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Abstract

The Smale-Birkhoff Homoclinic Theorem and Melnikov’s Method are two very
useful tools for studying the onset of chaos and the complicated mixing patterns that
sometimes occur in time-periodic perturbations of certain planar dynamical systems.
The homoclinic theorem proves the existence of a subsystem topologically equivalent
to the shift on two symbols occurring in certain maps possessing a homoclinic orbit
to a hyperbolic saddle point. Melnikov’s method provides a direct way of calculating
when such maps will occur in a perturbed planar dynamical system. This method,
coupled with the homoclinic theorem, has been widely used to study the onset of
chaos in many dynamical systems containing homoclinic orbits {See Guckenheimer
and Holmes [1983] pp.184-193,426 for a discussion of the many applications that
have been studied). We extend the planar homoclinic theorem to the case of a
heteroclinic orbit connecting a finite number of saddle points. This extension will
enable us to apply Melnikov’s method to some interesting systems with heteroclinic

cycles as well as ones with homoclinic orbits.

Many interesting two dimensional fluid dynamical models can be viewed as pla-
nar dynamical systems with heteroclinic saddle connections. We study the Kelvin-
Stuart Cat’s Eye flow, a well known model for a pattern found in shear layers. This
model is a planar dynamical system possessing an infinite number of heteroclinic
saddle connections involving two fixed points each. We also study a planar lattice
flow in which we find groups of four saddle points linked by heteroclinic orbits.
The lattice flow is an interesting model for certain convection patterns as well as
for nonlinear Taylor vortex flow. In the unperturbed case, the above two flows are
steady solutions to the inviscid Euler equations and thus have a direct Hamiltonian
formulation. We thus apply the simplified Hamiltonian formulation of Melnikov’s
method to find chaotic motion and mixing occurring in time periodic perturbations

of these two planar flows.

The third application of Melnikov’s method presented here is of a somewhat
different nature from the first two. We examine the evolution equations for an ellip-
tical vortex in a imposed strain. These equations have a Hamiltonian form based on

a dimensionless time parameter. The most physically interesting perturbations are
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based on real time and so we are forced to study a non-Hamiltonian dynamical sys-
tem with a homoclinic orbit. We apply the non-Hamiltonian version of Melnikov’s
method to find chaotic dynamics occurring in the case of periodic stretching of the

straining flow in a third dimension.
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0 Background Information

0.1 Dynamical Systems

A good introduction to dynamical systems can be found in the paper by Gucken-
heimer [1979]. Guckenheimer and Holmes [1983] present a thorough account for the

reader who is more familiar with the standard termirology.

Dynamical systems come in two forms, the discrete case and the continuous
case. A discrete dynamical system on a manifold M is a diffeomorphism ¢ : M —
M. We obtain a discrete family (@, M) by taking ¢ and its iterates ¢* where k € ZZ.
In the continuous case, we have a one parameter group of diffeomorphisms ¢, that
vary continuously in time. A continuous family will yield a discrete family by fixing
some time t¢ and setting ¢ = ¢¢,. Locally, we characterize ¢; by a differential

equation £ = f(z) where z € M. ¢, is then the solution to the equation

3 (ou@lier = Flor(@))

Such a system is called autonomous is that the vector field of the flow is time

independent.

Given a nonautonomous system of the form
&= f(z,t) =€ M,

we can turn this into an autonomous system on M x IR:

z = f(z,s)
=1 (z,9)€e MXRR.

In the case where f(z,t) = f(z,t + T) i.e. f is T-periodic in time, we have the
autonomous system:

& = f(z,6)

f=1 (z,8) € M x S*.



0.2 Fixed Points, Stable and Unstable Manifolds

Given a dynamical system ¢z = f(z), a point z¢ where f(zo) = 0 is called a fixed
point. In the neighborhood of a fixed point, the flow is approximated by the linear
system £ = Df(zo)¢. Here, Df denotes the Jacobian matrix [0f;/0z;]. If D f(zo)
has no eigenvalues with zero real part, g is called a hyperbolic fixed point and the
asymptotic behavior of the system near z¢ is governed by the linearized equation.
In particular, the local stable and unstable manifolds are approximated by the
eigenspaces of Df. We define the stable and unstable manifolds as follows:

Wizg)={z €M | ¢iz)—> 2z as t— oo},
Wh(ze)={z €M | ¢ilz)—>z0 as t— —oo}

In the discrete case a fixed point of ¢ is simply one that satisfies ¢(z¢) = 0. The
fixed point is hyperbolic if Dy|,, has no eigenvalues of unit modulus. In such a

case we define the stable and unstable manifolds of z¢ by

Wozg)={zeM | ¢F(z) > 20 as k— oo},
Whzo)={zeM | ¢*z)—>2z0 as k— —oo}.



0.3 Poincaré Maps

Suppose we have a periodic orbit v of a flow s in IR™. Let X be a local cross
section of dimension n — 1 so that the flow is everywhere transverse to L. Formally,
this means that f(z)-#(z) # 0, Vz € I, where n(z) is the unit normal to T at z.

the Poincaré map

P(q)
/

Given U C I, a neighborhood of p € <, define the Poincaré map P: U — I by
P(q) = ©-(g) where 7 = 7(g) is the smallest time ¢t for which ©¢(g) returns to I.
Here 7 depends smoothly on ¢ and is in general not T, the period of ~. However,

r—T asqg—p.



0.4 Planar Fluid Flow and Hamiltonian Systems

A planar autonomous Hamiltonian system is of the form

. 8H
T ey
. _8H
Y= 8z

where H is a function of z and y. Streamlines of the flow are simply constants of
H. The Euler equation describing the motion of an ideal, non-viscous fluid is

Di —»

—— =—Vp+F.
Here, % is the vector fluid velocity, p the pressure, p the fluid density and F an
external force. DA/Dt = 8A/8t + (u- V)A is the convective derivative. Let w =
V x u be the vorticity. For a two dimensional incompressible flow with conservative
force, we have V-4 =0, V X F = 0. We take the curl of the Euler equation to

obtain the vorticity equation

Du _
Dt

In two dimensions, define % = (u,v). We have a scalar vorticity w = 8;v — dyu. By

0.

incompressibility, V - u = 0 which implies that 8;u = —8yv. Thus, there exists a
stream function ¥(z,y,t) so that

U = ay\IJ, v — —3,,\11

For a steady flow, ¥ is time independent and the velocity of the fluid describes a

planar Hamiltonian flow. We see that for a general ideal planar flow,
w=—-AT.

In the case of an irrotational flow, w = 0 and u + iv satisfies the Cauchy-Riemann

equations. The fluid velocity defines an analytic function in the complex plane.

Discussion of the Euler equations and vorticity in ideal fluids can be found in
Chorin and Marsden pp. 24-42. A mathematical discussion of the general stream
function in hydrodynamics can be found in Arnold [1984] pp. 333-337.
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1 Extension of the Homoclinic Theorem

The ideas for the homoclinic theorem were first laid out by Birkhoff [1935]and were
developed by Smale [1963]. We consider a planar diffeomorphism ¢ possessing 2
hyperbolic saddle point p whose stable and unstable manifolds intersect transversely
at a point ¢ (see fig. 1.1). A result of this theorem is that ¢ possesses a subsystem
equivalent to a shift on two symbols.

figure 1.1
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We extend this theorem to the case of N fixed points joined by transverse saddle
connections (see fig. 1.5). The homoclinic theorem is proved by constructing the
horseshoe map and showing that it possesses the shift as a subsystem. One must
then show that ¢ posses the horseshoe map as a subsystem. We construct the
generalized horseshoe map, expanding on the machinery of Moser [1973] in his
description of the map on the unit square. Using a combination of ideas from
the proofs of the homoclinic theorem as outlined in Moser and Guckenheimer and
Holmes [1983], We prove the heteroclinic theorem by exhibiting a subsystem in
equivalent to the generalized horseshoe map.



