
Zero-Shot Transferable Solution Method for Parametric Optimal
Control Problems

Xinjian Li, Kelvin Kan, Deepanshu Verma, Krishna Kumar, Stanley Osher and Ján Drgoňa

Abstract— This paper presents a transferable solution
method for optimal control problems with varying objectives
using function encoder (FE) policies. Traditional optimization-
based approaches must be re-solved whenever objectives
change, resulting in prohibitive computational costs for ap-
plications requiring frequent evaluation and adaptation. The
proposed method learns a reusable set of neural basis functions
that spans the control policy space, enabling efficient zero-
shot adaptation to new tasks through either projection from
data or direct mapping from problem specifications. The key
idea is an offline–online decomposition: basis functions are
learned once during offline imitation learning, while online
adaptation requires only lightweight coefficient estimation.
Numerical experiments across diverse dynamics, dimensions,
and cost structures show our method delivers near-optimal
performance with minimal overhead when generalizing across
tasks, enabling semi-global feedback policies suitable for real-
time deployment.

I. INTRODUCTION

Optimal control problems arise ubiquitously across engi-
neering disciplines [5], [11], [40], [34]. Although the funda-
mental mathematical framework remains consistent, practical
applications often require solving parametric problems where
objectives vary according to task specifications, such as target
locations in trajectory planning, terrain characteristics in
mobile robotics, or process requirements in manufacturing.
Classical local solution methods [39] are relatively fast but
must be solved anew for each instance, whereas global
solution methods based on the Hamilton–Jacobi–Bellman
equations [16] are intractable in high dimensions. Machine
learning-based approaches aim to bridge this gap and have
achieved considerable success [42], [31]; however, they are
typically tied to a fixed objective and lack transferability
across tasks.

This paper addresses the challenge of efficiently adapting
control policies to new objectives without solving each
problem instance from scratch. The key insight is to ap-
proximate the function space of control policies using a
function encoder (FE) [23], which learns a reusable set of
neural network–parameterized functions. Policies for new
tasks are then expressed as linear combinations of these
basis functions, with task-specific coefficients inferred in a
zero-shot manner either from limited trajectory data (LS)
or directly from the problem specification (operator). As
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Fig. 1: Function encoder policies: the online–offline de-
coupling enables efficient and accurate policy adaptation to
different optimal control objectives.

such, the computation cost and data requirement for online
adaptation are greatly reduced, enabling efficient transfer
without sacrificing accuracy.

The main contributions of the work are:
• An imitation learning-based framework for parametric

optimal control problems that allows for zero-shot gen-
eralization to unseen problem instances without model
retraining.

• A semi-global feedback formulation that works for
arbitrary inputs and is particularly well-suited when
repeated evaluation of the model is required.

• Validation through extensive numerical experiments,
demonstrating the robustness and near-optimal accuracy
on high-dimensional and nonlinear examples.

II. BACKGROUND

This section details the necessary background, covering
optimal control and the function encoder framework.

Parametric Optimal Control Problem

Given an initial state x(0) = x0, we consider a class of
optimal control problems where the system dynamics have a
fixed form but the objective functional varies with each new
task specification. The system evolves according to

ẋ(t) = f(x(t),u(t), t), x(0) = x0, (1)

where x(t) ∈ Rn is the state, u(t) ∈ U ⊆ Rm is the control
input, and f : Rn × Rm × [0, T ] → Rn is the dynamics
function. For each task, defined by a conditional variable η,
the objective functional in parametric form is

min
u∈U
J (u;η) =

∫ T

0

L(x(t),u(t), t;η) dt+G(x(T );η),

(2)



where L : Rn × Rm × [0, T ] → R is the running cost,
G : Rn → R is the terminal cost, and U is the space
of admissible control functions, which we assume to be
sufficiently regular [16, Sec. I.3, I.8-9 ]. For simplicity and
without loss of generality, we use η to denote the conditional
variable that captures task-specific variations in J , such as
target locations, terrain types, or changes in control penalties.
In practice, η can be complex, high-dimensional or implicit.
Each choice of η defines a distinct optimal control problem.

Given the open-loop definition in (2), lets consider a
closed-loop feedback form [30] given as

u(x(t), t;η) : Rn × [0, T ]→ U ⊆ Rm, (3)

for each specific task. Having the control u to depend on
both the current state x(t) and time t allows for control
evaluation for any state-time pair, making it more flexible
and particularly useful in problems where the initial state x0

can vary. Classical results show that under suitable regularity
assumptions, existence of optimal controls in feedback form
can be guaranteed; see, e.g., [16, Sec. I.5], or [6].

