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ABSTRACT

We present a novel framework for solving optimal transport (OT) problems based
on the Hamilton—Jacobi (HJ) equation, whose viscosity solution uniquely char-
acterizes the OT map. By leveraging the method of characteristics, we derive
closed-form, bidirectional transport maps, thereby eliminating the need for nu-
merical integration. The proposed method adopts a pure minimization frame-
work: a single neural network is trained with a loss function derived from the
method of characteristics of the HJ equation. This design guarantees convergence
to the optimal map while eliminating adversarial training stages, thereby substan-
tially reducing computational complexity. Furthermore, the framework naturally
extends to a wide class of cost functions and supports class-conditional transport.
Extensive experiments on diverse datasets demonstrate the accuracy, scalability,
and efficiency of the proposed method, establishing it as a principled and versatile
tool for OT applications with provable optimality.

1 INTRODUCTION

Optimal transport (OT) is a fundamental problem that seeks the most cost-efficient transform from
one probability distribution into another by minimizing a transportation cost function, which quan-
tifies the effort to move mass. With its strong theoretical foundation and broad practical relevance,
OT has been widely applied 1n diverse areas, including tratfic control (Carlier et al., 2008; Danila
et al., 2006; Barthélemy & Flammini, 2006), biomedical data analysis (Schiebinger et al., 2019;
Koshizuka & Sato, 2022; Bunne et al., 2023), generative modeling (Wang et al., 2021; Onken et al.,
2021; Zhang & Katsoulakis, 2023; Liu et al., 2019), and domain adaptation (Courty et al., 2016;
2017; Damodaran et al., 2018; Balaji et al., 2020). In recent years, there has been growing interest
in deep learning techniques to solve OT problems, leading to the development of methods grounded
in various mathematical formulations. Early approaches were primarily built upon the classical
Monge formulation (Lu et al., 2020; Xie et al., 2019) and its relaxation into the Kantorovich frame-
work (Makkuva et al., 2020). While theoretically rigorous, these methods often suffer from high
computational complexity. The primal—dual formulation, which recasts the OT problem as a saddle-
point optimization over the generative map and the Kantorovich potential function, has inspired
scalable algorithms (Liu et al., 2019; Taghvaei1 & Jalali, 2019; Korotin et al., 2021a; Liu et al., 2021;
Choi et al., 2024). Similar approaches have also been proposed for the Monge problem with gen-
eral costs (Asadulaev et al., 2024; Fan et al., 2023). However, these approaches typically rely on
adversarial training of two neural networks, which is challenging to manage and often introduces
instability and inefficiency into the optimization process. Alternative approaches have investigated
dynamical formulations using ordinary differential equations (ODEs) (Yang & Karniadakis, 2020;
Onken et al., 2021; Tong et al., 2020; Huguet et al., 2022) and entropic-regularized models involv-
ing stochastic differential equations (SDEs) (Genevay et al., 2016; Seguy et al., 2017; Daniels et al.,
2021; Gushchin et al., 2023; Zhou et al., 2024). Machine learning algorithms that unify Lagrangian
and Eulerian perspectives of Mean Field Control problems Ruthotto et al. (2020); Lin et al. (2021);
Zhao et al. (2025) likewise provide a computational framework for OT. Nevertheless, these methods
typically require solving systems of differential equations, resulting in substantial computational
overhead during both training and inference. Moreover, many existing methods yield bias maps that
deviate from the OT solution due to the incorporation of regularization terms into the formulation.
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Method (representative reference) Optimization # Networks OT direction Sampling Optimality of 7’

Dual Formulation (Asadulaev et al., 2024) Min-Max Two One-way Direct No
Dynamical Models (Onken et al., 2021) Min Single Bidirectional  Iterative No
HJ-based (Proposed) Min Single Bidirectional Direct Yes

Table 1: Comparison of key features across different OT model approaches.

Contributions. We propose a novel and efficient framework, termed neural characteristic flow
(NCF), for solving OT problems via the Hamilton—Jacobi (HJ) equation, whose viscosity solution
characterizes the OT map. Despite its strong theoretical foundation for OT, the HJ formulation
poses two major challenges: non-uniqueness of solutions and the need to solve ODEs in dynamical
formulations. We overcome both by leveraging the method of characteristics and an implicit solution
formula (Park & Osher, 2025) to obtain closed-form, bidirectional transport maps without numerical
integration of ODEs. NCF uses a single neural network and avoids adversarial training or dual-
network architectures, reducing complexity while improving efficiency. Our framework guarantees
theoretical consistency with OT optimality conditions and supports a broad class of cost functions,
including class-conditional transport. We also provide convergence analysis for Gaussian settings
and demonstrate strong empirical performance across datasets of varying dimensions. A comparison
of key features across different OT model approaches 1s summarized in Table 1.

2 PRELIMINARY

2.1 MONGE’S OPTIMAL TRANSPORT PROBLEM

For a domain 2 C R?, we denote £?(2) as the space of probability measures on . Let ¢ : 2 xQ —
10, oo| be a cost function that measures the cost of transporting one unit of mass. For u, v € &2 ({2),
the classical Monge problem formulates OT as finding a measurable map 7" : {2 — (2 that pushes
forward p to v, 1.e., T3 u = v, while minimizing the transportation cost:

We (u,v) = inf /;Ec(x,T(x))dp(x). (1)

Typu=v

We call a solution 7™ to (1) an OT map between px and v. In the case where the cost c is expressed
as a function of the difference between the two variables, T 1s characterized as follows:

Theorem 2.1 (Santambrogio (2015)). When c(x,y) = £(x —y) for a lower semi-continuous

(Ls.c.), sub-differentiable, and strictly convex function ¢ : () — R, the optimal map is expressed
in terms of the Kantorovich dual potential function ©* : {} — R as

T (x) =x+ Vh (V" (%)), (2)
where h (z) = supy cga {z"y — £(y)} is the Legendre transform of L.

2.2 DYNAMICAL FORMULATION

Benamou & Brenier (2000) formulate the OT (1) in a continuous-time dynamical formulation:

111f E, [ / t)) dt] (3)

s.t. x = v, x(0) ~ p, x(tf) ~ v, (4)

where the terminal time ¢ ¢ > 0 1s typically set to 1. Within this dynamical framework, the associated
optimality condition is governed by the Hamilton—Jacobi (HJ) equation:

{%g+h(?u)=0 in Q x (0,%5)

u=g on £} xX{t =10}, (5)

coupled with the continuity equation that governs the evolution of the probability distribution. Here,

Vu denotes the gradient of u with respect to the spatial variable x, and g represents the initial
condition, whose explicit analytic form 1s typically intractable. The optimal velocity field 1s then
determined by v* = Vh (Vu), where u is the viscosity solution to HJ equation (5).

3 RELATED WORKS

Deep learning methods for OT have gained traction following the development of scalable OT
solvers (Genevay et al., 2016; Seguy et al., 2017) and WGANSs (Arjovsky et al., 2017). Many



approaches utilize GAN-based models to approximate OT plans, although they often suffer from
training instability and extensive hyperparameter tuning. Another major line of work is based on the
Kantorovich dual formulation (Kantorovich, 2006), where the OT map 1s recovered via optimization
of dual potentials, typically parameterized by input convex neural networks (ICNNs) (Amos et al.,
2017). While theoretically sound, these methods involve unstable min-max optimization. To ad-
dress these issues, natural gradient methods have been proposed to improve computational efficacy
(Shen et al., 2020; Liu et al., 2024). Regularization techniques such as L? penalties (Genevay et al.,
2016; Sanjabi et al., 2018) and cycle-consistency constraints (Korotin et al., 2019; 2021b) have been

proposed, though unconstrained alternatives have shown stronger empirical performance (Korotin
et al., 2021a; Fan et al., 2022).

To address the settings where deterministic OT maps may not exist, recent work has considered
weak OT formulations (Backhoff-Veraguas et al., 2019). Neural approaches for weak OT and class-
conditional transport have been proposed (Korotin et al., 2023; Asadulaev et al., 2024), but may
yield spurious solutions under weak quadratic costs. Kernalized costs (Korotin et al., 2022) have
been introduced to mitigate this.

OT has also been modeled as a dynamical system via continuous flows (Yang & Karniadakis, 2020;
Tong et al., 2020; Onken et al., 2021; Huguet et al., 2022). While expressive, these methods require
solving ODEs during training and inference, making them computationally expensive. Entropic and
f-divergence regularized stochastic models (Daniels et al., 2021; Gushchin et al., 2023) improve
smoothness but often rely on Langevin dynamics, which can be biased in high dimensions (Korotin
et al., 2019). The HJ equation has been used to improve OT models, with physics-informed neural
network (PINN) (Raissi et al., 2019) approaches applying L? penalties on HJ residuals to improve
continuous normalizing flows, ODE-based formulations (Yang & Karniadakis, 2020; Onken et al.,
2021), and stochastic variants (Zhang & Katsoulakis, 2023). However, due to the ill-posed nature of
the HJ equation, this approach lacks guarantees for recovering the viscosity solution.

4 HJ CHARACTERISTIC FLOWS FOR OT

In this section, we represent the OT map through the characteristics of the HJ equation, offering a
principled and efficient framework for OT. Note that solving the HJ equation directly 1s challenging
due to its inherent ill-posedness, non-smoothness of solutions, and gradient discontinuities, all of
which complicate both theoretical analysis and numerical approximation.

Method of Characteristics. The viscosity solution to (5) is theoretically characterized by the
following system of characteristic ordinary differential equations (CODE: ).

% = Vh (p) (62)
@ = —h(p) +p' Vh(p) (6b)
p=0, (6¢)

where p denotes the shorthand for Vu. CODE for p (6¢) implies that p remains constant along
each characteristic trajectory. Consequently, the characteristics are straight lines of the form x(¢) =
tVh(p) + x(0), which coincide with the OT map in (2) at terminal time ¢ = ¢¢. From a dynamical
perspective, the ODE (4) can be interpreted as the characteristic equations (6a) of the HJ equation
that determine the OT map (2). In other words, the transported point 7* (x) of a sample x ~ u
corresponds to the terminal position of the characteristic line that originates from x.

Our CODE formulation not only provides a principled construction of the forward transport map but
also naturally characterizes the backward map. We denote by 77" the forward OT map transporting
w to v, and by T#* the backward map transporting v to pu.

Proposition 4.1 (Bidirectional OT Map). There exists a viscosity solution u™ to the HJ equation
(5) that characterizes both the forward and backward OT maps through its forward and backward
characteristic flows:

T."(x) =x+1t;Vh(Vu* (x,0)), x~p, (7)
;" (y) =y = t;Vh(Vu' (y,t5)), y~v (8)

Accordingly, the viscosity solution of the HJ equation enables a bidirectional characterization of
the OT map via forward and backward characteristic flows. Notably, since the characteristics are
straight lines, both the forward and inverse transport maps admit explicit closed-form expressions.



This obviates the need for numerical integration of ODEs typically required in conventional dy-
namical formulations. Consequently, the CODE-based formulation addresses a key computational
bottleneck, enabling efficient and direct computation of bidirectional transport maps.

Implicit Solution Formula. Recently, a novel mathematical formulation for the viscosity solution
of HJ equations has been developed using the system of CODEs (Park & Osher, 2025). Within this
formulation, the viscosity solution admits the following implicit formula:

u(x,t) = —th (Vu) + tVu' Vh (Vu) + g (x — tVh (Vu)). (9)

Proposition 4.2. For OT problems (1) where £ satisfies the conditions in Theorem 2.1, the implicit
solution formula (9) characterizes the viscosity solution of the HJ equation (5) almost everywhere.

Proof. Detailed proof is provided in Appendix A.1.

