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Abstract

Classical neural ordinary differential equations (ODEs) are powerful tools for approximating the log-density functions
in high-dimensional spaces along trajectories, where neural networks parameterize the velocity fields. We specify a
system of neural differential equations representing first- and second-order score functions along trajectories based
on deep neural networks. We reformulate the mean field control (MFC) problem with individual noises into an un-
constrained optimization problem framed by the proposed neural ODE system. Additionally, we introduce a novel
regularization term to enforce characteristics of viscous Hamilton–Jacobi–Bellman (HJB) equations to be satisfied
based on the evolution of the second-order score function. Examples include regularized Wasserstein proximal opera-
tors (RWPOs), probability flow matching of Fokker–Planck (FP) equations, and linear quadratic (LQ) MFC problems,
which demonstrate the effectiveness and accuracy of the proposed method.

Keywords: score function, neural ODE, normalizing flow, mean field control

1. Introduction

Score functions have been widely used in modern machine learning algorithms, particularly generative models
through time-reversible diffusion [1]. The score function can be viewed as a deterministic representation of diffusion
in stochastic trajectories [2]. In this representation, one reformulates the Brownian motion by the gradient of the
logarithm of the density function, after which deterministic trajectories involving score functions can approximate the
probability density function. These properties have inspired algorithms for simulating stochastic trajectories or sam-
pling problems that converge to target distributions [3, 4]. Typical applications include modeling the time evolution
of probability densities for stochastic dynamics and solving control problems constrained by such dynamics.

While score functions provide powerful tools for modeling stochastic trajectories, their computations are often
inefficient, especially in high-dimensional spaces. Classical methods, such as kernel density estimation (KDE) [5],
tend to perform poorly in such settings due to the curse of dimensionality [6].

Recently, neural ODEs have emerged as efficient ways of estimating densities. In particular, one uses neural
networks to parameterize the velocity fields and then approximates the logarithm of density function along trajectories.
The time discretizations of neural ODEs can be viewed as normalization flows in generative models.

Several natural questions arise. Can we approximate the trajectory of score functions by constructing a set of
neural ODEs (in continuous time) or normalization flows (in discrete time)? Furthermore, can we efficiently solve
stochastic control problems with these neural ODEs or normalization flows?

In this paper, we propose a formulation for the first- and second-order score functions using two additional neural
ODEs involving high-order derivatives of the velocity fields. We also develop a class of high-order normalizing flows
in the discrete-time update of these neural ODEs. As an application, we use this high-order normalizing flow to solve
the MFC problem with individual noises. The MFC problem generalizes stochastic control problems by incorporating
a running cost that depends on the state distribution, thus capturing the interaction between individual agents and the
population density. In our reformulation, the MFC problem is recast into an optimal control problem involving state
trajectories, densities, and score functions, which can be efficiently approximated using the proposed neural ODE
system. Additionally, a regularization term from the Karush-Kuhn-Tucker (KKT) system of the MFC problem is
proposed to enhance the optimization. In this regularization, we approximate the viscous HJB equations using the
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first- and second-order score dynamics. Numerical examples in various MFC problems demonstrate the effectiveness
of the proposed optimization method with high-order neural differential equations.

Related work. The normalizing flow has emerged as a powerful technique for solving inference problems, allowing
for the construction of complex probability distributions in a tractable manner. This approach was popularized by
works such as [7, 8]. The advent of Neural ODEs [9] has attracted considerable attention in the community, opening
up a new paradigm for continuous-time deep learning models. Following this breakthrough, numerous extensions
have been proposed to enhance the expressiveness and flexibility of these models, such as the augmented Neural
ODEs in [10].

Regarding score-based models, [1] studies the score-based reversible time diffusion models in generative model-
ing. In this case, the score function often comes from the OU process. One needs to solve the score-matching problem
to learn the time-dependent score function. In addition, the first-order score dynamic from neural ODEs has been
introduced in [11] to work on the simulation of the Fokker-Planck (FP) equation. Rather than using score dynamics
directly to compute the probability flow ODEs associated with FP equations, they employed score-matching methods
to achieve efficient computations.

The study of MFC problems has become crucial in the last decade [12, 13, 14]. MFC studies strategic decision-
making in large populations where individual players interact through specific mean-field quantities. This control
formulation is also useful in generative models [15]. For example, neural network-based methods have been employed
to solve MFC problems. [16] provided a comprehensive review of neural network approaches for MFC. For first-order
MFC problems, [17, 18] developed Neural ODE-based methods. In parallel, [17] introduced numerical algorithms
based on the characteristic lines of the Hamilton-Jacobi-Bellman (HJB) equation. For second-order MFC problems,
neural networks have also been employed. [19] utilized generative adversarial networks (GANs) to approximate
minimization systems for MFC problems, where one neural network models the population density, and the other
parameterizes the value function. [20] proposed a PDE-based iterative algorithm to tackle MFC problems. Along
this line, MFC problems are generalizations of dynamical optimal transport problems, known as Benamou-Brenier’s
formulas [21]. A famous example is the Jordan-Kinderlehrer-Otto (JKO) scheme [22], a variational time discretization
in approximating the gradient drift FP equation. The one-step iteration of the JKO scheme can be viewed as an MFC
problem. In machine learning computations, the neural JKO scheme [23, 24] was introduced to compute the FP
equation, and [25] extended this to approximate general nonlinear gradient flows through a generalized deep neural
JKO scheme. This scheme approximates a deterministic MFC problem in each time interval. Other works that use
machine learning methods to solve MFC problems include [26, 27]. Different from previous results, our work designs
first- and second-order score dynamics to compute second-order MFC problems.

The organization of this paper is as follows. In section 2, we formulate the neural dynamical system involving
first- and second-order score functions, with a specific example based on the Gaussian distribution in terms of linear
mapping equations. Section 3 discusses the discrete time evolution of the neural ODE system, which can be viewed
as a system of normalization flows for approximating first- and second-order score functions. In section 4, we design
an algorithm using a score-based ODE system to solve the second-order MFC problem. Several numerical examples
are presented in section 5 to demonstrate the accuracy and effectiveness of the proposed algorithm.

2. Score-based neural ODE in continuous time

In this section, we propose a neural dynamical system that evolves along a trajectory of a random variable. The
system outputs the logarithm of the density function, as well as its gradient vector and Hessian matrix. We show that
these neural dynamics are crucial for efficiently computing the score functions in high-dimensional density estimation
problems, which are key in generative models and MFC problems.

We first clarify the notations. Denote a variable x ∈ Rd. ∇x denotes the gradient or Jacobian matrix of a function
w.r.t. the variable x. The gradient is always a column vector. ∇x· and ∇2

x are divergence and Hessian w.r.t. the variable
x. |·| is the absolute value of a scalar, the l2 norm of a vector, or the Frobenius norm of a matrix. Tr(·) denotes the trace
of a squared matrix.

Let zt ∈ Rd be a flow of random variable for t ≥ 0 with initialization z0 = x, which is obtained from a pushforward
map zt = T (t, x) in Lagrangian coordinates. For simplicity, we denote Tt := T (t, ·), so that T0 is an identity map.
Throughout this paper, we assume that T (·, ·) is smooth and Tt is invertible for all t ≥ 0. We denote the probability
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distribution of zt by ρt or ρ(t, ·), then ρt = Tt#ρ0, where # is the pushforward operator for distributions. By the change
of variable formula, ρ satisfies

ρ(t,T (t, x)) det(∇xT (t, x)) = ρ(0, x) . (1)

Let f (t, ·) : Rd → Rd be the vector field of the state dynamic zt in Eulerian coordinates, given by f (t,T (t, x)) =
∂tT (t, x) for all t and x. Then, the state zt satisfies the ODE dynamic ∂tzt = f (t, zt). The density function hence satisfies
the continuity equation (also known as the transport equation):

∂tρ(t, z) + ∇x · (ρ(t, z) f (t, z)) = 0 . (2)

We denote the logarithm of density along the state trajectory zt by lt := log ρ(t, zt). We also denote the first-
and second-order score functions along the state trajectory by st := ∇z log ρ(t, zt) and Ht := ∇2

z log ρ(t, zt). These
score functions are useful in density estimation problems, particularly for applications such as generative models and
MFC problems. However, their efficient computations in high-dimensional spaces are challenging problems. In this
work, we propose a system of high-order neural ODEs to compute these score functions, formalized in the following
proposition. Here, the initial state z0 = x is fixed and we present the material derivative for the density and score
functions along the trajectory zt(x). For notational simplicity, we will omit the explicit dependence on x in the
expressions that follow.

Proposition 1 (Neural ODE system). The functions zt, lt, st, and Ht satisfy the following ODE dynamics.

∂tzt = f (t, zt) , (3a)

∂tlt=
d
dt

log ρ(t, zt) = −∇z · f (t, zt) , (3b)

∂t st=
d
dt
∇z log ρ(t, zt) = −∇z f (t, zt)⊤st − ∇z(∇z · f (t, zt)) , (3c)

∂tHt=
d
dt
∇2

z log ρ(t, zt) = −
d∑

i=1

sit∇
2
z fi(t, zt) − ∇2

z (∇z · f (t, zt)) (3d)

− Ht∇z f (t, zt) − ∇z f (t, zt)⊤Ht ,

where sit and fi are the i-th component of st and f respectively.

We leave the proofs for these equations and all propositions afterwards in Appendix A. One corollary of this
proposition is that, if we denote the density along the trajectory by l̃t := ρ(t, zt), then l̃t satisfies the following ODE:

∂t l̃t=
d
dt
ρ(t, zt) = −∇z · f (t, zt) l̃t . (4)

We note that the first and second order score functions satisfy the following information equality.

Proposition 2 (Information equality). The following equality holds for all t ≥ 0,

E [Tr(Ht)] = −E
[
|st |

2
]
.

Example: Centered Gaussian distributions. To illustrate the ODE dynamics (3), we consider a concrete ex-
ample where the random variable follows a centered Gaussian distribution. Let the pushforward map be linear in
x, i.e. T (t, x) = T (t)x, where T (t) : R+ → Rd×d is a time-dependent matrix. If we define A(t) : R+ → Rd×d by
∂tT (t) = A(t)T (t), then the vector field of the state dynamics is f (t, x) = A(t)x. Now, let the initial state z0 follow a
centered Gaussian distribution N(0,Σ(0)) with covariance matrix Σ(0). Under this linear map T (t), the state zt remains
a Gaussian distribution, with a time-dependent covariance matrix Σ(t). In this case, zt ∼ N(0,Σ(t)), and the time
evolution of the covariance matrix follows the matrix ODE (with the derivation in Appendix A.1)

∂tΣ(t) = A(t)Σ(t) + Σ(t)A(t)⊤ .
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In this case, ∇x f (t, x) = A(t) and ∇x · f (t, x) = Tr(A(t)), and all higher-order spatial derivatives of f vanish. Therefore,
the ODE system (3) simplifies to

∂tzt = A(t)zt , ∂tlt = −Tr(A(t)) ,
∂t st = −A(t)⊤st , ∂tHt = −HtA(t) − A(t)⊤Ht .

3. Score-based normalization flows

In this section, we introduce the time discretization of the proposed neural ODE system. This discretized system
can be interpreted as a normalization flow. This means that we can efficiently estimate the first- and second-order
score functions using a deep neural network function.

3.1. A generalization of normalizing flow

We recall that [9] interpreted the deep residual neural network as an ODE, with each layer representing one step
of the forward Euler scheme. Similar ideas have also been proposed in [28]. In this section, we extend these concepts
and demonstrate how the first- and second-order score functions can be computed efficiently using the proposed neural
ODE system.

We partition the time interval [0, tend] into Nt subintervals with the length ∆t = tend/Nt and denote the time stamps
by t j = j∆t. We apply the forward Euler scheme to discretize the ODE system (3). We parametrize the vector field
f (t, z; θ) as a neural network with parameter θ. Here, θ = [w0,w1,w2, b1, b2] ∈ Rk+k×d+d×k+k+d and

f (t, z; θ) = w2 σ(w0t + w1z + b1) + b2 , (5)

where σ : Rk → Rk is a vector function with elementwise activation functions, and k is the width of the network. This
is the typical structure of a neural network with one hidden layer. Then, we discretize the state dynamic zt through

zt j+1 = zt j + ∆t f (t j, zt j ; θ) . (6)

Similarly, numerical simulations for functions lt, l̃t, st, and Ht are given by

lt j+1 = lt j − ∆t∇z · f (t j, zt j ; θ) , (7)

l̃t j+1 = l̃t j − ∆t∇z · f (t j, zt j ; θ) l̃t j , (8)

st j+1 = st j − ∆t
(
∇z f (t j, zt j ; θ)

⊤st j + ∇z(∇z · f (t j, zt j ; θ))
)
, (9)

Ht j+1 = Ht j − ∆t

 d∑
i=1

sit j∇
2
z fi(t j, zt j ; θ) + ∇

2
z (∇z · f (t j, zt j ; θ)) (10)

+ Ht j∇z f (t j, zt j ; θ) + ∇z f (t j, zt j ; θ)
⊤Ht j

)
,

where the derivatives of f are obtained from auto-differentiations of the neural network. ∇z · f (t j, zt j ; θ) is the diver-
gence taken with respect to the network input zt j .