Function Encoder

Function encoder (FE) [23] provides a principled frame-
work for representing and transferring tasks in Hilbert spaces
by learning a finite set of neural network basis functions.
Given a Hilbert space H, the FE learns basis functions
{ϕ1, ϕ2, . . . , ϕp}, parameterized by neural networks, such
that any function f ∈ H can be approximated as

f(x) ≈
p∑
j=1

cjϕj(x;θj), (4)

for some c := [c1, c2, . . . , cp]
⊤ ∈ Rp. Here we use θ :=

{θ1,θ2, . . . ,θp} to denote the trainable parameters of the
basis functions. This linear representation enables inductive
transfer of tasks: new functions are represented by inferring
the coefficients c directly from task-specific measurements
without retraining the basis functions.

Online computation of coefficients for a given new prob-
lem f is obtained by solving a least-squares (LS) problem

c = argmin
c∈Rp

∥f −
p∑
j=1

cjϕj∥2H. (5)

This admits a closed-form solution given by

c =

⟨ϕ1, ϕ1⟩H · · · ⟨ϕ1, ϕp⟩H
...

. . .
...

⟨ϕp, ϕ1⟩H · · · ⟨ϕp, ϕp⟩H


−1 ⟨f, ϕ1⟩H...
⟨f, ϕp⟩H

 , (6)

where ⟨·, ·⟩H denotes the inner product associated with the
Hilbert space H, a common choice is the L2 inner product.
Both the matrix, known as the Gram matrix, and the right-
hand side vector of (6) can be computed directly from task-
related measurements or data, using Monte Carlo integration.
In practice, we also incorporate Tikhonov regularization
to (5) to improve numerical stability; see [17]. Importantly,
FE are supported by a strong theoretical guarantee.

Theorem 1 (Universal Function Space Approximation [23]).
Let K ⊂ Rn be compact and let H = {f : K →
Rn | ∥f∥H < ∞} be a separable Hilbert space. For any
continuous f ∈ H and any ϵ > 0, there exist neural network
basis functions {ϕj}Pj=1 and coefficients {cj}Pj=1 such that∥∥∥f − P∑

j=1

cj ϕj

∥∥∥
H
< ϵ ∥f∥H.

Here Theorem 1 establishes that, with a sufficient number
of basis functions, FEs can approximate any function in
H with arbitrary precision, making them a principled and
general-purpose tool for our transfer learning task at hand.

III. TRANSFERABLE SOLUTION METHOD FOR
PARAMETRIC OPTIMAL CONTROL PROBLEMS

Many practical optimal control applications require repeat-
edly solving problems where system dynamics remain fixed
but objectives vary. For example, in trajectory planning, the
target destination may change from one instance to another,
giving rise to a class of problems that must be solved
repeatedly. While existing approaches (see Section IV) can
achieve high accuracy on a fixed problem setting, changes
in the objective typically require recomputation of solutions
from scratch, leading to substantial computational overhead.

The central challenge hindering model adaptability is
to efficiently approximate the family of control policies
{u∗(·, ·;η)}η without re-solving each problem instance. To
address this, we propose a methodology that directly targets
task variability. Our approach leverages the function encoder
framework to learn a transferable policy representation, en-
abling efficient adaptation to new problem specifications with
limited, or even no additional data.

Function Encoder Enabled Control Policies

Our key idea is to approximate the function space of para-
metric control policies using a function encoder. Specifically,
the control policy is modeled as a linear combination of
learned basis functions:

u(x, t;η) ≈ uθ(x, t;η) =

p∑
j=1

cj(η)ϕj(x, t;θj), (7)

where {ϕj(·, ·;θj)}pj=1 are basis functions realized by neural
networks with collective parameters θ = {θj}pj=1, and c(η)
are coefficients specific to the task η.

