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ABSTRACT

We present Latent Diffeomorphic Dynamic Mode Decomposition (LDDMD), a new data reduc-
tion approach for the analysis of non-linear systems that combines the interpretability of Dynamic
Mode Decomposition (DMD) with the predictive power of Recurrent Neural Networks (RNNs).
Notably, LDDMD maintains simplicity, which enhances interpretability, while effectively model-
ing and learning complex non-linear systems with memory, enabling accurate predictions. This is
exemplified by its successful application in streamflow prediction.

1 Introduction

Predicting the next element in a sequence is rarely a straightforward, one-to-one process. Instead, it often relies on
retaining and utilizing information from earlier in the sequence. For example, in language, the choice of the next word
depends on more than just the preceding word. Similarly, in meteorology, identical weather conditions do not always
lead to the same outcomes across different locations or times. Therefore, a crucial aspect of effective prediction is
memory: the ability to learn and maintain relevant information over extended periods.

In many such applications, understanding the reasoning behind predictions – that is, understanding what information
has been learned and maintained – is as important as making accurate forecasts. Streamflow prediction, crucial for
flood preparedness and infrastructure design, illustrates this. Long Short-Term Memory networks (LSTMs) [7] – a
special type of Recurrent Neural Network (RNN) [15] – have revolutionized this field by outperforming traditional
hydrological models for the streamflow prediction problem [10]. However, they often lack interpretability, which is a
common issue among similar machine learning methods [2, 5].

In scenarios without memory where a one-to-one mapping exists, Dynamic Mode Decomposition (DMD) [16] has
proven highly effective as an interpretable data reduction method. Its success has led to numerous extensions [19, 3, 6].
Recent advancements have focused on adapting DMD to non-linear cases, primarily through Koopman operator theory
[14]. This approach typically follows one of two paths: using non-linear dictionaries [20, 11] or employing non-linear
mappings [17, 12, 13, 8], with the latter being more popular. A key challenge in the non-linear mapping approach is
the need for an (approximate) inverse function to recover the actual state from the dynamics in the mapped domain.
While early attempts used approximations [17, 12], more recent research has shown that diffeomorphisms [13, 8] offer
improved results.

Currently, all versions of Dynamic Mode Decomposition (DMD) rely on the assumption of a one-to-one mapping. This
work aims to address this limitation by developing a novel approach that combines the high performance of RNN-like
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methods with the interpretability of DMD. Specifically, we aim to construct a non-linear DMD-like framework that
mimics RNNs and can operate effectively in scenarios where the one-to-one mapping assumption does not hold. This
would bridge the gap between the predictive power of RNN-like methods and the explanatory capabilities of traditional
DMD, potentially opening up new avenues for interpretable machine learning for data reduction in complex, non-linear
systems.

Contributions In this work we: (i) first propose Diffeomorphic Dynamic Mode Decomposition (DDMD) as a new
non-linear DMD extension; (ii) then use it to construct Latent Diffeomorphic Dynamic Mode Decomposition (LD-
DMD) and discuss why this method effectively combines the strengths of DMD and RNNs while avoiding their
respective limitations; and (iii) finally show that LDDMD shows promising results on toy and real data for streamflow
prediction.

2 General Diffeomorphic Dynamic Mode Decomposition

Dynamic Mode Decomposition (DMD) assumes that the evolution of a time series {xi}Ni=0 ⊂ Rm is governed by an
unknown matrix A ∈ Rm×m through

xi = Axi−1, i = 1, . . . , N. (1)
In addition, assuming that m is even, and A − I is diagonalizable with all eigenvalues having a non-zero imaginary
component, we can always write (1) as

xi = W−1KWxi−1, i = 1, . . . , N, (2)

where W ∈ Rm×m is an invertible matrix and K ∈ Rm×m is a block diagonal matrix with m/2 blocks of the form

e−µj∆t

[
cos(ωj∆t) − sin(ωj∆t)
sin(ωj∆t) cos(ωj∆t)

]
, for j = 1, . . . ,m/2, (3)

with µj , ωj ∈ R and ∆t > 0 being the time between observations in the time series.