In this way, the map from z0, l0, l̃0, s0, H0 to zt j , lt j , l̃t j , st j , Ht j , for any j ≥ 2, can be viewed as deep residual neural
networks, with each layer given by a forward Euler time step. For example,

ztNt
=

(
id + ∆t f (tNt−1, ·; θ)

)
◦ · · · ◦ (id + ∆t f (t0, ·; θ)) (z0) ,

ltNt
=

(
id − ∆t∇z · f (tNt−1, ztNt−1 ; θ)

)
◦ · · · ◦ (id − ∆t∇z · f (t0, z0; θ)) (l0) ,

stNt
=

(
id − ∆t

(
∇z f (tNt−1, zNt−1; θ)⊤ · +∇z(∇z · f (tNt−1, zNt−1; θ))

))
◦ · · · ◦(

id − ∆t
(
∇z f (t0, z0; θ)⊤ · +∇z(∇z · f (t0, z0; θ))

))
(s0) ,

(11)

where id is the identity mapping function and ◦ represents compositions of functions.
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3.2. Different algorithms for computing the score function
The expression (3c) or (9) provides a way to compute the score function. In this section, we compare several

algorithms for computing the score function, and demonstrate the potential efficiency of using formulas (3c) or (9).
One method is to derive the score function from the pushforward map T (t, x) and the MA equation directly. To

be more specific, we apply the operator ∇x and the logarithm on both sides of the MA equation (1). We obtain

∇xT (t, x)⊤∇T log ρ(t,T (t, x)) + ∇x log (det(∇xT (t, x))) = ∇x log ρ(0, x) .

Recall that st = ∇T log ρ(t,T (t, x)), so the score function can be computed through

st = ∇xT (t, x)−⊤
[
∇x log ρ(0, x) − ∇x log (det(∇xT (t, x)))

]
. (12)

This formulation requires computing the inverse of Jacobian or solving related linear systems, resulting in a cost of
O(d3) for a single st. As a consequence, the total cost for computing one score trajectory {st j }

Nt
j=0 is O(Nt d3).

As an alternative, we can compute the score st through the normalizing flow lt, i.e., differentiating lt = log ρ(t, zt)
w.r.t zt. We assume that the width of the neural network (5) is k = O(d). The score function can be reformulated as

st = ∇T log ρ(t,T (t, x)) = ∇xT (t, x)−⊤∇x log ρ(t,T (t, x)) =
(
∂zt

∂z0

)−⊤
∂lt
∂z0

, (13)

where
∂zt

∂z0
and

∂lt
∂z0

are obtained from auto-differentiations of deep neural network functions in (11). Using the chain

rule, the total computational computational cost for computing one trajectory of the score function is still O(Nt d3).
Both (12) and (13) require computing the inverse Jacobian of T or solving related linear systems, resulting in a cubic
cost in the spatial dimension. As mentioned in [9] (section 4), this is the bottleneck of these methods. We leave more
detailed discussions of both methods (12) and (13), and two other methods, to Appendix C.

In contrast, the high-order normalizing flow (9) only requires discretizing the ODE dynamics (3a) and (3c),
with a total cost of O(Nt d2) for computing one score trajectory {st j }

Nt
j=0. As is shown in table 1, our formulation is

more efficient compared with (12) and (13), especially in high dimensions. Additionally, we are able to compute the
second-order score function through 10.

pushforward map (12) O(Nt d3)
normalizing flow (13) O(Nt d3)

high-order normalizing flow (9) (ours) O(Nt d2)

Table 1: Complexity for different algorithms to compute a score trajectory.

Example: Gaussian distribution. Our formulation for the second-order score function also has advantages in the
example of Gaussian distributions, where Ht = Σ(t)−1 is exactly the inverse of the covariance matrix. Traditionally,
estimating Σ(t)−1 involves several steps. One needs to sample sufficiently many points z(n)

0 , simulate the state dynamic
to obtain z(n)

t , estimate the covariance matrix from these samples, and finally compute the inverse of this estimation. To
achieve an error of ε, at leastO(ε−2) samples are required for accurate covariance estimation. Compared to our second-
order score dynamic (3d), we only need to pick ∆t = O(ε) and compute Ht through (10), with a total cost of O(ε−1).
This results in a more efficient algorithm for estimating score functions in time-dependent Gaussian distributions.

4. Solving second-order MFC problems

In this section, we apply the score-based normalizing flow to solve the second-order MFC problem. In particular,
we demonstrate that the MFC problem can be represented by the optimal control problem of the neural dynamical
system in Proposition 1. For readers interested in the connection between MFC problems and generative AI, we refer
to the work of [15]. In the context of machine learning, [29] also studies similar problems, in which they compute
Wasserstein Lagrangian flows. In this work, we can deal with the diffusion term in MFC problems using proposed
neural normalization flows. From this point on, we adopt the Eulerian perspective and use x to denote the spatial
variable in differential equations. The trajectory variable will still be written as zt, with x now interpreted as a
spatial coordinate rather than a fixed initial condition in Lagrangian coordinate.
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4.1. Formulation of MFC problem

We consider the following MFC problem

inf
v

∫ tend

0

∫
Rd

[
L(t, x, v(t, x)) + F(t, x, ρ(t, x))

]
ρ(t, x) dx dt

+

∫
Rd

G(x, ρ(tend, x))ρ(tend, x) dx ,
(14)

where the density ρ(t, x) satisfies the FP equation with a given initialization

∂tρ(t, x) + ∇x · (ρ(t, x)v(t, x)) = γ∆xρ(t, x) , ρ(0, x) = ρ0(x) . (15)

The corresponding stochastic dynamic is

dXt = v(t, Xt) dt +
√

2γ dWt , X0 ∼ ρ0 .

Here L : R×Rd×Rd → R is the running cost function, and we assume that it is strongly convex in v. F : R×Rd×R→
R is the cost that involves the density, which distinguishes the MFC problem from the optimal control. G : Rd×R→ R
is the terminal cost, which may also involve the density.

Given the density function ρ(·, ·), we define the composed velocity field f as

f (t, x) = v(t, x) − γ∇x log ρ(t, x) . (16)

Let z0 = x0, under the vector field f , we obtain the probability flow [30] of the stochastic dynamic xt, given by
∂tzt = f (t, zt), which coincides with (3a). This deterministic dynamic characterizes the probability distribution ρ(t, x).
If z0 ∼ ρ0, then the probability distribution for zt is exactly ρ(t, ·). With this transformation, the velocity v(t, x) becomes
f (t, x) + γ∇x log ρ(t, x), and the MFC problem follows

inf
f

∫ tend

0

∫
Rd

[
L
(
t, x, f (t, x) + γ∇x log ρ(t, x)

)
+ F(t, x, ρ(t, x))

]
ρ(t, x) dx dt

+

∫
Rd

G(x, ρ(tend, x))ρ(tend, x) dx ,
(17)

subject to the transport equation

∂tρ(t, x) + ∇x · (ρ(t, x) f (t, x)) = 0 , ρ(0, x) = ρ0(x) . (18)

4.2. Modified HJB equation for MFC

In this section, we present a system of two PDEs that characterize the optimal solution for the MFC problem.
Different from the traditional FP-HJB pair (see [13, Chapter 4]), our system consists of a transport equation obtained
from (18), and a modified HJB equation, tailored for the modified MFC problem (17). This characterization could
serve as a regularizer to enhance the loss function in numerical algorithms. We define the Hamiltonian H : R × Rd ×

Rd → R by
H(t, x, p) = sup

v∈Rd

(
v⊤p − L(t, x, v)

)
.

This definition aligns with classical control theory and is closely related to the maximum principle [31]. The solution
of the MFC problem is summarized by the following proposition.

Proposition 3. Let L be strongly convex in v, then the solution to the MFC problem (17) is as follows. Consider a
function ψ : [0, tend] × Rd → R, such that

f (t, x) = DpH(t, x,∇xψ(t, x) + γ∇x log ρ(t, x)) − γ∇x log ρ(t, x) , (19)

6



where the density function ρ(t, x) and ψ : [0, tend] × Rd → R satisfy the following system of equations

∂tρ(t, x) + ∇x ·
(
ρ(t, x)DpH

)
= γ∆xρ(t, x) ,

∂tψ(t, x) + ∇xψ(t, x)⊤DpH − γ∇x · DpH + γ∆xψ(t, x) − L(t, x,DpH)

− F̃(t, x, ρ(t, x)) + 2γ2∆x log ρ(t, x) + γ2
∣∣∣∇x log ρ(t, x)

∣∣∣2 = 0 ,

ρ(0, x) = ρ0(x) , ψ(tend, x) = −G̃(x, ρ(tend, x)) − γ log ρ(tend, x) ,

(20)

Here, DpH is short for DpH(t, x,∇xψ(t, x) + γ∇x log ρ(t, x)), F̃(t, x, ρ) =
∂

∂ρ
(F(t, x, ρ)ρ) =

∂F
∂ρ

(t, x, ρ)ρ + F(t, x, ρ),

and G̃(x, ρ) =
∂G
∂ρ

(x, ρ)ρ +G(x, ρ).

In the LQ problem, we let L(t, x, v) = 1
2 |v|

2 and F(t, x, ρ) = 0. The MFC problem becomes

inf
f

∫ tend

0

∫
Rd

1
2

∣∣∣ f (t, x) + γ∇x log ρ(t, x)
∣∣∣2 ρ(t, x) dx dt

+

∫
Rd

G(x, ρ(tend, x))ρ(tend, x) dx ,
(21)

subject to (18). In this case, the result becomes the Corollary below.

Corollary 1. In the LQ problem where L(t, x, v) = 1
2 |v|

2 and F(t, x, ρ) = 0, the solution of the MFC problem (21) is
given by

f (t, x) = ∇xψ(t, x) ,

and 
∂tρ(t, x) + ∇x · (ρ(t, x)∇xψ(t, x)) = 0 ,

∂tψ(t, x) +
1
2
|∇xψ(t, x)|2 + γ2∆x log ρ(t, x) +

1
2
γ2

∣∣∣∇x log ρ(t, x)
∣∣∣2 = 0 ,

ρ(0, x) = ρ0(x) , ψ(tend, x) = −G̃(x, ρ(tend, x)) − γ log ρ(tend, x) .

(22)

If we further define the Fisher information as I[ρ] :=
∫
Rd

∣∣∣∇x log ρ(x)
∣∣∣2 ρ(x) dx, then the equation for ψ in (22) becomes

∂tψ(t, x) +
1
2
|∇xψ(t, x)|2 −

1
2
γ2 δI[ρ(t, ·)]

δρ(t, ·)
(x) = 0 .

Let zt be the characteristic line of the state trajectory, satisfying ∂tzt = f (t, zt) where f is given by (19). Then, a
residual of the HJB equation along the trajectory zt can be computed to enhance the objective function. For example,
in the LQ example in Corollary 1, we know that ψ satisfies

∂tψ(t, zt) +
1
2
|∇zψ(t, zt)|2 + γ2

(
Tr(Ht) +

1
2
|st |

2
)
= 0 . (23)

Also, by (16), we can recover the optimal velocity field v through

v(t, zt) = f (t, zt) + γst ,

where f is the optimal vector field of the modified MFC problem. This regularization technique could be extended to
a more general setting, such as the flow matching problem for overdamped Langevin dynamics. See Corollary 2 in
Appendix A for details.
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4.3. Numerical algorithms

In this section, we present numerical algorithms to solve the MFC problem. We minimize the objective (17) to
obtain the optimal vector field f . Additionally, we can incorporate the residual of the HJB equation as a regularizer to
enhance the loss functional, as discussed after Corollary 1.

The composed velocity field f is parametrized as a neural network, as defined in (5). In order to simulate the cost
functional numerically, we sample multiple initial points z(n)

0 ∼ ρ0 with a batch size Nz. Then, we can simulate the
dynamics of z(n)

t , l(n)
t , l̃(n)

t , s(n)
t , and H(n)

t numerically for each particle through (6), (7), (8), (9), and (10) respectively,
where the derivatives of f are obtained via auto-differentiation. Then, we simulate the cost functional (17) by

Lcost =
1
Nz

Nz∑
n=1

Nt−1∑
j=0

[(
L
(
t j, z

(n)
t j
, f (t j, z

(n)
t j

; θ) − γs(n)
t j

)
+F

(
t j, z

(n)
t j
, l̃(n)

t j

))
∆t +G(z(n)

tNt
, l̃(n)

tNt
)
]
.