5 METHODS

5.1 OT WITH GENERAL COSTS

We propose a novel deep learning method, termed neural characteristic flow (NCF), for learning
bidirectional OT maps under general cost £ by solving the HJ equation (5) vis its implicit solution
formula (9). The HJ equation characterizes the OT map as the gradient of the viscosity solution, en-
suring that the resulting map minimizes the given cost functional. When coupled with the continuity
equation, it also describes the evolution of probability distributions, thus guaranteeing correct mass
transport from source to target. However, jointly solving this coupled system of PDEs is computa-
tionally expensive. To address this, the proposed NCF computes the OT map solely through the HJ
equation, avoiding the need to solve the continuity equation explicitly.

Implicit Neural Representation. We represent the solution u of the HJ equation using an implicit
neural representation (INR) uy : R? x R — R parameterized by 6. The network takes the spatial
variable x and temporal variable ¢ as input. By the universal approximation theorem (Hornik et al.,
1989; Leshno et al., 1993), the INR can approximate the viscosity solution to the HJ equation. We

denote by 1), ‘ug| as the transport map that aims to map u to v defined by (7) through uy:
T:: [‘ug] (x) =X+ thh (V‘ug (){, U)) . (10)

The backward map T |ug| is analogously defined according to (8) via ug evaluated att = ¢ ¢.

HJ-based Training Loss. While the HJ equation does not directly encode distributional informa-
tion, it can recover the desired OT map, provided that an appropriate initial function g reflects the
relationship between the source and target distributions. However, in practice, where only finite sam-
ples from these distributions are available, deriving an analytic form for g 1s generally intractable.
To address this challenge, we introduce a loss term to ensure that the initial condition is appropri-
ately learned during training, thereby steering the HJ solution toward accurately solving the desired
OT problem. Specifically, this term enforces alignment between the generated samples obtained via
T |ug| and the given target data. This alignment can be effectively quantified using discrepancy mea-
sures such as the maximum mean discrepancy (MMD) (Smola et al., 2006), whose value between
two distributions p and v are defined as follows:

MMD(u)* = [ k(x,) d(u(x) = v(x)) d(u(y) — (¥)) 1)

where k(-,-) : 2 x 2 — R is a kernel function. The population loss for the MMD is
Lymp (ug) = MMD(T, [ug)yp, v). (12)
We adopt the negative distance kernel k (x,y) = — ||x — ¥y||,, which has proved to handle high-

dimensional problems efficiently (Hertrich et al., 2024). With this kernel, the MMD loss becomes
the squared energy distance (Rizzo & Székely, 2016).

In our implementation of the implicit solution formula, we replace the initial function g with ug
evaluated at ¢ = 0, and train the model using the following o-weighted loss function

Ly (uﬂ)Zf/ oo ('HQ + th (Vug) — tVuy Vh (Vug) — ug (x — tVh (Vuy) ,D))2dg(x) dt,
(x|0,ty
(13)



where o denotes a probability distribution on {2.
The overall loss combines the implicit HJ loss and the MMD loss with a weight A > 0:

L (Hﬂ) -+ )\.CMMD(UQ). (14)

We refer to Appendix B for practical choices of ¢ and the Monte Carlo estimation of the loss.

Advantages of the Proposed Approach. Our method offers several key advantages over existing
OT frameworks, as summarized in Table 1. First, it jointly learns both forward and backward OT
maps using a single neural network in one training phase. This contrasts with prior methods that
require multiple networks, either due to the lack of invertibility or the use of adversarial dual for-
mulations—Ieading to increased model complexity and training cost. Our method also avoids the
instability of min-max optimization common in dual approaches, resulting in more stable training.
Second, unlike dynamical OT models that require solving ODEs or SDEs, we use the method of
characteristics to obtain OT maps in closed form. This removes the need for iterative solvers and
improves sampling efficiency at both training and inference time. Third, our model directly incor-
porates the HJ equation via an implicit solution formula that reliably recovers the viscosity solution,
as supported by the numerical results in Section 6. This not only aligns with the theoretical optimal-
ity conditions of OT but also helps identify and correct deviations from the target solution during
training. Finally, our framework supports a broad class of cost functions beyond the quadratic case,
offering greater flexibility and wider applicability across OT tasks.

5.2 THEORETICAL ANALYSES

In this section, we present theoretical analyses of our method, focusing on the OT problem with
(2 = R? and the quadratic cost £(-) = %|| - ||?, for which the corresponding Hamiltonian is given by
h(-) = %H . ||? as well. We prove that the minimizer of the loss (14) exactly recovers the true OT

maps. Moreover, in the Gaussian setting, we establish stability analysis by showing that a small loss
guarantees convergence to the true solution.

Consistency Analysis With some mild convexity assumption, we establish that the minimizer of
(14) leads precisely to the optimal transport map.

Theorem 5.1 (Consistency of loss). Suppose the probability distributions 11, v have finite second
moments and o € P (RY) is strictly positive. Assume u € C}_(R? x [0,ts]), and define uy(-) :=
u(-,ts) € C? (R?) with Vu, € L*(R% R%; v). If u minimizes the loss functional (14), i.e.,

loc
Lyr(uw) + ALpmp (u) = 0,

and the map T"|[u] is bijective with its Jacobian D,T"[u](x) is positive definite for any x € RY,
then T} [u| and T} |u] are the optimal transport maps from v to p, and vice versa.

The proof 1s provided in Appendix A.2. See also Remark A.5 for further discussion on the mono-
tonicity condition for D, TH|u].

Remark 5.2 (On regularity assumption of u). It 1s worth noting that the transport curves associated
with the Wasserstein-2 OT problem do not intersect for ¢ € [0,¢¢| (cf. Chap. 8 of (Villani et al.,
2008)). Since these curves constitute the characteristics of the HJ equation associated with the
OT problem, we can expect classical solutions to the HJ equation, provided that 1 and v admat
sufficiently regular density functions. This observation motivates the regularity assumption on
in Theorem 5.1. Moreover, u 1s parametrized with neural networks in practice, which naturally
preserve the regularity.

Stability Analysis The loss (14) also exhibits favorable stability properties, which we illustrate in
the Gaussian setting. Let u = N(b,,2,), v = N(b,, %,), then the OT map is

! bl (x) = A(x—b,)+b,, (15)

b=

where A := £, ?(£2%,52)3%, 7. For analytical tractability, we consider a simplified quadratic
parameterization ug(x,t) = —(3x' 02(t)x + 61(t) " x + 6o(t)), where 8 = [62(-),61(-),60(")] :
0,tf] — R&s* x R* x R. Although this represents a restricted subclass of neural networks, it
permits rigorous analysis and yields insights relevant to more general architectures.

Assumption 5.3. 6(t) is bounded by K and K-Lipschitz. |[b,|[,|/b,|,||X.lz,[|X.lp < K. A
1s strictly positive definite with smallest eigenvalue A4 > 0.

(] [



Theorem 5.4 (Stability of loss). Under Assumption 5.3, the errors for ug and 1'; (ug| satisfy

1 1
Huﬁ' o T-‘ﬁ”Lf"‘;’([—1,1]“‘)\ T HT:[UQ] o TE*HLW([_l}lld) S (EI?;’J " E;{Mﬂ) ) (16)
where u™ and T are the true solution and OT map. C only depends on d, K and A 4.

The theorem implies that sufficiently small loss guarantees convergence of the approximate solution
up—and consequently the resulting transport map 777 lug|—to their true counterparts. Furthermore,
the proof shows that while multiple transport maps may minimize the MMD loss, the implicit HJ
loss ensures that the OT map 1s uniquely recovered. The detailed description and proof for the
theorem are deferred to Appendix A.3.

5.3 CLASS-CONDITIONAL OT

We extend our HJ-based framework to class-conditional OT, transporting source to target indepen-
dently within each of the K labeled classes so as to preserve label consistency and class-specific
structure. This formulation is particularly well-suited for domain adaptation and class-conditional
generative modeling, where preserving class-specific features is crucial.

The OT map between samples of the k-th class must satisfy the HJ equation within the support of
the corresponding class-specific distribution, as dictated by the optimality condition. Consequently,
the global transport map 7™ satisfies the HJ equation (5) across the entire domain. Although non-
differentiable regions may arise due to intersections between transport maps of different classes,
such discontinuities occur primarily in the boundaries between class supports. Since the gradient of
the HJ solution 1s computed only within the support of each class-specific distribution, the transport
map remains expressible in these regions. Accordingly, we retain the implicit HJ loss function (13)
and modify the MMD loss to account for class conditioning as follows:

K
‘-":lclas,s((’I:,;:r [uﬂ])ﬁﬂ*: y) - %Z'g((T: [uﬂl)ﬁ#k: L"k)- (17)
k=1

A similar approach was proposed by Asadulaev et al. (2024).

6 EXPERIMENTAL RESULTS

We evaluate the effectiveness of the proposed neural characteristic flow (NCF) across diverse OT

tasks. All experiments in this section employ the quadratic cost function £ = || g, which is the
canonical cost associated with the Wasserstein-2 distance. Computations were performed on a single
NVIDIA GV100 (TITAN V) GPU. Further implementation details are provided in Appendix B.

6.1 UNCONDITIONAL OT

6.1.1 2D Toy EXAMPLES

We test the proposed NCF on a 2D toy dataset. We also compare our model with the neural opti-
mal transport (NOT) framework (Korotin et al., 2023), including both the strong (deterministic) and
weak (stochastic) variants. Since NOT directly parameterizes the transport map, it requires sepa-
rate training for each transport direction. Additionally, we include an ablation study replacing our
implicit solution formula loss (13) with a PINN loss on the HJ equation, referred to as HJ-PINN.

Figure 1 shows bidirectional transport results on 2D distributions. In addition to visualizing the
transported distributions, we overlay the learned transport maps as black solid lines to assess whether
each model has captured an OT plan. For weak NOT, the map i1s the average over noise inputs, as
in the original work. Compared to all baselines, our method captures source and target distribu-
tions more accurately and learns transport maps closely aligned with the optimal solution. Strong
NOT produces noisy, incoherent transport. Weak NOT performs better but still shows overlapping
trajectories, indicating an incomplete OT representation. HJ-PINN yields noisy, intersecting trans-
port paths, suggesting failure to learn OT dynamics. In contrast, our model learns accurate OT
maps without trajectory crossings. Moreover, unlike NOT, which requires four separate networks
for bidirectional training, our method achieves more accurate bidirectional transport with a single
network. These results highlight the superior accuracy and efficiency of our approach. For further
experimental results on the 2D example, please refer to Appendix C.1.
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and the bottom row shows . — v. The leftmost column displays x and v for reference.

Table 2: Quantitative evaluation on Gaussian distributions. UVP (] ) is measured across different
OT methods as the data dimension d increases.

Method =2 d=4 d =8 d=16 d=32 d=64
NOT 77.248 125419 114.056 176.086 182.287 196.831
WGAN-QC  1.596 5.897  31.0367 59.314 113.237 141.407
LS 5.806 9.781 15.963  25.232 41445  55.360
MM-v1 0.161 0.172 0.173 0.210 0.374 0.415
HIJ-PINN 0.080 0.069 0.163 0.458 0.576 1.683
NCF 0.010 0.021 0.086 0.146 0.436 0.858

6.1.2 EVALUATION ON HIGH-DIMENSIONAL GAUSSIANS

For general distributions, the ground truth OT solution 1s unknown, making quantitative evalua-
tion challenging. To enable precise assessment, we consider the Gaussian case: © = N (0,%,,) and
v =N (0,X%,), where a closed-form solution is available via (15). Following Korotin et al. (2021a),
we vary the dimension d from 2 to 64, with >, and 3., generated using random eigenvectors uni-
formly sampled on the unit sphere and logarithms of eigenvalues drawn uniformly from |—2, 2|.
In addition to strong NOT and HJ-PINN, we evaluate several established OT methods: MM-vl
(Taghvae1 & Jalali, 2019; Korotin et al., 2021a), which solves a min-max dual problem using input-
convex neural networks (ICNNs); LS (Seguy et al., 2017), which addresses the dual problem via
entropic regularization; and WGAN-QC (Liu et al., 2019), which employs a WGAN architecture
with quadratic cost. Except for NOT—which directly parameterizes transport maps—all models
use a shared architecture for potential functions.