For the above assumptions on A to hold, the time series needs (at least) to be centered, i.e., 1
N+1

∑N
i=0 x

i = 0. For a

non-centered time series, we can repeat the above for {xi − b}Ni=0 with b = 1
N+1

∑N
i=0 x

i, which gives

xi = W−1KW(xi−1 − b) + b, i = 1, . . . , N. (4)

We propose Diffeomorphic Dynamic Mode Decomposition (DDMD), which directly extends (4) by replacing the
invertible linear mapping x 7→ W(x− b) by a diffeomorphism φ : Rm → Rm. In particular, DDMD assumes that

xi = (φ−1 ◦K ◦ φ)(xi−1) = (φ−1 ◦ (K)i ◦ φ)(x0), i = 1, . . . , N. (5)

Remark 1. We note that this approach can be seen as: (i) a combination of the approaches taken in [12] – where a
similar parametrization for K is used, but φ−1 and φ are replaced by (non-invertible) neural networks – and state-of-
the-art approaches taken in [13, 8] – where diffeomorphisms are used, but no block diagonal assumptions are made
on K, and (ii) a special case of [1] where the eigenvectors of the Koopman operator are only assumed to generate a
local diffeomorphism.

3 Latent Diffeomorphic Dynamic Mode Decomposition

The actual problem we are interested is an adaptation of the DDMD problem. That is, given a time series {xi}Ni=0 ⊂
Rm, we aim to predict the corresponding sequence element in {vi}Ni=0 ⊂ Rn, assuming that there is no one-to-one
mapping x 7→ v, i.e., there is memory in the system. To address the one-to-one mapping assumption still inherent
in DDMD, we introduce additional variables to predict the next sequence element. In particular, we assume that the
evolution of a time series {(xi,vi)}Ni=0 ⊂ Rm × Rn is governed by dynamics

(xi,pi) = (Φ−1 ◦ K ◦ Φ)(xi−1,pi−1), vi = g(pi). (6)

Here, Φ : Rm × Rd → Rm × Rd is a diffeomorphism defined as

Φ(x,p) := (φ1(x), f(x) + φ2(p)), (7)

where φ1 : Rm → Rm and φ2 : Rd → Rd are diffeomorphisms and f : Rm → Rd is a coupling mapping. The
inverse of Φ is given by

Φ−1(y,q) = (φ−1
1 (y), φ−1

2 (q− f(φ−1
1 (y)))). (8)
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Furthermore,

K =

[
K1

K2

]
, (9)

where K1 : Rm×m and K2 : Rd×d are block-diagonal matrices with blocks of the form (3)1, g : Rd → Rn is a
mapping, and the latent variable p is initialized by some p0 ∈ Rd.

Remark 2. The dynamical system (6) encodes a state defined by x and p, where x is independent of p, but p is
partially driven by x, and v depends on p, which incorporates both x and system memory, thus breaking the one-to-
one assumption of previous DMD versions.

The goal of Latent Diffeomorphic Dynamic Mode Decomposition (LDDMD) is slightly different than DDMD. That is,
we are not interested in explicitly representing the underlying dynamics of the xi, but want to predict vi given xi and
the current time index i. In other words, we aim to represent the dynamics of the pi, which allows us to focus on the
pi part in (6), i.e.,

pi = φ−1
2 (K2(f(x

i−1) + φ2(p
i−1))− f(xi)) = φ−1

2 ((K2)
i(f(x0) + φ2(p

0))− f(xi)). (10)

Since p0 is some initialization, we are free to write q0 for f(x0) + φ2(p
0). Also dropping all the subscripts gives us

the LDDMD problem, where we assume that

vi = g(pi) = g(φ−1((K)iq0 − f(xi))), (11)

and aim to learn the mapping g, the diffeomorphism φ, the coupling f , and the initialization q0 along with the µj , ωj

that parametrize K through (3).

Remark 3. The latent dynamics (K)iq0 encode the memory of the system and is evolving independently of xi. In other
words, we really have a non-one-to-one mapping from xi to vi, where the memory is encoded in a more interpretable
way than for RNN-like methods, with the key difference that we explicitly have to solve for an initial condition q0.
Having said that, standard RNNs famously have trouble with maintaining information for longer terms and can be
unstable. Both of these issues can be attributed to vanishing or exploding gradients, which LDDMD can also suffer
from for µj ̸= 0 in K, see (3). So in practice, we assume for LDDMD that µj = 0.

