, best and final test accuracies for the GPT-2 and
OpenWebText dataset (9 billion tokens) experiment. We use test loss as the measure of model
performance.

Method/Exp. Para. Count Best Test Loss Final Test Loss
Baseline 123.7M 3.20 3.21
OT-Trans. (Ours) 123.7M 3.02 3.03
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Figure 8: Training and test loss for the GPT-2 on OpenWebTest experiment. The Test loss is computed
every 1,000 iterations.
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