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Abstract9

Level-set methods provide a powerful computational framework for simulating free boundary prob-
lems in materials science. This paper presents a unified perspective on their application to two
distinct phenomena: multicomponent alloy solidification and epitaxial island growth. Although
these problems differ significantly in physical mechanisms and characteristic length scales, they
can both be effectively addressed within the level-set framework, highlighting the versatility of the
method across diverse applications. We outline the mathematical formulations and highlight com-
putational advances and common features across applications. This overview highlights the role of
level-set methods as a foundational tool in predictive materials modeling.
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1. Introduction12

The level-set method of Osher and Sethian [1] has emerged as a versatile computational frame-13

work for simulating interface dynamics. Its implicit representation of interfaces allows it to naturally14

handle topological changes and to impose sharp boundary conditions at the exact location of the in-15

terface with controlled accuracy. The level-set method has had tremendous success in diverse fields.16

In fluid dynamics, it has been widely employed to model a broad spectrum of multiphase flow phe-17

nomena. Representative applications include two-phase and free-surface flows [2, 3, 4, 5, 6, 7],18

Hele–Shaw flows and incompressible flows in complex geometries [8, 9], compressible detonation19

dynamics [10], droplet–surface interactions, and coupled problems involving fluid–solid or incom-20

pressible–compressible interfaces [11, 12, 13]. The level-set method has also made a significant21

impact in image processing. For instance, level-set–based feature-preserving techniques have been22

developed to smooth noisy surfaces, in a manner closely related to diffusion-based image processing23

methods [14]. Comprehensive overviews of these approaches can be found in the book and review24

articles on the subject [15, 16]. In computer graphics, the level-set method has been widely adopted25

to simulate complex fluid–structure interactions, including the two-way coupling between fluids and26

thin deformable solids such as cloth or rigid shells [17]. It has also been employed to generate highly27

realistic animations of water dynamics [18, 19, 20, 21], as well as to capture the visual complexity28

of phenomena such as flames [22] and bubbles [23]. The level-set method has also found extensive29

application in problems of optimization and shape reconstruction. Notable examples include its30

use in inverse problem techniques for the design of photonic crystals [24], the reconstruction of31

surfaces from point clouds [25], and the optimization of geometries under constraints [26]. It has32

further been employed to determine optimal shapes for structural design [27, 28] and to reconstruct33

solvent-excluded surfaces of large biomolecules [29, 30]. Beyond these applications, the level-set34

method has been applied to problems in self-assembly of diblock copolymers, including the solution35

of inverse problems that identify confinement geometries guiding block copolymer assembly toward36
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prescribed target patterns in lithography [31, 32, 33, 34, 35, 36]. A broader overview of level-set37

approaches for inverse problems and optimal design can be found in [37].38

Hybrid strategies have also been investigated, where the level-set method is coupled with other39

interface-tracking techniques, such as volume-of-fluid (VOF) or particle-based methods, to enhance40

accuracy and mass conservation [38, 39, 40]. For comprehensive perspectives, the reader is referred41

to several key reviews and monographs on the subject [41, 42, 43, 44]. In the field of materials42

science, these developments have enabled the formulation of sophisticated models for processes43

governed by evolving free boundaries, thereby extending the versatility of the level-set method to44

a wide range of technologically relevant phenomena.45

This paper presents a unified perspective on the application of level-set methods to two distinct,46

yet thematically linked, problems in materials science:47

1. The modeling of solidification in multicomponent alloys in the context of additive manufac-48

turing (AM) using a sharp-interface formulation.49

2. The modeling of epitaxial growth using an island dynamics model (IDM).50

These applications differ in scale and governing physics, yet benefit from the level-set method’s51

strengths in capturing evolving interfaces. Level-set methods have been applied to many other ap-52

plications in materials and we refer the interested reader to [45] and the references therein. Taken53

together, these applications demonstrate the breadth and robustness of level-set methods in model-54

ing free boundary problems that differ significantly in physical mechanisms and characteristic length55

scales. This review brings together these perspectives and highlights the method’s contribution to56

advancing predictive simulation capabilities in materials science.57

1.1. Alloy Solidification58

Additive manufacturing holds immense promise for the development of advanced engineering59

components, particularly through its unique ability to fabricate complex three-dimensional geome-60

tries that would be difficult or impossible to achieve using conventional manufacturing techniques.61

Beyond geometric flexibility, AM also enables site-specific control over material properties by tun-62

ing processing parameters and thermal histories at a localized scale [46, 47, 48, 49, 50, 51]. This63

capability opens new pathways for the design and optimization of performance-critical parts in64

aerospace, biomedical, and energy systems. Recent studies have demonstrated the potential of65

AM to tailor microstructure and phase distribution during fabrication, thereby enhancing strength,66

ductility, and fatigue resistance in targeted regions of a component [46, 47, 48, 49, 50, 51].67

Realizing the full potential of AM requires a fundamental understanding of the complex, multi-68

physics phenomena (heat transfer, mass diffusion, and fluid flow) that occur during solidification69

and how they influence the resulting microstructures and properties. Key features such as solute70

segregation, grain morphology, crystallographic orientation distribution, and defect formation (e.g.,71

pores and cracks) are governed by the conditions at the solid-liquid interface during the melt pool72

evolution. Among the most critical solidification parameters are the local interface velocity (R) and73

the thermal gradient (G), which can span several orders of magnitude within a single melt pool and74

vary spatially and temporally during processing.75

Designing AM-processed materials with targeted microstructures and properties therefore de-76

mands predictive models that can map solidification regimes (planar, cellular, columnar, and77

equiaxed growth) onto the (G, R) space for specific alloy systems. Although several models exist78

to predict structural transitions, such as the columnar-to-equiaxed transition (CET) [52, 53], they79

often rely on empirical parameters that are difficult to measure or estimate experimentally and80

were originally developed under unidirectional growth conditions, which are not representative of81