1.1 The Horseshoe map and the Shift on Two Symbols

We first define the horseshoe map used in the homoclinic case.

figure 1.2 c
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The Horseshoe Map

The horseshoe map is a topological mapping of the unit square @ into the plane such
that ¢(Q) NQ has two components U, U,. The preimages of U, and U, are denoted
by Vi = ¢~} (U:), ¢=1,2. V; and V; correspond to vertical strips connecting the
upper and lower edges of @ (see fig. 1.2). The iterates * of p are not defined in

all of @, so we construct the invariant set
00

I= ) o7HQ),

k=—co
in which all iterates ©* are defined. Associated with each point p of I is a bi-infinite
sequence (...8—1,80; 81,82...), 8; € {1,2} of ones and twos. Where ¢~%(p) € V,,
or ' -

PE n ‘Pk(Vu)'

k=—c0
On the set S of all such sequences, we define a map ¢ by (0s); = s;41. All the
elements of s are shifted over by one. This provides a mapping 7 : I — § with
1@ |1= or as long as 7 is invertible. We introduce a topology on S as follows:
Given 8* = (...,8%,,8% ,85;31,85,...) € S then U; = {s € S|sx = 83, (|k| <)}
form a neighborhood basis for s*. We see that the horseshoe map possesses periodic
orbits of arbitrary period, as well as an orbit which comes arbitrarily close to all
points of I. This last orbit is obtained by constructing a sequence which contains
all possible finite strian of 1’s and 2’s.



1.2 A Generalization of the Horseshoe Map

Consider a set of N disjoint squares @y in the plane and a map ¢ : UQwx — R?
such that ©(Q;) N Q; is a horizontal strip in Q; and e(Qi) N Qis1 (moa ny is 2
horizontal strip in Q:41 (mod N)-

figure 1.3
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Here it is not important how each square Q; is oriented with respect to the other
squares, only that o(lJ; @i} N Q; are horizontal strips in @;. Our invariant set will

thus be o
1= N ¢ *JQw

k==—o00 £
We will associate with each point p € I a bi-infinite sequence (..., s-1, S0; 31, 82...} €
5! of N consecutive symbols where

S8 ={s|s;€(1,.,.N), 8iz1=8 or Sip1=8+1 (mod N)

such that ¢~ *(p) € @Q,,. Under the appropriate conditions we want to show that
there is a one to one correspondence between points of I and sequences s € § ‘.
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We must introduce some definitions to make the above ideas more precise.
Given a square @ in the plane, introduce local coordinates z and y on @ so that Q
becomes the unit square (see fig. 1.4).

figure 1.4
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Given 0 < u < 1, we say that y = u(z) is a horizontal curve if 0 < u(z) < 1 for
0< z<1and |u(zy) — u(z2)] < plzy —zp] for 0 < 2y < 23 < 1. If u; and uy(z)
define two such horizontal curves and if 0 < u1(z) < u2(z) <1 then

U={{z0<z<1u(z) <y <uy(z)}

is called a horizontal strip. Define d(U) = maxocz<i1(u2(z) — u1(z)) to be the
diameter of U. Similarly, a vertical curvez = v{y), 0<y<1, 0<v(y)<1has
lv(y1) — v(¥2)| < sly: — ¥2]/ in 0 € y; < ya < 1. A vertical strip is defined in the
same way as is a horizontal strip. '

Lemma 1.2.1. Given horizontal strips Uy, Us, ... in Q@ with U; C Ui, if d(U;) — 0
as { — oo then [, Un is a horizontal curve.

Proof: This follows because horizontal curves are compact. A similar result holds

for vertical strips.

Lemma 1.2.2. A horizontal curve y = u(z) and a vertical curve z = v(y) intersect
in exactly one point.
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Proof: A point of intersection (z,y) is a zero z of £ — v(u(z}). Also,

fo(u(z1)) — v(u(z2))| < plu(z1) — u(z2)|
< pPlay — 24

u <1

Thus z — v(u(z)) is strictly monotonically increasing. Furthermore, z — v(u(z)) <0

for £ = 0 and is > 0 for z = 1. Thus = — v(u(r)) has precisely one zero.

We can now precisely define our map ¢: Let @y, Q@a2,...,@Qn be disjoint rect-
angles in the plane. Let z;, y; be local coordinates for @; such that Q; is the unit

square in z;,y; and ¢ is a linear map in Q;. We further assume:

(A1) Let Vi3, Vig, Va2, Vas,..., Van, VN1 be 2N disjoint vertical strips with V;; C
Q:. Let Uyy, Uz, Uaz, Uss...,UnnN,Un1 be 2N disjoint horizontal strips with U;; €
@;. We require that ¢(V;;) = U;j: Moreover, we require that vertical boundaries of
Vij get mapped to vertical boundaries of U;;, and the same holds true for horizontal

boundaries (see fig. 1.3).

(A2) IfVisaverticalstripin Q;thenfori=jori=j—1 (mod N), ¢~ }(V)N
Vij = ﬁ-_,- is a vertical strip in @; and for some fixed v (0 < v < 1), we have
d(‘?,-j) < vd(V;;). Similarly, if U is a horizontal strip in @, then for j = ¢ or
j=t+1 (mod N) we require that o(U)NU;; = ﬁ,-_,- is a horizontal strip in @Q;
with d(T;;) < vd(Us;).

We have the following theorem:

Theorem 1.2.1. If ¢ is a homeomorphism in the plane satisfying the above as-
sumptions (A1) and (A2), then it contains the shift o on the sequences in S as a
subsystem. There exists a homeomorphism 1 : {{ J Q;) — S such that o1 = Tp.
In particular, 771(S) is a closed invariant set in |} Q.

Proof: We will construct the map r=: 8 — |J Q: and then show that it satisfies

the necessary properties.
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Given s = (...,8-1,80;81,52...) € S define V,, = @Q,, now define inductively
Vios...sm = VeoNp—=1Va,s,...s,, ) for m > 2. By the assumptions, d(Vys,...0,,) < v™

50 d(Vsysy...s,,) — 0 as m — oo. Also

Vaos1...sm - {P € UQI:‘Pk(p) € st(k = 1:"'$m)}

defines a vertical strip in Q,,. By Lemma 1.2.1, V(s) = limm—oo(Vigs;...0,, ) 15 @

vertical curve in Q.

Defining U(s) analogously, we can apply Lemma 1.2.2 to determine that the
two curves intersect in exactly one point, 771(s). Thus, we see that tau™ is well
defined, thus T is on-to-one. It remains to show that + and 7! are continuous. If s
and s' agree in the kth components for |k| < m, then 771(s), 77}(s") both belong
t0 Vigsysgeom 804 Usge_; .o, Since d(Vgs,..0,,) S v™ and d(Usgs_;..s_,) < v™,
we have |771(s) — 771(s")| € 2(1 — pso)~*»™. Thus 7 is continuous. Since 77! is

one to one continuous on a compact set, T is continuous.