4 Training

To learn an LDDMD representation of a data set {(xi,vi)}Ni=0 ⊂ Rm ×Rn, we need loss functions, parametrizations
and initializations thereof.

We propose the following training loss to solve for the LDDMD approximation of a time series {(xi,vi)}Ni=0 with an
even dimension d for the latent space:

LLDDMD(θ, η, ω,q0, ξ) :=

N∑
i=0

∥vi − gξ(φ
−1
θ ((Kω)

iq0 − fη(x
i)))∥2. (12)

Next, although the specific neural networks used to parametrize the mappings might vary from application to applica-
tion, there are some general choices for the case n = 1 – which is the case for streamflow prediction – that come with
well-motivated initializations.

In this case, we found the following parameterization suitable: (i) the diffeomorphism as an invertible neural network
composed of a single additive coupling layer [4] with learnable polynomial activation on either the even or odd indices,
initialized such that φθ(0)(x) = x; (ii) the coupling as a feedforward network with learnable polynomial activation
functions, initialized such that fη(0)(x) ≈ 0; (iii) the frequencies ωj as learnable parameters, initialized as the d/2

most prevalent frequencies in the Fourier spectrum2 of the 1D signal {vi}Ni=0; (iv) the latent initialization as a learnable
vector, initialized as q

(0)
0 = 0; (v) and the mapping gξ as a feedforward network with softplus activation functions

and random initialization. Limiting the diffeomorphism to only use additive coupling layers serves as a form of
regularization, helping to prevent the mapping from producing excessively large or small output values.

1Note that for this to be well-defined, we need both m and d to be even.
2Factoring in the time ∆t between observations.
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5 Numerical experiments

In this section, we demonstrate the performance of LDDMD through experiments on data reduction for streamflow
data {vi}Ni=0 ⊂ R from synthetic and real meteorological data {xi}Ni=0 ⊂ Rm. Specifically, we show that LDDMD
effectively reduces the dataset using a low-dimensional latent space and extrapolates beyond its training data, both in
nearly ideal settings with noisy data and in real-world scenarios.

The key metric that will be used to quantify performance is the Nash–Sutcliffe model efficiency coefficient (NSE):

NSE = 1−
∑N

i=0(v
i − gξ(φ

−1
θ ((Kω)

iq0 − fη(x
i))))2∑N

i=0(v
i − v̄)2

, (13)

where v̄ := 1
N

∑N
i=0 v

i. For intuition, a higher NSE is better, where NSE = 1 is perfect and a model having
NSE = 0.5 or over indicates that the dynamics are captured well. For reference, we also compare our results to LSTMs
using the standard implementation in NeuralHydrology [9], which is a widely used package that is optimized for
streamflow prediction.

For all experiments in this section, details on the data sets are provided in Supplementary Material 1, detailed LDDMD-
training configurations in Supplementary Material 2 and additional results in Supplementary Material 3.

Finally, all of the experiments are implemented using PyTorch in Python 3.8 and run on a 2 GHz Quad-Core Intel
Core i5 with 16 GB RAM.
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(a) Synthetic data results
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(b) Real-world data results

Figure 1: For both synthetic and real-world data LDDMD (proposed) is not only able to learn the underlying dynamics
from the training data, but also to extrapolate far beyond the training horizon. The NeuralHydrology LSTM model
performs well on data that it is optimized for (b), but is doing worse on non-typical streamflow data (a).

Synthetic data For the synthetic data set, 2D data and a 2D latent process govern the streamflow through dynamics
of the form (6). The data used for training the LDDMD model comes from this underlying dynamics model, but noise
has been added to it. The dimensions m = 2 and d = 2 are also used for parametrizing the mappings in the LDDMD
model. The results in Figure 4a suggest that despite the noise we are able to find a model to fit the data, predict the
signal well-beyond its training window and outperform the LSTM: for LDDMD we have NSE = 0.96 on training data
and NSE = 0.94 on validation data, whereas for the LSTM3 we have NSE = 0.80 on training data and NSE = 0.80
on validation data. Notably, the model has arguably almost recovered the ground truth. In particular, the learned
frequency ω1 = 0.0097 is almost exactly the ground truth frequency ω∗ = 0.0099 and despite over-parametrization of
the coupling mapping fη , even the latent dynamics look similar to the ground truth up to rigid body transformation and
rescaling4, from which we retrieve the information that the the process that governs the streamflow oscillates between
two regions of the latent space (see Figure 2 in Supplementary Material 3).