AM melt pool environments. As a result, these models frequently lack predictive capability under82

the complex thermal conditions imposed by scanning strategies and beam parameters. There re-83

mains a significant knowledge gap linking thermal transport, fluid flow, solute redistribution, and84

microstructure evolution, especially in multicomponent alloy systems.85

In response to this need, a wide range of numerical strategies have been developed to simulate86

solidification. These approaches generally fall into three categories: cellular automata (CA) meth-87

ods [54], phase-field or other diffuse-interface methods [55, 56, 57, 58], and sharp-interface methods88
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[59, 60, 61, 62, 63, 64, 65]. CA methods are computationally efficient but are rule-based rather89

than physics-based, limiting their fidelity. Phase-field methods offer a rigorous continuum approach90

in which the solid-liquid interface is described by a diffuse transition zone. However, while phase-91

field theory is asymptotically convergent to sharp-interface descriptions in the limit of vanishing92

interface thickness, practical implementations require artificially broadened interfaces, which may93

reduce accuracy for highly localized phenomena. To the best of our knowledge, there is currently no94

phase-field approach that can consider more than ternary systems. Considering a diffuse interface95

has also been considered within the level-set method [58], using the level-set method to track the96

interface but solving transport equations using smeared boundary conditions. This approach has97

the advantage of being simple but only approximately satisfies boundary conditions such as the98

Gibbs-Thomson relation.99

Sharp-interface methods, on the other hand, explicitly model the solid-liquid boundary as a100

discontinuity. While they require sophisticated algorithms for interface tracking and for enforcing101

boundary conditions, they offer the advantage of faithfully representing the true macroscale physical102

description. In the case of a pure substance, where only the temperature field is solved, the early103

application of the level-set method was introduced by [66], who employed a boundary integral104

formulation to compute the temperature. This was later followed by the work of [59], who solved105

the temperature equation directly on a grid. In [59], the boundary condition at the interface106

was implemented using the method of Mayo [67], resulting in a second-order accurate scheme but107

yielding a non-symmetric linear system. Subsequently, [68] proposed a symmetric discretization of108

the problem, which was later extended to a fourth-order accurate scheme (albeit again producing109

a non-symmetric system) in [69]. This line of work was further extended in [62] to adaptive grids,110

achieving second-order accuracy for both the temperature field and its gradient in the context of111

the diffusion equation, and resulting in a fully second-order accurate method for pure substances.112

The level-set methodology was later extended to binary systems in [65, 64].113

Truly sharp-interface simulations have been largely limited to binary alloys, leaving a gap in114

modeling capabilities for more realistic multicomponent systems. This gap has recently been ad-115

dressed in [70], where a sharp-interface computational framework for multicomponent alloy solidi-116

fication was introduced. The model couples temperature evolution, solute diffusion, and interface117

motion, capturing the complex interplay of physical phenomena at the solid-liquid boundary. Key118

physical effects, including crystallographic anisotropy, capillarity, and solute rejection, are resolved119

discretely as macroscopic discontinuities, rather than through approximate smoothing. A distinc-120

tive feature of the model is its use of thermodynamically consistent, composition-dependent liquidus121

slopes and partition coefficients, obtained from the PANDATTM database, allowing accurate rep-122

resentation of local equilibrium at the interface.123

Numerically, the framework leverages adaptive mesh refinement on quadtree grids and is op-124

timized for scalable performance on parallel computing architectures. This allows for physically125

realistic simulations under thermal conditions characteristic of AM, such as high cooling rates and126

steep temperature gradients. The approach has been demonstrated on the solidification of Co-Al-127

W alloys, a ternary system relevant to structural applications, and has considered simulation of a128

penta-alloy. To the best of our knowledge, this work represents the first sharp-interface compu-129

tational engine capable of simulating solidification in alloys with an arbitrary number of alloying130

elements.131

1.2. Epitaxial Growth132

Epitaxial growth underlies the fabrication of many modern electronic and optoelectronic de-133

vices, ranging from transistors and quantum dot lasers to advanced memory architectures and134

catalysts, by enabling the controlled deposition of atoms and molecules onto heated substrates,135

where they assemble into crystalline layers with atomic-scale precision. The resulting structures136

exhibit extremely low defect densities, which are essential for optimal device performance. However,137

simulating this process is difficult because the relevant length and time scales span many orders of138

magnitude: from submonolayer atomic events to the evolution of surface morphology over lateral139

scales of several microns or more. A comprehensive theoretical framework must accurately describe140

atomistic phenomena such as surface diffusion, nucleation, and island coalescence, as well as the141
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transition to multilayer growth regimes, which can result in kinetic roughening. The morphology of142

the growing film is sensitive to experimentally tunable parameters such as the ratio of the surface143

diffusion constant D to the deposition flux F , which governs whether atoms integrate smoothly144

into existing islands or form new nucleation sites. Capturing these mechanisms in a model that is145

both quantitatively predictive and computationally feasible across multiple regimes is a significant146

challenge. Ideally, such a model should be applicable to a wide range of homoepitaxial and het-147

eroepitaxial systems, compatible with various growth techniques, and capable of resolving dynamic148

processes from atomic to device scales.149

Epitaxial growth underlies the fabrication of many modern electronic and optoelectronic devices,150

ranging from transistors and quantum dot lasers to advanced memory architectures and catalysts,151

by enabling the controlled deposition of atoms and molecules onto heated substrates, where they152

assemble into crystalline layers with atomic-scale precision [71, 72, 73, 74]. The resulting structures153

exhibit extremely low defect densities, which are essential for device performance. However, simu-154

lating this process is challenging because the involved length and time scales span many orders of155

magnitude, from submonolayer atomic events to surface morphology evolution across lateral scales156

of several microns or more. This disparity necessitates multiscale modeling frameworks that span157

atomistic, mesoscale, and continuum descriptions [75, 76]. A comprehensive theoretical framework158

must accurately describe atomistic phenomena such as surface diffusion, nucleation, and island159

coalescence, as well as the transition to multilayer growth regimes, which can result in kinetic160

roughening. The morphology of the growing film is sensitive to experimentally tunable parame-161

ters such as the ratio of the surface diffusion constant D to the deposition flux F , which governs162

whether atoms integrate smoothly into existing islands or form new nucleation sites. Capturing163

these mechanisms in a model that is both quantitatively predictive and computationally feasible164

across multiple regimes is a significant challenge [77, 78]. Ideally, such a model should be applica-165

ble to a wide range of homoepitaxial and heteroepitaxial systems, compatible with various growth166