Performance 1s measured using the unexplained variance percentage (UVP) (Korotin et al., 2019),
which quantifies the L? error of the estimated transport map, normalized by Var(v). Computa-
tional efficiency is also evaluated in terms of training and inference time, peak memory usage, and
memory required to store bidirectional OT maps. Table 2 reports UVP across models and dimen-
sions, while Figure 2 summarizes computational metrics. Our method consistently yields accurate
OT maps with favorable scaling behavior, outperforming NOT, WGAN-QC, and LS, which exhibit
greater deviation from the ground-truth transport. While MM-v1 achieves marginally lower UVP
in higher dimensions, it incurs over 20x longer training time and significantly higher memory us-
age. In contrast, our approach avoids expensive nested min-max optimization and leverages a single
network, resulting in faster and more memory-efficient training. At inference, NOT offers the low-
est latency due to its direct map parameterization, whereas other methods, including ours, require
gradient-based evaluation, introducing additional overhead. This overhead, however, decreases with
increasing dimension. Lastly, comparison with HJ-PINN underscores the superior effectiveness of
our implicit loss in approximating the viscosity solution to the underlying HJ equation.

6.1.3 APPLICATION TO COLOR TRANSFER

We employ the dataset provided by CycleGAN (Zhu et al., 2017) for image color transfer experi-
ments. From each of the three available groups of image pairs, we selected 10 representative pairs.
For each pair, we perform both forward and backward color transfer. To evaluate the effectiveness of
our model, we include comparisons with two widely used classical color transter methods: a stan-
dard per-channel histogram matching technique and the approach of Reinhard et al. (2001), which
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Figure 2: Computational comparison. Training time (s/epoch), evaluation time (s/epoch), peak
memory (MB) during training, and memory (MB) for storing bidirectional OT maps are reported.

Table 3: Quantitative evaluation of color transfer. Earth mover distance (EMD) and histogram
intersection (HI) between color distributions of target and transported images are reported.

Methad Winter-Summer Monet-Photograph  Gogh-Photograph

EMD (1) HI(T) EMD({) HI() EMD(Q) HI()
HisMatching  0.0012 0.7296 0.0013 0.7532 0.0010 0.7668
Reinhard 0.0013 0.6255 0.0012 0.7255 0.0009 0.7406
NOT 0.0008 0.8002 0.0008 0.8210 0.0008 0.8247
MM-vl 0.0014 0.7295 0.0011 0.7722  0.0007  0.8265
NCF 0.0005 0.8914 0.0004 09174 0.0003 09117

aligns the mean and standard deviation of color channels. These baselines represent statistical meth-

ods that do not rely on OT, providing a complementary perspective on performance. We include
NOT and MM-v1 as deep learning OT baselines.

To quantitatively evaluate color fidelity and distributional consistency, we employ two widely used
histogram-based metrics: Earth Mover’s distance (EMD) and histogram intersection (HI), summa-
rized in Table 3. Across all three domains, our method consistently achieves superior performance
compared to all baselines in both metrics. In particular, our proposed method exhibits superior
robustness in handling more complex and multimodal color distributions compared to MM-v1, es-
pecially in contrast to the simpler Gaussian settings examined in the previous section. Qualitative
results are provided in Appendix C.2.

6.2 CLASS-CONDITIONAL OT

6.2.1 2D Toy EXAMPLES

We present experimental results on a 2D synthetic dataset consisting of class-labeled samples, de-
signed to evaluate class-conditional OT. To assess the ability of the proposed class-conditional NCF
variant to model class-guided transport, we compare it against an unconditional NCF, which does
not utilize label information. Furthermore, to benchmark our method against existing approaches,
we include NOT with general cost functionals (GNOT) (Asadulaev et al., 2024), a recent model
designed to perform class-conditional OT.

Figure 3 presents results on a 2D Gaussian mixture dataset, where each data point 1s associated with
a class label. The unconditional NCE, lacking access to label information, learns a global transport
map that ignores class structure, aligning source and target points purely based on W?# distance.
In contrast, both GNOT and the proposed class-conditional NCF learn separate transport maps per
class. However, GNOT exhibits intersecting transport paths between classes, suggesting suboptimal-
ity with respect to the transport cost. The class-conditional NCF effectively disentangles transport
across classes and yields maps that closely approximate the optimal solutions. These results high-
light the accuracy and effectiveness of our approach, grounded in a CODE-based formulation of the
HJ equation, for learning class-conditional transport in structured settings.

6.2.2 MNIST & FASHION MNIST

We apply our model to the MNIST (LeCun, 1998) and Fashion MNIST (Xiao et al., 2017) datasets,
each comprising 10 classes. Given their substantially lower intrinsic dimensionality relative to the
ambient space (Pope et al., 2021), we solve class-conditional OT problems in latent spaces obtained

via 3-VAEs (Higgins et al., 2017); see Appendix B.4 for details.

We consider transport from each Fashion MNIST class to its corresponding MNIST class; additional
class-conditional OT tasks on MNIST are provided in Appendix C.3. We compare against baselines
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Figure 3: 2D class-conditional OT. The leftmost column displays u (red) and v (blue), with class la-
bels indicated by distinct markers. In the remaining columns, blue dots denote transported samples,
while solid black and dotted gray lines represent the learned transport maps for each class.
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Figure 4: Class-conditional OT between MNIST and Fashion MNIST. Left: Forward OT. Right:
Backward OT. The first row shows the source data, while the second row presents the data generated

by learned OT map.

Table 4: Comparison of the accuracy and FID scores for the forward class-conditioned maps (Fash-
ion MNIST — MNIST) learned using different methods. The accuracy and FID scores for the

baseline methods are adopted from (Asadulaev et al., 2024).
Metric oo GINOX Discrete OT | 4 1oCycleGAN | MUNIT | NCF [Ours)
L” cost | Stochastic map | SinkhornLpL]1
Accuracy(%) T | 10.96 83.22 10.67 12.03 8.93 83.42
FID | 7.51 5.26 >100 26.35 7.91 18.27

from Asadulaev et al. (2024), including NOT and GNOT, as well as a domain adaptation OT method
(Courty et al., 2016; Flamary et al., 2021) that uses discrete OT with label-supervised regularization.

Additionally, we evaluate unsupervised image translation methods AugCycleGAN (Almahairi et al.,
2018) and MUNIT (Huang et al., 2018).

Figure 4 shows bidirectional transported samples by NCF; uncurated results are in Appendix C.3.
These results qualitatively demonstrate NCE’s ability to perform bidirectional, class-conditional OT
on real images. For quantitative evaluation, we report Fréchet Inception Distance (FID) (Heusel
et al., 2017) and class-wise accuracy, which measures how well the class 1dentity 1s preserved dur-
ing transport, in Table 4. Our method achieves the highest accuracy, indicating its strong class-aware
transport performance. Although the FID score is relatively high, this is largely due to the discrep-
ancy introduced by the VAE decoder. To 1solate this effect, we compute the FID between the NCF
outputs and the VAE-decoded images. The resulting low score 2.73 indicates that the transport map
in the latent space faithfully reproduces the target distribution. This 1s further supported by the KDE
plots in Figure 14, showing close alignment between the transported and target latent distributions
along principal components.

7 CONCLUSION

We introduced a theoretically grounded OT framework that recovers forward and backward maps
in closed form via HJ characteristics. The resulting single-network, integration-free algorithm gives
accurate, bidirectional maps, supports a broad class of costs, and extends to class-conditional trans-
port with pairwise MMD alignment. We establish consistency and stability. Several tasks including
synthetic, color-transfer, and MNIST demonstrate accuracy and efficiency of our algorithm.




Future directions include improving high-dimensional performance beyond latent-space implemen-
tations by developing more efficient gradient evaluations and scalable network designs. Extending
the stability analysis to general neural architectures would provide a deeper theoretical understand-
ing of our method and its convergence behavior.
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A PROOF

A.1 PROOF OF PROPOSITION 4.2

Since ¢ is l.s.c., sub-differentiable, and strictly convex, its Legendre transform A is also l.s.c., sub-
differentiable, and strictly convex. For such a Hamiltonian h, it has been proven in (Park & Osher,
2025) that the viscosity solution satisfies the implicit solution formula (9) almost everywhere. Con-
sequently, the optimal solution to these OT problem is characterized by the implicit solution formula.

A.2 PROOF OF THEOREM 5.1

Lemma A.l. Suppose that i, v are probability distributions on R®. Suppose . has finite second
order moment, i.e., [, |z|*du(z) < co. Assume that 1) : R* — R|J{+o0} is convex and differ-

entiable i-a.e. Set T = V1 and suppose [, ||T(z)||?du(z) < +oo. Then T is optimal for the
transport cost 5 ||z — y||* between p and v.

This lemma i1s proved in Theorem 1.48 in Santambrogio (2015).

Lemma A.2. Suppose T : R¢ — R is a bijective map on R®. Assume that T is strictly monotone,
that is, (T'(z) — T'(y),z — y) > O for arbitrary x,y € R% = # y. Here, we denote (-,-) as the
¢? inner product on R%. Suppose S : RY — RY satisfies S o T = 1d, then S is also bijective, and
strictly monotone.

Proof. It is straightforward to verify that S' is surjective and injective, and it is thus bijective. Now,
for arbitrary z,y € RY, x # y, there exists unique z’, 7’ € R%, 2’ # v/, such that z = T'(z'),y =
T'(y'). Thus, we have S(z) = S(T'(z')) = 2',S(y) =S(T(¥')) =v',and (S(z) — S(y),z —y) =
(' -y, T(@') - T(y')) > 0.

For brevity, in the following discussion, we denote C (R9) by C*(R%) for any k € N. We denote

O, as the d x d zero matrix. For symmetric matrices A, B € R%*¢ we denote A > B if A — B is
positive definite.

Theorem A.3. Given the probability distributions p,v € P (R?) with [, ||z||* dp, [z ||z]]* dv <
+00, suppose uy € Ct_(R%),u; € C2 _(R%), Vu; € L*(R4,RY; v) satisfy

loc loc
L
uo(z — tVui(z)) = u1(z) — —%HVul(m)HQ, vV z € R% (18)

Assume further that (Id + ¢ Vuo(-))gp = v. If the mapping 1d — t ;Vuy () : RY — R? is bijective
and I; — t;V?uy(z) > Oy, then Id + t;Vug(-) is the optimal transport from p to v, and 1d —
t fVuy(+) is the optimal transport map from v to .

Proof. We split the proof into several steps:

Step 1. We first prove the fact that Vug(xz — tyVui(z,t)) = Vuy(z) for arbitrary z € R?. This
can be shown by taking gradient with respect to « on both sides of (18):

(Ig — t£V?uy (x))Vuo(z — tVuy (z)) = Vuy(x) — £ VU (2) Vuy (2).
Re-arrange this equation yields
(Ig — t;VZu1(z))(Vuo(z — tVui(z)) — Vuy(z)) = 0.
As Iy — t:V?u;(z) = 04, we deduce that Vug(z — t s Vuy (x)) = Vuy(x) for arbitrary z € R
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Step 2. For the sake of brevity, we denote T((-) := Id 4+ £ Vug(-), and T3 (-) := Id — £ Vuy (+).
We prove that Tj o 77 = Id. This can be derived by straightforward calculation:

To(Th(z)) = Ti(x) + tfVue(Ti(z)) =z — tyVur(x) + tfVug(x — tfVui(z))
=z +ts(Vuo(z — tVui(z)) — Vui(z)) = =,

for any z € R

Step 3. Before we prove the assertion, we show that [, ||7o(z)||* dp < 400, [za ||T1(z)|* dv <
+o00. The latter inequality can be shown using

1Ty (2)|2dv < 2 ( ITi(2) - ol dv+ [ |le|? d,,.)