(24)

With this simulation cost, we minimize this loss Lcost using the Adam method. The algorithm is summarized in
Algorithm 1.

Algorithm 1 Score-based normalizing flow solver for the MFC problem
Input: MFC problem (14) (15), Nt, Nz, network structure (5), learning rate, number of iterations
Output: the solution to the MFC problem

Initialize θ
for index = 1 to indexend do

Sample Nz points {z(n)
0 }

Nz
n=1 from the initial distribution ρ0

Compute l̃(n)
0 = ρ(0, z(n)

0 ), s(n)
0 = ∇z log ρ(0, z(n)

0 )
Initialize loss Lcost = 0
for j = 0 to Nt − 1 do

update loss Lcost +=
1
Nz

Nz∑
n=1

(
L(t j, z

(n)
t j
, f (t j, z

(n)
t j

; θ) − γs(n)
t j

) + F(t j, z
(n)
t j
, l̃(n)

t j
)
)
∆t

compute (∇z,∇z·,∇z(∇z·)) f (t j, z
(n)
t j

; θ) according to (5)

compute z(n)
t j+1

, l̃(n)
t j+1

, s(n)
t j+1

through the forward Euler scheme (6), (8), and (9)
end for

add terminal cost Lcost +=
1
Nz

Nz∑
n=1

G(z(n)
tNt
, l̃(n)

tNt
)

update the parameters θ through Adam method to minimize the loss Lcost
end for

To further improve performance, we can add a penalty of the residual of the HJB equation, denoted by LHJB, to
enhance the loss function. This regularization technique is detailed in Appendix B.1. The total loss function is hence
given by

Ltotal = Lcost + λLHJB , (25)

where λ ≥ 0 is a weight parameter.

5. Numerical results

We present numerical results for several examples in this section, including the regularized Wasserstein proximal
operator (RWPO), the flow matching problem, a linear-quadratic (LQ) problem with an entropy potential cost, and an
example with double well potential. For examples with exact solutions, we present all errors for the density (errρ),
velocity field (err f ), and score function (errs). These errors are calculated as averages over 10 independent runs, see
(B.9) in Appendix B.3 for details. The parameters used for all numerical examples are provided in Appendix B.4.
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5.1. Regularized Wasserstein proximal operator

In the RWPO problem, the objective is a regularized Benamou-Brenier formulation for optimal transportation
[21]. We minimize the cost functional

inf
v

∫ 1

0

∫
Rd

1
2
|v(t, x)|2 ρ(t, x) dx dt +

∫
Rd

G(x)ρ(1, x) dx ,

subject to the FP equation ∂tρ(t, x) + ∇x · (ρ(t, x)v(t, x)) = γ∆xρ(t, x). Here we set G(x) = |x|2/2 and ρ0(x) =
(8πγ)−d/2 exp

(
−|x|2/(8γ)

)
.

After the transformation to probability flow through (16), the problem becomes

inf
f

∫ 1

0

∫
Rd

1
2

∣∣∣ f (t, x) + γ∇x log(ρ(t, x))
∣∣∣2 ρ(t, x) dx dt +

∫
Rd

G(x)ρ(1, x) dx ,

subject to the transport equation
∂tρ(t, x) + ∇x · (ρ(t, x) f (t, x)) = 0 .

The optimal density evolution is given by

ρ(t, x) = (4π(2 − t)γ)−
d
2 exp

(
−
|x|2

4γ(2 − t)

)
,

and the optimal velocity field is
f (t, x) = −

x
2(2 − t)

.

We test Algorithm 1 on this problem in 1, 2, and 10 dimensions. These errors are summarized in Table 2. Detailed
definitions for errρ, err f , and errs are given in Appendix B.3. Additionally, we report the cost gap, which represents
the difference between the computed cost and the optimal cost, averaged over 10 independent runs. The results are also

errors errρ err f errs cost gap

1d 3.52 × 10−3 3.45 × 10−2 8.52 × 10−3 1.33 × 10−2

2d 6.53 × 10−3 3.40 × 10−2 4.49 × 10−2 1.24 × 10−2

10d 1.68 × 10−3 3.15 × 10−2 6.42 × 10−2 1.69 × 10−1

Table 2: Errors for the RWPO problem.

visualized in Figure 1. The plot on the left shows the cost functional through training in 1 dimension, which becomes
close to the optimal cost in red. The plot in the middle compares the evolution of the density function computed
through (8) under trained velocity with the true density evolution. Our density dynamic (4) accurately captures the
density evolution. The plot on the right shows the particle trajectories of zt in 2 dimensions and compares them with
the stochastic dynamics. Our probability flow ODE demonstrates a structured behavior.

We present additional numerical results in Figure 2. The first, second, and third rows of Figure 2 show numerical
results in 1, 2, and 10 dimensions, respectively. The first column shows the curves of the cost function through
training. The light blue shadows plot the standard deviation observed during 10 independent test runs. The red dashed
lines represent the cost under the optimal control field. We observe that our algorithm nearly reaches the optimal cost.

The second column in Figure 2 plots the first dimension of the velocity field at t = 0. Our neural networks (in
blue) accurately captures the true velocity (in orange). The third column presents similar plots for the velocity fields,
but at t = tend = 1. Our algorithm also computes the velocity fields accurately.

The fourth column in the first row of Figure 2 plots the score function (in blue) at t = 1 using the data points
{(z(n)

tNt
, s(n)

tNt
)}Nz

n=1. This curve coincides with the true score function in orange. Note that the score function at t = 0 is
given, so we only plot the score at a terminal time. The second and third figures in the fourth column of Figure 2
show a density plot of the first dimension of the velocity field. These are probability density functions of f (0, z0; θ)
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Figure 1: Numerical results for the RWPO problem. Left: cost functional through training with optimal cost in 1d. Middle: density evolution
through (4) and comparison with true density in 1d. Right: trajectories of zt and comparison with the stochastic dynamic in 2d. The score dynamic
demonstrates a structured behavior compared with the corresponding stochastic trajectory simulated by stochastic differential equations.
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Figure 2: The first, second and third row: numerical results for RWPO in 1d, 2d, and 10d. First column: cost functional through training. Second
and third columns: first dimension of the velocity field at t = 0 and t = 1. Fourth column: the first row is the score function at t = 1, the second and
third rows are the density plots for the first dimension of the velocity field. Our numerical results accurately capture the true solutions.
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and f (0, z0), where z0 ∼ ρ0. The density functions are further approximated by the histogram of samples. Such
techniques for visualization of high dimensional functions have been applied in [32]. We observe that our neural
network accurately captures the velocity fields.

Adding HJB regularizer. We also test the regularized Algorithm 2 for this example. We compare all results with
weight parameters λ = 1× 10−3 and λ = 0 in (25) to study the effect of this regularization. All results are presented in
table 3. The errors for the regularized algorithm are significantly smaller.

regularization λ = 1 × 10−3 λ = 0

errors errA errB errA errB

1d 2.33 × 10−3 3.03 × 10−3 1.36 × 10−2 1.00 × 10−2

2d 3.30 × 10−3 4.10 × 10−3 1.74 × 10−2 1.70 × 10−2

10d 7.52 × 10−3 4.45 × 10−3 8.34 × 10−2 4.02 × 10−2

Table 3: Errors for regularized MFC solver of RWPO problem. The errors for the regularized algorithm are significantly smaller.

5.2. Flow matching for solving FP equations

Flow matching has emerged as an important problem, which is closely related to generative models [33, 11]. The
problem is to simulate the probability density function of a stochastic dynamics:

dXt = b(t, Xt) dt +
√

2γ dWt, X0 ∼ ρ0 (26)

where b : R+ ×Rd → Rd is a known drift vector field, and ρ0 : Rd → R is an initial value probability density function.
In this example, we also assume the drift function satisfies b(t, x) = −∇V(x), which is the negative gradient of some
potential function V(x) ∈ C4

loc(Rd). In this case, SDE (26) is the overdamped Langevin dynamic. To simulate the
density function of stochastic process Xt in (26), we design the following MFC problem. We minimize the objective
functional (loss function) as

inf
v

∫ tend

0

∫
Rd

1
2
|v(t, x) − b(t, x)|2 ρ(t, x) dx dt ,

subject to the FP equation (15). After the score transformation (16), the above second order MFC problem becomes

inf
f

∫ tend

0

∫
Rd

1
2

∣∣∣ f (t, x) − b(t, x) + γ∇x log ρ(t, x)
∣∣∣2 ρ(t, x) dx dt ,

subject to the transport equation (18). The state dynamic hence becomes ∂tzt = −∇zV(zt) − γst. This transformation
(16) seems to complicate the problem. However, we are able to learn the whole FP equation of the overdamped
Langevin dynamic with a given initial distribution ρ0 or samples {z(n)

0 }
nz
n=1. More importantly, we can record all inter-

mediate time steps and compute the density function during the entire time domain [0, tend].

Flow matching for OU process. We first present the flow matching problem for an Ornstein—Uhlenbeck (OU)
process, where the explicit solution is given in Appendix A.3. The algorithm is described with details in Appendix
B.1 and summarized in Algorithm 3. Similar to the previous section, we compare the numerical results for a direct
method and the regularized method in Table 4. The errors for the regularized algorithm are significantly smaller.

The numerical results of flow matching for OU process are shown in Figure 3 and 4. Figure 3 shows the density
evolution of the process in 1 dimension, which is similar to the second plot in Figure 1. Our algorithm captures both
the change of mean value and the shrink of variance accurately. Figure 4 shows the particle dynamic under the trained
probability flow in 2 dimensions and its comparison with the stochastic OU process. We add level sets of the density
function with center µ(t) and radius 1

4σ(t), 1
2σ(t), and σ(t) for better visualization, where σ(t) := det(Σ(t))

1
2d denotes

the standard deviation. We pick points that are initialized within the circle with center µ(0) and radius σ(0), and record
the trajectories of these particles. According to Figure 4, our algorithm accurately captures the change of mean and

11



2 1 0 1 2 3x 0.0
0.2

0.4
0.6

0.8
1.0

t

0.1

0.2

0.3

learned 
true 

Figure 3: Flow matching for OU process in 1 dimension. Our algorithm accurately captures the density evolution of the state dynamic, including
the change of mean and variance.
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regularization λ = 1 × 10−3 λ = 0

errors errA errB errA errB

1d 9.81 × 10−4 8.58 × 10−4 7.89 × 10−3 7.47 × 10−3

2d 1.50 × 10−3 1.37 × 10−3 2.02 × 10−2 1.40 × 10−2

10d 4.08 × 10−3 6.73 × 10−3 7.86 × 10−2 3.89 × 10−2

Table 4: Errors for the regularized MFC solver of flow matching for OU processes. The errors for the regularized algorithm are significantly
smaller.

variance of the OU process. Additionally, compared with the OU process, our probability flow ODE demonstrates
structured behaviors.

Double moon example. The example with double moon potential is given by

V(x) = 2(|x| − 3)2 − 2 log
[
exp

(
−2 (x1 − 3)2

)
+ exp

(
−2 (x1 + 3)2

)]
.

This example has been computed in [34, 35]. We aim to learn the probability flow ODE of the overdamped Langevin
dynamic

∂tρ(t, x) − ∇x · (ρ(t, x)∇xV(t, x)) = γ∆xρ(t, x) ,

where the initial distribution ρ0 is N(0, 1). There are two moon-shaped patterns from this potential function. Therefore,
the state dynamic has a bifurcation phenomenon, which is usually hard to capture.

We design an algorithm that partitions the time interval into several sub-intervals, which could potentially resolve
the issue of long time horizon. The model is trained consecutively over each sub-interval, referred to as the multi-
stage splicing method.

We set the total time span as t ∈ [0, 0.4]. The overdamped Langevin dynamic is already close to its stable
distribution at t = 0.4; see the last scattered plot in Figure 5. Also, our algorithm has demonstrated its ability to learn
the dynamic accurately within a longer interval in other examples.

Next, we present the detailed implementation of the multi-stage splicing method for our double moon example. In
this toy example, we partition the interval into two stages (sub-intervals) [0, 0.2] and [0.2, 0.4]. We apply Algorithm
1 within the first interval. After training, we save the trained network as a warm-start (initialization) for the training
in the next stage. We also record the particles z(n)

t at terminal time t = 0.2 in the first stage, which serves as the initial
distribution for training in the next stage.