techniques, and capable of resolving dynamic processes from atomic to device scales. Level-set167

simulations offer a powerful framework for studying these effects by bridging atomistic processes168

and continuum-scale behavior, making them particularly promising for the development of tools for169

engineering applications in advanced materials design.170

Kinetic Monte Carlo (KMC) methods have long been a central tool for studying epitaxial growth,171

as they directly incorporate atomistic event rates derived from fundamental physical principles,172

thereby providing a natural framework for mimicking the underlying microscopic processes. His-173

torically, one of the earliest applications of KMC to epitaxial growth was the work of [79], who174

developed a fast KMC algorithm for simulating molecular beam epitaxy. This contribution was175

instrumental in demonstrating that stochastic event-driven methods could efficiently capture de-176

position, diffusion, and nucleation processes central to epitaxial layer formation. Since then, KMC177

has become the standard approach for simulating epitaxial phenomena across a wide range of ma-178

terial systems. For example, [80] introduced a multiscale KMC algorithm specifically tailored for179

epitaxial growth, demonstrating how stochastic atomistic events can be systematically coupled with180

larger-scale morphological evolution. Earlier, [81] provided a comprehensive review of KMC sim-181

ulations in the context of chemical vapor deposition, highlighting the versatility of the method in182

describing growth processes involving adsorption, diffusion, and reaction kinetics. In turn, [82]183

applied first-principles-based KMC simulations to heterogeneous catalysis, offering a paradigm for184

how physically rigorous event rates can yield predictive insights into complex surface processes. Re-185

cent advances highlight both the flexibility and the continuing relevance of KMC to contemporary186

materials science. For example, [83] applied large-scale KMC simulations to the epitaxial growth187

of graphene, providing insight into how growth kinetics and nucleation influence the morphology of188

two-dimensional materials. Their results underscore the ability of KMC to address the challenges189

of simulating extended time and length scales in emerging low-dimensional systems. Likewise, [84]190

used KMC to investigate the influence of growth conditions on the epitaxial growth of 3C–SiC(0001)191

vicinal surfaces. Their study illustrates the predictive power of KMC in technologically important192

heteroepitaxial systems, where temperature, flux, and miscut angle strongly affect step-flow dy-193

namics and surface morphology.194

Collectively, these studies illustrate how KMC serves as a bridge between fundamental atomic-195
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scale mechanisms and experimentally observable growth behavior. At the same time, despite their196

accuracy and physical fidelity, KMC simulations are computationally demanding, particularly when197

long-range interactions or extended spatiotemporal scales must be resolved, posing challenges for198

their application to larger systems or technologically relevant growth regimes. By contrast, level-199

set simulations provide a continuum-based alternative that efficiently bridges atomistic mechanisms200

with mesoscale and continuum-scale behavior. The level-set formulation enables a continuous repre-201

sentation of island boundaries, even as these coalesce, shrink, or evolve anisotropically. The Island202

Dynamics Model [85, 86, 87], developed in this framework, offers a continuum alternative to ki-203

netic Monte Carlo simulations, efficiently capturing stochastic nucleation and interface motion via204

deterministic adatom flux at the islands’ boundaries. A key advantage of the IDM and its level-set205

formulation is its significantly lower computational cost compared to Monte Carlo simulations when206

accounting for long-range interactions such as elastic forces arising from lattice mismatch.207

1.3. Outline208

Section 2 provides an overview of the level-set method, the core numerical algorithms on which209

it is based, and how boundary conditions are imposed in this implicit approach. Sections 3 and 4210

present applications of the method to multicomponent alloy solidification and epitaxial growth,211

respectively. Finally, Section 5 offers concluding remarks and discusses future research directions.212

2. The Level-Set Method213
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Figure 1: Typical level-set setup to free boundary problems.

The level-set method, introduced by Os-214

her and Sethian [1], represents a moving215

interface as the zero level set of a higher-216

dimensional scalar function. The interface217

evolves implicitly under a velocity field de-218

termined by the governing physical laws, al-219

lowing for natural handling of topological220

changes such as merging and pinching. The221

level-set function ϕ(x) is set to be negative222

in one phase (e.g. the liquid phase in a so-223

lidification process) that occupies the region224

denoted Ω− and positive in the other phase225

(e.g. the solid phase in a solidification pro-226

cess) that occupies the region denoted Ω+:227

ϕ(x) < 0,∀x ∈ Ω−, ϕ(x) = 0,∀x on Γ, ϕ(x) > 0,∀x ∈ Ω+.

Figure 1 illustrates the level-set methodology for free-boundary problems. In this framework,228

the governing physical equations are solved in the regions Ω− and Ω+, while appropriate boundary229

conditions are prescribed on the evolving interface Γ. The procedure for imposing boundary condi-230

tions within the level-set framework is presented in Section 2.3, and the sets of partial differential231

equations governing each region are detailed in Section 3 for solidification and Section 4 for the232

IDM.233

Although in principle the level function can be chosen to be any Lipschitz continuous function,234

a practical choice is to define the level-set function as the signed distance to the interface Γ. As235

the level-set function is deformed under its normal velocity, it is necessary to re-initialize it to a236

signed distance function. When the normal velocity exhibits strong anisotropy, it is necessary to237

perform the reinitialization procedure at every time step in order to maintain the signed-distance238

property. More generally, carrying out reinitialization at each step is a sound rule of thumb in239

scientific applications. A traditional approach is to solve the reinitialization equation [2]:240

ϕτ + sign(ϕ0)(|∇ϕ| − 1) = 0, (1)
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where τ is a pseudo-time step, taken in practice to correspond to a number of iterations between241

10 and 15.242

In materials science, this representation proves especially useful in problems where the interface243

dynamics depend on coupled processes such as diffusion, reaction kinetics, phase transformations,244

or mechanical deformation. The method’s ability to maintain a sharp interface and its compatibility245

with structured or adaptive grids make it particularly well-suited for high-resolution simulations. In246

addition, the level-set representation provides a straightforward way to compute the normal vector,247

n, to the boundary and its mean curvature, κ:248

n =
∇ϕ

|∇ϕ| , κ = ∇ · n = ∇ · ∇ϕ

|∇ϕ| .