R4 R4 R

= 26} Vualay + [ lol*dv) < +oo

For the former 1nequality, we have

/ﬂ N To(=)I* du < 2t 5 | Vuo(z)|* du + 2 /E 212 dpe.

d

Using the fact that T3 = p, The first term above equals [p, ||Vuo(Ti(z))|*dr =
Jea IVui(z)|[?dv = [[Vuy||z2() < 400, where we use the fact that Vuy(T1(z)) = Vu,(x)
established in step 1. This accomplishes the proof for [, [|7o(z)||* dp < +oo.

Step 4. We now prove the conclusion. Firstly, recall that DT (z) = I; — ¢ f‘?zul(;r:) > g, this
leads to the fact that 7' (-) is strictly monotone. We now apply Lemma A.2 to show that 7}, is also
bijective, and strictly monotone.

Ty is bijective suggests that 77 (-) is the inverse mapping of T (-), this leads to 737 = p. As

Ty (-) = V(-) with () = | f — tsuy (+) being convex, combinging the fact established in step 3,
Lemma A.l proves that 77 i1s the optimal transport map from v to pu.

Furthermore, T} is strictly monotone yields that DT(z) = I + t;V?ug(z) > Oy, this indicates
that TH(-) = V ( ”'2”2 -t fun(-)) is the gradient of a convex function. Combining with the fact that

Tospe = v and finite L*(p) cost for T}, we deduce that T}, is the optimal transport map form y to
V.

Recall p € Z(RR%), and the implicit HJ loss Ly;(u) defined in (13). The following Theorem is a
natural corollary of Theorem A.3.

Theorem A.4 (Consistency result). Suppose the probability distributions |, v possess finite second-
order moments. Assume u € C},.(R? x [0,ts]), and define u(-) := u(-,ts) € C*(R%) with Vu, €

loc

L?(R%,R%; v). Denote hyperparameter X > 0. Assume that o is a strictly positive probability
measure on R. Suppose that u minimizes the loss functional, i.e.,

£H;(*u.) -+ /\\EMMD(H) — 3

Assume further that the map T"[u] : R — RY is bijective and its Jacobian D, T*[u](z) = O for
any x € R®. Then the maps T |u] and T}, |u] are the optimal transport maps from v to j and from
i to v, respectively.

Proof. Denote E(z,t) = (u(x — t;Vu(z,ts),0) — u(z,ty) + 4| Vu(z,tr)||?)?, we have E €
C(R* x [0,tf]), and E(z,t) > 0 on R* x [0,%¢]. Denote m as the Lebesgue measure on [0, ¢ ¢].

Then we have
R4 x [0,t ]

Tonelli’s Theorem Fremlin (2000) leads to

/ﬂgd ( /:f E(z,1) df) do(z) = 0.

Now, Lemma A.6 indicates that ¢(x) := f{:f E(z,t)dt is continuous on R%. And we have
Jza #(x) do(xz) = 0. Lemma A.7 suggests that ¢(z) = 0, which is f;f E(z,t)dt = 0,Vz € R<
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Using a similar argument as presented in the proof of Lemma A.7 shows F(z,t) = 0 for all
A Rd,t € [0,tf].

Now applying Theorem A.3 with uy = u(-,0) and u; = u(-,ts) proves the assertion.

Remark A.5 (On the Monotonicity Condition). The monotonicity condition D,TH[u] > Oy is
closely related to the c-concavity of w1, which provides a sufficient condition in OT theory (Villani
et al., 2008; Santambrogio, 2015). In practice, our proposed method successfully computes the OT
map for the benchmark problems even without explicitly enforcing this condition. Nonetheless, it
remains an interesting direction for future research to investigate efficient strategies for enforcing
monotonicity and to assess the potential benefits of doing so.

Lemma A.6. Suppose E C R is compact. Assume that f € C(R* x E), theny(z) := [, f(z,t)dt
is continuous with respect to variable x.

Proof. Fix arbitrary x € R9, pick an r > 0, we denote B. = {y | ||ly — z|| < r}. Since f is
continuous on the compact set B? x E, we know that |f| is bounded from above. We can then
apply the dominated convergence theorem to show that lim, ,, y(z) = lim,,; [, f(z,t)dt =

fE f(z,t)dt = y(z). Thus, y is continuous on R,

Recall that a Borel measure o on R is strictly positive if ¢(B) > 0 for any open set B C R<,

Lemma A.7. Suppose o € P(RY) is strictly positive, assume g : R? — [0, 4+00) is continuous
function. If [, g(x)do(z) = 0, one has g(x) = 0 for any z € R®.

Proof. Suppose not true, we have a specific 7o € R? such that g(zo) > 0. Since g is continuous, one
can find § > 0, such that |g(z) — g(zo)| < 39(z) for arbitrary z € B := {z | |z — zo|| < o}
1 z€ Biﬁ;

0 otherwise, one has g(-) > 9(20) y s () on

2 ABZ,

Consider the indicator function xgs (z) = {
z(

R?. This yields [z, 9(z)do(z) > [ou %52 xps (2)do(z) = bl

inequality 1s due to o 1s strictly positive and the ball Bﬁ , 1s an open set. This is a contradiction.

> (), where the last

A.3 PROOF OF THEOREM 5.4

Without loss of generality, we we prove the theorem with £ = 1. The proof can be generalized to
arbitrary time horizon with no difficulty. We first state and prove two auxiliary lemmas.

Lemma A.8. Let f(t) be a bounded and Lipschitz function on [0, 1]. Then

2/3
|l < CIFIZE
This C only depends on the bound and Lipschitz constant of f.

Proof. Let K = ||f||,; -, and L be the Lipschitz constant of f. We split into two cases.
Case 1. If K > L, then by the Lipschitz condition of f, we have

1 1
ff(t)zdtzf (K—Lt)gdt:Kg—LK-k%ngg
0 0

IKZ.

Case 2. If K < L, since f is L-Lipschitz, f(t) is non-zero for an interval of length at least K/L,

and
1 K/L K3
/ f(t)*dt > / (K — Lt)*dt = —.

In both cases, we can conclude that

1fll < CIFIE.

Next, we present a lemma that shows the stability of the MMD with respect to the mean and covari-
ance of Gaussian distributions. The MMD with kernel k(x,y) = — ||z — y|| is known as the energy
distance, which is extensively studied in Székely & Rizzo (2013); Rizzo & Székely (2016).

16



Lemma A.9 (Stability of MMD on Gaussian). Let p ~ N(b,,X,) and v ~ N(b,,X,) be two
Gaussian distributions in R?, with |b,|| , ||bu ||, |1Z.ll5 , |1Zv]|, < K. Then, there exists a constant
C that only depends on d and K s.t.

by — b, [* + |2, — Z,[l; < CMMD(g,v)>. (19)

Remark A.10. The boundedness assumption is necessary. As a counterexample, let . ~ N (0, o?)
and v ~ N(1,0°). Let 0 — o0, |b, — b,| = |0 — 1| = 1 remains unchanged, while MMD(p, v)
converges to 0 (see (20)).

Proof. Throughout the proof, we will use the notations ¢ and C' to denote positive constants that
only depends on d and K. These constants may change from line to line. We start by recalling an

important result. Let ¢,,(t), ¢, (t) : R — R be the characteristic functions of y, v

. 1 :
di(t) = exp (zb}t - 5thn.,.t) (j = p,v).

Then (Székely & Rizzo, 2013, Proposition 1) establishes that
d+1 t) — ¢, (t)|°
MMD (u,v)2 =T (%) w—%/ Pu(t) — 0o ()" 40 (20)
Rd

6] 4

Next, we split into two steps and give bounds for the mean and covariance separately.

Step 1. We give bounds for the mean. For any given t € RY the four complex numbers
exp (ib, t — 3tXt) (j, k = p,v) forms a isosceles trapezoid in the complex domain. In an isosce-
les trapezoid, the length of each diagonal i1s greater than or equal to the arithmetic mean of the
lengths of the two parallel sides. Therefore,

1 1
exp (ib:t - EtTEMt) — exp (ibjt - EtTEut)|

|¢‘p(t) - ‘i’u(t)l —

> % [exp (-%tTZHt) + exp (—%tTEyt)] |1 —exp (i(b, —b,) "t)]

> exp(~C [t]]%) [1 - cos((b, — b,)Tt) — isin((by, — b,)Tt)|.
Substitute this estimation into (20), we obtain

exp(—C [|t||° . 2
MMD(p, v)? > C/;;d (|t|dl|1 ") ‘1 —cos((b, —b,) ' t) —isin((b, — by)Tt)‘ dt
_ exp(=C [It]*) . 5 (1 T
= 4.';‘:/]1{d s sin i(b# —b,) 't ] dt.

Since ||b, — b, || < 2K is bounded, we can find r > 0 that only depends on K such that sin(z) >

%3: for all z € |0, % |b, — b, || 7]. Denote B, the ball in R¢ centered at the origin with radius r. we
have

—C It
MMD (g, v)? > ¢ / ExPﬁtHﬂ}l 1) g2 (%(bp - b,,,)Tt) dt
B,

[ em(=0) (1
e f, S (3 —bTe) a

> c/  _|(b, —b,)Tt|? dt.
B

1]
If we further restrict the 3D angle of t in the set B, = {t € B, : |(b, —b,)Tt| >
% b, —b,| ||t]},i.e., the angle between t and b, — b,, is close to 0 or 7. Then,

1
t||d+1 ‘(b# o b”)Tt|2 dt

e

MMD (u, v)? > c/
B

1 /' 1 9 9
> ¢ b, — b, |* dt = c|[b, — b, ||%.
<28 L d—1 7 v L v

4 JB, ||t]
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Step 2. We give bounds for the covariance. This time, we use the fact that the length of each
diagonal in a 1sosceles trapezoid is greater than or equal to the length of either of the non-parallel
(equal) sides. This gives

6u(t) — B0 (t)] = ; ;

1 1
exp ——tTEHt —exp | —=t'Z,t
2 2
= exp _Et Y.t ] |1—exp —Et (2, —2,)t

—%tT(E,, -2t

1 1
exp (z‘blt - tTEH,t) — exp (ibjt - tTZ,,,t)|

>

> exp(—C ||t]|%)

?

where we used |1 — e*| > Ll::g| in the last inequality. Next, we diagonalize the symmetric matrix
Y, —XpaQ(X, —X,)Q = A= diag(hj)f=l. Without loss of generality, we assume that

A1 = |2, — Z,|l,. We denote S®~1 C R¢ the unit sphere in R%. Substituting the estimation
above into (20), we get
MMD (g, v)*
2
exp(—=C |t][") /. + 2
> ¢ tT(2, — £.)t)° dt

1
> C/B (t7T (S, — ,)t)° dt

- c/ (s" (2, — B”)S)Q ds = c/ (STAS)2 ds.
Sd—1 gd—1

We further pick a subset SY! = {s € S9! : |s;> > 2} (i.e., points on the unit sphere with the
first coordinate > %). For all s € S%-1

d
1
[sTAs| =) Ajs3| > [\ilsf =) |As]s? > 3l
=

Therefore,

1
MMD(p, v)?* > cf (STAS)Z ds > §C/ Mds =c|X, - Eullﬁ :

— el

S§d—1 Sd—1

Finally, combining Step 1 and Step 2, we reach the conclusion that

”b,u - bu"2 -+ ”E,u - Eu”é < OMMD(FJ& ”)2-

Before proving Theorem 5.4, we clarify the result we need to show. The HJ equation 1s
1
dpu(x,t) + 5 IV, u(x,t)> = 0.