As part of the analysis in the following section, we use the following case of a
lemma due to Palis [1969]. We state it here without proof:

A-lemma. Given a planar diffeomorphism ¢ possessing a hyperbolic fixed point p
and a point g where the stable and unstable manifolds of p intersect transversely,
then for any ball BT around p in W*(p) and any € > 0, then there exists a ball
BF in W*¥(p), intersecting W*(p) transversely, which under iterates of ¢ becomes e

close to B".
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1.3 A Heteroclinic Theorem

Theorem 1.3.1. If a diffeornorphism ¢ : R? — IR? possesses N fixed points
P1,P2, .., PN that are non-degenerate hyperbolic saddle points, and there exist
points g; at which the unstable manifold W*(p;) intersects the stable manifold
W*(pit1 (mod n)) transversely for all i, then @ possesses an invariant set I on
which some iteration p* is homeomorphic to the shift on §', the set of bi-infinite
sequences of N consecutive symbols (as described in the preceding section).

proof: We want to show that ¢ possesses a subsystem satisfying the require-
ments for the generalized horseshoe map of section 1.2. The stable and unstable
manifolds are depicted in fig. 1.5.

figure 1.5

Claim: we can choose an integer & and neighborhoods U; of p; such that the
following conditions are satisfied (see fig. 1.6):

13



(1) There exists a local coordinate system in U; so that ¢ is linear, and U; is the

unit square.

(2) 9 € ©*(U:) and i € ¥ (Ui1  (moa w)) for all 4. '
(3) For R; = (pk(U") n ‘P“k(UH-I {mod N))’ we have So_k(Rl' n Wa(pi+1 (mod N)))
intersects go"‘(R,-_l {(mod NYNW*"(pi_y (mod N)) transversely in exactly one point.

figure 1.6

©*(Ric1 N W (p;_y))

Ui

e *(Ri N W*(pit1))

55

We choose U; so that (1) is satisfied for all :. Note that if we shrink each
Ui, (1) will still hold. Given any U; satisfying (1), by the definition of stable and
unstable manifolds, there exists a k such that (2) is satisfied. Note that k depends
on the sizes of the Uy, which we will continue to shrink until all the above conditions

are satisfied. By the A—lemma of Palis, o™ *(R; n W*(p;,, (mod N))) approaches
W*(p;) and ©*(R;_, (mod N) "W¥(Pi—1 (moa N)) approaches W*{p;} as k — oco.
Thus for k sufficiently large and the U; sufficiently small, (3) is satisfied. Transversal

intersection results because W*(p;) and W*¥(p;) intersect transversely at p;. Once
(8) is achieved, we can find U; sufficiently small so that there exists u; for each p;

14



so that ¢ ~F(R;) is a vertical strip and @*(Ri_; (moa n)) is a horizontal strip in
U;. By our construction, we are assured that horizontal boundaries get mapped to
horizontal boundaries and vertical boundaries get mapped to vertical boundaries.
We have showed that ¢?* satisfies the first assumption (A1) of theorem 1.2.1. The
second assumption is easily fulfilled by the local compression properties of =2,
There are a finite number of vertical strips. Since ¢ is linear in each U;, the part
of a strip that stays in U; antomatically get compressed by some fixed amount.
The part of a vertical strip that travels from U; to ¥; along W*(p;) and W*(p;)
will be compressed as it travels along each piece, as we see in the diagram. Thus,
there exists some 0 < v < 1 such that d(f},-j) < vd(V5) for o~ H(V)INV;; = 17,-,-. A
similar result holds for the horizontal strips. We have satisfied both assumptions
(A1) and (A2) of theorem 1.2.1. Thus, w2?* possesses a subsystem equivalent to
the generalized horseshoe map which in turn possesses a subsystem topologically
equivalent to the shift on N consecutive symbols.

This last subsystem is termed “chaotic” because of the interesting properties
it exhibits under iterations of ¢2¥. We have orbits of arbitrary period greater than
N as well as dense orbits. The bi-infinite sequence corresponding to a dense orbit
is formed by concatenating all possible finite sequences of consecutive symbols. We
further note the unpredictability of this subsystem. Any two orbits whose sequences
are the same for some finite length, may have completely different sequences further
on. Physically we will find these orbits near each other under a finite number of
iterations of ¢2¥, yet the orbits diverge as we proceed past the point where their
sequences agree. Thus, knowing where a point will be for a fixed finite time in no

way predicts where it will be at later times.
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2 Melnikov’s Method

Now that we know that the planar diffeomorphisms of theorem 1.3.1 yield wild
chaotic patterns, we would like to find a way of determining whether or not a
specific map satisfies the conditions of this theorem. Melnikov [1963] devised a
method for finding transversal intersection of stable and unstable manifolds given a
time-periodic perturbation of a system with a saddle connection. Here we present
Melnikov’s method in a style similar to that of Guckenheimer and Holmes [1983]
(pp. 184-9). We generalize their presentation to the case of a heteroclinic saddle
connection in a system that is not necessarily Hamiltonian.

2.1 The Poincaré fnap and the Melnikov function
Consider the planar dynamical system:
(A) z=f(z) +eg(z,t) z€R? g(z,t) =g(z,t+T), 0<e<<1

where for € = 0 we have a saddle connection Ty between two nondegenerate hyper-
bolic saddle points p; and p,:

figure 2.1

The unstable manifold W (p;) of p; and the stable manifold W§(p2) of p, coincide.
Here we include the homoclinic case where p; = p;. Associated with (A) is the
suspended system :

(B) = f(z)+eg(z,0), (z,0)eR*xS!, (§'= lR/T):
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For ¢ sufficiently small, (B) possesses a Poincaré map: Pj° : &y, — I, where
Ty, = {(z,6) € R? x 1|8 = 15} is a global cross section of the flow. Let Ff(zo,10)
be the flow map of {B) on IR x S1. P} is obtained by a projection onto the first
factor: Plo(z) = n(F%(z, 1)) where 7((2,8)) = z. Here P! is a map from IR? to
IR?.

Our assumptions imply that for ¢ = 0, Pf(z) has fixed points at p; and p,
and so the suspended system has circular orbits v* = p; x 5,72 = py x St with
stable and unstable manifolds W (y') and W¢(+?) intersecting to form a “cylinder”
Iy x $. Such saddle connections are quite unstable and are thus expected to break

under small perturbations.

However, for ¢ sufficiently small, we have perturbed saddle points pl,p? €
$,, which possess local stable and unstable manifolds WX(pl), W2(p2) close to
Wi(p1), W§(p2). Using the implicit function theorem, invariant manifold theory,

and standard Gronwall estimates, we have the following two results:
For e sufficiently small,

(1.3.1) The Poincaré map P! has unique hyperbolic saddle points p, = p1 +
O(e),p? = p2 + O(e).

(1.3.2) Orbits ¢2(¢,t0) and g*(%, %) lying in W*(+2) and W*(;) and based on Iy,

can be expressed as follows:

Q*(t,t0) = ¢°(t — to) + eqt(t, o) + O(?);  t € [to, 00),
@2t t,) = ¢°(t —to) + eqi(t,40) + O(e?); t € (—o0,t0),

where gq is the solution to the unperturbed system that coincides with T'y.

The above statements imply that ¢f and ¢} are uniformly approximated by

solutions to the equations:
§i(t,to) = DF(g°(t — to))ai(t,te) + 9(a°(t —to)st); t2+to

gt (t,to) = DF(¢° (¢ — t0))af (¢, t0) + g(¢°(t — t0),2); 1 < to.

17



We define
g¥(to) = ¢ (to, to),

gz (to) = gz(to, to};
d(to) = g¢ (to} — gc(to)-
We have that g¥(to), ¢2(to) are approximated by the unique points on W* (pl) and
W*(p?) lying on the normal f+(¢%(0)) = (—F2(g°(0)), f1(g°(0)))T to IO at ¢°(0),
closest to ¢°(0) (see fig. 2.2). (1.3.2) Implies that

dtto) = LEOU) i) | o(e)

where a A b = a1b3 — byas.

figure 2.2

F*(¢°(0))

A
g¢ (to) )
. P

Déﬁne the Melnikov function:
©o pt=tg
M) = [ 1@ - ) Aala®le—to) Yexp( [ DI
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In the case where the unperturbed system is Hamiltonian, we have irDf(¢%) =

0 and the Melnikov function becomes
M) = [ @t~ t0) Aol ~to) )

The examples of sections 3 and 4 are both Hamiltonian systems. Two useful forms

for computation are:

M(to) = = F@® (@) A g(¢®(®),t + to)exp(jo trDf(q"(s))ds)dt

-0

in the non-Hamiltonian case and
[s =]
M) = [ F®) Aale (Ot + to)at
-0

in the Hamiltonian case. We note that M(%o) is itself a periodic function in fo.