We highlight that the key feature of this formulation is that
the basis functions are learned once and are independent of
the task parameter η, thereby forming a reusable representa-
tion of the policy function space. Consequently, the problem
of transferring to a new task reduces to determining the task-
specific coefficients c(η). This can be achieved in a purely
data-driven manner, namely given some dataset D comprised
of {xi, ti,u(xi, ti)}Mi=1 corresponding to some task η, we
consider minimizing the LS formula

C(c,D) := 1

M

M∑
i=1

∥∥∥∥∥∥u(xi, ti)−
p∑
j=1

cj ϕj(xi, ti)

∥∥∥∥∥∥
2

2

. (8)



Algorithm 1: FE Training for Control Space
Input: Learning rate α, regularization parameter λ,

task dependent datasets {DSk
}Nk=1, and loss

function C from (8);
1 Initialize bases {ϕj}pj=1 with params θ = {θj}pj=1;
2 while not converged do
3 L← 0;
4 for k = 1,2,. . . ,N do
5 c = argmin

c
C(c,DSk

);

6 L ← L + ∥uSk
−
∑p
j=1 cj ϕj∥2H;

7 L ← L + λ
∑p
j=1 ∥ϕj∥2H;

8 θ ← θ − α∇θL;

Output: Trained bases {ϕ1, ϕ2 . . . , ϕp}

over fixed bases {ϕj} to obtain c(η). In practice, task-
dependent datasets D can be obtained through standard open-
loop solvers, pretrained policy models, or other means.

Algorithmic Pipeline

Our methodology follows an offline–online scheme
(see Figure 1) designed to balance computational efficiency
with flexibility. The basis functions are learned only once
during the offline phase, while task-specific adaptation takes
place online by determining the coefficients c(η), either from
limited observed state-action measurements or via a direct
mapping from the task specification η. This offline-online
separation allows the intensive computation to be performed
only once during the offline phase, leaving online adaptation
lightweight and suitable for real-time control.

a) Offline Phase: FE training is in its core imita-
tion learning. Given task parameterization {η1, . . . ,ηN}
and their associated datasets {DS1

, . . . ,DSN
}, we train

the basis functions via Algorithm 1. For simplicity, we
assume that each dataset contains M labeled observations
{((xi, ti), uSk

(xi, ti))}Mi=1.
For low-dimensional and structured parameterization of

tasks (e.g., target locations), inspired by operator-learning
approaches such as [22], we optionally introduce an operator
network ψ : η 7→ c(η) with parameters γ. This enables
data-free coefficient inference during the online phase. The
network is trained via a least-squares reconstruction loss
using the fixed bases {ϕj} learned offline; see Algorithm 2.

b) Online Phase: At deployment, the trained basis
functions {ϕj}pj=1 are fixed, and online adaptation reduces
to estimating the task-specific coefficients c(η) via:

1) Zero-shot LS. Given some trajectory data for the pol-
icy under new task η, we can estimate c(η) by least-
squares projection onto the learned basis functions
(minimizing (8) over measurements).

2) Zero-shot operator. Set c(η) = ψ(η) for data-free
adaptation using the trained operator network.

We find that in practice, when limited measurements are
available for a new task, the LS approach generally gives
better performance. On the other hand, online inference is

Algorithm 2: (Optional) Operator Network Training
Input: Trained bases {ϕj}pj=1 with parameters θ,

task–dataset pairs {(ηSk
,DSk

)}Nk=1, learning
rate β, and loss function C from (8);

1 Initialize operator net. ψ : η 7→ Rp with params γ;
2 while not converged do
3 L← 0;
4 for k = 1,2,. . . ,N do
5 c = argmin

c
C(c,DSk

);

6 L ← L + ∥c− ψ(ηSk
)∥22;

7 γ ← γ − β∇γL;
Output: Trained operator network ψ

completely data-free using the operator method, though it
does incur additional computation cost and requires more
training data during the offline phase, and can be particularly
hard when η is high-dimensional or complex. The justifica-
tion of such trade-off often hinges on each specific problem.

We note that while Theorem 1 guarantees that the bias
of the policy adaptation can be arbitrarily small, (8) is only
a discrete formulation of (5), where the inner product in
H is approximated by finite measurements. For a given
task, denote the minimizers of (5) and (8) be c and c⋆,
respectively. They generally differ due to sampling size and
measurement noise.

Theorem 2. Under standard assumptions for LS regression
with fixed design. Denote by Φ ∈ RM×p the matrix whose i-
th row is ϕ(xi, ti)⊤ and B = 1

MΦ⊤Φ the Gram matrix.
Assume sub-Gaussian noise in measurements and B full
rank, for any δ ∈ (0, 1), with probability at least 1− δ,

∥c− c⋆∥2 ≤
σ√

λmin(B)

√
p+ log(1/δ)

M
= O

(
M−1/2

)
,

for some constant σ.