Given the normal velocity of the interface, vn = v ·n, derived from physical models, the level-set249

function is evolved under using the level-set equation:250

∂ϕ

∂t
+ vn|∇ϕ| = 0. (2)

2.1. Discretization of the Level-Set Equations251

2.1.1. Spatial Discretization252

The discretization of the normal and curvature are straightforward and are based on simple253

central differencing. The discretizations of the reinitialization equation (1) and the level-set equation254

(2) are more involved and are based on numerical advances on Hamilton-Jacobi solvers, themselves255

based on advances in computational methods for conservation laws. Since those equations can be256

solved in a dimension-by-dimension approach, it is enough to present the approach in one spatial257

dimension.258

i � 1 ii � 1

2
i + 1i +

1

2

t

x

Hi

��
x �+

x

Figure 2: Framework for defin-
ing the numerical Hamiltonian
Hn

i .

The Hamilton-Jacobi equation in one spatial dimension is written259

as:260

ϕt +H(ϕx, x, t) = 0, (3)

and its discretization takes the form:261

ϕn+1
i = ϕn

i −∆tHn
i (ϕ

−
x , ϕ

+
x ),

where ϕ−
x , ϕ

+
x are the approximation of the left and right derivative of262

the level-set function ϕn and Hn
i is an approximation of the Hamilto-263

nian H.264

The first difficulty when considering numerically approximating the level-set equations is the fact265

that equations are nonlinear and therefore can produce shock and rarefaction solutions that require266

approximating derivatives of functions with steep gradients or kinks. Issued from progress made in267

the context of conservation laws, the schemes used are of the type ENO/WENO [88, 89, 90, 91].268

The main idea behind those approaches is to create a customized stencil at each grid point in order269

to approximate derivatives, with the driving principle being to start from the standard upwind270

direction and add grid points to the stencil in such a way as to avoid regions of sharp gradients;271

sharp gradients can conveniently be estimated by creating a finite difference table at each grid272

points. The ENO/WENO schemes used in these studies are detailed in Appendix A.273

Remarks:274

1. We note that the use of ENO/WENO schemes, compared to a first-order upwind discretiza-275

tion, inevitably increases the computational cost by a factor of three to four, depending on276

the sophistication of the implementation. However, such high-order schemes are essential277

to mitigate the excessive numerical diffusion associated with simple upwinding, which would278

otherwise compromise the accuracy of the solution to the point of rendering the results unre-279

liable.280
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2. In the case of uniform grids, the WENO scheme is typically used. In the case of adaptive281

grids, given the computational cost of accessing grid points that are not immediately in the282

neighborhood of a grid point at which we are seeking an approximation of the derivatives, we283

are limiting the ENO procedure to second-order accuracy in conjunction with the treatment284

of T-junction nodes described in section 2.2.285

The second difficulty is to properly approximate, at each grid point, the HamiltonianHn
i depend-286

ing on the values of ϕ−
x , ϕ

+
x (see Figure 2). This approximation must take into account nonlinear287

effects related to shocks and rarefaction waves, following the Godunov strategy that defines the288

Hamiltonian as follows:289

Hn
i ≈


min

ϕx∈[ϕ−
x ,ϕ+

x ]
H(ϕx), if ϕ−

x ≤ ϕ+
x ,

max
ϕx∈[ϕ+

x ,ϕ−
x ]
H(ϕx), if ϕ−

x ≥ ϕ+
x .

(4)

For example, in the case of the level-set equation (2), which can be re-written as follows to give a290

direct handle on the characteristic directions:291

ϕt +
vnϕx√

ϕ2
x + ϕ2

y + ϕ2
z

ϕx +
vnϕy√

ϕ2
x + ϕ2

y + ϕ2
z

ϕy +
vnϕz√

ϕ2
x + ϕ2

y + ϕ2
z

ϕz = 0,

the Godunov formula, gives the following discretization for the term ϕx term:292

1. If vnϕ
−
x ≤ 0 and vnϕ

+
x ≤ 0 discretize ϕx by ϕ+

x .293

2. If vnϕ
−
x ≥ 0 and vnϕ

+
x ≥ 0 discretize ϕx by ϕ−

x .294

3. If vnϕ
−
x ≤ 0 and vnϕ

+
x ≥ 0 set ϕx = 0.295

4. If vnϕ
−
x ≥ 0 and vnϕ

+
x ≤ 0296

(a) If |vnϕ+
x | ≥ |vnϕ−

x | discretize ϕx by ϕ+
x .297

(b) If |vnϕ+
x | ≤ |vnϕ−

x | discretize ϕx by ϕ−
x .298

The terms ϕy and ϕz are discretized similarly, the results are plugged into equation (2). The299

reinitialization equation is discretized almost identically by writing equation (1) as:300

301

ϕτ + sign(ϕ0)

 ϕx√
ϕ2
x + ϕ2

y + ϕ2
z

ϕx +
ϕy√

ϕ2
x + ϕ2

y + ϕ2
z

ϕy +
ϕz√

ϕ2
x + ϕ2

y + ϕ2
z

ϕz − 1

 = 0.

302

2.1.2. TVD-RK3303

The spatial discretization is traditionally coupled with a TVD-RK3 algorithm for the time304

evolution [88]. TVD stands for Total Variation Diminishing and can be written as a set of simple305

Euler steps in combination with linear averaging of the solution at intermediate steps. In the case of306

the Hamilton-Jacobi equation (3), we start from ϕn, and perform one Euler step to find a temporary307

ϕ̃n+1 at each grid point:308

ϕ̃n+1
i − ϕn

i

∆t
+Hn

i = 0,

followed by another Euler step to find a temporary ϕ̃n+2
i :309

ϕ̃n+2
i − ϕ̃n+1

i

∆t
+Hn+1

i = 0,

where Hn+1
i is computed using equation (4) with ϕ−

x , ϕ
+
x computed from ϕ̃n+1. Once ϕ̃n+2 is found,310

we apply a weighted averaging procedure to find a temporary ϕ̃n+ 1
2 :311

ϕ̃
n+ 1

2
i =

3

4
ϕn
i +

1

4
ϕ̃n+2.
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(a)$

Fine resolution to 
accurately capture 
large gradients. 