Using the second form, we have that

M(to+T) = /;00 (@) A g(d®(t),t + 1 + T) exp(/nt ter(qG(s))ds) di

- " H@()) A g(°(E),t + to) exp ] trDf(¢"(s))ds)dt
= M(io),

since g(z,t + T) = ¢{z,1).
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2.2 Melnikov’s Theorem

Melnikov’s Theorem. Given the above conditions, and e sufficiently small, if
M(ty) has simple zeros, the W2(p?) and W2(p}) intersect transversely. If M(3o)
has no zeros in ty € [0,T] then W2(p2) N WZ(pl) = 0.

proof of Melnikov’s Theorem:

Define At,to) = f(a*(t — 1)) A (g¥(t,ta) — gi(t,t0)) = A*(t,t0) — A*(t,to).

Thus
A(tﬂ 3 tO)

“TA O
Also, As(t,to) = Df(g"(t — 10))§°(t — o) A gi(t,%0) + F(g°(t — to) A g5 (¢, to). Since

¢ = f(¢®), we have A® = Df(¢°)f(¢°) A af + f(°) A (Df(a)gf + 9(d> 1)) =
trDf(d°)(A*) + f(¢°)(¢°,1). Solving this ODE for A®, we obtain:

+ O(£%) = d(te)-

As(ooy tU) - As(tﬂs tU)

= [ (et = t0)) A g(a°(t — to), t) exp( ]0 D (g (s))ds) dt.

to )
However, A%(00,1p) = limi—co f(¢°(t — o)) A ¢i(t,%0) = O since f(p2) = 0 and
¢°(t — to) — p2 as t — oco. Similarly, we have that A%(tg,%p)

= f_ " Ha(t — 1)) A g(a°(t ~ to), ) exp( ] " trDf(¢(s))ds) dt.

Thus we have A(to, t0) = M(to). Since d(to) = O(e)M(to)+O(e?), if M(to) changes
sign, then (q*(to) — ¢§(%o)) must change sign, indicating a value t where ¢¥(2,1p) =
g2(t,tp). W2(pl) and W2(p?) must intersect, and will do so transversely if M(%o)

has simple zeros.
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3 Kelvin-Stuart Cat’s Eye Flow

Consider the following flow in the plane:

asinhy

acoshy + va?2 —lcoszx
. Va2 —lsinz
Y acoshy + vVa? —1cose

This is a Hamiltonian system with Hy = log{acoshy++/a? — 1cosz). It is a model
for a pattern found in shear layer flow (see Stuart [1971] and Holm, Marsden, and

T =

Ratui [1979]). The parameter a controls the shape of the cat’s eye with a larger
a corresponding to wider “eyes”. Here we consider only a > 1. Streamlines are
constants of Hy (see fig. 3.1).

figure 3.1
~n

V\N

na s i i

v
We have fixed points at (2« N,0) that satisfy the conditions for Melnikov’s
method. Consider the upper trajectory (z¢(t),y0(t)) from (0,0) to (27,0). Along

this trajectory we have zo satisfying the equation:

2
a\/(\/——a‘;—__l 41— cosa:o) (“i’;l) —1

at++va2—~1

.
N

g =

This implicitly defines z¢ by

‘- /’”“ (a + Va2 — 1)dz .
" a\/(“'";;l Ycosx — = = 1)2 —~1)
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By changing variables to s = 1 — cos z, this integral becomes

/l—cos To Wa;j +a .
2 s\/(s+7§§-_=i=)(2—s) :
This can be solved exactly to yield:

cos:t:o=1—( 8a )( -1 — ),
atvaE =1 et Bte

_( az—1 ) 4a ﬁ_za»—\/a?—l
7= a++vVa?—1 \/&2*1’ a++va2—1

along the upper saddle connection from (0,0) to (2x,0).

3.1 Periodic Stretching of the Cat’s Eye Flow

Instead of examining a general perturbation ¢(Z,t), consider a perturbation of the

parameter a. If we take a to be a time varying parameter of the form ag + £b(t),

where b(t) is periodic with period T, we get a phase diagram where the “cat’s eyes”

are periodically stretched and compressed by an ¢ amount. This corresponds to a

time dependent solution to the Euler equation with external force.

To first order in e, our perturbed equation is:

ag sinhy eb(t)sinh y cos

" agcoshy + Vai —lcosz  y/ai —1{apcoshy + Va2 — 1cosz)?

j= \Jai — lsinz + Aeb(t) sin z cosh y
agcoshy + /a2 —lcosz  +/aZ — 1{ag coshy + 1/a§ — 1cosz)?

£

The driving force for our perturbation is thus

A QMY e (—Sinhycosa:) |

a2 — 1 sinz cosh y
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The perturbed Hamiltonian for this system is:

2 _
H=Hy+ eb(t) (V% 1008hy+aocos:c)

Va2 — 1\ apcoshy + y/a — 1cosz
ﬁHﬁ +H1.

Along all streamlines of the unperturbed flow,
H; oc b(t)(1/ a% — 1 coshy + ag cos z).

Since the saddle connections are streamlines of the unperturbed flow, how they
break up under a perturbation depends only on the perturbation at the points of
the saddle connection. Thus, the Melnikov function for the above perturbation is

identical to the one corresponding to the simpler perturbation:

Hy = eb(t){(\/a? — 1 coshy + acos z).

If we let b(t) have the form cos(kt), then this perturbation corresponds to the

superposition of four waves:
/az —1cosh y(ei(z—kt) + ei(z-i-kt)) + a(ei(x—kt) + ei(:c-«l-kt))_
Here z is the third coordinate and we take the cross-sectional flow in the plane

z = 0. The wavelength of the perturbation is exactly equal to the length of one of
the Cat’s Eyes. The wave speed is allowed to vary.
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3.2 Properties of the Melnikov Function for Periodic Stretching

Consider the upper trajectory (zo(t), yo(t)) from (0, 0) to (27, 0) for the unperturbed
system.

The Melnikov function for this trajectory is
o0

M(to) = J[ 4 [(ao sin zo(t) cosh yo(t) sinh yo(t)

o

4 4/a% — 1sinh yo(t) cos zo(t) sin z(2))b(t + to))] dt,

o1 ( 1 )
s APy~ iy
Which can be reduced to
M(to) = / O (sin zo(#) sinh yo ()b( + t0))dt

where

1
Cy = .
27 /@ — 1(ao + /a2 — 1)

Here we have exploited the fact that

ag cosh yo(t) + a? — 1coszo(t) = ap +4/ad — 1.
Claim. M(ty) is well defined.

Note that -
f \(sin zo(t)) sinh yo(t)|d¢

— OO

6
=2 f sin zo(t) sinh yp(¢)dt

—0o0

_ Aao +GV% igl‘ D] ]_ Ooo jo(t) sinh yo(t)dt

= 2(&0\-{/-53___ ﬁ“ D) [coshy(t)]

4 Vai -1
= (a°+aa° ) < .
1]

Thus M(#,) is a convergent integral.

0
—o0
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Claim. fﬂT M(to)=0.