The proof follows [41, Thm. 2.2, 2.3], the details of which
we omit here. This result, together with Theorem 1, suggests
asymptotic convergence of unbiased policy prediction as the
number of bases and samples grows, validating our proposed
approach in principle for both offline training and online
inference steps. Empirical validation on function encoder is
also available at [23].

IV. RELATED WORK

We review approaches to optimal control problems
through a local–global lens, then discuss learning-based
methods that bridge these extremes, motivating our focus
on transferable policy approximation across tasks.

Local Solution Methods (Trajectory Optimization)

The most common approach for solving optimal control
problems is direct transcription, which converts the continu-
ous problem into a finite-dimensional optimization problem



that is then solved via gradient-based methods [8], [39]. Mul-
tiple shooting [9] extends this idea and often improves nu-
merical stability on long-horizon problems. Although highly
optimized solvers exist [46], [4], they provide accurate but
inherently local solutions that must be recomputed whenever
the initial state or objective changes.

Global Solution Methods

The Hamilton–Jacobi–Bellman (HJB) equation [16] char-
acterizes the globally optimal feedback via the value func-
tion, from which the optimal control can be recovered as the
minimizer of the Hamiltonian. This is appealing because it
yields a single policy valid across initial conditions given the
objective, rather than re-solving a new local trajectory each
time. In general, solving the HJB equation requires discretiz-
ing the state–time domain [32], [37], [1], and the computa-
tional and memory costs grow exponentially with the state
dimension (the “curse of dimensionality”), making mesh-
based methods non-scalable in practice. Similarly, solution
approaches based on multi-parametric programming [6], [2],
[27] face the same issues. Special cases exist; for instance,
LQR problems [3], [7] have exact solutions via the Riccati
equation; it is powerful yet non-general.

Learning-based Approaches

ML amortizes solve time into an offline phase to produce
feedback policies evaluable online—bridging local trajectory
optimization and global HJB solvers. Notably, these learned
policies are usually semi-global: by opting for sampling
instead of meshing, they provide reliable feedback over broad
regions of the state–time domain, making them scalable,
though they remain task-specific in their standard form.
Data-driven approaches such as [19], [24], [12], [13] train
policies on solver-generated trajectories and can achieve fast
convergence and high accuracy. Model-based and physics-
informed approaches [18], [36], [43], [15], [35], [14], [26],
[20], [10], [33] leverage OC structure (objective terms,
HJB residuals, Koopman representation, etc.) to provide
robustness and reduce data requirements in training, though
the resulting optimization can be considerably more chal-
lenging. Model-free RL [44], [21] learns feedback without
an explicit mathematical model but as a trade-off is of-
ten sample-inefficient and may underperform model-based
approaches [45]. While ML-based approaches have seen
extraordinary success in solving optimal control problems,
repurposing a trained model to new tasks efficiently and
accurately remains an open challenge. This work aims to
address that gap.

V. NUMERICAL EXPERIMENTS

To demonstrate the breadth and generalizability of our
approach, we evaluate two categories of optimal control
problems differentiated by the source of task variability:
changes in the terminal cost and changes in the running cost.
The former is illustrated with a linear 2D trajectory planning
problem (Section V-A) and a 12D quadcopter problem with
nonlinear dynamics (Section V-B). The latter, motivated by

(a) seen target in
training, new initial
states

(b) new target, new
initial states (interpo-
lation)

(c) new target, new
initial states (extrapo-
lation)

Fig. 2: Generalization results for 2D trajectory planning. All
cases test on new initial states, demonstrating semi-global
policies that work on both seen and unseen target scenarios.

scenarios such as varying terrain and obstacles, is examined
through two problems based on a nonlinear bicycle model
(Section V-C). Together, these examples span low and high
state dimensions as well as linear and nonlinear dynamics,
providing extensive verification of our method.

Our FE implementation closely follows [23]. We use
multi-head, multi-layer perceptrons (MLPs) for basis func-
tion parameterization. Exact training details vary depending
on the example. For data preparation and ground truth com-
parison we rely on standard discretization-based open-loop
solvers using SciPy or CasADi [4]. Our code is implemented
in PyTorch [38] and will be released upon publication. All
experiments were conducted on an NVIDIA A100 GPU.