(a)$ (b)$ (c)$
Fine resolution to accurately 

capture large gradients. 

Figure 4: Simulation of crystal growth in 3D (a) with a zoom on one crystal (b) and a further zoom on the resolved
thermal boundary layer (c). Figure adapted from [106].

Last, another Euler step is used to find a temporary ϕ̃
n+ 3

2
i :312

ϕ̃
n+ 3

2
i − ϕ̃

n+ 1
2

i

∆t
+H

n+ 1
2

i = 0,

where H
n+ 1

2
i is computed using equation (4) with ϕ−

x , ϕ
+
x computed from ϕ̃n+ 1

2 . The updated313

solution ϕn+1 at each grid point is defined by a weighted average: ϕn+1:314

ϕn+1
i =

1

3
ϕn
i +

2

3
ϕ̃
n+ 3

2
i .

315

We also refer the interested reader to other methodologies to reinitialize the level-set function316

that are not based on PDE evolution equations, such as the Fast Marching Method [92, 42, 93], the317

Fast Sweeping Method [94, 95] and their parallel versions [96, 97, 98], or other explicit approaches318

[99, 100, 101, 102, 103], as well as the recent work by Osher seeking to overcome the curse of319

dimensionality [104, 105] for Hamilton-Jacobi equations.320

2.2. Adaptive Grid Refinement321

Figure 3: Zoom on a T-junction grid point.

The level-set method is known to exhibit a form of322

numerical error commonly referred to as “mass loss,”323

wherein the evolving interface deviates slightly from the324

expected physical trajectory. This artifact, however, di-325

minishes with grid refinement and results in a negligible326

loss of mass when sufficiently fine grids are used. Be-327

cause the computational cost scales with the number of328

grid points and high resolution is primarily needed in the329

vicinity of the interface, adaptive mesh refinement (AMR)330

presents a particularly effective strategy. In addition,331

many problems in materials science are either diffusion-dominated or governed by partial differ-332

ential equations with parabolic or elliptic components. These equations typically yield smooth333

solutions, except near interfaces where discontinuities or sharp gradients may arise. This further334

supports the use of adaptive grids, which concentrate computational resources where they are most335

needed while minimizing overall cost. An example of a three-dimensional crystal growth simulation336

is presented in Figure 4.337

In the context of AMR, quadtree and octree data structures representation of adaptive Cartesian338

grids offer optimal efficiency in terms of both memory usage and CPU cost. In [107], the authors339

proposed a straightforward discretization strategy applicable to level-set methods [108], parabolic340

and elliptic equations in irregular domains [62, 61, 109, 110, 111, 112, 113, 114, 115, 116], as well341

as the Navier-Stokes equations [117]. The core contribution lies in the treatment of T-junction grid342
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points, which are points on the grid where one (in 2D) or two (in 3D) neighboring grid points are343

missing, as illustrated in Figure 3. The authors introduced a definition for these missing neighbors344

that enables third-order accuracy:345

uG =
s4u3 + s3u4

s3 + s4
− s3s4

s1 + s2

(
u2 − u0

s2
+

u1 − u0

s1

)
.

This formulation allows the use of standard upwind or central differencing schemes as if the grid346

were uniform, while maintaining the desired level of accuracy. We note that given the computational347

cost of accessing grid points that are not immediately in the neighborhood of a grid point at which348

we are seeking an approximation of the derivatives, we are limiting the ENO procedure to second-349

order accuracy. We note that adaptive grids are particularly advantageous for elliptic and parabolic350

problems, i.e., those dominated by diffusion. In such cases, the solution is infinitely smooth away351

from the interface and can therefore be accurately resolved on relatively coarse grids. Near the352

interface, however, discontinuities in the solution and/or its flux require enhanced resolution, which353

can be efficiently provided by local grid refinement. For example, [118] demonstrated that an354

adaptive grid with a coarse 32 × 32 background resolution achieves the same level of accuracy as355

a uniform 256 × 256 grid, provided that the grid is locally refined to the effective 256 × 256 level356

within a narrow band around the interface. Building on the p4est library [119], which manages357

the distribution of adaptive grids across multiple processes, [106] developed the casl library, which358

implements level-set methods and standard solvers optimized for massively parallel architectures.359

Additional work utilizing the octree data structure includes that of [19, 21] and research on mainly360

compressible flows on AMR can be found in [120] and the references therein.361

2.3. Imposing Boundary Conditions362

An important advantage of the level-set method lies in its ability to impose sharp boundary363

conditions, namely, the capability to enforce conditions directly at the precise interface location364

with controlled accuracy (see sections 2.3.1, 2.3.2, and 2.3.3), while preserving the discontinuities365

in the solution and its flux. This capability is particularly important when modeling systems under366

the continuum assumption underpinning conservation laws, where rapid variations across physi-367

cal interfaces are accurately represented as sharp discontinuities rather than smooth transitions.368

Boundary conditions typically fall into Dirichlet, Robin (with a sub case being Neumann) and jump369

conditions. In the context of solidification, the Gibbs-Tompson is a well-known Dirichlet physical370

boundary condition that describes the equilibrium temperature of the phase transition and the371

concentration of alloying elements have a jump across the solidification front. An example of Robin372

boundary condition will be discussed in the context of epitaxy (section ??) that is responsible for373

mound formation.374

The Ghost Fluid Method (GFM), originally introduced to capture sharp discontinuities in com-375

pressible flow and detonation problems [121, 122, 123, 124], has significantly influenced how sharp376

boundary conditions are imposed within the level-set framework. In the context of compressible377

flows, the central idea is to track the location of shocks and contact discontinuities using the level-set378

method, while maintaining two separate numerical solutions; one on each side of the interface rep-379

resenting the real fluid, and a ghost fluid that is defined as the real fluid plus the Rankine-Hugoniot380

jump condition. Thanks to the definition of a ghost fluid, the solution remains continuous across the381

interface and therefore avoids directly differentiating discontinuous functions, thereby eliminating382

the large numerical errors that would otherwise arise.383

This simple yet powerful approach has been successfully extended to elliptic and parabolic prob-384

lems. In particular, it has been applied to the Poisson and diffusion equations on irregular domains385

with Dirichlet boundary conditions, as well as to problems involving jump conditions. In this386

section, we briefly describe the methodology for jump, Dirichlet and Robin/Neumann conditions.387

2.3.1. Jump Boundary Conditions388
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Figure 5: Example of a typical
numerical solution of the Pois-
son equation with jump condi-
tions on irregular domains.