In the second stage t ∈ [0.2, 0.4], the training process is similar. We inherit the network parameter θ from the
previous stage as initialization. Also, the state particles z(n)

t at terminal time from the last stage are utilized as initial-
ization distribution for the new stage. Note that starting from the second stage, there is no longer resampling because
we only have finite samples at t = 0.2. As a consequence, we may encounter the problem of overfitting, which is also
known as model collapse. In this work, we apply a L2 regularization with weight 0.1 to avoid this issue. If we only
have finite samples for the initial distribution, then regularization should also be added in the first stage of training.
We summarize this multi-stage splicing method in Algorithm 4.

The numerical result for the splicing method is shown in Figure 5. The first row shows the particle dynamic of
state zt under the trained velocity field within the first stage, which coincides with an overdamped Langevin dynamic
in the second row. The third row shows the particle dynamic in the second stage after training, coinciding with the
overdamped Langevin dynamic in the fourth row. We also add the level sets for the density function of the stationary
distribution for better visualization. These results confirm that our multistage splicing method can capture the Fokker-
Planck equation of an overdamped Langevin dynamic in a total time span.
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Figure 5: 2D flow matching double moon. First row: evolution of particles under the trained probability flow zt in the first stage [0, 0.2]. Second
row: evolution of particles under the overdamped Langevin dynamic in the first stage [0, 0.2]. Third row: evolution of particles under the trained
probability flow zt in the second stage [0.2, 0.4]. Fourth row: evolution of particles under the overdamped Langevin dynamic in the second stage
[0.2, 0.4]. Our multi-stage splicing method captures the overdamped Langevin dynamic correctly.
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5.3. An LQ example with an entropy potential cost

We consider an LQ example in this section. This example was also studied in [19]. We minimize the cost
functional

inf
v

∫ tend

0

∫
Rd

(
1
2
|v(t, x)|2 +

1
2
|x|2 + β log(ρ(t, x))

)
ρ(t, x) dx dt

+

∫
Rd

G(x)ρ(tend, x) dx ,

subject to
∂tρ(t, x) + ∇x · (ρ(t, x)v(t, x)) = ∆xρ(t, x) , ρ(0, x) = ρ0(x) .

With a score substitution, the problem is equivalent to

inf
f

∫ tend

0

∫
Rd

(
1
2

∣∣∣ f (t, x) + ∇x log(ρ(t, x))
∣∣∣2 + 1

2
|x|2 + β log(ρ(t, x))

)
ρ(t, x) dx dt

+

∫
Rd

G(x)ρ(tend, x) dx ,

subject to
∂tρ(t, x) + ∇x · (ρ(t, x) f (t, x)) = 0 , ρ(0, x) = ρ0(x) .

We define α :=
( √

β2 + 4 − β
)
/2. The initial distribution ρ0 is Gaussian N(0, 1

α
Id) and the terminal cost is G(x) =

α
2 |x|

2. The optimal density evolution is given by

ρ(t, x) =
(
α

2π

)d/2
exp

(
−
α |x|2

2

)
.

We set β = 0.1 and test Algorithm 1 on this example. We remark that we have a term β log ρ(t, x) in the running
cost F. Therefore, it is better to compute lt = log ρ(t, zt) instead of l̃t = ρ(t, zt) in algorithm 1. Similar to the WPO
example, we test our algorithm in 1, 2, and 10 dimensions. The errors are summarized in Table 5, which is similar to
the results in Table 2. Our algorithm is able to solve the MFC problem accurately.

errors errρ err f errs cost gap

1d 9.91 × 10−3 2.61 × 10−2 2.88 × 10−2 1.07 × 10−2

2d 7.39 × 10−3 3.74 × 10−2 3.58 × 10−2 1.97 × 10−2

10d 1.15 × 10−3 2.49 × 10−2 2.37 × 10−2 1.64 × 10−1

Table 5: Errors for LQ problem.

The numerical results are also presented in Figure 6. The first, second, and third rows show the results in 1, 2,
and 10 dimensions, respectively. The first column is the training curve for the cost functional, which is similar to
the first column in Figure 2. Our algorithm gives the correct objective. The second column visualize the density
function at terminal time tend using the data points {z(n)

tNt
, l̃(n)

tNt
}
Nz
n=1. In the 1 dimension (first row), we plot the density and

compare it with true densities directly. In 2 dimensions, we interpolate the data points and plot the density function
x1 7→ ρ(tend, (x1, 0)) in the figure. In 10 dimensions, an interpolation is very hard to obtain, so we plot the density
in term of the norm of x. Our algorithm captures the density function accurately. The third column visualize the
score function at terminal time tend using the data points {(z(n)

tNt
, s(n)

tNt
)}Nz

n=1. Again, we plot the score function directly in
1 dimension. In 2 and 10 dimensions, we present a density plot for the first dimension of the score, which gives the
probability density function of ∇z1 log ρ(tend, ztend ). We observe that our algorithm captures the true density and score
functions accurately.
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Figure 6: Numerical results for the LQ problem. The first, second, and third rows shows the results in 1, 2, and 10 dimensions respectively. First
column: cost functional through training. Second column: visualization for the density function. Third column: visualization for the score function.
Our algorithm accurately captures the solution to the problem.
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5.4. Double well potential

In this section we present an MFC example where the terminal cost is a potential function with the double well
shape. The formulation is similar to RWPO, with the terminal cost given by

G(x) = c |x − c1|
2 |x − c2|

2 , (27)

where c ∈ R+ and c1, c2 ∈ Rd are the minimizers of G. This function G does not depend on the density ρ. The
initial distribution is still a standard Gaussian distribution, i.e., z0 ∼ N(0, Id). As mentioned before, such problem
will demonstrate a bifurcation phenomenon, which is hard to capture. We compute this example in 1, 2, and 10
dimensions, and compute all errors in 1 and 2 dimensions. We take c = 1

4 in (27) and set two centers as an all −1
vector for c1 and an all 1 vector for c2.

Computing the reference solution. Unlike the example in section 5.1, we do not have an explicit solution. But
fortunately, we are able to obtain a reference solution using the kernel formula proposed in [36] (equation (10), (11),
and (14)). According to their derivations, the optimal density function is given by

ρ(t, x) =
(
4πγ

t(tend − t)
tend

)− d
2

·

∫
Rd

∫
Rd

exp
[
− 1

2γ

(
G(z) + |x−z|2

2(tend−t) +
|x−y|2

2t

)]
∫
Rd exp

[
− 1

2γ

(
G(ỹ) + |y−ỹ|2

2tend

)]
dỹ

ρ(0, y) dy dz .

(28)

Specifically, the density function as terminal time tend is

ρ(tend, x) =
∫
Rd

exp
[
− 1

2γ

(
G(x) + |x−y|2

2tend

)]
∫
Rd exp

[
− 1

2γ

(
G(z) + |z−y|2

2tend

)]
dz
ρ(0, y) dy . (29)

In addition, the solution to the classic HJB equation (cf. (A.13)) is given by

ϕ(t, x) = 2γ log
(∫

Rd
(4πγ(tend − t))−

d
2 exp

[
−

1
2γ

(
G(y) +

|x − y|2

2(tend − t)

)]
dy

)
,

with a terminal condition ϕ(T, x) = −G(x). With these expressions, we are able to obtain the score function via
∇x log ρ(t, x) = ∇xρ(t, x)/ρ(t, x). Then, by Corollary 1 and (A.14), the optimal velocity is

f (t, x) = ∇xϕ(t, x) − γ∇x log ρ(t, x) . (30)

However, when t ∈ (0, tend), the numerical implementation for ρ(t, x) and ∇xρ(t, x) through (28) involves three nested
integrations in Rd, which could potentially result in large errors. Therefore, we instead consider the errors at t = 0
and tend, where all expressions are relatively easy. At t = 0, by (30), we have

f (0, x) =

∫
Rd

x−y
tend

exp
[
− 1

2γ

(
G(y) + |x−y|2

2tend

)]
dy∫

Rd exp
[
− 1

2γ

(
G(z) + |x−z|2

2tend

)]
dz

− γ
∇xρ0(x)
ρ0(x)

. (31)

At t = tend, we can compute the score function through

∇x log ρ(tend, x) =

−
∫
Rd

− 1
2γ

(
∇xG(x)+ x−y

tend

)
exp

[
− 1

2γ

(
G(x)+ |x−y|2

2tend

)]
∫
Rd exp

[
− 1

2γ

(
G(z)+ |z−y|2

2tend

)]
dz

ρ(0, y) dy

∫
Rd

exp
[
− 1

2γ

(
G(x)+ |x−y|2

2tend

)]
∫
Rd exp

[
− 1

2γ

(
G(z)+ |z−y|2

2tend

)]
dz
ρ(0, y) dy

. (32)
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Also, the terminal velocity is given by

f (tend, x) = −∇xG(x) − γ∇x log ρ(tend, x) . (33)

Next, we apply the Riemann sum to approximate the expressions (31), (32), and (33) to obtain a reference solution
in 1 and 2 dimensions. First, we define the following function

h(y) =
∫
Rd

exp
[
−

1
2γ

(
G(z) +

|z − y|2

2tend

)]
dz ,

which has appeared multiple times. We approximated h(y) numerically from the Riemann sum. In 1 dimension, we
use the trapezoid rule with step size ∆z = 0.01 to approximate the integrations and truncate the integration within
z ∈ [−6, 6] when we compute the reference solution. In 2 dimensions, similarly, we use a box with size ∆z1 × ∆z2 =

0.01 × 0.01 for Riemann sum and truncate the integration within the box z ∈ [−6, 6] × [−6, 6]. We compute the value
of h(y) on all grid points within [−4, 4] in 1 dimension and [−4, 4] × [−4, 4] in 2 dimensions, and store the values. In
this way, integrations w.r.t. z in (31) and (32) are simulated numerically. Next, we further apply Riemann sum for
integrations w.r.t. y with the same step size, truncated for y ∈ [−4, 4] or [−4, 4] × [−4, 4]. In this way, we obtain the
function for all x on the grid points. The two bounds 6 and 4, and the step size 0.01, are chosen such that the Riemann
sums provide reasonable reference solutions for the problem. Finally, we make an interpolation in the dimensions 1
or 2, giving us the desired reference solution.

Results in 1 dimension. The errors for 1 dimensional example are errρ = 1.17 × 10−2, err f0 = 8.56 × 10−3, err fend =

2.39 × 10−2, and errs = 1.65 × 10−1. The numerical results are illustrated in Figure 7. The two plots in the first row
show the velocity fields at t = 0 and t = tend = 1, which nicely approximate the true velocities. In the second row,
the figure on the left compares the reference terminal density and the histogram of particles ztend , which match well.
The plot in the middle shows the evolution of the density, which is obtained using data points {(z(n)

t j
, l̃(n)

t j
)}Nt ,Nz

j=0,n=1. These
red lines coincide with the blue dashed lines, which are the true densities. This result demonstrates that our algorithm
is able to capture the evaluation from a simple distribution to a complicated double well distribution accurately. The
figure on the right plots the score function using data points {(z(n)

tNt
, l̃(n)

tNt
)}Nz

n=1. It successfully captures the S-shape of the
true score function.

Results in 2 dimensions. It is hard to compute the nested integrations in [36]’s paper using Riemann sums in 2
dimensions. Therefore, instead of computing err f in (B.9), we compute the errors for the velocity field at t = 0 and
t = tend = 1 using the expressions in (B.10). The errors are errρ = 2.62×10−2, err f0 = 5.11×10−2, err fend = 4.77×10−2,
and errs = 2.4 × 10−1.

The results are also shown in Figure 8 and 9. Our learned network successfully captures the velocity field f and
the score function which is shown in Figure 8. The first and second rows show each dimension of the velocity field
at t = 0 and t = tend = 1 and compare them with the true values. The third row shows the score function. The
approximated score function is plotted using the data {(z(n)

tNt
, s(n)

tNt
)}Nz

n=1, where we made a non-uniform 2d interpolation
using the build-in function in Scipy. The reference solution is obtained through differentiation of equations (10) (11)
and (14) given in [36] and then apply Riemann sum approximation. We observe that our algorithm correctly captures
the velocity field and the score function.

The left plot in Figure 9 shows the scattered points at terminal time t = 1, which concentrate at the two wells of
the potential. We also add the level sets of ρ(1, ·) at {0.01, 0.05, 0.1, 0.2, 0.4, 0.6} for better visualization. Note that the
expression for ρ(1, ·) is given by (29) instead of 1

Z exp(−G(x)/γ). The plot in the middle shows the particle trajectories
under the trained velocity field, which shows a bifurcation phenomenon.