Real-world data For the real-world data, we have m = 14 for the meteorological data and use d = 10 for the
latent space to approximate the streamflow. We parametrize the mappings in the LDDMD model accordingly. The

3We do not take the 365 day sequence length of the LSTM into account here for the NSE.
4Note that this is not expected at all as there is just a 1-dimensional variable vi to reconstruct each two-dimensional variable pi,

but the fact that we are able to get a similar shape reminisces of Takens’ theorem [18]. We leave exploration of this connection for
future research.
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results in Figure 4b indicate that the model effectively fits the data, albeit with lower performance compared to the
numericaly optimized LSTM, and provides (almost) practically useful streamflow predictions that extend well beyond
the training window: for LDDMD we have NSE = 0.75 on training data and NSE = 0.46 on validation data, whereas
for the LSTM we have NSE = 0.89 on training data and NSE = 0.89 on validation data. Despite the performance
gap between our general-purpose LDDMD and the numerically optimized LSTM in terms of NSE, the results remain
encouraging and highlight key areas for further improvement of the base method. Although a thorough analysis of
the performance gap is left for future research, we expect that possible explanations involve that LSTMs are better at
removing noise from the signal (see Figure 3 in Supplementary Material 3), which would significantly increase the
NSE. Finally, as there is no ground truth process available, we also leave matching these results to possible underlying
processes for future research.

6 Conclusions
In conclusion, this work presents Latent Diffeomorphic Dynamic Mode Decomposition (LDDMD), a novel method
that combines Dynamic Mode Decomposition and Recurrent Neural Networks for data reduction and nonlinear time
series prediction. LDDMD offers both interpretability and strong performance, as shown in streamflow forecasting,
though further improvements are needed for state-of-the-art results.
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[14] Igor Mezić. Koopman operator, geometry, and learning of dynamical systems. Not. Am. Math. Soc, 68(7):1087–
1105, 2021.

[15] David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. Learning internal representations by error
propagation, 1985.

[16] Peter J Schmid. Dynamic mode decomposition of numerical and experimental data. Journal of fluid mechanics,
656:5–28, 2010.

[17] Naoya Takeishi, Yoshinobu Kawahara, and Takehisa Yairi. Learning koopman invariant subspaces for dynamic
mode decomposition. Advances in neural information processing systems, 30, 2017.

[18] Floris Takens. Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence, Warwick 1980:
proceedings of a symposium held at the University of Warwick 1979/80, pages 366–381. Springer, 2006.

[19] Jonathan H. Tu, Clarence W. Rowley, Dirk M. Luchtenburg, Steven L. Brunton, and J. Nathan Kutz. On dynamic
mode decomposition: Theory and applications. Journal of Computational Dynamics, 1(2):391–421, 2014.

[20] Matthew O Williams, Ioannis G Kevrekidis, and Clarence W Rowley. A data–driven approximation of the
koopman operator: Extending dynamic mode decomposition. Journal of Nonlinear Science, 25:1307–1346,
2015.

A Data set details

A.1 Synthetic data

The synthetic data in Section 5 of the main article is of the form

(xi,pi) = (Φ−1 ◦ K ◦ Φ)(xi−1,pi−1), vi = g(pi).

with
Φ(x,p) := (φ1(x), f(x) + φ2(p)),

and

K =

[
K1

K2

]
.

The diffeomorphisms are given by

φ1(x) := (2(x1 − sin(x2)),
1

4
x2),

and
φ2(x) := (2(x1 − x2

2 − 3), 3x2),

the coupling is given by
f(x) := (x2

1 + x2
2,x1 − x2),

and the matrices K1 and K2 are parametrized as

e−µj∆t

[
cos(ωj∆t) − sin(ωj∆t)
sin(ωj∆t) cos(ωj∆t)

]
,

with µ1 = µ2 = 0, ω1 = π
100 , ω2 = π

100
√
10

and ∆t = 1.

The system is initialized as
(x0,p0) := Φ−1([0, 1]⊤, [1, 1]⊤).

Finally,

g(p) := softplus(−p1 −
3

4
p2 + 1

1

2
).