In the case of elliptic and parabolic equations, the jump conditions389

are given for the solution and its flux, i.e. of the form [µ∇u · n] = g,390

where g = g(x, t) is a known function and µ is a variable coefficient391

(e.g. the thermal conductivity in a solidification problem). Figure 5 is392

an example of the imposing sharp jump conditions using the method393

of [125], illustrating that the jumps in the solution and its flux are394

indeed imposed at the discrete level. The first Ghost-Fluid approach395

replaced the jump in flux by its projection to each spatial dimension,396

resulting in a strategy that is simple since it allows a dimension-by-397

dimension approach to approximating the Laplace operator [126]. In398

the case where the tangential component of the jump in flux are crucial,399

this approach may introduce a numerical smearing of the tangential400

components that can pollute the solution. To address this limitation,401

three techniques have been proposed. The first, inspired by the work of [127], uses a Voronoi402

partition so that the degrees of freedom of the Voronoi cell are orthogonal to their edges, making403

the application of the approach of [126] accurate when tangential terms are important [128]. The404

second, known as xGFM [129], extends the Ghost Fluid Method by enforcing the full jump condition405

in the normal direction through an iterative process. The third approach, introduced in [125],406

constructs second-order accurate expressions for the solution on either side of the interface using407

normal derivatives of the solution. The difference between these expressions is then directly linked408

to the jump conditions in the solution and its flux. By approximating the local gradient via a409

least-squares fit using neighboring points, this method yields two candidate formulas for the ghost410

value. Interestingly, [125] observe that choosing the formula corresponding to the region with the411

smaller diffusion coefficient leads to a linear system with significantly improved conditioning. As412

illustrated in Figure 6, both the condition number and the numerical error in the solution and its413

gradient remain well-controlled (i.e. bounded), even in the presence of strong discontinuities in the414

diffusion coefficient. From a practical point of view, it is necessary to use the method in [125] to415

avoid smearing in the tangential component. We note, however, that for some applications such416

as incompressible flows without phase change nor Marangoni effects, tangential components are417

absent, and the approach of [126] can be employed instead, which is simpler to implement. In both418

cases, the resulting scheme achieves second-order accuracy in the maximum norm.419
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Figure 6: conditioning test in two spatial dimensions (each data point represents the maximum value among
10 × 10 = 100 different relative placements of an immersed interface on the computational grid). Figure adapted
from [125].

2.3.2. Dirichlet Boundary Conditions420

Figure 7: Definition of the ghost
value uG

i+1 using a linear extrapola-
tion. First, construct a linear inter-
polant I(x) = ax + b of u such that
I(0) = ui and I(∆xΓ) = uΓ. Then
define uG

i+1 = I(∆x). (Color online).

Solving elliptic or parabolic problems requires implicit dis-421

cretizations, where a linear system of equations is built. Specif-422

ically, each line of the linear system is filled with the coefficients423

of the standard central differencing formula in each spatial di-424

rection. In cases where a specific value must be imposed on an425

irregular domain, the typical configuration is illustrated in Fig-426

ure 7, where the solution exhibits a discontinuity in the deriva-427
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tive at the interface1. The ghost fluid method addresses this by428

defining a ghost value that still enables the use of standard cen-429

tral differencing while preserving the sharp interface behavior.430

This ghost value is defined by considering the extrapolation of431

the solution from one side of the interface to the other, which432

in turn gives the modified coefficients of the linear system for433

grid points adjacent to the interface. The order of accuracy and the symmetry of the linear system434

is detailed in [68, 69] and [130] summarizes which extrapolation to use depending on the problem435

considered.436

2.3.3. Robin Boundary Conditions437

Robin boundary conditions are commonly employed to model physical phenomena such as con-438

vective heat or mass exchange at boundaries, semi-permeable membranes, imperfect insulation, or439

radiative transfer, among many. In its most general form, Robin boundary conditions are written440

as
∂u

∂n
+αu = g, where α = α(x, t) and g = g(x, t) are given functions; in the case where α = 0 the441

boundary condition is of Neumann type. Robin boundary conditions are important as they give a442

condition for the flux of the solution across the free boundary. An example of such application is443

given in section 4 for the simulation of mounding in epitaxial growth.444

<latexit sha1_base64="sF6seDgFYAEznoC/0a1z8fprTDE=">AAAB+XicdZBLS8NAFIUn9VXrK+rSzWARBCUktbZdFt24cFHBPqANYTKdtGMnkzAzKZTQf+LGhSJu/Sfu/DdO2gpV9MDAxzn3Mpfjx4xKZdufRm5ldW19I79Z2Nre2d0z9w9aMkoEJk0csUh0fCQJo5w0FVWMdGJBUOgz0vZH11neHhMhacTv1SQmbogGnAYUI6UtzzRvvZSe9QKBsFM6hw9Tzyw6lj0TtC27WrMvnQwuyhrhd1QECzU886PXj3ASEq4wQ1J2HTtWboqEopiRaaGXSBIjPEID0tXIUUikm84un8IT7fRhEAn9uIIzd3kjRaGUk9DXkyFSQ/k7y8y/sm6igpqbUh4ninA8/yhIGFQRzGqAfSoIVmyiAWFB9a0QD5FuQemyCssl/A+tkuVUrMpduVi/WtSRB0fgGJwCB1RBHdyABmgCDMbgETyDFyM1noxX420+mjMWO4fgh4z3Lz/vkso=</latexit>