Results in 10 dimensions. Finally, we also test our algorithm in 10 dimensions. We do not have a reference solution
in this case, but we observe that the particles go into two piles, as is shown in the right plot of Figure 9. In this plot,
we project the 10 dimensional particles into 2 dimensions for visualization.

6. Conclusion

In this paper, we propose a neural ODE system to compute evolutions of first- and second-order score functions
along trajectories. The forward Euler discretization of neural ODE system satisfies a system of normalization flows
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Figure 7: double well 1d. Left: true density and particle histogram at tend; middle: density evolution compared with true density; right: score
function at tend.

along a deep neural network. We then apply the proposed neural ODE system to solve second-order MFC problems.
The effectiveness and accuracy of our method are validated through numerical examples of RWPO problems, score-
based flow matching problems for FP equations, LQ problems, and the double well potential problems, providing
reassurance of its reliability and effectiveness.

In future work, we shall conduct a thorough numerical analysis of the optimal control problem within the neural
ODE system. Specifically, for second-order MFC problems, error analysis for the score estimations is necessary.
Although we observe some numerical advantages in using the score function to approximate the solution of viscous
HJB equation, the underlying error in the current numerical scheme remains unclear. Additionally, exploring neural
ODE systems for inverse problems presents an exciting avenue for future research. This direction involves learning
and approximating stochastic trajectories from data using the neural ODE system.
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Appendix A. Technical details for score-based normalizing flows and MFC problems

We present detailed proofs of all propositions about normalization flows and MFC problems in this section.

Appendix A.1. Proofs for score-based normalizing flow
Continuity equation for density. Let T (t, x) be smooth and T (t, ·) be invertible for all t ≥ 0. Let f (t, ·) : Rd → Rd

be the vector field of the state dynamic zt, i.e., f (t,T (t, x)) = ∂tT (t, x) for all t and x. Then, the probability density
function satisfies the continuity equation

∂tρ(t, x) + ∇x · (ρ(t, x) f (t, x)) = 0 .
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Proof. Using the chain rule, we have

∂t∇xT (t, x) = ∇x∂tT (t, x) = ∇x f (t,T (t, x)) = ∇T f (t,T (t, x))∇xT (t, x) ,

which implies
Tr

[
∂t∇xT (t, x)∇xT (t, x)−1

]
= Tr

[
∇T f (t,T (t, x))

]
= ∇T · f (t,T (t, x)) . (A.1)

If we compute the derivative of the MA equation (1) w.r.t. t, we obtain

0 =
d
dt

[
ρ(t,T (t, x)) det (∇xT (t, x))

]
=

d
dt
ρ(t,T (t, x)) det (∇xT (t, x)) + ρ(t,T (t, x))

d
dt

det (∇xT (t, x))

=
[
∂tρ(t,T (t, x)) + ∇Tρ(t,T (t, x)) ∂tT (t, x)

]
det (∇xT (t, x))

+ ρ(t,T (t, x)) Tr
[
∂t∇xT (t, x)∇xT (t, x)−1

]
det (∇xT (t, x))

=
[
∂tρ(t,T (t, x)) + ∇Tρ(t,T (t, x))⊤ f (t,T (t, x))

+ρ(t,T (t, x))∇T · f (t,T (t, x))
]
· det (∇xT (t, x))

=
[
∂tρ(t,T (t, x)) + ∇T · (ρ(t,T (t, x)) f (t,T (t, x)))

]
· det (∇xT (t, x)) ,

where we have used (A.1) in the fourth equality. Since T (t, ·) is invertible, det (∇xT (t, x)) , 0, which implies

∂tρ(t,T (t, x)) + ∇T · (ρ(t,T (t, x)) f (t,T (t, x))) = 0 ,

for all t and x. Therefore,
∂tρ(t, x) + ∇x · (ρ(t, x) f (t, x)) = 0 .

Proposition 1 (Neural ODE system). Functions zt, lt, st, and Ht satisfy the following ODE dynamics.

∂tzt = f (t, zt) ,
∂tlt = −∇z · f (t, zt) ,
∂t st = −∇z f (t, zt)⊤st − ∇z(∇z · f (t, zt)) ,

∂tHt = −

d∑
i=1

sit∇
2
z fi(t, zt) − ∇2

z (∇z · f (t, zt)) − Ht∇z f (t, zt) − ∇z f (t, zt)⊤Ht ,

where sit and fi are the i-th component of st and f respectively. Also, l̃t = ρ(t, zt) satisfies

∂t l̃t = −∇z · f (t, zt) l̃t .

Proof. The dynamic for zt (3a) comes from the definition directly:

∂tzt = ∂tT (t, z0) = f (t,T (t, z0)) = f (t, zt) .

We next show (4) and (3b).

∂t l̃t =
d
dt
ρ(t, zt) = ∂tρ(t, zt) + ∇zρ(t, zt)⊤ ∂tzt = ∂tρ(t, zt) + ∇zρ(t, zt)⊤ f (t, zt)

= −∇z · [ f (t, zt) ρ(t, zt)] + ∇zρ(t, zt)⊤ f (t, zt) = −∇z · f (t, zt) ρ(t, zt) = −∇z · f (t, zt) l̃t .

where we have used the continuity equation (2) in the fourth equality. Consequently,

∂tlt =
d
dt
ρ(t, zt)/ρ(t, zt) = −∇z · f (t, zt) = −∇z · f (t, zt) .
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We next show (3c). We will use the fact frequently that ∇z log ρ(t, zt) = ∇zρ(t, zt)/ρ(t, zt). We first compute
d
dt

(∇zρ(t, zt))
d
dt

[
∇zρ(t, zt)

]
= (∂t∇z)ρ(t, zt) + ∇2

zρ(t, zt) ∂tzt

= ∇z∂tρ(t, zt) + ∇2
zρ(t, zt) f (t, zt)

= −∇z
[
∇z · (ρ(t, zt) f (t, zt))

]
+ ∇2

zρ(t, zt) f (t, zt)

= −∇z

[
∇zρ(t, zt)⊤ f (t, zt) + ρ(t, zt)∇z · f (t, zt)

]
+ ∇2

zρ(t, zt) f (t, zt)

= −∇z f (t, zt)⊤ ∇zρ(t, zt) − (∇z · f (t, zt))∇zρ(t, zt) − ρ(t, zt)∇z (∇z · f (t, zt)) .

(A.2)

Therefore,

∂t st =
d
dt

[
∇z log ρ(t, zt)

]
=

d
dt

[
∇zρ(t, zt)/ρ(t, zt)

]
=

d
dt

(∇zρ(t, zt)) /ρ(t, zt) − ∇zρ(t, zt)
d
dt

(ρ(t, zt)) /ρ(t, zt)2

= −∇z f (t, zt)⊤ ∇z log ρ(t, zt) − ∇z · f (t, zt)∇z log ρ(t, zt)
− ∇z (∇z · f (t, zt)) + ∇z log ρ(t, zt)∇z · f (t, zt)
= −∇z f (t, zt)⊤ ∇z log ρ(t, zt) − ∇z (∇z · f (t, zt))

= −∇z f (t, zt)⊤ st − ∇z (∇z · f (t, zt)) ,

where we have used (A.2) and (4) in the third inequality.
Finally we prove (3d). In order to simplify notation, we will omit (t, zt) when there is no confusion and rewrite

ρ(t, zt) and f (t, zt) as ρ and f . We also denote ∂i as the partial derivative w.r.t. the i-th variable in z. We first compute
d
dt
∇2

zρ(t, zt).
d
dt
∇2

zρ = ∇
2
z∂tρ + ∇

3
zρ · f = −∇2

z [∇z · (ρ f )] + ∇3
zρ · f

= −∇2
z [∇zρ

⊤ f + ρ∇z · f ] + ∇3
zρ · f

= −∇2
z

 d∑
i=1

∂iρ fi + ρ∇z · f

 + ∇3
zρ · f

= −

d∑
i=1

(
∇2

z∂iρ fi + ∂iρ∇
2
z fi + ∇z∂iρ∇z f⊤i + ∇z fi ∇z∂iρ

⊤
)
+ ∇3

zρ · f

−
(
∇2

zρ (∇z · f ) + ρ∇2
z (∇z · f ) + ∇zρ∇z(∇z · f )⊤ + ∇z(∇z · f )∇zρ

⊤
)

= −

d∑
i=1

∂iρ∇
2
z fi − ∇2

zρ∇z f − (∇z f )⊤∇2
zρ − ∇

2
zρ (∇z · f ) − ρ∇2

z (∇z · f )

− ∇zρ∇z(∇z · f )⊤ − ∇z(∇z · f )∇zρ
⊤ .

(A.3)

We also have

∇2
z log(ρ) = ∇z

(
∇zρ

ρ

)
=
∇2

zρ

ρ
−
∇zρ∇zρ

⊤

ρ2 , (A.4)

which implies
∇2

zρ

ρ
= Ht + st s⊤t . (A.5)
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Dividing (A.3) by ρ, we obtain

d
dt∇

2
zρ

ρ

= −

d∑
i=1

∂iρ

ρ
∇2

z fi −
∇2

zρ

ρ
∇z f − (∇z f )⊤

∇2
zρ

ρ
−
∇2

zρ

ρ
(∇z · f )

− ∇2
z (∇z · f ) −

∇zρ

ρ
∇z(∇z · f )⊤ − ∇z(∇z · f )

∇zρ
⊤

ρ

= −

d∑
i=1

sit∇
2
z fi −

(
Ht + st s⊤t

)
∇z f − (∇z f )⊤

(
Ht + st s⊤t

)
− (∇z · f )

(
Ht + st s⊤t

)
− ∇2

z (∇z · f ) − st∇z(∇z · f )⊤ − ∇z(∇z · f )s⊤t ,

(A.6)

where we have used equation (A.5) in the second equality. Finally, we get

∂tHt =
d
dt
∇2

z log ρ =
d
dt

(
∇2

zρ

ρ
−
∇zρ∇zρ

⊤

ρ2

)

=

d
dt∇

2
zρ

ρ
−
∇2

zρ
d
dtρ

ρ2 −

(
d
dt∇zρ

)
∇zρ

⊤ + ∇zρ
(

d
dt∇zρ

)⊤
ρ2 +

2∇zρ∇zρ
⊤ d

dtρ

ρ3

= −

d∑
i=1

sit∇
2
z fi −

(
Ht + st s⊤t

)
∇z f − (∇z f )⊤

(
Ht + st s⊤t

)
− (∇z · f )

(
Ht + st s⊤t

)
− ∇2

z (∇z · f ) − st∇z(∇z · f )⊤ − ∇z(∇z · f )s⊤t +
(
Ht + st s⊤t

)
(∇z · f )

+
(
∇z f⊤st + (∇z · f ) st + ∇z(∇z · f )

)
s⊤t

+ st

(
∇z f⊤st + (∇z · f ) st + ∇z(∇z · f )

)⊤
− 2st s⊤t (∇z · f )

= −

d∑
i=1

sit∇
2
z fi − ∇2

z (∇z · f ) − Ht∇z f − (∇z f )⊤Ht .

We have used (A.4) in the second equality and used (A.6), (A.5), (4), and (A.2) in the fourth equality. This finishes
the proof.

Proposition 2 (Information equality). The following equality holds:

E [Tr(Ht)] = −E
[
|st |

2
]
, for all t ≥ 0 .

Proof. For all t ≥ 0, we have

E
[
Tr(Ht) + |st |

2
]
= E

[
∇z ·

(
∇z log ρ(t, zt)

)
+

∣∣∣∇z log ρ(t, zt)
∣∣∣2]

=

∫
Rd

(
∇x ·

(
∇x log ρ(t, x)

)
+

∣∣∣∇x log ρ(t, x)
∣∣∣2) ρ(t, x) dx

=

∫
Rd

[
∇x ·

(
∇xρ(t, x)
ρ(t, x)

)
ρ(t, x) +

|∇xρ(t, x)|2

ρ(t, x)2 ρ(t, x)
]

dx

=

∫
Rd

[
−
∇xρ(t, x)⊤

ρ(t, x)
∇xρ(t, x) +

|∇xρ(t, x)|2

ρ(t, x)

]
dx = 0 ,

where we have used the integration by part in the second last equality.
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Covariance evolution of centered Gaussian distributions. Let z0 follow a centered Gaussian distribution
N(0,Σ(0)) and ∂tzt = A(t)zt. Then zt is also a centered Gaussian distribution N(0,Σ(t)), where the covariance Σ(t)
satisfies a matrix ODE:

∂tΣ(t) = A(t)Σ(t) + Σ(t)A(t)⊤ . (A.7)

Proof. We write down the density function ρ(t, x) for N(0,Σ(t))

ρ(t, x) = (2π)−
d
2 det(Σ(t))−

1
2 exp

(
−

1
2

x⊤Σ(t)−1x
)
.