The optimal push forward map is 7*(x) = x + V,u(x, 0), which implies V u(x,0) = 7™ (x) — x.
The optimal trajectory for OT has constant velocity, given by

x: = X+ tVzu(x,0) = x — t(x — T7(x)).

Therefore, the optimal push forward map is

f(x,t) =(1—-t)x+tT*(x) = ((1 —t)I + At)x + (b, — Ab,)t.
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Taking derivative in £, we get the optimal velocity in Lagrange coordinate

0.f(x,1) = —x+T*(x) = - (f(x,) = %)

1 .
= 2 [£0e,t) = (L= ) + A) ™" (f(x,8) - (b, — Ab,)1)]
=(I+t(A-1))""((A-Df(x,t)+b, — Ab,).
Therefore, the optimal velocity field in Eulerian coordinate is

Vou(x,t) =v(x,t) = I +t(A—1))"" (A—I)x+b, — Ab,). (21)

The most important challenge for convergence analysis is the term ug(x — tV,ug(x,t),0) in the
HJ loss, which contains the composition of the u. In order to address this issue, we consider the
quadratic parametrization

ug(x,t) = — (%xTeg(t)x +01(t) ' x + 6, (t)) (22)

where 0 = [02(-),01(:),00(-)] : [0,2;] — REX* x R* x R is bounded and Lipschitz. According

sym
to (21), the optimal 63(¢) and 67 (¢) are uniquely determined, and the optimal 67(¢) is uniquely
determine up to an additive constant.

03(t) = (1 —t)I + At)~' (I — A)
03(t) = (1 - t)I + At)~' (Ab, — b)) ‘ (23)

05(t)

(
05(0) + 7 (b, — Ab,) T (1) + A1)~ (b, — Ab,)

Now we are ready to prove Theorem 5.4. We denote D = [—1, 1]¢. Throughout the proof, we will
set 0 = 27%1 p and the time domain is [0,%¢] = [0, 1], which coincide with our numerical imple-
mentation. The proof can be extended to general domain without essential difficulty. Throughout
the proof, when we say a function is bounded and Lipschitz continuous, we mean the bound and
Lipschitz constant only depends on d, A 4, and K. We will use C' to denote an absolute constant that
only depends on d, A4, and K. The value of C' may change from line to line.

Proof for theorem 5.4. We only need to show (16) when Ly; and Lypvp are sufficiently small. The
proof consists of four steps.

Step 1. We analyze the MMD loss in this step. Recall the MMD loss 1s

Lymmvp = /ﬂ k(x,y)d((Id + Vzug(-,0))zp — v)(x) d((Id + Viue(-,0))ep — v)(y).

Under with the parametrization (22), the MMD loss 1s between
(Id + Vau(-,0))#p = N ((I — 62(0))b, — 61(0), (I —62(0))Xu(I — 62(0))) =: N(b,, X))
and v = N(b,,X,). By Lemma A.9, we have
, 2 2
”bn - b”” T HEL - Z””z < CLmmp (24)

1
Multiplying 37 on both sides for the covariance, we get

By the %—Hﬁﬁ_der continuity of matrix square root in operator norm (Bhatia, 2013, Theorem X.1.1)
(-5

£ oLk

i 1y 2 1 1
(23(1 - 32(0))25) _niy, v
2

1
< ||[A — B||; for any symmetric positive definite matrix A, B), we have
2

[(2;%‘(1 - 92(0))2§)2]% - (2#22;;) <CLE . (25)

2
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Next, we diagonalize 05(t). Since 65 (t) € R4*¢ is symmetric, we can find unitary matrix Q(¢) and
diagonal matrix A(t) = diag({\:(t)}L,) s.t.

B2(t) = Q(t)A()Q(t) ',

and A\1(0) > ... > Ay(0). The column vectors of () are the orthonormal eigenvectors of 05(t).
Since 65(t) is bounded and Lipschitz continuous in ¢, its eigenvalues and eigenvectors are also

bounded and Lipschitz continuous in £ by Weyl’s inequality. Qj(t) is uniquely defined up to a sign
shift for each column. Then I — 65(0) = Q(0)(1 — A(0))Q(0) '.

Next, we define a notation of “absolute value” for symmetric matrices. Given a symmetric matrix,
we diagonalize it through unitary transform, take absolute value of the diagonal element, and then
apply the inverse unitary transform back. As a result, |I — A(t)| = diag({|1 — \:(#)|}_,) and

11 —602(0)| = Q(0) [T — A(t)| Q(0) ", then we have

b =

1

(sha-ao)zd) | =5k -0},

Here, we remark that while )(¢) is not uniquely defined, the “absolute value”
defined given 02 (0). Plugging this expression into (25), we get

I — 65(0)| is uniquely

i - 6:0)57 - (Z25.52) | < CLine.
2
Multiplying E;% on both sides, we get
I = 62(0)] — All; < CLyyp, (26)
which implies
17 = A(0)] - Q(0)AQ(0) " ||, < CLyiwp- (27)

Therefore, the off diagonal elements of (Q(0)AQ(0)');; (i # j) and diagonal elements
(Q0)AQ(0) " )i; satisfy

(Q(0)AQ(0) )35 » |(QO)AQ) )i — |1 — Mi(0)]] < C1Liip-

Here, we add a subscript 1 in the constant C'; in order to keep track of this constant. Later, whenever
we use (', it means this fixed constant that does not change from line to line.

We remark that there are 2% choices of 65(0) such that (I — 65(0))X,(I — 62(0)) = X, through
letting 1 — X;(0) = £A2 (i = 1,...,d), where A\ is the i-th eigenvalue of A. All these choices
gives a push forward map that transport p to v (if we set 6;(0) = (I — 62(0))b,, — b,). However,
only €5(0) = I — A gives the OT map. The MMD loss Lymp cannot distinguish these choices, so
the HJ loss Lyj is necessary.

Step 2. We analyze the implicit HJ loss in this step. Under the parametrization (22), the HJ loss is
Ly = /.01 /s; [%xT{?g(t)x +x " 01(t) + 0o(t) + % (B2(t)x + 01(2)) " (62(£)x + 61 (2))

— & (e HO2()x + 01(1))) T 62(0) (x + H(Ba(t)x + 61(£))

—02(0) " (x+ t(B(t)x+ 03(1))) — 6o 0)] A dwds

Reorganizing the terms, we have

Lyy = /UI/I; I:%XT (92(15) + tﬁg(t)g — (I + t02(t))02(0) (I + tﬁ'z(t))) X
+x ' (I+1t02(t)) (61(t) — t62(0)01(t) — 61(0))

+ (9[]@) A %Bl(t)THl(t) - gﬁl(t)Tﬂz(U)al (t) — t61(t) ' 1(0) — b4 (U)) ] o(x) dx dt.

= /Dl /ﬂ [%xTI‘g(t)x +x'T1(t) + F[}(t)] 2 o(x) dx dt.
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We observe that I'5(#) is symmetric. The integration in x for the loss can be computed directly. The
zero-th to third order integration in x can be easily obtained by symmetry (recall o(z) = 27 %1 p(z)

and D = [—1,1]%)
d o 2°0i;
(1,5, s, B2i®sin ) dx = | 27,0, 3 , 0
D

In order to compute the fourth order integration in x, we temporally denote I'5(%) by I" for notational
simplicity and compute the integration f D (x ' I'x)? dx. Expanding everything, the integration is

d

/(XTFX)ZdXZ Z Fijrkg[ .’.Et'ill'j.’l?kﬂ:gdx.
D

ij,k,1=1 D

All the non-zero terms in the form I';;1'x; f D TiTjTE] dx can be categorized into 4 cases.
1. i = j = k = [. The integration is I'?, fDa: dac= 2dI‘2
2. 1 =j # k =1. The integration is I';;T'y, [, z7z; dx = %I‘HF%.
3. i = k # j = [. The integration is I'?, fD -dx = %Ffj.

d
4. i =1 # j = k. The integrationis I'; ;" z?dx = 2 F Ty = 5T%..

1]+ jt fD 1y gt

Summing them together, we have

2
/;}(xTFx)de:Z’d 25 - Z( I“HF”+9F )

i#]

Therefore, after integration in x, the iIﬂp.lClt HJ loss becomes

- [ i smonr i (Graorsou s graon)

i#]

+ TR0 + 3 T O +To(o? | d

d

= [ |5 Lra(0 + 5 ST + 5 N1 + (GTrCa(e) +To()) | a

i=1 17 ]

1 2
> [ | Il + 3 I @1 + (G Trrae) +Toe)) | a

Therefore,

[ (a1 + a1 + o) at < O

Therefore, by Lemma A.8, we have

max [T (t) | p + max [Ty (8)]] + max [To(t)] < Caliy, (28)

t

Here, C> also does not change from line to line.

Step 3. In this step, we show that 62(0) must be close to 65(0) = I — A, provided that ||T'2(%)|| 5 is

sufficiently small. Since A has minimum eigenvalue A4 > 0, (Q(0)AQ(0) " )ii > Aq4 > Clﬁfmn,
where the last inequality is because Lyvp 18 sufficiently small. We recall that in Step 1, we showed
forany:=1,...,d

(Q(0)AQ(0) )i — 1 — Ms(0)]| < C1Linm
We want to show that,

(Q(0)AQ(0) )i — (1 — Mi(0))] < C1Lip (29)
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for all i. L.e., we want to show 1 — A;(0) > 0 and

7i(0) € [1- (Q(0)AQ(0) i — C1 Ly 1 — (REO)AQ(O) )it + Ci1 Ly |

for all 7. In order to show this, we assume to the contrary that A\;(0) > 1 (recall \;(0) > ... >
A4(0)) and

A1(0) € [1+(Q(0)4Q(0) i1 — Callingps 1+ (RO AQ(O) s + CiLipp | (30)

We will derive a contradiction. We denote U5 (t) := Q(t) ' 62(0)Q(%). Since unitary transform does
not change Frobenius norm,

Q(t) 'T2(t)Q(t) = A(t) + tA(t)* — (I +tA(2))(Q(t) ' 02(0)Q(t))(I + tA(t))
= A(t) + tA(t)* — (I +tA(t))u(t)(I + tA(t))

shares the same estimation as (28). Let {7;(t)}?_, be the diagonal element of uy(t) =

Q(t) " 62(0)Q(t). Since Q(t) is bounded and Lipschitz continuous, 2 (t) and 7;(t) are also bounded
and Lipschitz continuous. We will also use K to denote their bound and Lipschitz constant. Since
A1(0) > 1is an eigenvalue of 65(0) and hence also an eigenvalue of uy(t), we have

max7;(t) >1 Vte|0,1].

(

(1)

Next, we focus on the diagonal elements of Q(t) ' I'2(¢)Q(t). Since

Q1) "T2(t)Q(®)|| » < CQEHJ, (32)

its ¢-th diagonal element (recall (31))
Ai(t) + tAi(t)? — (L +tAi(2) 7 (2)

= (L +tAi(2)) [Ai(E) — (1 4+ tAi(2))7:(2)]

= (1 +tAi(2)) [(1 — t7i(2)) Ai(2) — 7:(2)]

also satisfies 1
(1 4+ tAi(2)) [(1 = tri(2)Ai(t) — 1i(2)]| < CaLy (33)

for all t € |0, 1], where recall that \;(¢) is the i-th dtagonal ﬂlement for A(t) = Q(t) ' 02(t)Q(2),
and 7;(t) is the i-th diagonal element for uo(t) = Q(t) ' 02(0)Q(1).