Li+ 1
2 ,j

<latexit sha1_base64="1bHdsIghLVCeGMzDb0JnVHbFB9U=">AAAB+XicdZBLS8NAFIUn9VXrK+rSzWARXGhIam27LLpx4aKCfUAbwmQ6acdOJmFmUiih/8SNC0Xc+k/c+W+ctBWq6IGBj3PuZS7HjxmVyrY/jdzK6tr6Rn6zsLW9s7tn7h+0ZJQITJo4YpHo+EgSRjlpKqoY6cSCoNBnpO2PrrO8PSZC0ojfq0lM3BANOA0oRkpbnmneeik97wUCYad0Bh+mnll0LHsmaFt2tWZfOhlclDXC76gIFmp45kevH+EkJFxhhqTsOnas3BQJRTEj00IvkSRGeIQGpKuRo5BIN51dPoUn2unDIBL6cQVn7vJGikIpJ6GvJ0OkhvJ3lpl/Zd1EBTU3pTxOFOF4/lGQMKgimNUA+1QQrNhEA8KC6lshHiLdgtJlFZZL+B9aJcupWJW7crF+tagjD47AMTgFDqiCOrgBDdAEGIzBI3gGL0ZqPBmvxtt8NGcsdg7BDxnvX0MNksw=</latexit>

Li� 1
2 ,j

<latexit sha1_base64="ih/YEq8z4gP12KfKXmXDlx+9t0g=">AAAB+XicdZBLS8NAFIUn9VXrK+rSzWARXGhIam27LLpx4aKCfUAbwmQ6acdOJmFmUiih/8SNC0Xc+k/c+W+ctBWq6IGBj3PuZS7HjxmVyrY/jdzK6tr6Rn6zsLW9s7tn7h+0ZJQITJo4YpHo+EgSRjlpKqoY6cSCoNBnpO2PrrO8PSZC0ojfq0lM3BANOA0oRkpbnmneeik9gw/nvUAg7JSmnll0LHsmaFt2tWZfOhlclDXC76gIFmp45kevH+EkJFxhhqTsOnas3BQJRTEj00IvkSRGeIQGpKuRo5BIN51dPoUn2unDIBL6cQVn7vJGikIpJ6GvJ0OkhvJ3lpl/Zd1EBTU3pTxOFOF4/lGQMKgimNUA+1QQrNhEA8KC6lshHiJdgdJlFZZL+B9aJcupWJW7crF+tagjD47AMTgFDqiCOrgBDdAEGIzBI3gGL0ZqPBmvxtt8NGcsdg7BDxnvX0Elksw=</latexit>

Li,j� 1
2

<latexit sha1_base64="+J6lD6/RxpuPA0y6hSxh2jtD7B8=">AAAB+XicdZBLS8NAFIUn9VXrK+rSzWARBCUktbZdFt24cFHBPqANYTKdtGMnkzAzKZTQf+LGhSJu/Sfu/DdO2gpV9MDAxzn3Mpfjx4xKZdufRm5ldW19I79Z2Nre2d0z9w9aMkoEJk0csUh0fCQJo5w0FVWMdGJBUOgz0vZH11neHhMhacTv1SQmbogGnAYUI6UtzzRvvZSew4ezXiAQdkpTzyw6lj0TtC27WrMvnQwuyhrhd1QECzU886PXj3ASEq4wQ1J2HTtWboqEopiRaaGXSBIjPEID0tXIUUikm84un8IT7fRhEAn9uIIzd3kjRaGUk9DXkyFSQ/k7y8y/sm6igpqbUh4ninA8/yhIGFQRzGqAfSoIVmyiAWFB9a0QD5GuQOmyCssl/A+tkuVUrMpduVi/WtSRB0fgGJwCB1RBHdyABmgCDMbgETyDFyM1noxX420+mjMWO4fgh4z3Lz4Nkso=</latexit>

Li,j+ 1
2

<latexit sha1_base64="8tZgCHIXrdcO8ifRIdnYZ9A5Dac=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahgpRdkeqx6MVjBfsB7VKyabZNm02WJCuUpf/BiwdFvPp/vPlvTNs9aOuDgcd7M8zMC2LOtHHdbye3tr6xuZXfLuzs7u0fFA+PmlomitAGkVyqdoA15UzQhmGG03asKI4CTlvB+G7mt56o0kyKRzOJqR/hgWAhI9hYqVlmF2h03iuW3Io7B1olXkZKkKHeK351+5IkERWGcKx1x3Nj46dYGUY4nRa6iaYxJmM8oB1LBY6o9tP5tVN0ZpU+CqWyJQyaq78nUhxpPYkC2xlhM9TL3kz8z+skJrzxUybixFBBFovChCMj0ex11GeKEsMnlmCimL0VkSFWmBgbUMGG4C2/vEqalxWvWqk+XJVqt1kceTiBUyiDB9dQg3uoQwMIjOAZXuHNkc6L8+58LFpzTjZzDH/gfP4AHfqOMQ==</latexit>

(i, j)

<latexit sha1_base64="i1uLW1LtcP/YCLESXAQbBBq1ZMU=">AAAB73icbVBNSwMxEJ31s9avqkcvwSJUlLIrUj0WvXisYD+gXUo2zbax2WRNskJZ+ie8eFDEq3/Hm//GtN2Dtj4YeLw3w8y8IOZMG9f9dpaWV1bX1nMb+c2t7Z3dwt5+Q8tEEVonkkvVCrCmnAlaN8xw2ooVxVHAaTMY3kz85hNVmklxb0Yx9SPcFyxkBBsrtUrs1DtDDyfdQtEtu1OgReJlpAgZat3CV6cnSRJRYQjHWrc9NzZ+ipVhhNNxvpNoGmMyxH3atlTgiGo/nd47RsdW6aFQKlvCoKn6eyLFkdajKLCdETYDPe9NxP+8dmLCKz9lIk4MFWS2KEw4MhJNnkc9pigxfGQJJorZWxEZYIWJsRHlbQje/MuLpHFe9irlyt1FsXqdxZGDQziCEnhwCVW4hRrUgQCHZ3iFN+fReXHenY9Z65KTzRzAHzifP/YFjqE=</latexit>