A. 2D Path Planning with Different Targets

We first consider a 2D trajectory planning problem adapted
from [29] where the goal is to find the optimal path be-
tween some initial and target states while avoiding a fixed
obstacle. The initial state of the agent is not fixed but
sampled from a Gaussian distribution, that is, x0 ∼ ρ =
N ((−1.5,−1.5)⊤, 0.4 · I2). We consider linear dynamics
where f = u in (1), with costs

L(x,u) =
1

2
∥u∥2 +Q(x), G(x) = 50 · ∥x− y∥2,

where y denotes the target state and can change depending
on task specification parameter η in (2). The function Q(·)
models an obstacle placed between the initial and target
location, given by

Q(x) = 50 exp(−1.25 ∥x∥2).

Each task in the example corresponds to a different target
state, and our objective is to recover a solution that is
evaluable online for any sampled initial state and given
target, including those not seen during training. We prepare
the dataset with 16 different target states over a 2D grid
between 1 and 2 for both x and y. For each target state,
we solve the OC problem under 200 random initializations
to obtain trajectories using a direct approach. Here, we set
T = 1 and use 20 time steps for the forward integration of
the dynamics.

For the FE parameterization, we use a 4-layer MLP with
hidden size 256, with 100 basis functions in total. For



training, we use the Adam optimizer [25] with a learning
rate of 0.001, for a total of 20K steps to ensure convergence.
We present the numerical results in Figure 2, including both
the test results on y seen in the training dataset and cases
beyond the training domain. We highlight that in all the
tested scenarios, the learned model approximates the ground-
truth control accurately without any retraining. To quantify
the performance of the learned model, we also report the
objective functional value as a reference in Table I. Notice
that our model retains a low objective functional value with
errors below 4% across all test cases. Note that in the
original FE work [23] model performance is most reliable
when generalizing to tasks within the convex hull of the
training task distribution, here we also observe promising
extrapolation results, such as in Figure 2c.

Additionally, we present quantitative comparisons between
different coefficient estimation methods in Table I. The LS
approach achieves higher accuracy during online evaluation.
Although the operator approach requires additional data and
computation for offline training, it offers the advantage of
minimal computational cost during the online phase.

We highlight that our approach is fundamentally different
from any local solution methods, as the feedback policy can
be applied for arbitrary inputs once trained, demonstrated
in Figure 3.

TABLE I: Average true and predicted objective loss across
evaluations for the 2D path planning problem. The average
is taken across different target states and initial conditions.

Evaluation True
Objective Loss

Predicted
Objective Loss

Inference
Method

seen target 4.8609 4.8737
LSnew target interpolation 4.8295 4.8608

new target extrapolation 4.8782 5.0751

seen target 4.8609 4.9625
operatornew target interpolation 4.8295 4.9578

new target extrapolation 4.8782 5.3214

B. Quadcopter Path Planning with Different Targets

We consider controlling a quadcopter under complex dy-
namics; see [36]. Here, the problem is modeled with a 12
dimensional state variable x ∈ R12 and control inputs consist
of a thrust u and torques (τψ, τθ, τφ). The objective is to steer
the system from a stationary initial state randomly sampled

x0 = [ξ1 − 2, ξ2 − 2, ξ3 − 2, 0, . . . , 0]⊤, ξi ∼ N (0, 0.52),

for i = 1, 2, 3, to a target state y = [y1, y2, y3, 0, . . . , 0]
⊤ ∈

R12, where y1, y2, y3 can be chosen differently. The system
dynamics are given as

ẍ = u
m (sin(ψ) sin(φ) + cos(ψ) sin(θ) cos(φ))

ÿ = u
m (− cos(ψ) sin(φ) + sin(ψ) sin(θ) cos(φ))

z̈ = u
m cos(θ) cos(φ)− g

ψ̈ = τψ

θ̈ = τθ

φ̈ = τφ

, (9)

Here (x, y, z) is the position, (ψ, θ, φ) is the orientation, g =
9.8 is the gravitational constant, and m = 1 is the mass.
The corresponding first-order system to (9) can be easily
derived [36]. We consider the objective function given as

L(x,u) =
1

2
∥u∥2, G(x) = 500 · ∥x− y∥2,

where the penalty on the terminal cost is chosen to be large,
following [36], to ensure that different, even far-away targets
can always be reached.