This is due to the fact that M(to) is a convolution with an odd kernel. We

have:

T T poo
] M(to)dtg = / '[ Cg sin .'l?o(t) sinh 'yo(t)b(t -+ to)dtdt(}.
0 0 -0

Since b(t) is bounded, we can use Fubini’s theorem to interchange the order of

integration:

oo T
= ] Ca sin zo(t) sinh yo () / b(t + to)dtodt
0

-0

H

/ C, sin zo(t) sinh yo (¢) Bdt.

Where B = fOT b(t)dt. By simply examining the phase portrait, we see that
sin z¢(#), sinh yo(t) are respectively odd and even functions of t. The above integral
is thus zero. Similar results yield fDT M(to) = 0 for all other saddle connections in
this system. Since M({;) has mean value zero, we expéct that it will have simple

zeros for a large class of perturbing functions b(%).

Consider the case where b(t) = cos(kt). The above Melnikov integral then

becomes

/ C3 sin zg(t) sinh yo (1) cos k(2 + to)dt

= —sin(tg) / C, sin zo(#) sinh yo(t) sin(kt)dt
= — sin(to ) Ma(k),
where we define
Mo (k) =] Cg-%[cos xo(t)] sin(kt)dt,
Csz = —(ag + ag — 1)02.

Thus,
e’ — g~

iy r— sin(kt)dt,

)= [

Sao
Ca= 0T =)
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Evaluation by residues (see Appendix) yields, for k # 0, (-ﬂ%:)Mo(k) =
[e“’l"‘"’m _ ( e~ imi2m )(m sinhma)]
2sino 1 — e=|mi2w sin o ’

k
ot a = cos (B /2).

m =

Thus, My(k) is non-zero almost everywhere. M(%y) has simple zeros for almost all
k. A similar analysis shows that the lower trajectory has M(to) = sin(to)Mo(k}) so
that this trajectory will break up when the upper one does. Since both trajectories
break up to yield transverse intersection of stable and unstable manifolds, we have
satisfied the requirements for the heteroclinic theorem (Theorem 1.3.1) with N=2.
Our perturbed system has a chaotic subsystem topologically equivalent to a shift

on two symbols.

26



3.3 Mixing in the perturbed Cat’s Eye Flow

By exploiting the symmetry of this model, we see that this perturbing function
breaks up all trajectories transversely. In fact, we can view both the perturbed and
unperturbed cases as flows on the cylinder. Here we take z € R/2%, yeR. Al
of the saddle points are identified and we obtain two homoclinic orbits to a single
saddle point. We can now use the standard homoclinic theorem to find a shift on

two symbols.

Based on the proof of the theorem from the first section, we expect mixing to
occur at least within the region around the fixed point. We know that there exists
a neighborhood U of the fixed point (0,27 N} on which the Poincaré map for this
system acts like a version of the horseshoe map. Qualitatively, we might expect

such a mixing pattern to occur:

figure 3.2a

Unperturbed
Cat's Eye flow
Lines are part-

icle trajectories
Top and bottom
layers do not
mix at all.
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figure 3.2b

8]

U inter-
sects
itself in
< horizontal
= strips.

Perturbed Cat's Eve flow:

Here we see that that the top and bottom layers
are mixed into the cat's eyes region and event-
ually into each other.

Viewed as a flow on the plane, we see that the perturbed system has the same
geometric structure as the perturbed sine-Gordon equation. (Holmes [1981}, section
3) The perturbed Cat’s eye flow has a subsystem isomorphic to the shift on the
symbols “+” and “~", where the “+” corresponds to traveling ‘downstream’ along
an upper trajectory and the “—" corresponds to traveling ‘upstream’ along a lower
trajectory (see fig 3.3). In the spirit of figure 3.2, this provides a mechanism for
fluid inside one cat’s eye to travel both upstream and downstream. This mechanism
does not exist for the unperturbed case, since flow within an ‘eye’ will remain there
for all time.

figure 3.3

Ui

In the perturbed system, all saddle connections are broken up to give us transversal
intersection of stable and unstable manifolds. The heteroclinic theorem tells us that
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at each fixed point p, = (27n, 0), there is a neighborhood Uy, a unit square in local
coordinates, such that for some fixed time T*, the flow wp- maps U; to intersect
U;—1 and U4, in horizontal strips. A simplified model of the dynamics present is
pictured in fig. 3.4.

HUARE ©(Uit1)

Here each U; is intersected by the horizontal strips H, i-1,i = p{Ui—1) N U; and
Hiy1i = oUin) N ;.

By the symmetry of the flow and its perturbation, we can choose each U; so
that Uy + 27 = Usyy and p(U;) + 27 = o{U;4;). Our invariant set is

==

I= qo_"(U(H.-+1,,-UH¢_1,.-)).

k=—00

I can be decomposed into disjoint sets I; = U; n I. For any given t, we have a
one-to-one correspondence between I; and S*, the set of all bi-infinite sequences of
“+” and “-";
7L — §%
[r@))i= + if ©'(z) € Ur = o' (z) € Upyy
= — if pl(z) €Uy = "t (z) € Us_,.

Thus there is a set S* of sequences corresponding to each I;. We see that
there is a mechanism for pieces of fluid to move rather chaotically both upstream
and downstream as well as for fluid within each ‘eye’ to mix with fluid in other ‘eyes’.
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This mixing and chaotic motion was not present in the unperturbed Cat’s Eye flow.
The fact that this perturbation leads to such chaos for almost all k indicates that

such mixing may be rather common in the actual shear layers.
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4 Planar Lattice Flow

We consider the following flow:

&y = —sin(2rz, ) sin(27z,)
£ = — cos(27z) cos(2mz2)

a Hamiltonian system with Hy = (27) ! sin{27z,) cos(2nzz). This is a model for
axisymmetric Taylor vortex flow as well as for many convective flows (see Van Dyke
[1982], p. 76, 82 for photographs of these flows). If we take z; to be 2 moving
coordinate, these equations model the Rossby waves of geophysical fluid dynamics
(see Pedlosky {1982], p. 84).

figure 4.1
P N\
5 ) -
(0: Z)
N A ¥
3
0.2
N
1
0, -
. ( L] 4) .

This fiow is obviously doubly periodic, yielding a flow on the torus T = IR?/T where
T is the lattice {{n1,n2);n1,n2 € Z}.
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Viewed as a flow on the torus T, we obtain a system with heteroclinic orbits
connecting four saddle points. Melnikov’s theory can then be applied to perturba-
tions of this flow.

We can also map this flow onto a “smaller” torus T/ = IR*/T' where I' =
{(1/2(ny — n2),1/2(n1 + n2))}. Here we have exploited the periodicity in the vari-
ables (z; — x2),(2; + 2) as well as in 2; and z2. The flow on T" has only two
heteroclinic saddle points. By examining perturbed flows on 7", we can look for a
subsystem that is a shift on two symbols. This horseshoe like structure will result if
all heteroclinic orbits are broken up so that stable and unstable manifolds intersect

transversely.