The rest of the proof for deriving a contradiction to (30) is technical, so we explain the main idea
first. In order that |(1 4+ t\;(t)) [(1 — t7:(£))A:i(f) — 7:(¢)]| is small for all ¢ € [0, 1], either of the
following must hold

1. 1+ tA\;(¢t) = 0, which implies \;(t) ~ —%

2. (1= tr(®)Ai(t) = 7i(t) ~ 0, which implies Xi() ~ - _”'S_)( 5= %1 _ ;Tz-(t) _ % (At

t = 0 the function is 7;(¢).)

When ¢t — 07, — blows up and we cannot have 1 + t;(t) ~ 0.

Since max 7;(t) > 1, we know from intermediate value theorem that there exists at least one index
L

tand t; € (0,1) s.t. 1 —¢;7;(¢;) = 0. This implies that the function ] Tit(:*)(t) blows up as t — t;.
As aresult, in order that |(1 + tA;(¢)) [(1 — t7:(¢))Ai(t) — 7:(¢)]| is small for all ¢ € [0, 1], there has

to be some “shift” between two functions: A;(%) is sometimes close to —% and sometimes close to

it 1 1 1 . .
Ti(t) = — — —. However, note that the difference between the two functions —%
1—tr(t) tl—tr(t) ¢
and 1 ! ! has a positive lower bound
t1l—ir(t)
1 1 1 1 1 1
|El |E|1 t t|2t a : i e
— t7;(¢t) — t7;(t) 7 (t) 7i(t) |A+I||, + C1L3
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Ai(t) 7ilt) | are larger than

Therefore, for some ¢ 1n the middle, both |)\i(t) + H and . ()

1 +— This gives a contradiction to (33).
2(||A+I||+C1 Lgup)

Next, we give a rigorous proof for this contradiction. Let
t* =inf{t € [0,1] : 1 — ¢t7;(t) = 0 for some 7} .
Note that the set above is non-empty because max 7;(t) > 1 for all t € |0, 1|. If we do not have the

[
assumption A; (0) > 1, then 7;(¢) < 1 may not be well-defined. By definition of ¢*, we can find an
index j such that 1 — ¢*7;(t*) = 0. Therefore, 7;(t*) > 1. Let tg = 53, then for ¢t € [0, o], we
have .

11+ tAi(t)]| > 1 -t K = 3 (35)

Lett; = t* — At, where At = 21‘:(1{%21{) then for all ¢ € [t;,t*], we have

(1 —t75(2))A; () — 75(t)] 2 [75(2)| — |1 — 75 ()| | A (2)]
2 |7;(7)| — K|t —t7| = [1 —t7;(¢)| K
>1— KAt — K (|1 4+ t*;(t*)| + |[t*7; (t*) — t7;(2)]) (36)

1
>1- KAt - K (0+2K[t—t*) 21~ AtK(2K +1) = 7.

If to > t1, we pick t € [t1,to] and then multiply (35) and (36), we reach a contradiction with (33).
If ty < t;, then we consider the behavior of

(1 +2X;(2)) [(1 = t7;(2))A;(2) — 7;(2)] -

1k
When t € |0, %], A;(t) is close to 7 Tjtg_) 0 because (35) and (33) implies
L

which gives

1 1
| 3 3
AJ (t) 'Tj (t) < 3CQEH], “:_: QCQ.EHJ-, - (37)
1 —t7;(t) 2(1 —t|7;(2)|) 4
When t € [t1,t*], A;(?) is close to —% because (36) and (33) implies
114+ tA;(t)| < 2C LG
This implies
1 1
1 2 2 2 J 1
\i(t) E| Z Cztﬁm < CEEH’ < 6KCoLE, (38)
1

where the last inequality is because t; > to = 7. Therefore, as explained before, there has to be a
shift between the two approximations (37) and (38) in the middle when t € [ty, ;] because A, () is
Lipschitz continuous. However, the difference between the two functions has a positive lower bound

(34)

t 1-—1i7;(0) t(1 — tr;(t)) |A+ I, Olf:% D‘
Therefore, there exists to € [to, 1] s.t.

1

Aj(t2) > 1 (39)
S It 2 (A 1), + Gl
and
1 1
}\j (tg) -+ 5 > . (40)

T 9 (||A +1||, + cmh)

Finally, we split into two cases.
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Case 1. If |1 — to7;(t2)] < then

EK’

and
(1 — t27;(22)) A (t2) — 75(t2)]
> 7j(t2) — [(1 —t27;(t2))| | A (t2)]
1 1 1
2l-3g "3kt 23
This implies
1+ 235 [~ b D) ()
1 1
2 5 |1+ t2(t2)] = \m —+% (t2)
11 1
s - 0(1):
33K 2 (114 +Ill, + CrLip )
which contradicts to (33).
Case 2. If Il — tQTj(tg)l o f{-’ then
(1 +t2A;(t2)) [(1 — t27;(22))Aj(t2) — 75(t2)]|
. 1 | B | | B Tj(tz)
- |t2| a + )‘J(tQ) |1 tQTj(trZ)J )‘J(tﬁ) f = thj(tg)
1 1 1 1

<l 1 - 0(1):
* 3K 3 (JA+ 11, + CrLip) ° 2 (A4 Tl + Crh)

which also contradicts to (33).
Combining Case 1 and Case 2, we conclude that the assumption A;(0) > 1 cannot hold. Therefore,
(29) hold. This further implies |I — A(0)| = I — A(0). Plugging back into (27) and (26), we get
|7 = A(0) - Q0)AQ(0) " ||, < CLyjw
and :
162(0) — (I — A)ll; < CLywp-
Therefore, we obtain

162(0) — (I — A)||p < CLinD. (41)

Step 4. We show that 05(t), 6 (t), and 6y(t) satisfies the error estimations (16).

Step 4.1. We estimate 05(t) first.

We first show that 1 — t7;(t) has a positive lower bound. Recall that 7;(%) is the diagonal element of
uz(t) = Q(t) " 62(0)Q(t). We first observe that any diagonal element for

Q(t)" (I —t(I—-A)Q(t) =Q() ((1 —t)I +tA)Q(t)

must be larger than or equal to min{1, A4 }. By (41), 1 — ¢7;(¢), as a diagonal element of

—tQ(t) '62(0)Q(t) = Q(t) ' [(1 — ) +tA+t(I — A—62(0))] Q(t)
must satisfies

1 1 1
1—-tr(t) 21—t 4+tha —tCLpp = min{l, A\ s} — CLinp 2 Emin{l,}\ﬂ}.

Therefore, 1 — t7;(¢) has a positive lower bound.

Next, we claim that, for any (fixed) 7, 1 + t\;(¢) has a positive lower bound. Similar to step 3, (33)
can be rewritten as

T4 (t)

< CLE,.
1—-tr(t)| - W

14t (t)] |1 — Em(t)| [As(t) —
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Therefore, the lower bound for 1 — t7;(t) implies

1+ ()] () = — | < ord 42)
‘ 1—tr(t)| =
for all ¢ € [0, 1] and 4. If we further restrict ourself to ¢ € |55, 1], we have
1 T (1) 1 1
Ai(t) — (—=) | it < o forte|—, 1], 43
()~ (| )~ | < CLhy for te [ @
implying that \;(¢) must be close to either —} or milt)
’ t 1 e t’}'}; (t) .
Next, we show the lower bound for 1 + t);(t). For t € [0, 57,

2
L+tn(t) 21— tK > 3.

Therefore, we must have V¢ € [0, 3—K]

7: (1) 1
Ai(t) — . < CLg: 44
For t € [3},1], similar to the argument in step 3, by (43), A;(¢) must be close to either —3 or
115—?( oL but cannot be close to both because the difference between the two functions has a positive
lower bound of O(1):
1 7: (1) 1 1 1 1
— = | — = >
t 1—tr(t) t1—tr(t)| — |1 —tr(t)| — max{l,|r;(?)|}
(45)
1 1
> = Cdiff,

I >
max{L, |1 — All, + CLipp}  20X{L I - All2}

where the second last inequality is because of (41). (43) and (45) imply that A\;(¢) cannot “shift”

1 1 1 1
between -7 and Ty 0 — — duringt = [ﬁ, 1]. Since we already have (44) at t = BLK, (43)

implies that A; () is close to +—- “p forallt € [3 7, 1] and hence

Therefore, for all t € |5, 1]

Cdiff
14+ thi(t)] > — = O(1).
1+ t(1)] > o = 0(1)

Combining the lower bound for £ € [0, 5 K] we finish proving the claim that 1+4¢\;(¢) has a positive
lower bound of (1) that is independent of i. This positive lower bound also implies that I + t605(t)

is invertible and has a positive lower bound (recall A;(¢) are eigenvalues of #>(t)). Therefore, by
definition of I's(#) and (28),

|(I — t62(0))85(t) — 62(0) = ||(Z + t62()) 'T2(8)| » < CL3:. (46)

Next, we give a positive lower bound for I — t62(0). Note that
I —-t0200)=(1—-¢t) I +tA+t(I — A—02(0)).
By (41), we know that the smallest eigenvalue of I — t6,(0) is larger than or equal to

/)
5 min {1, 4} = O(1),

which gives a lower bound for I — t65(0). Applying this bound to (46), we obtain

(1—t) 4+ tha — tCLEN >

62(t) — (I - t62(0)~262(0) | < CLy: (47)
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We further notice that by (41)

(I = (1 = 4))7* (T = A) = (I = 162(0)) " 62(0)|_

<|a-tr-a)T - Aa-0,0))|

[ =t = A) 7 (I - A—05(0) (I - t6,(0) 1 6:(0)||
<min{1,Aa}"! - CLinp 4+ min {1, 4} "1 CLEp - 2min {1, A4} - K
= Cﬁé{MD-

Therefore, for any ¢ € [0, 1],
02(t) — 05(t) || =

< [[6a(t) — (2 — t6,(0)) " 6:0) ||+ | (1 — 62(0)) 7 62(0) — (1 — (1 — 4)) " (1 - A)|

0s(t) — (I — (I - ) (I - A)||

1 1
< €@ (L3 + Ll )
(43)
Step 4.2. We verify that 6, (¢) has small error. We first give an error estimation for 6, (0). Recall the

true value 1s
6%(0) = Ab, — b, = (I — 83(0))b, — b,..

Therefore .
161(0) — 67(0)|]

< [161(0) — (I = 62(0))b,, — b,) | + |( — A — 62(0) b | (49)
= CI:EJMD * C’CE[MD = C’C]Emm

where we used (24) and (41) in the second inequality. Next, we give error estimate of #,(t) for
t € |0, 1]. Recall that

[1(t) = (I +t62(1)) (61(t) — t62(0)61(t) — 61(0))

satisfies the estimation (28). Since I + tf5(t) has a positive lower bound (shown in step 4.1), we
have

161(2) — 162(0)81() — 61 (0)|| = ||(1 +t62(£)) ' T1(2)|| < Cﬁé”. (50)
Therefore, for any ¢t € [0, 1],
01(t) — 01 ()|| =
= ||2()) - (1 - t5(0)) " 6 (0) || < CII(1 — 13(0)) 61 (2) - 63 (0)
< C([[(I —t02(0)) 6:1(¢) — 6:1(0)]| + [[£(62(0) — 65(0))61 ()| + [|61(0) — 87 (0)][)
SC( §J+£$MD+£EMD) 50( l%}Jrﬂrflmm)'

In the third inequality, we used (50), (41), and (49).