For this example, our goal is to recover transferable
solutions with respect to different target states. The high
dimensionality of the state space and the strong nonlinearity
of the dynamics make the problem particularly challenging.
For data preparation, we use a direct transcription approach
for solving trajectory-based solutions given each initial and
target states. We fix T = 2 and use 50 time steps for forward
integration. For function encoder training, we consider 64
different target states generated over a uniform grid between
1 and 4 in the x-, y-, and z-directions. We then sample initial
states and solve for 80 different trajectories. Additionally, a
separate test dataset is prepared with 27 new tasks; in each
case, the test set includes 25 trajectories from different initial
states.

We use the same model architecture and optimization
setting as in Section V-A, with 100K iterations until con-
vergence. In Figure 4 we visualize the generalization results
of the trained model under a new target state. The model can
accurately predict controls and guide the quadcopter to the
target location from multiple initializations, demonstrating
the effectiveness of our proposed approach. Quantitative
results are displayed in Table II. We note that despite the
high dimensionality and nonlinearity of the problem, our
learned model can achieve high accuracy across different
tasks. In fact, under the zero-shot LS inference approach,
our policy incurs only 0.4% error in objective value over all
27 tasks tested. Similar to the findings in Section V-A, the
LS approach at inference yields more accurate predictions,
with additional data requirements as the trade-off.

TABLE II: Average true and predicted objective loss across
different tasks for the Quadcopter path planning problem,
here the average is taken with respect to both different target
states and sampled initial conditions.

Evaluation True
Objective Loss

Predicted
Objective Loss

Inference
Method

seen target 276.9546 278.8933 LSnew target 274.3089 275.4412

seen target 276.9546 278.4307 operatornew target 274.3089 294.5627

C. Bicycle Control Under Different Obstacle Configurations

We now consider the scenario where the task specification
determines the running cost L. This can be common in
situations where traversing through different terrain types
is needed. Changes to the running cost can substantially



Fig. 3: Visualization of the learned control policy. We generate a sample of size 256 following the specified distribution
for the initial state. The plot illustrates how they traverse over time following the learned control, demonstrating consistent
performance across the state space.
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Fig. 4: Generalization results for the quadcopter path
planning problem. Visualization for a new target y =
[1.5, 3.5, 1.5, 0, . . . , 0]⊤ not seen during training. We com-
pare model predictions to corresponding true solutions.

alter the control behavior, making these types of problems
particularly challenging. Unlike terminal objectives such as
target locations, which often admit compact representations,
running costs are commonly specified as high-dimensional
cost maps over the full domain [28], making them difficult to
compress into a form suitable for zero-shot transfer. Hence,
in this section, we focus only on the zero-shot LS approach.

For the experiment, we study the motion of a bicycle
model. The goal is to find the optimal steering and accel-
eration to guide the bicycle from a starting point to a target
position and orientation over a fixed time horizon. The state
of the system at any time t is given by a 4-dimensional vector
x ∈ R4, written as x(t) =

[
x(t), y(t), θ(t), v(t)

]⊤
, where

(x, y) is the 2D position of the bicycle’s rear axle, θ is the
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Fig. 5: Visualization of the three worst performing scenarios
of the learned controller tested over new problem settings
for the single obstacle example. Top: Predicted solutions
over different initial states. Middle: Ground truth solution
calculated w.r.t. the same initial states. Bottom: Visualization
of the controls, here for clarity, we only show a few instances.

heading angle (orientation), and v is the forward velocity.
The control input at t is a 2-dimensional vector u(t) ∈ R2

defined as u(t) =
[
δ(t), a(t)

]⊤
, where δ(t) is the steering

angle of the front wheel and a(t) is the acceleration. The
dynamics of the bicycle are described by the following.

f =
[
v(t) cos θ(t), v(t) sin θ(t), v(t)

l tan δ(t), a(t)
]⊤
,

(10)
where l = 0.5 is the length of the bicycle’s wheelbase. For
this example, while the terminal cost stays quadratic, the
running cost consists of penalization on both the control and
the state at t, which reads

L(x,u) =
1

2
∥u∥2 +Q(x), G(x) = 50 · ∥x− y∥2,

with Q denoting the state penalty given some obstacle. For
this example, we use a time horizon t ∈ [0, 5], the initial
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Fig. 6: Visualization of the three worst performing scenarios
of the learned controller tested over new problem settings
for the double obstacle example. Top: Predicted solutions
over different initial states. Middle: Ground truth solution
calculated w.r.t. the same initial states. Bottom: Visualization
of the controls, here for clarity, we only show a few instances.

state x0 is sampled from a Gaussian distribution centered at
the origin, that is,

x0 = [ξ1, ξ2,
π

4
, 0], ξ1, ξ2 ∼ N (0, 0.352).