It is sufficient to check that ρ(t, x) satisfies the transport equation

∂tρ(t, x) + ∇x · (A(t)x ρ(t, x)) = 0 ,

if equation (A.7) holds. We first compute

d
dt

det(Σ(t)) = det(Σ(t)) Tr
(
Σ(t)−1 ∂tΣ(t)

)
= det(Σ(t)) Tr

(
Σ(t)−1 (A(t)Σ(t) + Σ(t)A(t)⊤)

)
= det(Σ(t)) Tr

(
Σ(t)−1A(t)Σ(t) + A(t)⊤

)
= 2 det(Σ(t)) Tr(A(t)) ,

which implies
d
dt

(
det(Σ(t))−

1
2

)
= −

1
2

det(Σ(t))−
3
2

d
dt

det(Σ(t))

= − det(Σ(t))−
1
2 Tr(A(t)) .

(A.8)

We also have
d
dt

(
Σ(t)−1

)
= −Σ(t)−1 ∂tΣ(t)Σ(t)−1 = −Σ(t)−1A(t) − A(t)⊤Σ(t)−1 ,

which implies
d
dt

exp
(
−

1
2

x⊤Σ(t)−1x
)
= −

1
2

x⊤
d
dt

(
Σ(t)−1

)
x exp

(
−

1
2

x⊤Σ(t)−1x
)

=
1
2

x⊤
(
Σ(t)−1A(t) + A(t)⊤Σ(t)−1

)
x exp

(
−

1
2

x⊤Σ(t)−1x
)

= x⊤A(t)⊤Σ(t)−1x exp
(
−

1
2

x⊤Σ(t)−1x
)
.

(A.9)

Combining (A.8) and (A.9), we obtain

∂tρ(t, x) = (2π)−
d
2

d
dt

(
det(Σ(t))−

1
2

)
exp

(
−

1
2

x⊤Σ(t)−1x
)

+ (2π)−
d
2 det(Σ(t))−

1
2

d
dt

exp
(
−

1
2

x⊤Σ(t)−1x
)

= ρ(t, x)
[
−Tr(A(t)) + x⊤A(t)⊤Σ(t)−1x

]
.

Finally, we obtain
∇x · (A(t)x ρ(t, x)) = Tr(A(t)) ρ(t, x) + x⊤A(t)⊤ ∇xρ(t, x)

= Tr(A(t)) ρ(t, x) + x⊤A(t)⊤
(
−Σ(t)−1x

)
ρ(t, x) = −∂tρ(t, x) ,

which finishes the proof.
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Appendix A.2. Details for the MFC problems
We recall the formulation of the MFC problem

inf
v

∫ tend

0

∫
Rd

[
L(t, x, v(t, x)) + F(t, x, ρ(t, x))

]
ρ(t, x) dx dt

+

∫
Rd

G(x, ρ(tend, x))ρ(tend, x) dx ,

where the density ρ(t, x) satisfies the FP equation with a given initialization

∂tρ(t, x) + ∇x · (ρ(t, x)v(t, x)) = γ∆xρ(t, x) , ρ(0, x) = ρ0(x) .

This FP equation has a stochastic characterization

dxt = v(t, xt) dt +
√

2γ dWt ,

where Wt is a standard Brownian motion. For the well-posedness of the problem, we assume that the running cost L
is strongly convex in v, then the Hamiltonian, i.e. the Legendre transform (convex conjugate) of L, is well defined,
given by

H(t, x, p) = sup
v∈Rd

v⊤p − L(t, x, v) .

According to standard results in convex analysis, DvL and DpH are the inverse functions to each other, in the sense
that

DpH(t, x,DvL(t, x, v)) = v , ∀v ,

DvL(t, x,DpH(t, x, p)) = p , ∀p .
(A.10)

We recall that the composed velocity is

f (t, x) = v(t, x) − γ∇x log ρ(t, x) ,

and the probability flow zt is given by
∂tzt = f (t, zt) .

Note that the stochastic dynamic xt and the probability flow zt share the same probability distribution, while they
are different dynamics. This zt serves as a characteristic line for the system. Along this line, a forward Euler scheme
gives O(∆t) error, while a direct discretization of the stochastic dynamic has an error term O(

√
∆t).

Next, we present the an analysis for the modified HJB equation of MFC problem, tailored for the probability flow
dynamic.

Proposition 3. Let L be strongly convex in v, then solution to the MFC problem (17) is as follows. Consider a function
ψ : [0, tend] × Rd → R, such that

f (t, x) = DpH(t, x,∇xψ(t, x) + γ∇x log ρ(t, x)) − γ∇x log ρ(t, x),

where the density function ρ(t, x) and ψ : [0, tend] × Rd → R satisfy the following system of equations

∂tρ(t, x) + ∇x ·
(
ρ(t, x)DpH

)
= γ∆xρ(t, x),

∂tψ(t, x) + ∇xψ(t, x)⊤DpH − γ∇x · DpH + γ∆xψ(t, x) − L(t, x,DpH)

− F̃(t, x, ρ(t, x)) + 2γ2∆x log ρ(t, x) + γ2
∣∣∣∇x log ρ(t, x)

∣∣∣2 = 0,

ρ(0, x) = ρ0(x), ψ(tend, x) = −G̃(x, ρ(tend, x)) − γ log ρ(tend, x),

Here, DpH is short for DpH(t, x,∇xψ(t, x) + γ∇x log ρ(t, x)), F̃(t, x, ρ) =
∂

∂ρ
(F(t, x, ρ)ρ) =

∂F
∂ρ

(t, x, ρ)ρ + F(t, x, ρ),

and G̃(x, ρ) =
∂G
∂ρ

(x, ρ)ρ +G(x, ρ).
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Proof. We start by adding a Lagrange multiplier ϕ(t, x) and obtain the augmented objective∫ tend

0

∫
Rd

[(
L(t, x, f (t, x) + γ∇x log ρ(t, x)) + F(t, x, ρ(t, x))

)
ρ(t, x)

+ϕ(t, x) (∂tρ(t, x) + ∇x · ( f (t, x)ρ(t, x)))
]

dx dt

+

∫
Rd

G(x, ρ(tend, x))ρ(tend, x) dx

=

∫ tend

0

∫
Rd

[(
L(t, x, f (t, x) + γ∇x log ρ(t, x)) + F(t, x, ρ(t, x))

)
ρ(t, x)

−∂tϕ(t, x)ρ(t, x) − ∇xϕ(t, x)⊤ f (t, x)ρ(t, x)
]

dx dt (A.11)

+

∫
Rd

(G(x, ρ(tend, x)) + ϕ(tend, x))ρ(tend, x) dx −
∫
Rd
ϕ(0, x)ρ(0, x) dx.

Taking the variation of (A.11) w.r.t. ρ(tend, ·), we get ϕ(tend, x) = −G̃(x, ρ(tend, x)). Taking the variation w.r.t. f , we
obtain

DvL(t, x, f (t, x) + γ∇x log ρ(t, x)) = ∇xϕ(t, x) ,

which implies
f (t, x) + γ∇x log ρ(t, x) = DpH(t, x,∇xϕ(t, x)) , (A.12)

due to (A.10). Next, we denote DpH(t, x,∇xϕ(t, x)) by DpH for short. We then observe that

DvL := DvL(t, x, f (t, x) + γ∇x log ρ(t, x)) = DvL(t, x,DpH) = ∇xϕ(t, x).

Taking the variation of (A.11) w.r.t. ρ(·, ·), we get

0 = −γ∇x ·
[
DvL ρ(t, x)

]
/ρ(t, x) + L(t, x, f (t, x) + γ∇x log ρ(t, x))

+ F̃(t, x, ρ(t, x)) − ∂tϕ(t, x) − ∇xϕ(t, x)⊤ f (t, x)
= −γ∇x · DvL − γDvL⊤∇x log ρ(t, x) + L(t, x,DpH)

+ F̃(t, x, ρ(t, x)) − ∂tϕ(t, x) − ∇xϕ(t, x)⊤
(
DpH − γ∇x log ρ(t, x)

)
= −γ∆xϕ(t, x) + L(t, x,DpH) + F̃(t, x, ρ(t, x))
− ∂tϕ(t, x) − ∇xϕ(t, x)⊤DpH , (A.13)

where we have used DvL = ∇xϕ(t, x) in the last inequality. Equation (A.13) is the classical HJB equation correspond-
ing to the MFC problem, which coincide with equation (4.6) in [13] after a sign flip, where our DpH is their v̂. Please
note that, throughout our derivation, ρ(t, x) is not a general density, but the density under the optimal control.

We next present the modified HJB equation. We define

ψ(t, x) := ϕ(t, x) − γ log ρ(t, x) . (A.14)

This definition seems to complicate the system, but eventually gives us an elegant characterization, especially in the
case of LQ problem (see Corollary 1). We then observe that

∂t log ρ(t, x) =
∂tρ(t, x)
ρ(t, x)

= −
∇x · (ρ(t, x) f (t, x))

ρ(t, x)
= −∇x · f (t, x) − ∇x log ρ(t, x)⊤ f (t, x)

= −∇x · DpH + γ∆x log ρ(t, x) − ∇x log ρ(t, x)⊤DpH + γ
∣∣∣∇x log ρ(t, x)

∣∣∣2 ,
(A.15)
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where the last equality is due to (A.12). Therefore, the HJB equation (A.13) is transformed into

0 = −γ∆xψ(t, x) − γ2∆x log ρ(t, x) + L(t, x,DpH) + F̃(t, x, ρ(t, x)) − ∂tψ(t, x)
− γ∂t log ρ(t, x) − (∇xψ(t, x) + γ∇x log ρ(t, x))⊤DpH

= −γ∆xψ(t, x) − γ2∆x log ρ(t, x) + L(t, x,DpH) + F̃(t, x, ρ(t, x)) − ∂tψ(t, x)

+ γ∇x · DpH − γ2∆x log ρ(t, x) + γ∇x log ρ(t, x)⊤DpH − γ2
∣∣∣∇x log ρ(t, x)

∣∣∣2
− (∇xψ(t, x) + γ∇x log ρ(t, x))⊤DpH

= −∂tψ(t, x) − ∇xψ(t, x)⊤DpH + γ∇x · DpH − γ∆xψ(t, x) + L(t, x,DpH)

+ F̃(t, x, ρ(t, x)) − 2γ2∆x log ρ(t, x) − γ2
∣∣∣∇x log ρ(t, x)

∣∣∣2 .
Here, DpH is short for DpH(t, x,∇xψ(t, x) + γ∇x log ρ(t, x)). We plug in the shift (A.14) in the first equality; we plug
in (A.15) in the second equality. Therefore, we have recovered Proposition 3.

Corollary 1. In the LQ problem where L(t, x, v) = 1
2 |v|

2 and F(t, x, ρ) = 0, the solution of the MFC problem (17) is
characterized by

f (t, x) = ∇xψ(t, x) ,

and 
∂tρ(t, x) + ∇x · (ρ(t, x)∇xψ(t, x)) = 0 ,

∂tψ(t, x) +
1
2
|∇xψ(t, x)|2 + γ2∆x log ρ(t, x) +

1
2
γ2

∣∣∣∇x log ρ(t, x)
∣∣∣2 = 0 ,

ρ(0, x) = ρ0(x) , ψ(tend, x) = −G̃(x, ρ(tend, x)) − γ log ρ(tend, x) .

If we further define the Fisher information as I[ρ] :=
∫
Rd

∣∣∣∇x log ρ(x)
∣∣∣2 ρ(x) dx, then the equation for ψ becomes

∂tψ(t, x) +
1
2
|∇xψ(t, x)|2 −

1
2
γ2 δI[ρ(t, ·)]

δρ(t, ·)
(x) = 0 .

Proof. When L(t, x, v) = 1
2 |v|

2, we have DvL(t, x, v) = v and DpH(t, x, p) = p. So

DpH(t, x,∇xψ(t, x) + γ∇x log ρ(t, x)) = ∇xψ(t, x) + γ∇x log ρ(t, x) .

Hence, the equation for ψ becomes

0 = ∂tψ(t, x) + ∇xψ(t, x)⊤
(
∇xψ(t, x) + γ∇x log ρ(t, x)

)
− γ∆xψ(t, x)

− γ2∆x log ρ(t, x) + γ∆xψ(t, x) −
1
2

∣∣∣∇xψ(t, x) + γ∇x log ρ(t, x)
∣∣∣2

+ 2γ2∆x log ρ(t, x) + γ2
∣∣∣∇x log ρ(t, x)

∣∣∣2
= ∂tψ(t, x) +

1
2
|∇xψ(t, x)|2 + γ2∆x log ρ(t, x) +

1
2
γ2

∣∣∣∇x log ρ(t, x)
∣∣∣2 .