As the x and p-variables are 2-dimensional, we can visualize them separately (see Figure 2).
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(a) Clean x-variable data (b) Clean p-variable data

Figure 2: A visualization of the synthetic data: whereas the x-variable follows a periodic orbit, the latent p-variable
data are much more complicated due to the interplay with the memory of the system.

A.2 Real data

Streamflow observations (v variable) were provided by the United States Geological Survey (USGS). The
example here is from Muddy Creek near Emery, Utah (USGS id 09330500). These data are available at
https://waterdata.usgs.gov/monitoring-location/09330500/#dataTypeId=continuous-00065-0&period=P7D. Stream-
flow data are provided as daily averages in cubic feet per second. These data were normalized by the drainage area of
the watershed of the gage, or 271.9 km2 in this case, and converted to millimeters per day to arrive at v.

The x-variables were sampled over the watershed of the Muddy Creek gage by spatial averaging (or summing in the
case of total precipitation). These variables include:

Variable Name Variable Meaning
dewpoint temperature 2m mean era5l daily Daily mean dewpoint temperature at 2 meters
potential evaporation sum era5l daily Daily sum of potential evaporation
snow depth water equivalent mean era5l daily Daily mean snow depth water equivalent
surface net solar radiation mean era5l daily Daily mean surface net solar radiation
surface net thermal radiation mean era5l daily Daily mean surface net thermal radiation
surface pressure mean era5l daily Daily mean surface atmospheric pressure
temperature 2m mean era5l daily Daily mean air temperature at 2 meters
total precipitation sum era5l daily Daily sum of total precipitation
u component of wind 10m mean era5l daily Daily mean east-west wind component at 10 meters
v component of wind 10m mean era5l daily Daily mean north-south wind component at 10 meters
volumetric soil water layer 1 mean era5l daily Daily mean volumetric soil water content, Layer 1 (0–7 cm)
volumetric soil water layer 2 mean era5l daily Daily mean volumetric soil water content, Layer 2 (7–28 cm)
volumetric soil water layer 3 mean era5l daily Daily mean volumetric soil water content, Layer 3 (28–100 cm)
volumetric soil water layer 4 mean era5l daily Daily mean volumetric soil water content, Layer 4 (100–289 cm)

7
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B Training details

Based on our experience, both shallow and deep networks delivered strong performance, provided the activation
functions were regular. For instance, non-regular ReLU activation performed poorly. We prioritized simplicity in our
models, which primarily guided the selection of the parameters reported below.

Common parameters

• Batch size: 256
• Optimizer: Adam with betas = (0.9, 0.99) and learning rate 10−3.
• Model Architecture:

– Diffeomorphisms: Additive coupling layer [4], which adds the mapping of the sum of two adjacent
parity-0 inputs through a learnable order-2 polynomials to corresponding parity-1 entries (i.e., the parity-
1 entry in between the two parity-0 entries).

– Couplings: Multi layer perceptron network with ℓf hidden layers with dimension mf (different per data
set) and learnable polynomial activation functions of order 2 (unique polynomial per neuron).

– Mappings: Multi layer perceptron with one hidden layer with dimension mg and softplus activation.

Data set-specific parameters The remaining parameters are summarized below:

Data set ℓf mf mg Epochs
Synthetic 2 2 4 1000
Real 1 40 4 200
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C Additional numerical results

Original

Learned

Figure 3: The ground truth and learned latent (p-variable) dynamics look very similar, but differ roughly by a rigid
body transformation and rescaling. This indicates that the latent space does carry information for the synthetic data,
i.e., LDDMD has an interpretable latent space.
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(b) Real-world data results

Figure 4: When examining a specific interval in the plots in Figure 1, it is evident that the LSTM predictions are
considerably less noisy than those of LDDMD. This difference is likely due to the inherent averaging in LSTMs,
where predictions at each time step incorporate information from many preceding time points, effectively smoothing
out noise. In contrast, LDDMD lacks a comparable denoising mechanism.

9


	Introduction
	General Diffeomorphic Dynamic Mode Decomposition
	Latent Diffeomorphic Dynamic Mode Decomposition
	Training
	Numerical experiments
	Conclusions
	Data set details
	Synthetic data
	Real data

	Training details
	Additional numerical results