We fix the target state at y = [5, 5, π4 , 0]
⊤ for this example.

Solving the control problem can be difficult given the
highly nonlinear dynamics of the model. For each task, we
define a different obstacle configuration that can change the
controller behavior, increasing the complexity of the learning
problem. For demonstration purposes, we model the obstacle
using a Gaussian formulation

Q(x;A,µ, σ) = A exp

(
− 1

2σ2
∥x− µ∥2

)
.

Here the parameters A, µ and σ control the position and
shape of the obstacle and vary from each individual task. We
generate data for optimal control solutions of 144 different
obstacle settings by randomly selecting A ∈ {30, 40, 50},
µ1, µ2 ∈ {1, 2, 3, 4} and σ ∈ {0.3, 0.5, 0.7}. For each
scenario, we simulate 100 different trajectories for training.
Another 36 new cases in obstacle configuration are reserved
for testing, each also containing 100 different trajectories.
We note that for the scenarios where obstacle placement
is close to the initial or target states, sharp changes in the
ground truth controls are to be expected. We test not only
the generalizability but also the robustness of our approach
through this example, as the learned model has to account
for both smooth and non-smooth policies.

TABLE III: Numerical results for the obstacle generalization
experiments using the bicycle model. We display the predic-
tion and ground truth for the cumulative control and obstacle
cost, as well as terminal state deviation measured in both x
and y direction, all results are evaluated and averaged over
multiple new problem setting unseen in training.

Evaluation Control Cost Obstacle Cost Term. State Deviation

Single obstacle

Prediction 2.6789 0.0463 0.0012
Ground Truth 2.6480 0.0385 0.00005

Double obstacles

Prediction 3.0370 0.5750 0.0046
Ground Truth 2.9668 0.5286 0.00004

We illustrate the numerical results in Table III. Note
that the learned model transfers accurately to new problem
settings using only limited data for inference. In particular,
the controller can learn to avoid the obstacle for arbitrary
placement and reach the target state with high precision,
demonstrating the capability of our proposed approach. We
present qualitative results in Figure 5. Here, we display the
results for 3 worst performing subproblems out of all tested
cases. Notice that even in the worst performing cases, the
learned model can provide reasonable and accurate guidance
to the system, as demonstrated in the close match between
the predicted and ground truth trajectories.

Double Obstacle Experiment: To further demonstrate the
applicability of our method, we conduct additional experi-
mentation with increasing difficulty. In this example, instead
of modeling the terrain using a simple Gaussian obstacle,
we introduce a non-overlapping secondary obstacle to the
problem. Using the same physics in (10), we define

Q(x; {Ai,µi, σi}2i=1) =

2∑
i=1

Ai exp

(
− 1

2σ2
i

∥x− µi∥2
)
.

Consider A1, A2 ∈ {30, 50}, σ1, σ2 ∈ {0.3, 0.5} and the
obstacle placement randomly selected over a 3 × 3 grid
between 1.5 and 3.5. We prepare the dataset consisting of
576 different obstacle configurations, we split them into a
544/32 training/test split after random shuffling. For each
scenario, the dataset contains 100 trajectories. We note that
the secondary obstacle largely increases the difficulty of the
problem, as new pathing options lead to different controls;
we increase the FE model size to account for this.

We display the corresponding numerical results in Ta-
ble III, trained model under our approach remains accurate
despite the increase in problem complexity. We display the
model predictions and the corresponding true solution in
Figure 6. Here we again only visualize the worst performing
cases to show the effectiveness of our approach. We highlight
that the new pathing options are correctly captured, and the
model performance remains stable even when the underlying
ground truth solution exhibits shock-like behavior.



VI. CONCLUSIONS

To summarize, we proposed an FE-based framework for
policy transfer in parametric optimal control problems. The
framework enables zero-shot adaptation to new tasks with or
without data and demonstrates reliable performance across
diverse examples. Future work will explore extensions to
multi-agent systems with interacting dynamics.
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