A direct computation gives
δI[ρ]
δρ

(x) = −2∆x log ρ(x) −
∣∣∣∇x log ρ(x)

∣∣∣2 ,
which implies

∂tψ(t, x) +
1
2
|∇xψ(t, x)|2 −

1
2
γ2 δI[ρ(t, ·)]

δρ(t, ·)
(x) = 0 .
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Appendix A.3. Formulation for flow matching of overdamped Langevin dynamic
In this section, we present the flow matching problem of overdamped Langevin dynamic

dXt = b(t, Xt) dt +
√

2γ dWt , X0 ∼ ρ0 .

Here we assume that the drift is the negative gradient of some potential function

b(t, x) = −∇xV(x) ,

so that the stationary distribution for the overdamped Langevin dynamic is proportional to exp(−V(x)/γ). The goal
for flow matching is to learn a velocity field v(x) that matches b(t, x). One minimizes the objective functional

inf
v

∫ tend

0

∫
Rd

1
2
|v(t, x) − b(t, x)|2 ρ(t, x) dx dt , (A.16)

subject to the FP equation

∂tρ(t, x) + ∇x · (ρ(t, x)v(t, x)) = γ∆xρ(t, x) , ρ(0, x) = ρ0(x) . (A.17)

The following corollary gives the exact formulation for the solution.

Corollary 2. For flow matching problem of overdamped Langevin dynamic where L(t, x, v) = 1
2 |v−b(t, x)|2, F(t, x, ρ) =

0 and G(x, ρ) = 0, the solution of the MFC problem (17) is characterized by

f (t, x) = ∇xψ(t, x) + b(t, x) ,

and 

∂tρ(t, x) + ∇x · (ρ(t, x)(∇xψ(t, x) + b(t, x))) = 0 ,

∂tψ(t, x) +
1
2
|∇xψ(t, x)|2 + ∇xψ(t, x)⊤b(t, x) − γ∇x · b(t, x)

+ γ2∆x log ρ(t, x) +
1
2
γ2

∣∣∣∇x log ρ(t, x)
∣∣∣2 = 0 ,

ρ(0, x) = ρ0(x) , ψ(tend, x) = −γ log ρ(tend, x) .

Proof. Through direct computation, the convex conjugate of L is

H(t, x, p) =
1
2
|p|2 + p⊤b(t, x) ,

and DpH(t, x, p) = p + b(t, x). Plugging these expressions into Proposition 3, we recover the results for this corollary.

Appendix B. Details for numerical implementation

Appendix B.1. HJB regularizer for MFC
In addition to the numerical algorithm in section 4.3, we can add the residual of the HJB equation (20) into the

loss function. First, let us consider the HJB regularizer in the LQ Gaussian case, as presented in Corollary 1. Here the
Gaussian case means that ρ0 is also given as a Gaussian distribution, in which the solution of density function in LQ
MFC problem stays in a time dependent Gaussian distribution.

In the LQ scenario, parametrizing the vector field f directly as a neural network complicates the system, as terms
like ∂tψ in (22) are hard to implement. A more feasible approach is to parametrize ψ as a neural network, allowing
the vector field f to be computed as f (t, x) = ∇xψ(t, x).

This parametrization, however, requires two additional orders of auto-differentiations compared to the original
algorithm. First, if ψ is parametrized as a neural network as in (5), then f (t, x) = ∇xψ(t, x) must be obtained through
auto-differentiation. Second, the term ∆xρ(t, x) in (22) requires computing the dynamic for Ht through (10), which
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requires another order of derivative. This term Ht is not required in the original Algorithm 1. These two additional
differentiations could potentially complicate the optimization landscape.

Therefore, in order to make a clean and fair comparison in studying the effect of the HJB regularizer, we consider
the specific parametrization for ψ, given by

ψ(t, x) =
1
2

x⊤A(t)x + B(t)⊤x +C(t) , (B.1)

where A(t) : [0, tend] → Rd×d, B(t) : [0, tend] → Rd, and C(t) : [0, tend] → R. These three functions can be further
parametrized into trainable variables θ = [θA, θB, θC] with θA ∈ R(Nt+1)×d×d

sym , θB ∈ R(Nt+1)×d, and θC ∈ RNt+1 after time
discretizations. I.e., we only evaluate ψ when t = t j ( j = 0, 1, . . . ,Nt). Here, θA ∈ R(Nt+1)×d×d

sym means that each slice of
matrix θA

j ∈ R
d×d is symmetric. This parametrization is different from (5), but the numerical implementation for the

ODE discretization (6)-(10) and loss cost (24) remain unchanged, with the vector field defined by

f (t j, x; θ) = ∇xψ(t, x; θ) = θA
j x + θB

j . (B.2)

In the LQ example with Gaussian distribution, the solution is indeed of this form; see [13] Chapter 6 for details.
With such parametrizations, we can compute the residual of the HJB equation through (23) as a regularizer. Here,

the term ∂tψ(t, zt) in (23) could be approximated using the finite difference scheme. In this work, we use the central
difference scheme

∂tψ(t j, x; θ) ≈
1

2∆t

(
ψ(t j+1, x; θ) − ψ(t j−1, x; θ)

)
=

1
2∆t

(
1
2

x⊤(θA
j+1 − θ

A
j−1)x + (θB

j+1 − θ
B
j−1)⊤x + (θC

j+1 − θ
C
j−1)

)
.

(B.3)

With this discretization, the numerical residual of the HJB equation at t j (cf. (23)) is given by

LHJBt j =
1
Nz

Nz∑
n=1

[
1

2∆t

(
ψ(t j+1, z

(n)
t j

; θ) − ψ(t j−1, z
(n)
t j

; θ)
)

+
1
2

∣∣∣∣∇zψ(t j, z
(n)
t j

; θ)
∣∣∣∣2 + γ2

(
Tr

(
H(n)

t j

)
+

1
2

∣∣∣∣s(n)
t j

∣∣∣∣2)] ,
(B.4)

and the total regularization loss is

LHJB =

Nt−1∑
j=1

∣∣∣LHJBt j

∣∣∣∆t . (B.5)

Finally, we can minimize Ltotal = Lcost+λLHJB w.r.t. θ to solve the MFC problem, where λ > 0 is a weight parameter.
We summarize the regularized method in Appendix B.2 Algorithm 2.

Regularized algorithm for flow matching of overdamped Langevin dynamics. This regularized algorithm could
be extended to a more general setting, such as the flow matching problem for an OU process. The formulation for this
problem is presented in Appendix A.3.

We consider the flow matching of OU process with a linear drift function b(t, x) = −ax and an initial Gaussian
distribution N(µ(0),Σ(0)) where µ(0) ∈ Rd and Σ(0) ∈ Rd×d

sym. Then the stochastic state dynamic is given by

dxt = −axt dt +
√

2γ dWt , x0 ∼ N(µ(0),Σ(0)) .

Standard calculations inform us that xt ∼ (µ(t),Σ(t)) remains to be Gaussian, where the mean and variance evolve as

µ(t) = exp(−at) µ(0) ,

and
Σ(t) =

γ

a
Id +

(
Σ(0) −

γ

a
Id

)
exp(−2at) .

29



This expression provides a reference solution in the numerical test. In this work, we set a = 1, µ(0) to be an all-one
vector in Rd, and Σ(0) = 4Id.

Similar to the algorithm presented above, we parametrize ψ through (B.1). Please note that the solution ψ to the
MFC problem is given by Corollary 2. So, the vector field is

f (t j, x; θ) = ∇xψ(t j, x; θ) + b(t j, x) = θA
j x + θB

j − ax . (B.6)

Also, the HJB equation along the state trajectory is written as

∂tψ(t, zt) +
1
2
|∇zψ(t, zt)|2 + ∇zψ(t, zt)⊤b(t, zt)

− γ∇z · b(t,t ) + γ2
(
Tr(Ht) +

1
2
|st |

2
)
= 0 .

(B.7)

One can view (B.7) as an analog of (23) in the flow matching example.
The time discretization for the HJB equation is the same as (B.3), and the residual of the HJB equation at t j is

given by

LHJBt j =
1
Nz

Nz∑
n=1

[
1

2∆t

(
ψ(t j+1, z

(n)
t j

; θ) − ψ(t j−1, z
(n)
t j

; θ)
)

+
1
2

∣∣∣∣∇zψ(t j, z
(n)
t j

; θ)
∣∣∣∣2 + ∇zψ(t j, z

(n)
t j

; θ)⊤b(t j, z
(n)
t j

)

−γ∇z · b(t j, z
(n)
t j

) + γ2
(
Tr

(
H(n)

t j

)
+

1
2

∣∣∣∣s(n)
t j

∣∣∣∣2)] ,
(B.8)

and the total regularization loss is still

LHJB =

Nt−1∑
j=1

∣∣∣LHJBt j

∣∣∣∆t .

And the total loss is again Ltotal = Lcost + λLHJB. We summarize this method in Algorithm 3 Appendix B.2.

Appendix B.2. Pseudo-code for algorithms
We present all pseudo-codes for all algorithms in this section. Recall that the standard version of the MFC solver

Algorithm 1 is presented in the main text. We present the regularized MFC solver for LQ problem Algorithm 2;
the regularized MFC solver for the flow matching of OU process Algorithm 3; and the multi-stage splicing method
Algorithm 4.

Appendix B.3. The errors in the numerical examples
The errors for the standard Algorithm 1. For examples with exact solutions, we present the errors for the

density, the velocity field, and the score function. These numerical expressions are given by

errρ =
1
Nz

Nz∑
n=1

∣∣∣∣l̃(n)
tNt
− ρ(tNt , z

(n)
tNt

)
∣∣∣∣ ,

err f =
1
Nz

1
Nt + 1

Nz∑
n=1

Nt∑
j=0

∣∣∣∣ f (
t j, z

(n)
t j

; θ
)
− f

(
t j, z

(n)
t j

)∣∣∣∣ ,
errs =

1
Nz

Nz∑
n=1

∣∣∣∣s(n)
tNt
− ∇z log ρ

(
tNt , z

(n)
tNt

)∣∣∣∣ .
(B.9)

The errors we present in the tables in section 5 are the average errors over 10 independent runs. Note that there are
two sources that contribute to these three errors errρ, err f , and errs. We take the terminal time ttN = tend as an example.
The first source is the discretization error for the state dynamic, characterized by ztend − ztNt

, where ztend is the end
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Algorithm 2 Regularized score-based normalizing flow solver for the MFC problem
Input: MFC problem (21) (18), Nt, Nz, learning rate, weight parameter λ, number of iterations
Output: the solution to the MFC problem

Initialize θ
for index = 1 to indexend do

Sample Nz points {z(n)
0 }

Nz
n=1 from the initial distribution ρ0

Compute l̃(n)
0 = ρ(0, z(n)

0 ), s(n)
0 = ∇z log ρ(0, z(n)

0 ), H(n)
0 = ∇

2
z log ρ(0, z(n)

0 )
Initialize losses Lcost = 0 and LHJB = 0
for j = 0 to Nt − 1 do

update loss Lcost +=
1
Nz

Nz∑
n=1

1
2

∣∣∣∣ f (t j, z
(n)
t j

; θ) + γs(n)
t j

∣∣∣∣2 ∆t

compute (∇z,∇z·) f (t j, z
(n)
t j

; θ) through auto-differentiation
if j >= 1 then

Compute LHJBt j through (B.4)
LHJB +=

∣∣∣LHJBt j

∣∣∣
end if
compute z(n)

t j+1
, l̃(n)

t j+1
, s(n)

t j+1
, H(n)

t j+1
through the forward Euler scheme (6), (8), (9), and (10)

end for

add terminal cost Lcost +=
1
Nz

Nz∑
n=1

G(z(n)
tNt
, l̃(n)

tNt
)

Total loss Ltotal = Lcost + λLHJB
update the parameters θ through Adam method to minimize the loss Ltotal

end for

Algorithm 3 Regularized score-based normalizing flow solver for flow matching of OU process
Input: MFC problem (A.16) (A.17), Nt, Nz, learning rate, weight parameter λ, number of iterations
Output: the solution to the MFC problem

Initialize θ
for index = 1 to indexend do

Sample Nz points {z(n)
0 }

Nz
n=1 from the initial distribution ρ0

Compute s(n)
0 = ∇z log ρ(0, z(n)

0 ), H(n)
0 = ∇

2
z log ρ(0, z(n)