\el(t) — (1= t)I + At)"* (4b, — b))

D)

Step 4.3. Finally, we verify that 6, (¢) has small error. Recall that 6;(¢) is uniquely defined up to an
additive constant and

03(t) — 03(0) = - (b, — Ab,)T (1 - )] + A1) (b, — Aby)
= 207(0)" (I — 63(0)) ™" 67 (0) = ;6;(t) 65 (0).
Also recall that
To(t) = 6o(t) — 6o(0) + %Gl(t)Tﬂl (£) — 291 (t) T02(0)01(t) — t6:1(t) " 61(0)

— Bo(t) — 00(0) + éﬂl(t)T (T — t05(0))01(£) — 6,(0)] — %al(tfal(o).
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Therefore,

[(60(t) — 60(0)) — (65(t) — 65(0))]
To(t) - %91 (t)" [(I — t62(0))81(t) — 61(0)] + gel(t)wl (0) %9; (t)T91(0)|

(52)
2

/.1 1
< C(Lh+ Lim)

< C L+ SKLh + £ (100~ 60100 +1650) 1,0) — )

where (28) and (50) are used in the first inequality. (51) and (49) are used in the second inequality.
Finally, combining (48), (51), and (52), we conclude

max (162(6) — 03l + 161(2) — 6 (1) + 160(8) — 05 (B)) < C (L + L) -

te(0,1]

which implies (16).

Finally we make two remarks to this stability analysis. First, we omit the discretization error and
generalization error in this analysis in order to obtain a clear environment for studying the loss
function. Second, while we prove the stability result in Gaussian setting, we believe the stability

result hold for general distributions, as long as they belongs to some class with sufficient regularity
condition.

B IMPLEMENTATION DETAILS

Empirical Loss via Monte Carlo Approximation. In practice, the training loss function is ap-
proximated via Monte Carlo estimation. For Lyj (13), we set p as the uniform distribution on a com-

pact computation domain D C 2. We uniformly sample a batch of collocation points { (x'*),¢;)},
from the space-time computational domain D x |0,%¢| to obtain the empirical loss

N
1 j i i j D) (o (i i :
& =+ O (u) +tih (Vo ) = tivul TR (Vug?) - uf? (x@ - 9k (V4?) ,0))
where ug) = u(x'9,t;). Similarly, the MMD term (12) is estimated empirically through samples
{(x®, y()}N  from the initial and target distributions

N
1 ~(i) =(j i) o(j ~(i) (]
EMMD = N2 Z (k(x( ):Km) + k(y' )Jm) - Zk(x{ )13’{3})) :
ij=1
where X() = x() 4 ¢, Vuy(x(¥),0). To better learn bidirectional OT, we employ the MMD loss in
both forward and backward directions. The total loss 1s

min Eny (ug) + AMmmp (T}, [Hﬂ])ﬁ i, v) + Ammp (1, (T [ug])y v)- (53)

B.1 IMPLEMENTATION DETAILS FOR 2D EXPERIMENTS

Training. For the experiments for 2D toy distributions 1n Sections 6.1.1 and 6.2.1, we use a sim-
ple 5-layer MLP with hidden dimension 64 and Softplus activation (with 3 = 100). The model is
trained using the Adam optimizer with a learning rate of 10~2. We sampled 50,000 points from
each distribution to create the corresponding sample datasets. At each training epoch, we uniformly
sample 1,000 collocation points from the computational domain D = [—1, 1] to compute the im-
plicit solution formula loss (13). For the MMD loss, we randomly select 750 samples from the given
dataset at each epoch.

Baselines. For the NOT baseline, we follow the official implementation provided in the public
repository! without any modification. The HJ-PINN ablation model was trained under the exact
same experimental settings as our proposed NCF across all experiments. For GNOT 1n the class-
conditional setting, we use the official code released by the authors® without modification.

lhttps://github.cmm/iamalekarmtin/NeuralOptimalTranspmrt
’https://github.com/machinestein/GNOT
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B.2 IMPLEMENTATION DETAILS FOR GAUSSIAN EXPERIMENTS

Training. For the high-dimensional Gaussian experiments in Section 6.1.2, we employ the Den-
seICNN architecture, which is a fully connected neural network with additional input-quadratic skip
connections, to ensure a fair comparison with the baseline models provided in (Korotin et al., 2021a).
Since our method does not require input convexity, we omit the commonly imposed constraints that
enforce positivity of certain neural network weights, which are typically used to guarantee convex-
ity. Following Korotin et al. (2021a), we adopt the network architecture DenseICNN|1; max(2d,64),
max(2d,64), max(d,32)] for a d-dimensional problem. The model is optimized using Adam with a
fixed learning rate of 10~4, regardless of the input dimension. To construct dataset, we randomly
sample 10° points from each of the source and target distributions. We set D as the bounding box
(1.e., axis-aligned minimum and maximum values) of these samples and define it as the compu-
tational domain for solving the HJ equation. At each training epoch, we uniformly sample 1,000
collocation points from D to compute the implicit solution formula loss (13). For the MMD loss,
we randomly select 2,000 points from the given source and target datasets at every epoch.

Baselines. The baselines LS, WGAN-QC, and MM-v1 are all used via the official implementations
from the public repository of Korotin et al. (2021a)°. The implementations of NOT and HJ-PINNs
follow the same settings described in Appendix B.1.

Evaluation Metric.

* Unexplained Variance Percentage (UVP): Given the predicted transport map T from L

to v, UVP is defined by £2 — UVP (T) = 100‘ 7 — T /Var(v) (%). AUV
L2(p

value approaching 0% indicates that T" provides a close approximation to the OT map 717,

whereas values substantially exceeding 100% imply that the estimated map fails to capture

the underlying structure of the OT. We use 10° random samples drawn from p to compute
UVP.

* Memory and Time Metrics: Memory consumption is reported as the peak memory usage
during training. Training time 1s measured as the average runtime per epoch over 100
epochs. Inference time refers to the time required to transport 10° test samples using the
learned map. Additionally, we measure the memory required to store the trained networks
for the bidirectional OT maps. For our method, this corresponds to the storage size of a
single spatio-temporal solution function for the HJ equation. For dual-based baselines, this
reflects the memory needed to store both the primal and dual potential functions. For the
NOT baseline, which learns the forward and backward OT maps separately, we report the
total memory required to store both learned transport maps.

B.3 IMPLEMENTATION DETAILS FOR COLOR TRANSFER

Training. The color transfer experiments in Section 6.1.3 are trained using exactly the same ex-

perimental setup as in the high-dimensional Gaussian case described in Appendix B.2, to ensure a
fair comparison with the baseline models.

Baselines. For the classical methods, we implemented Reinhard color transfer using OpenCV’s
Bradski & Kaehler (2008) color space conversion and channel-wise mean-std matching. Histogram
matching was implemented by computing per-channel histograms and CDFs, then applying the
resulting pixel value mapping directly. Since these methods only support one-way transfer, we con-
ducted forward and backward transfers separately. Both methods serve as standard, straightforward

baselines.

Evaluation Metrics.

* Earth-Mover Distance (EMD): For both the target and transported 1images, we compute
normalized color histograms separately for each BGR channel. The EMD quantifies the
minimal cost required to transform one histogram into another, offering a perceptually
meaningful measure of distributional difference. We compute the EMD independently for
each channel and report the average across all three. Lower EMD values indicate greater
similarity.

3https://github,cmm/iamalexkﬂrﬂtin/Wasserstein2Benchmark
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* Histogram Intersection (HI): HI measures the overlap between the normalized color his-
tograms of the target and transported images. For each BGR channel, we compute the
intersection as the sum of the minimum values across corresponding bins. The final score
1s obtained by averaging over all three channels. Higher values (closer to 1) indicate greater
similarity.

B.4 IMPLEMENTATION DETAILS FOR SECTION 6.2.2

This series of experiments focuses on the MNIST dataset (LeCun, 1998), which comprises 10 classes
of 28 x 28 grayscale images of handwritten digits ranging from O to 9; And the Fashion MNIST
dataset consisting of 10 classes of 28 x 28 grayscale images of clothing items, labeled from 0O to 9.

For both MNIST & Fashion MNIST datasets, the value of each pixel of the grayscale images takes
integer value from 1 to 255. We always normalized the pixel values of each data point to [0, 1| by
dividing by 255 before calculation.

VAE Pretraining. In our study, we employ pretrained 3-VAE models (Kingma et al., 2013; Hig-
gins et al., 2017), which offer satisfactory generative quality and faithful manifold representations
for image encoding. Advanced auto-encoder architectures (Berthelot et al., 2018; Feng & Strohmer,
2024) that better preserve the interpolation quality of decoded images will be considered in future
work. Although the ambient dimension of the data 1s 784, prior work has shown that the dataset
exhibits a moderately low intrinsic dimension (Pope et al., 2021). Thus, in our implementation, we
set the latent dimension to d; = 10 for in-domain transport tasks on MNIST data set, and to d; = 35
for cross-domain transport between Fashion MNIST and MNIST data sets.

To train the VAE, we consider the encoder E4(-) : R — R% and encoding variance Sy (-) : R¢ —

R%, which share the same parameter ¢, together with the decoder D, (-) : R* — R¢, with ¢,w
being the tunable parameters. For arbitrary x; from the dataset and the latent variable z € R%,
the ELBO-type loss Lg (¢, w; Xi) := Ezng, (2/x,) 108 Pw (Xi|Z) — BDKL(gg (+[Xi)||P2(+)) is considered,
where we set the conditional probability p,,(-|z) = N(D,(z),021,;), the prior p,(-) = N(0,1,),
and the posterior ¢4 (-|x;) = N (E4(x;), £4(x;)). Here o2 is predetermined variance, and ¥4 (x;) =

exp(diag(Ss(x;i))). We optimize the following to obtain Ey, D,,:

M M
1 1 1
max —; La(,w;Xi)=— m(ﬁ_l S7Ee-n a8~ Du(Bo(xi) + V/Se(x:)06)|?
+B(=S4(x:) "1+ || By (x)[|* + EXP(SqEE-(Xz‘))Tl)) -
Here we denote 1 = (1,...,1) € R%. In our experiment, we pick 02 = ﬁ= and set 8 = 0.1 to

ensure reconstruction fidelity over regularization.

We train the VAE pairs (E;(-), D(-)) and (E7(-), D2 (-)) on MNIST dataset {x!"} and Fashion

MNIST dataset {xz(-?}} respectively. We set batch size as 32, and apply the Adam algorithm (Kinga
et al., 2014) with learning rate 10~ for 150 epochs. In practice, the trained VAE reproduces MNIST
images with an accuracy 98.2%, and reproduces Fashion MNIST images with an accuracy 87.0%.

Encoding & Normalization. Denote ygkj = Eg (xgk)), k = 1,2, we normalize the latent samples
(Y} <icn by ¥ = (®)-1(y"® —§®) for 1 < i < N,k = 1,2. Here we denote (%) =
% Zfil x,gk) as the mean of the dataset, and o) = diag(E“‘:)) as the entrywise variance, where
dia,g(E(*’)) denotes a diagonal matrix with its diagonal entries taken from the empirical covariance

matrix $(*) = L Zil(xgk) — x®)(x{*) — gN)T.