4.1 Time and Space Dependent Perturbations

We consider two types of perturbations, ones that are functions of time only and
ones that have an added space dependence. In the purely time dependent case,
we have s?(t) as a perturbation to the velocity field, with fi(t) = fi(t + T) for
i = 1,2. This corresponds to an external driving force P, = ef'(t) which is uniform
in space at any given moment. This is physically reasonable as an approximation
to an external force which is time periodic and has an average space variation
much larger than the periodic lattice structure of the flow. For the vertical saddle

connections, the Melnikov function for this perturbation is

o0
My(to) = + f cos(2ma3(E))fi (¢ + to)dt
)
since sin(27z1) = O for these trajectories. Likewise for the horizontal orbits,
cos(2nz2) = 0 and so
o0
Ma(to) = + / sin(2re: (8)) fa ¢ + fo)dt

We see that the vertical and horizontal components of ? are decoupled. We
shall show by symmetry properties that f; and f; must satisfy the same conditions
in order for M, and M}, to have simple zeros. For this space-independent perturba-

tion, the I'-lattice symmetry is preserved and chaotic motion can be reduced to a
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subsystem isomorphic to the shift on two symbols. The following example presents

a spatially dependent perturbation that breaks up the I symmetry.
In general, a perturbing velocity of the form
( v1(z2,1)
>
1)2(.'1,'1 y t)

constitutes a solution to the two dimensional Euler equation with external force

Fome (Gl dlan)

A particularly interesting perturbation of this form is
. ('01 ) - (cos(27r:c2)oos kt) ‘
vy sin(27z; ) cos kt
This has a stream function
% cos kt[sin(2nz2) — cos(2mzy )],

which can be viewed as a superposition of linear waves traveling along coordinate
axes:

_(ei(21r:r:1+kt) + ei(27ra:1~—kt)) . i(ei(Zwmg-l-kt) _ ei(21r1:2—kt))_

This perturbation is geometrically interesting because it breaks up the I symmetry
and we are forced to consider heteroclinic orbits joining four points instead of two
points. We shall show that for almost all k, the saddle connections breaks up to

yield a subsystem topologically equivalent to the shift on four consecutive symbols.
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4.2 Explicit Calculation of the Melnikov Functions

Along an unperturbed horizontal saddle connection, we have
&1 = +sin(2rzy), T2 =0

and along a vertical connection

&g = +cos(2rze), £ =0.

In the case of the connection from (3,1

This has a solution z; = %rta.n“l(e‘%‘) which by symmetry properties of the flow

} to (0, i—), we have #; = —sin(2nrz,).

yields
) 26—21rt
in(2 =f—
sin(2nzy) e
along all horizontal connections and
28m21rt

005(271'3}2) - ﬂ:—m

along all vertical ones.

For a spatially independent perturbation, the Melnikov function of section 4.1,

for either saddle connection, is of the form

o ge—2wt
Mi(tg) pemn f Wf'(t +t0)dt.

If we expand f; into its Fourier series,

fi(t) = i (Ax cos(2mktT) + Bu sin(2wkt/T))

k=-00
we find that M;(tp) =
o0 . o0 26--2111
> |(Ak cos(2rkte/T) + By sin(2rkto/T)) g cos(2rkt/T)dt|.
k=—o0 —eo
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Evaluation by residues reveals

o0 . 1
Mi(tp) = Z (A cos(2mkto /T) + By sin(2mkto/T))( gy e’rklﬁT)°

k=—o0

Whether or not M;(#;) has simple zeros depends on the respective values of Ay and
By. For example, if f; = Ay + A; cos(2nkt/T), we require

2
|do| < |4l [e_ﬁk/zfp T ewk/?T]

for M;(tg) to have simple zeros. We see now that the class of perturbing functions
7 = (Acos(t), Bsin(t)) yields My(to) and My(te) with simple zeros for all saddle
connections. Applying the results of the first section yields a shift on four symbols as
a subsystem of the perturbed flow on T', and a shift on two symbols as a subsystem

of the perturbed flow on T".

For the spatially dependent perturbation

. ((:05'(211'.'::2 }Ycos kt )

sin(27z, ) cos kt

we find that, up to a change of sign, the Melnikov function for either a vertical or

horizontal saddle connection is

[s=} e—41rt

M(to) = 4COS(kte) - m")—z cos ktdt.

which we evaluate via residues to be
M(to) = coskt __k
a \ 47 sinh(k/4)
= cos kto Mo(k).

My (k) is nonzero for almost all k so that the Melnikov function will have simple zeros
and we have a subsystem topologically equivalent to the shift on four consecutive

symbols.
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4.3 Mixing in the Perturbed Lattice Flow

Under both perturbations, we expect some sort of mixing to occur that was not
present in the unperturbed case. In the perturbed systems, all connections are
broken up to yield transversal intersection of stable and unstable manifolds. As in
the cat’s eye model, at each fixed point py,n, = (%nl, -;—nz + %—), ny,ne € 7, we
have neighborhoods Uy, ,,, that intersect each other in horizontal strips under some

fixed time mapping of the flow (see fig 4.2).

figure 4.2

In the case of the first perturbation studied, we can exploit the T' symmetry to
obtain a subsystem topologically equivalent to the shift on two symbols. The per-
turbed and unperturbed systems are both flow on the torus T'. Under this sym-
metry, we can identify all clockwise rotating cells with each other and likewise all
counter clockwise rotating cells with each other. In the unperturbed case, these
patches of fluid do not mix. The perturbation satisfies the conditions of the hetero-
clinic theorem with two fixed points, yielding a subsystem of the flow topologically
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equivalent to the shift on two symbols. In the perturbed case we see mixing patterns

similar to those present in the Cat’s Eye flow (see fig. 4.3).

In the case of the second perturbation, we do not have the T’ symmetry. The
cells break up into two different clockwise and counterclockwise rotations(see fig.
4.4). ‘C)ﬁ the torus T we have four fixed points in the heteroclinic orbit and our
system breaks up to yield a subsystem topologically equivalent to the shift on four
consecutive symbols. In the previous case we have symbols 1 and 2 identified with 3
and 4. This is analogous to identifying the two clockwise rotations with each other
and likewise the two counter clockwise rotations with each other. Again we expect

similar mixing patterns to occur. (see fig. 4.5).

figure 4.3a ‘

- Clockwise Rotation

% Counterclockwise
Rotation
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figure 4.3b

U intersects itself
in horizontal strips.

u ' ¢ (unyNy

Different flow regions are mixed
together in a neighborhood of U.

figure 4.4

74 RN Clockwise Rotations

“ Counterclockw;i.'se Rotations
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figure 4.5

Again, U intersects itself in horizontal strips.

2k
U ¢ Ny

Different flow regions are mixed

together in a neighborhood of U.
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5 Motion of an Elliptical Vortex in a Strain Field

An important part of fluid mechanics is the study of vortices, their structure, and
how they interact with one another. In chapters three and four we examined two
well known two dimensional planar fluid models. Since organized vortex structures
are observed frequently, we would like to find a simple model for a vortex affected by
a field of neighboring vortices. As the examples of chapters three and four indicate,
the presence of multiple vortices in stationary planar fluid flow often results in fixed
points of the flow, between vortex structures, that can be modeled as hyperbolic
saddle points in a planar dynamical system. In a neighborhood of such saddle
points, the velocity field is roughly linear and can be locally approximated by a
simple strain. It is thus physically reasonable to model certain vortex interaction
locally as a single vortex in a straining flow. Moore and Saffman [1975], as well as

Neu [1984], describe vortex interaction that can be modeled in such a way.

We study the motion of an elliptical vortex in a three dimensional imposed
strain. We see that the evolution of such a vortex can be characterized as a planar
dynamical system that has interesting Hamiltonian and non-Hamiltonian formula-
tions involving the aspect ratio n = a/b and the angle 8 of rotation of the ellipse.
Here a and b correspond to the major and minor axes of the ellipse. We apply Mel-
nikov’s method to the evolution equations of the vortex to show chaotic dynamics
occurring in the presence of three dimensional periodic stretching of the imposed
strain. The actual analysis differs somewhat from what was done in the previous
sections in that we study chaos occurring in the evolution equation of the shape
and orientation of the ellipse as opposed to chaos occurring in the flow pattern of

an actual fluid model.
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5.1 Hamiltonian formulation of Exact Euler Solution

The Hamiltonian formulation presented below is due to Neu [1984] and represents a
three dimensional generalization of the exact solutions of an elliptical vortex in a two
dimensional straining flow (described by Kida [1981]). First consider a planar vortex
region in the shape of an ellipse with constant vorticity in the interior. The points
on the boundary of the region are solutions to the equation %; + %; = constant.
Following a potential theory calculation described in Lamb’s Hydrodynamics [1945],

we see that the velocity field inside the ellipse is linear:

(;) :ﬁ(a,b,e)(:),
0(a,b,6) = —— R(0) (_"b g) R(6).