0 )
Initialize losses Lcost = 0 and LHJB = 0
for j = 0 to Nt − 1 do

update loss Lcost +=
1
Nz

Nz∑
n=1

1
2

∣∣∣∣ f (t j, z
(n)
t j

; θ) + γs(n)
t j
− b(t j, z

(n)
t j

)
∣∣∣∣2 ∆t

compute (∇z,∇z·) f (t j, z
(n)
t j

; θ) through auto-differentiation
if j >= 1 then

Compute LHJBt j through (B.8)
LHJB +=

∣∣∣LHJBt j

∣∣∣
end if
compute z(n)

t j+1
s(n)

t j+1
, H(n)

t j+1
through the forward Euler scheme (6), (9), and (10)

end for
Total loss Ltotal = Lcost + λLHJB
update the parameters θ through Adam method to minimize the loss Ltotal

end for
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Algorithm 4 Multi-stage splicing algorithm for MFC problems
Input: MFC problem (14) (15), Nt, Nz, network structure (5), learning rate, number of iterations, partition of the total

time interval {Im}
Nstage

m=1
Output: the solution to the MFC problem

Initialize θ0 for the neural network
Apply Algorithm 1 within the first interval I1 ▷ first stage training
Save parameter of the network θ1 and the terminal states S1 = {z

(n)
tNt
}
Nz
n=1 for the next stage

for m = 2 to Nstage do ▷ follow-up stages training
Load parameter θm−1 for the network from the previous stage
Apply Algorithm 1 within the interval Im, but with a fixed set of initialization points Sm−1 from the previous

stage
Save the parameter θm for the network and the terminal states Sm = {z

(n)
tNt
}
Nz
n=1 for the next stage

end for

point of the continuous dynamic (3a) and ztNt
is its time discretization. The second source comes from the training

error of the neural network f (·, ·; θ). When a function is steep, especially the score function ∇ log ρ in a non-Gaussian
example, a small discretization error could be magnified by a large factor due to this large condition number. This is
the reason why the score errors for the double well potential function example in Section 5.4 are larger compared with
other results. Although we do not observe instability at the chosen step size, stiff dynamics may pose challenges
for stability and accuracy. Addressing this issue with adaptive time stepping or more stable integrators is an
important direction for future work.

The errors for the double well potential example. For the double well potential example, it is hard to obtain a
reference solution for t ∈ (0, tend) (see Section 5.4). As an alternative, we compute the error of the velocity field at
initial and terminal time t = 0, tend through

err f0 =
1
Nz

Nz∑
n=1

∣∣∣∣ f (
0, z(n)

0 ; θ
)
− f

(
0, z(n)

0

)∣∣∣∣ ,
err fend =

1
Nz

Nz∑
n=1

∣∣∣∣ f (
tNt , z

(n)
tNt

; θ
)
− f

(
tNt , z

(n)
tNt

)∣∣∣∣ .
(B.10)

The errors for the regularized Algorithm 2 and 3. For modified algorithms with HJB regularizers, including
Algorithm 2 and 3, we compute the error of the parameter A and B directly, given by

errA =
1

Nt + 1

Nt∑
j=0

∣∣∣θA
j − A(t j)

∣∣∣ ,
errB =

1
Nt + 1

Nt∑
j=0

∣∣∣θB
j − B(t j)

∣∣∣ ,
where A(·) and B(·) denote the true solutions. Here, we do not present the error of θC for two reasons. First, according
to (B.2) and (B.6), the velocity field does not depend on θC . Second, we observe from (B.4) and (B.8) that a constant
shift of θC does not affect the regularization loss. Looking more carefully at (B.3), a constant shift of all the even (or
odd) indices of θC also does not change the loss (B.4) or (B.8). Therefore, it is not meaningful to compute the error
for θC .

Appendix B.4. Hyperparameters for the numerical examples
We present all the hyperparameters of the numerical tests in this section.
We set the diffusion coefficient γ = 1 for all problems, except for the double well potential example, where γ = 0.1.

The reason for this difference is because if we set γ = 1 in the double well example, the terminal distribution ρ(1, ·)
will be very flat and we will not have a clear bifurcation pattern. In the LQ example in Section 5.3, we set β = 0.1.
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For all the numerical tests, we use a step size ∆t = 0.01. The terminal time tend = 1 for all the tests except for
the double moon example. In the double moon example, we have a multi-stage splicing algorithm, with the first stage
being t ∈ [0, 0.2] and the second stage being t ∈ [0.2, 0.4].

For the neural network parametrization (5), we use tanh as the activation function. The widths of the network are
20, 50, and 200 in 1, 2, and 10 dimensions for the RWPO and LQ problems. For the double moon flow matching
problem (in 2 dimensions), the width is 200. For the double well example, the widths are 50, 100, and 200 in 1,
2, and 10 dimensions. The double moon flow matching problem and the double well problem are harder due to the
bifurcation pattern.

For the regularized algorithms (Algorithm 2 and 3), we set the weight parameter for the HJB loss as λ = 1× 10−3.
For all the examples, we train the model using the built-in Adam optimizer in Pytorch, with a learning rate 0.01.

The number of training steps is set such that the training loss is roughly stable. The number of training steps are 200,
200, and 300 in 1, 2, and 10 dimensions for both RWPO and LQ problems with Algorithm 1, regularized WPO with
Algorithm 2, flow matching for OU process with Algorithm 3. The number of steps for flow matching double moon
example and the double well example in 1, 2, and 10 dimensions, the number of training steps is 500.

Appendix C. remarks

We make a few remarks in this section.

The score dynamic (3c). [11] proposed a similar equation (in equation (13)) before. The higher order equations
for the score function are also proposed in [37]. But we have concrete numerical examples. We believe that we are
the first to apply the ODE dynamic for the second-order score function (3d) in practice. This equation significantly
enhances the accuracy of the regularized MFC solver, as demonstrated in Table 3 and 4.

Parametrization of neural network. In this paper, we parametrize f as a neural network with a single (hidden)
layer. As a consequence, the whole map from z0 to ztend is slightly different from the typical structure of a deep neural
network, as described in [9]. The layer structure for f is affine-activation-affine, so the composition of multiple layers
becomes affine-activation-affine-affine-activation-affine. In contrast, a typical structure for a deep neural network is
affine-activation-affine-activation-affine. The composition of two affine functions is still an affine function, so it is not
a big difference.

Related work on theoretical MFC. From a theoretical perspective, convergence properties of MFC problems have
been extensively studied in [38, 39]. In addition, [40] investigated the limit behavior as the number of agents ap-
proaches infinity. The maximum principle, a crucial concept in optimal control, has also been extended to the mean
field setting in [41], offering an understanding of the theoretical underpinnings of MFC problems. The mean field
game (MFG) problem [42] is closely related to MFC. [12] generalize the HJB equation to the master equation, whose
properties have been further investigated in [43, 44]. [45] study the convergence of particle system on Wasserstein
space.

HJB regularization for MFC solver. For the HJB regularization technique in Appendix B.1, we used absolute value
instead of a squared residual in (B.5) because it performs slightly better. In fact, both forms of regularization could
significantly reduce errors.

As for the reason why it reduces errors, we recall that we minimize the discretized loss function in the original
Algorithm 1. As a consequence, there is a trend of overfitting to the discretized loss. Adding a regularizer could
resolve this overfitting issue. Such issues for discretizations are also discussed in [46].

Computational cost for the score function via (12) and (13). When we compute the score function through (12),
the term ∇x log (det(∇xT (t, x))) could be tricky. Note that ∇x log (det(∇xT (t, x))) = ∇x det(∇xT (t, x))/ det(∇xT (t, x)),
and the i-th component of ∇x det(∇xT (t, x)) can be computed through

∂xi det(∇xT (t, x)) = det(∇xT (t, x)) Tr(∇xT (t, x)−1 ∂xi∇xT (t, x)).

Therefore, the i-th component of ∇x log (det(∇xT (t, x))) in (12) is

Tr(∇xT (t, x)−1 ∂xi∇xT (t, x)) .
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As a consequence, the cost for computing one single score function st through (12) is either from computing the
inverse of Jacobi matrix or solving the related linear system for each dimension. Classical numerical linear algebra
methods suggest that the complexity is O(d3), and the cost for one score trajectory {st j }

Nt
j=0 is O(Nt d3).

We can also compute the score function through (13), where we assume that the width of the neural network

is O(d), i.e., proportional the dimension. In this way,
∂zt

∂z0
and

∂lt
∂z0

are computed from auto-differentiations of the

deep neural network functions in (11). The computational cost for a single score st j is O( j d3), because we need to
compute the back propagation of the deep neural network (11) with depth j using chain rule. However, the total cost
for computing a whole trajectory {st j }

Nt
j=0 is O(Nt d3) rather than O(N2

t d3) because we can efficiently store intermediate
computations. For example, according to (6), we can compute

∂zt j+1

∂z0
=
∂zt j+1

∂zt j

∂zt j

∂z0
=

(
Id + ∆t∇z f (t j, zt j ; θ)

) ∂zt j

∂z0

with additional O(d2) operations if
∂zt j

∂z0
is stored. Similarly, by (7), we can compute

∂lt j+1

∂z0
=
∂lt j

∂z0
− ∆t

(
∂zt j

∂z0

)⊤
∇z

(
∇z · f (t j, zt j ; θ)

)
with additional O(d2) operations provided that

∂lt j

∂z0
and

∂zt j

∂z0
are stored. Note that computing the inverse of the

Jacobian matrix or solving the related linear systems requires O(d3) operations following classical numerical linear
algebra methods. Therefore, computing st j+1 through (13) requires additional O(d3) operations if we smartly record
the results at t j. Consequently, the total cost for computing a whole trajectory {st j }

Nt
j=0 is O(Nt d3). We also remark that

[47] give a derivation similar to (13).

Other methods to compute the score function. For the KDE method, an approximation for the density function is
obtained through taking the kernel convolution with samples directly. Then, one compute its spatial derivative and
obtain the score function via ∇x log ρ(t, x) = ∇xρ(t, x)/ρ(t, x). However, the choice of kernel and bandwidth could be
tricky, and the numerical error could be large, especially in high dimensions [48]. Score matching [49] is another
commonly used method. With a small trick of integration by part and dropping a constant term that includes the
integral with squared score functions, one only requires samples to train a network for the score function. However,
training a neural network could be expensive, compared with the KDE method, which evaluates the score function
directly.

Regularity for the MFC problem. Formula (3) requires third order derivatives for the velocity field f . As a con-
sequence, we need regularity assumption for the MFC problem to guarantee that the ODE system is meaningful. In
this work, we assume that L and F are C1,2,2 Hölder continuous, and G is C2,2 Hölder continuous. According to
Schauder estimates [50, Chapter 4], these regularity assumptions guarantee that the velocity field has up to third-order
derivatives, ensuring that the ODE system (3) is meaningful.

The multi-stage splicing method. For our multi-stage splicing method (cf. Section 5.2), we partition the total time
span evenly and pass the trained neural network from the previous stage into the next stage. When the dynamic
becomes complicated, the length of the time interval could also be adapted to suit the problem [51].

Also, the neural network from the previous stage is probably not an accurate velocity for the new stage, but it does
contain more information than a random initialization. Therefore, this nice initialization could serve as a warm-start
[52] for the training in the new stage, which could accelerate the convergence of this algorithm.

Different numerical schemes for time discretizations. In the numerical tests, we have also tried other schemes
besides the forward Euler scheme, such as the implicit Euler scheme, the mid-point scheme, and the Runge-Kutta
scheme. The numerical results for different schemes are similar. We believe that the time discretization error is not
the bottleneck of our algorithm at this moment. It is probably more important to train the neural network properly.

Comparison with existing methods for MFC problems. Existing approaches to solving mean field control
problems includes
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1. Forward-backward PDE solvers based on solving the Hamilton–Jacobi–Bellman (HJB) and Fokker–Planck
(FP) equations [53], which can be computationally expensive in high dimensions and rely on grid-based
discretizations.

2. Finite-player approximations, where one solves a large but finite system of coupled control problems, which
approximates the mean field limit but may require solving many subproblems simultaneously [54].

3. Stochastic control-based reinforcement learning (RL) approaches such as actor-critic methods [55] which
typically parameterize the value function and policy separately. Additionally, many RL techniques are
designed for discrete-time settings and face structural challenges when extended to continuous-time for-
mulations.

In contrast, our approach is based on parameterizing the dynamics directly via a neural ODE and optimiz-
ing a population-level objective. This formulation avoids solving backward PDEs, scales more easily to high-
dimensional problems, and allows flexible incorporation of data-driven priors or structure. Moreover, our method
naturally accommodates continuous-time dynamics and can be interpreted through the lens of flow-based gen-
erative modeling, offering a novel perspective for solving MFC problems.
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