Loss function & Training. We denote p, v as the distribution of the normalized latent samples
?Ek), where k = 1 or 2. To compute the OT map between p, v, we set ty = 1, and introduce neural

network ug : R% x [0,t;] — R. In practice, we incorporate the loss functional for backward OT
into the original loss (14), that is, we consider

mﬁin {ﬁm(u.g) -+ ‘Cf-ﬁ (’Uﬂ) -+ A(Eg]ass((T; [UH])ﬂ My L") - gclass (.“".r (TL{'L [uﬂ])ﬂ U))} )
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where we denote Em(ug) = Lyy(ug) as defined in (13), and define the corresponding backward
implicit loss as

Li= (ug) = //m[m ](uﬂ — th (Vug)

Since the latent samples are normalized as described above, we set o = N (0, I;, ) and independently
draw z; ~ p and ¢; uniformly from |0, ¢ s| to form the collocation points { (x;, t;) } for approximating
Lz and L. In implementation, we set A = 500 in order to balance the scales of the implicit HJ
loss and the MMD loss. We denote Nyj, Nmmp as the batch size for evaluating the implicit loss
and MMD between distributions of certain classes. In our experiments, we choose Ny; = 4000 and
Nymp = 400. We apply the Adam method with learning rate 10~* for optimizing 6. The algorithm
is conducted for 1000000 1terations.

tVug, Vh (Vug) — ug (x

tVh (Vug) . 17)) " dol)dt.

Neural Net Architectures. The architectures for the 5—VAE encoder and decoder are summa-
rized in Table 5 and Table 6. Regarding the OT map, we parameterize uy : R“T! — R using a

ResNet architecture He et al. (2016) with depth L and width (hidden dimension) d = 128. Specifi-
cally, we define

uﬂ(mﬂ't) = fL O fL—l piese B fZ o fl(j:'.rt):
where each layer f;. is given by

Ary + b, k=1, A€ RE}{(dI+1), b € RE,

frly) = y+kAro(y) + by, 2<k<L-1, A,ecR¥> p cRe

Ay + by, k=L, A, cR™™ p, R

We use the hyperbolic tangent activation o(-) = tanh(-) and set the residual scaling parameter
k = 1. We set L = 5 for in-domain transports on MNIST, and use L = 6 for cross-domain trasport
task between Fashion MNIST and MNIST.

Table 5: Encoder architecture for 3—VAE for image size (H, W, C') = (28, 28, 1), latent dimension
d; = 10.

Layer Parameters Output Shape
Input (x) — (H,W)
Conv2D 128 filters, 5 x 5, stride 1, ReLU (H, W, 128)
Conv2D 128 filters, 3 x 3, stride 1, ReLU (H, W, 128)
Conv2D 64 filters, 3 x 3, stride 2, ReLLU (H/2,W/2,64)
Conv2D 64 filters, 3 x 3, stride 1, ReLU (H/2,W/2,64)
Conv2D 64 filters, 3 x 3, stride 1, ReLU (H/2,W/2,64)
Conv2D 64 filters, 3 x 3, stride 1, ReLU (H/2,W/2,64)
Conv2D 64 filters, 3 x 3, stride 1, ReLU (H/2,W/2,64)
Flatten - (H/2-W/2-64)
Dense (16 - H - W, 64), ReLU (16 - H - W)
Dense (mean E;(x)) (64, d;) (di)
Dense (log variance Sy(x)) (64, d;) (dp)
Output (reparam.) y = Eu(x) + exp(%diag(%,(x))) o) (d))

Evaluation Metrics. All methods are evaluated on the festing portions of the MNIST datasets.

» Classification Accuracy: We evaluate the class-wise accuracy of the generated data. Fol-
lowing (Asadulaev et al., 2024), we train ResNet-18 classifiers achieving 98.85% accuracy
on the MNIST test set.

* FID score: The FID score is evaluated on the entire test set, which consists of approxi-
mately 1,000 samples per class.

C FURTHER RESULTS

C.1 ADDITIONAL RESULTS FOR 2D TOoy EXAMPLES

“Results on 2D distributions with multiple modes are presented in Figure 5. As in Section 6.1.1,
the proposed NCF successfully learns bidirectional OT even in multi-modal settings with a single
network. Compared to baselines, it not only transports the distributions more accurately but also
produces transport maps with less overlap, indicating that it learns more optimal transport paths.
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Table 6: Decoder architecture for 5—VAE for image size (H, W, C) = (28, 28, 1), latent dimension
d; = 10.

Layer Parameters Output Shape
Input (y) - (di)

Dense (d;,16 - H - W), ReLLU (16 - H - W)
Reshape — (H/2,W/2,64)

Conv2DTranspose 64 filters, 3 x 3, stride 1, ReLU (H/2,W/2,64)
Conv2DTranspose 64 filters, 3 x 3, stride 1, ReLU (H/2,W/2,64)
Conv2DTranspose 64 filters, 3 x 3, stride 1, ReLU (H/2,W/2,64)
Conv2DTranspose 64 filters, 3 x 3. stride 1, ReLU (H/2,W/2,64)

Conv2DTranspose 64 filters, 3 x 3, stride 2, ReLU (H,W,64)
Conv2DTranspose 128 filters, 3 x 3, stride 1, ReLU (H,W,128)
Conv2DTranspose 128 filters, 5 x 5, stride 1, ReLLU (H, W, 128)
Conv2DTranspose 1 filter, 5 x 5, stride 1, ReLU (H,W,1)
Output x = D,(y) (H,W)
o1 T i - o
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Figure 5: Checkerboard (11) = Eight Gaussians (v): The top row shows transport in the direction
v — u, and the bottom row shows i — v, with  and v at the leftmost column.

Ablation Study on the Regularization Parameter We further present an ablation study to inves-
tigate the effect of the regularization parameters A s and A, in the proposed loss function (14). These
parameters control the balance between the implicit HJ loss and the MMD loss. Specifically, the
implicit HJ loss promotes the optimality of the transport map by encouraging alignment with the
HJ equation, while the MMD loss measures how well the transported distribution matches the target
distribution. Since all experiments in the paper are conducted under the setting Ay = Ay, we vary
A ¢ to examine how this trade-off influences the learned transport map. We conduct experiments on
the two-dimensional examples introduced in Section 6.1.1 and above. The results are summarized

in Figure 6. The case Ay = oo corresponds to training without the implicit HJ loss, using only the
MMD loss.

As shown in the figure, when A ¢ is small (1.e., the MMD loss dominates), the transported distribution
aligns well with the target, but the resulting transport map becomes highly entangled. This indicates
that the model learns a map far from the optimal one, due to the lack of guidance from the HJ
constraint. In contrast, increasing A enforces stronger adherence to the HJ equation, resulting in a
smoother, more structured transport map that closely resembles the optimal solution. However, when
A s becomes too small, the influence of the MMD term diminishes, leading to inaccurate matching
of the distributions. These results highlight the complementary roles of the implicit HJ loss and
the MMD loss, as also supported by Theorem 5.4, and underscore the importance of appropriately
tuning A¢. Additionally, the relatively small difference in performance between Ay = 0.1 and
A = 0.05 suggests that the model is not overly sensitive to the choice of this parameter.

C.2 ADDITIONAL QUALITATIVE RESULTS FOR COLOR TRANSFER

Figures 7, 8, and 9 present qualitative results for bidirectional color transfer across three distinct
categories of image pairs. In each figure, the leftmost columns display the source and target images,
while the remaining columns show the results of various methods applied in both the forward (source
— target) and backward (target — source) directions.

31



@) A = 00 (b) As = 1 ©) As = 0.1 d) A\s = 0.05 (€) As = 0.01

Figure 6: Effect of the regularization parameter A in the loss function. Each figure visualizes the
transport from the source distribution x (blue) to the target distribution v (red) for varying values
of A s. Results are shown for two examples introduced in Section 6.1.1 and Appendix C.1.

C.3 ADDITIONAL RESULTS FOR CLASS-CONDITIONAL OT FOR MNIST & FASHION
MNIST DATASETS

In this section, we provide additional results from all the tasks conducted in our experiments. All
methods are evaluated on the festing portions of the MNIST and Fashion MNIST datasets. Following
(Asadulaev et al., 2024), we train ResNet-18 classifiers achieving 98.85% accuracy for evaluation.
A generated sample 1s deemed accurate if the trained classifier assigns it to the corresponding target
class. Table 7 reports the accuracy and Fréchet Inception Distance (FID) of the generated images
across the first two experimental tasks.

Table 7: Performance metrics of NCF across all tasks. For the FID row, each bracketed value repre-
sents the distance between the OT-generated distribution (D, o T}, [ug|)su (resp. (Dy, o T} [ug])sv)
and the decoded distribution D, 3v (resp. D, sp), where D,, denotes the appropriate VAE decoder
corresponding to p or v.

Metric Task 1 Task 2
Forward Backward Forward Backward
Accuracy(%) 1 05.58 95.08 02.51 02.73
FID | 19.93 (2.65) 18.91(2.45) | 18.98 (2.25) 19.01 (2.26)

Task 1 (In-class transfer: Map each MNIST class 7 to the class : + 5, for 2 = 0,...,4.) We
present in Figure 10 the uncurated MNIST images generated using the forward (resp. backward)

mapping, D, o T/ [ug)§'"), ' ~ u (resp. D o T¢[ug) 3, ¥ ~v).

Task 2 (In-class shift: Map each MNIST class i to the class (¢ + 1) mod 10, for i = 0,...,9.)
Similar to Task 1, Figure 11 shows the uncurated MNIST images generated by the computed map-
pings. In this experiment, the forward (resp. backward) maps are also trained without incorporating
the implicit HJ loss Lyy, and are therefore not guaranteed to be optimal. By contrast, the mappings
produced by our proposed method—explicitly designed to account for optimality—exhibit superior
preservation of MNIST digit styles (e.g., thickness, orientation, etc.), as further 1llustrated in Figure

12,

Task 3 (Inter-class transport: Map each class in Fashion MNIST to its corresponding class in
MNIST.) The uncurated MNIST and Fashion MNIST images generated by the computed maps are
shown 1n Figure 13. While our method effectively recovers the overall profiles of Fashion MNIST
images, the encoder—decoder scheme faces difficulties in capturing fine texture details. As a future
research direction, we aim to enhance our approach by incorporating U-net architectures and directly
performing OT in the pixel space. Furthermore, in Figure 14, we present the KDE plots of the
pushforward distributions T [ug|spu (resp. T}'[ug|yv) together with their targets v (resp. ), which
demonstrate the satisfactory generative quality of the computed OT map T, [uy|; Figure 15 presents
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Figure 7: Winter <> Summer: Qualitative results for bidirectional color transfer between seasonal
image pairs.
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Figure 8: Gogh painting <> Photograph: Qualitative results for bidirectional color transfer between
Gogh paintings and real-world photographs.
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Figure 9: Monet painting <+ Photograph: Qualitative results for b1djrectmnal cnlm‘ transfer between
Monet paintings and real-world photographs.
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(a) Images generated @ {y.  (b) Images generated @ 0.

Figure 10: Task 1: Uncurated images generated using the computed forward (Left) & backward
(Right) OT maps.
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Figure 11: Task 2: Uncurated images generated using the computed forward (Left) & backward
(Right) OT maps.
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Figure 12: The style of each MNIST digit 1s better preserved by the computed optimal transport
map. The triangular table 1s produced using linear interpolation in VAE latent space.

the classification accuracy (%) of the generated images on the test dataset over training iterations. We
display only the first 70000 iterations, since the accuracy no longer improves as training progresses.
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Figure 13: Task 3: Uncurated images generated using the computed forward (Left) & backward

(Right) OT maps.

Flgure 14 KDE contours ef the MNIST letent samples generated using the eemputed OT map
(blue) and the target samples (orange), conditioned on each MNIST class (0-9, arranged left to right
and top to bottom). The samples are projected onto the first two PCA dimensions. The heat maps

illustrate the discrepancies between the two distributions.
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Figure 15: Accuracy(%) of trained forward class-conditional transport map versus training itera-
tions. Results are displayed for the first 70000 iterations, beyond which the accuracy exhibits no

significant improvement.
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