Here a and b correspond to the major and minor axes of this elliptical cross section

and @ is the angle of the major axis with respect to the z-axis. R(6) is the rotation

] (cos e - sin@)
matrx .

sinf cosé

In three dimensions we have a cylindrical vortex region whose cross section
in the zy-plane is the above velocity field. We add an irrotational straining field
whose velocity is given by v = (v'z, —yy,v"2) where ' — v + 4" = 0 is required
for incompressibility. The combination of vortex and strain yields a fluid velocity
which in the zy-plane has the form U(a, b,6)(z,y)T where

Ua,8,6) = ——*R(6) (_"b g) R(6) + ('{) _"7)

The velocity field inside the vortex is again linear and the path of a fluid particle
on the boundary must satisfy the equation of an ellipse which we write in matrix

form:

(; ) E(a,b,6)(z y) = constant,

E(a,b,8) = R(6) (“;2 b_'iz) R(9).

Differentiating the ellipse equation yields
XTEX + XTEX + XTEX =0
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where X is the vector (z,y). Since X = U(a,b,8)X, we have the matrix evolution
equation,

E+UTE+EU=0

which we can write out explicitly in terms of a, b, and 6 to give us the evolution
equations for the elliptical vortex:

&+ (ysin® @ — 4' cos® §)a =0
b+ (ycos® 8 —v'sin’ )b = 0,

. wab 1 a’ + b .
O=Gagor g

These evolution equations have the following Hamiltonian formulation: let =

£ be the aspect ratio and 7 be a dimensionless time defined by %’% = ;“é"_z—l . Then
the evolution equations become
d_ oH_aty
dr— 88w
dd OH  n-1 1fy+fy

dr — 9y ._n(1+17) 2 w
2
H=log &E1° _ 17+7(n

(n— —1-)cos 26

—(1 4 —)s1n29

)sin 28.

We consider ~,7', and w to be in general time dependent parameters in this
equation. The total circulation of the vortex is I' = mabw which we know to be
constant, by the Kelvin circulation theorem (see p. 28, Chorin and Marsden [1979]).
The evolution equations imply that

d(;b) = (7' = 7)ab

so that
ab = Goboe(‘y'_‘r)t

which in turn yields
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Thus, when 4" =0, 4' —y ++" = 0 implies that v = v/. Our Hamiltonian system is
autonomous if and only if ¥/ = 0, 7,7’ are both constant. We will consider the case
where this autonomous Hamiltonian system is perturbed by a periodic stretching

of the strain where we set v = eg(2).

In the autonomous case, we have v = ', and are interested in the dynamics
indicated in the phase portrait for 0 < y/w < 0.15 (see fig. 5.1). There are
no heteroclinic orbits in the phase portrait for y/w > .15. The three interesting

regimes are depicted in fig. 5.1:

(1) For 0 < v/w < .1227, there are oscillating regions (bubbles close to the
log 7 = 0 axis) as well as rotating regions between the bubbles and the outer saddle

connections.

(2) At y/w = .1227 we have a bifurcation where saddle connections between

three fixed points exist for this value of vy/w only.

(3) for v/w between .1227 and .15, we have homoclinic saddle connections, the

interior of which represents an ellipse oscillating about the ray 8 = 7 /4.

The importance of the bifurcation is that in regimes (2) and (3) we no longer

have the possibility of a rotating ellipse.
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5.2 Real Time Formulation of Evolution Equations

In order to apply Melnikov’s method to the above Hamiltonian system, we would
need to consider time—period_ic perturbations of the dimensionless time 7. This is
not a reasonable physical model, since a periodic perturbation of the straining flow
would be periodic in real time, not the dimensionless time 7. Note that the evolution

equations written in terms of the orientation, aspect ratio and real time are:

dé wn 7 +1

P CES (+ )n —75in%
dn = (v + ') cos 26.
7y YTrYm

Since (n,6) and (n~!, 68 + 7/2) correspond to the same ellipse, we can paramatrize |
the evolution equation in terms of r = log 7, ¢ = 26 yielding a polar coordinates for-
mulation for these equations in which there is a one to one correspondence between

ellipses and points in the phase space (r,¢). The evolution equations become:

F=(7+7")cosp
_ 2we”
CERVE
i From the Hamiltonian formulation, we know that trajectories correspond to con-
ry2 !
H =log[(1 tj ) ] - ")f;'w’}’ (e" — e ")sin .
This can be verified by calculating that dH/dt = 0 for the real time {. These

equations seem to blow up for r = 0. Fortunately, we see that this blow up is due to

e +1
— (v .}.7')62,_ — siny.

stants of

the coordinates we are using and not the equations themselves. Polar coordinates
are not well defined at r = 0 so we convert the equations to Cartesian form by

T = rcos{p, ¥y = rsiny. The evolution equations become:

SR )Jﬁ?+1 2
TIE e RSy~

4 2wgeV ey’ (v + 7;)62\/;"'—”2 +1 zy
z? + y? (e\/z2+y’ +1)2 2224y _ 1 /22 4 y2 )

z=(v+7"

y=+7)
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We see that as r ~» 0, the first and third terms in & appear to blow up. Using
Taylor expansion techniques, we see that the third term can be approximated by

(r 471+ O6)

for r small. Thus, £ — v+’ as r — 0. In a similar fashion, we see that y — 0 as
r— 0.

The phase portrait (fig. 5.2) for the real time formulation has a much simpler
form than the Hamiltonian one of the previous section. We see that for (y+v')/2w <
.15, there is a homoclinic loop with hyperbolic fixed point corresponding to the
largest root of e"(e”—1) = {(7+7')/2w)(e*" +1)(e" +1). We see that the bifurcation
at v/w = .1227 is represented by the loop crossing the origin. '
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Figure 5.2
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5.3 Periodic Stretching of an Elliptical Vortex

In general, our perturbed system will have the form

7 = Cpcosp +eg1(r,,1)

2wge’ er 41 . N
o Co— + - sin  + eg2(r, @, 1).

QY= - — —
P e+ e o1

Here g; and go are periodic in time, Cp = (y0 + 7 )-

For 0 < Cy/wp < 0.15, the unperturbed system has a hyperbolic fixed point
po at ¢ = w/2,7 = ry where rq corresponds to the largest real root of the cubic
37 + ¢27(1 — B) + €"(1+4 B) +1 = 0 where B = (3 Cowp) . This fixed point has a
homoclinic saddle connection I'y as depicted in figure 5.2. If we consider a pertur-
bation involving a periodic stretching by an amount e"(t), then our perturbation

has the form
g1 = Ci(t) cos e

€

_ 2Cy(t)e” r
er —1

IS

Here C; and Cy are periodic in time with period T. We consider the symmetric

- Ci(t)

92 sin .

case where the oscillation of 4" puts equal and opposite oscillations on v' and v
while maintaining the incompressibility condition 4’ —y++" = 0. Thus, v+ stays
constant even though v — 7' oscillates with 4"". This implies that C;(t) = 0 so that

our perturbation has the simpler form

g1 =0,
- 202(t)6r
g2 = (e" + 1)2 ‘

If we paramatrize I'g by (r(t), (1)), the Melnikov function for the perturbed system
can be calculated using the non-Hamiltonian form. There are two ways of doing
the Melnikov function calculation. We can view I’y as a trajectory in the (r,¢)
coordinate system which has the advantage of a simpler formulation. Since these

coordinates break up at r = 0, we can not treat the case where I'y contains the
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point r = 0. This occurs only at the value v/w = .1227. For any other value of v/w,
we can find a O vector field (f1(r, ), f2(r,¢)) so that

r = fl(ra‘P)
‘:b - f2(r§90)

is a planar differentiable dynamical system in the coordinates (r,¢) with a saddle
connection identical to I'y in its real time paramatrization. We have f; = Cp cosp,
fa = 2wpe™ /(" +1)2 — Cpsinyp(e?™ +1)/(e*" —1) in a neighborhood of the curve I'g.
This new dynamical system is suitable for Melnikov’s method and in a neighborhood
of Iy has dynamics identical to that of the original system.

Alternatively, we can treat the evolution equation as a dynamical system in
the (z,y) coordinates. This allows us to show that chaos will also occur in the

degenerate case of v/w = .1227. Both calculations are presented:
The Melnikov function in (r,¢) coordinates:
For this we need to know exp( j: trDf(Lo(s))ds). We have

e +1 . —7{(e?" + 1)
o8 = i

tTDf = -'-Cu

er—1

This gives us
e_f‘(t)(ef‘o —_— e""'rﬂ)

1
exp( /0 trDf(To(s))ds) o) 1

This yields a Melnikov function

o0 2r

e“T cos
Mto) =G fm T T 1R — 1)

Cs (t + to)dt,

C3 = C‘o(e'"" — 8_"0).
Using the fact that the integral represents a convolution with an odd function, for
Cy = cos kt, we have

(==

sin ktdt

e cos
M = Cysinkt
(o) = Casinkly f_w (e +12(e7 = 1)

= sin ktg M (k).
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Since cos o (), we can see that the above integral is the sine transform of an L*

function.
[=2+] 21‘ o0 2r
jf COB (P g = 2] e“" cos &
(er +1)%(e?" —1) o |(e"+1)3(e*r —1)
Cs r(oo) &2
< = d .
=G f..w} e - %

We know by the properties of the Fourier transform on L*(IR) (see Katznelson p.
120-131), that My(k) is a uniformly continuous function of k that is not identically
zero. Thus there exists some interval k; < k < k2 such that My(k) is non-zero. For
these values of k, M(%o) has simple zeros.

The Melnikov function in (z,y) coordinates:

We now consider the dynamical system

) 2wr sin pe” 2T 4+1 |
$=(7+7’)305299“m+(7+7') T 11’81112(,0, r#0,
. ) . 2wr cos pe +1
y=(’¥+7')cos¢smtp+w% (v+ ') rsmcpcoscp, r# 0,
for r £0
E=7v+9,
¥y =0,

for r = 0. Here r = /2% +y2, ¢ = tan~Y(y/x). We have the time periodic

perturbation '
- _eCy(t)re” [ —sing
g(ta I, y) - (Cr + 1)2' ( cos ¢ .

The following analysis is for the case v ++' = .1227, the nondegenerate case can be
studied in a similar fashion. We have

fAg={(y++)cos sacz(to)(m)
_ . 1 e +1
trDf = (y+7'cosp(~ ——5—7), r#0,
=0, r=0,
o 2070
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For Cy(t) = cos kt, our Melnikov function is

oo . . . rzez"
M(to) = — f_ _sin ktor(t) sin M e (e 7 12 it

= sin kto My(k).

Again we see that My(k) is a sine transform of an L* function:

ee r(t)r?e?”
./_Ool (ezr — 1)(6" + 1)2 ‘dt

]r(oo) J2g2r
= dr
w0y (€37 —1)(er +1)?

]r(oo) 7227
= dr
o (D) + 1

< ©o.

1‘282'

This is because 775y is bounded on the interval (0,r(o0)]. We see that
Mo(k) is again the sine transform of an odd L! function so that there exists an
interval ky < k < kg so that Mo(k) is non-zero, giving us a Melnikov function with

simple zeros.

Under such a periodic stretching, we find chaotic dynamics occurring in the
phase portrait of the evolution equations for the ellipse. This indicates a sort of
randomness in the evolution of the vortex. The phase portrait includes a horse- -
shoe as a subsystem, which we know from chapter one indicates somewhat erratic
behavior on an invariant set. Assuming the inability to make completely precise
measurements, we can only predict what will happen to the vortex for a finite time,

after this time we have no knowledge of how it will evolve.
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Appendix

We present the details of the calculation of the following integral from chapter three

o c'ft —_ e"T‘ .
/;m (e £ f Ty sin kidt
which by a change of variables 7 = 4 becomes

1 [ eT —e~T ) i
; IRy = sin m7dr,

via residues:

where m = k/v. Consider the meromorphic function

(63:: _ ez)eimz

(e27 — Ber +1)2

The denominator has roots

zzﬁ:kVﬁ2_4

€

which can write as

since we know that 0 < # < 2. Here, a = cos™1(3/2) which gives us —7i/2 < ani/2.
Thus, our function
(632 . ez)eimz
(ez — 8'.“)2(8" — e»—ia)2
has double poles at z = tia + 27iN, N € Z. Let r = 2z — (ia + 27iN). The
integral is clearly odd in m. Consider the case m > 0. We have that

1 oo 3r __ oT .
Im f c ¢ e'™ dr

7 Jooo (€27 + Be7 + 112
(2N+1)‘H' 631- _ ef B
= lim Im— . 2 5 e dr
Nooo' v J_ananyr (€27 4 Bem +1)

~ lim Ime|-L Y Res e =€ im:
T Noow y|2m (2% + Bex + 1)?

3
0<y<(2N+1)n

631" —eT

B [|z]=(2N+1)1r,y>0 (€27 + fer +1)2

52



The last integral goes to zero as N — oo so that for m > 0, we wish to calculate

1 3% — e* imz
Im [21”3. yzw Res((e2z T B+ 17 e .

Using the fact that the integral is odd in m, we have that for all m # 0, the integral

becomes:

m 1 I 3% _ ¥ i \
e — ijm|z
Imllm[zm’ ;Rﬁsk(e“ Fhe 1 )]

Thus we need to calculate the residues of the function in the upper half plane.

We can calculate the coefficients of the Laurent expansion of the function by first
considering the expansion of its components in the neighborhood of ia + 2miN. We
have:

. 9
e = 63“”(1 +3r + -é'rz +...)

e’=ei“(1+r+%r2+...)

- eimz - e—mrx—?'rrmN(l + imr — _731__2_,!,,2 + )
=e " 5 e
(ez — e!.ﬂ)2 - eZia(r2 _I_ r3 + .. ')
(e — e7*)? = —4sin® a + disinae™r + ...

‘We write the function in the form:

_}_(a—i—br-{-...)
r2lc4+dr+...

which has the Laurent expansion
g2y b _day
-T +(c c2)r +...

go that the residue at r =0 1s % - %. Here

a= (e3ia _ eia)e—ma-—hrmN

b = e-—ma—Zme{im(eﬁa _ eia) + 3l _ eia]
’
¢ = e?'*(—4sin? @),

d = e¥'*(4ie'® sin o — 45in’ @).

k]
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Let R, denote the residue at the point z. Then,

_e—mcx—21rmNm

Rigiomin = S

Notice that Rip42xin = Rine?*Nm A similar calculation shows that

emcr—21rmNm

R-m-%-'ZmN - 25&:}0{
Thus, our integral becomes:

1 |eImlem  msinhma e 2™mN

2ny | 2sina sinag 1—e~2rmN
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