(i + 1, j)
<latexit sha1_base64="VXPlXPps7Lub8b/e2rFk+8zH/jM=">AAAB73icbVBNSwMxEJ31s9avqkcvwSJU0LIrUj0WvXisYD+gXUo2zbax2WRNskJZ+ie8eFDEq3/Hm//GtN2Dtj4YeLw3w8y8IOZMG9f9dpaWV1bX1nMb+c2t7Z3dwt5+Q8tEEVonkkvVCrCmnAlaN8xw2ooVxVHAaTMY3kz85hNVmklxb0Yx9SPcFyxkBBsrtUrszDtFDyfdQtEtu1OgReJlpAgZat3CV6cnSRJRYQjHWrc9NzZ+ipVhhNNxvpNoGmMyxH3atlTgiGo/nd47RsdW6aFQKlvCoKn6eyLFkdajKLCdETYDPe9NxP+8dmLCKz9lIk4MFWS2KEw4MhJNnkc9pigxfGQJJorZWxEZYIWJsRHlbQje/MuLpHFe9irlyt1FsXqdxZGDQziCEnhwCVW4hRrUgQCHZ3iFN+fReXHenY9Z65KTzRzAHzifP/kXjqM=</latexit>

(i � 1, j)

<latexit sha1_base64="lIcj61kSFo3CB1GJj0HE3Fv6M/E=">AAAB73icbVBNSwMxEJ31s9avqkcvwSJU0LIrUj0WvXisYD+gXUo2zbax2WRNskJZ+ie8eFDEq3/Hm//GtN2Dtj4YeLw3w8y8IOZMG9f9dpaWV1bX1nMb+c2t7Z3dwt5+Q8tEEVonkkvVCrCmnAlaN8xw2ooVxVHAaTMY3kz85hNVmklxb0Yx9SPcFyxkBBsrtUrsFD2ceSfdQtEtu1OgReJlpAgZat3CV6cnSRJRYQjHWrc9NzZ+ipVhhNNxvpNoGmMyxH3atlTgiGo/nd47RsdW6aFQKlvCoKn6eyLFkdajKLCdETYDPe9NxP+8dmLCKz9lIk4MFWS2KEw4MhJNnkc9pigxfGQJJorZWxEZYIWJsRHlbQje/MuLpHFe9irlyt1FsXqdxZGDQziCEnhwCVW4hRrUgQCHZ3iFN+fReXHenY9Z65KTzRzAHzifP/lpjqM=</latexit>

(i, j � 1)

<latexit sha1_base64="3Pg1C9lyZ1OxebbLGFtTpRtVQjA=">AAAB73icbVBNSwMxEJ31s9avqkcvwSJUlLIrUj0WvXisYD+gXUo2zbax2WRNskJZ+ie8eFDEq3/Hm//GtN2Dtj4YeLw3w8y8IOZMG9f9dpaWV1bX1nMb+c2t7Z3dwt5+Q8tEEVonkkvVCrCmnAlaN8xw2ooVxVHAaTMY3kz85hNVmklxb0Yx9SPcFyxkBBsrtUrsDD2ceifdQtEtu1OgReJlpAgZat3CV6cnSRJRYQjHWrc9NzZ+ipVhhNNxvpNoGmMyxH3atlTgiGo/nd47RsdW6aFQKlvCoKn6eyLFkdajKLCdETYDPe9NxP+8dmLCKz9lIk4MFWS2KEw4MhJNnkc9pigxfGQJJorZWxEZYIWJsRHlbQje/MuLpHFe9irlyt1FsXqdxZGDQziCEnhwCVW4hRrUgQCHZ3iFN+fReXHenY9Z65KTzRzAHzifP/ZdjqE=</latexit>

(i, j + 1)
<latexit sha1_base64="r5yKVjs9WPOuJKe2WPSECvZpafg="></latexit>

Interface � = 0

Figure 8: Local grid arrange-
ment of a computational cell
centered at (i, j) cut by an in-
terface defined by the level-set
function ϕ.

Although finite difference approaches extending the Ghost-Fluid445

Method for Dirichlet conditions of [68, 69], have been adapted to im-446

pose Robin boundary conditions within the level-set framework [131,447

132, 133, 134, 135, 136], a finite volume approach is generally preferred448

due to its more natural incorporation of boundary fluxes and compat-449

ibility with conservative formulations. Through the use of the diver-450

gence theorem over each cell containing the zero-level set (see Figure451

8), the boundary condition is naturally incorporated into the formu-452

lation, reducing the problem to computing fluxes across the boundary453

of the computational cell and the integration of a known function over454

the zero-level of the level-set function. Specifically, the discretization455

of the Laplace operator over a computational cell Ci,j , covered by the456

irregular domain Ω, is treated as follows:457

−∆u = f ⇐⇒ −
∫
Ci,j∩Ω

∆u dC =

∫
Ci,j∩Ω

f dC

⇐⇒ −
∫
∂Ci,j∩Γ

∇u · n dC =

∫
Ci,j∩Ω

f dC.

The right-hand side of the last equality is approximated as fi,j ×458

Area(Ci,j ∩ Ω), whereas the left-hand side of the last equality can be approximated as:459

− Li+ 1
2 ,j

ui+1,j − ui, j

∆x
− Li− 1

2 ,j

ui,j − ui−1,j

∆x

− Li,j+ 1
2

ui,j+1 − ui,j

∆x
− Li,j− 1

2

ui,j − ui,j−1

∆x
−

∫
Γ

(g − αu) dΓ,

where the Li± 1
2 ,j± 1

2
represent the length of the portion of the cell faces covered by the irregular460

domain (see Figure 8). Imposing Robin boundary conditions therefore boils down to approximating461

the integral of (g − αu) over an interface represented by the level-set function.462

The first finite volume formulation of Robin boundary conditions within the level-set framework463

was introduced in [137], where the numerical integration of (g − αu) was based on the geometric464

1In the case where, in addition, the solution itself is discontinuous, the numerical treatment outlined in section
2.3.2 is identical as it fully decouples the numerical solution on both sides of the interface.
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approach developed in [113, 138, 139]. This method is second-order accurate in the maximum norm.465

We are not aware of alternative approaches for imposing Robin boundary conditions that achieve466

a comparable balance of simplicity and accuracy for interfaces that do not develop kinks. This467

methodology was subsequently extended to support adaptive grids and moving interfaces in [61].468

While this approach produces symmetric linear systems that are desirable for their fast inversion469

using standard linear algebra numerical methods, the solution gradient is only first-order accurate.470

In turn, this limits free boundary problems to first-order accuracy if they depend on the solution471

gradient; typical examples in materials are those considered here. To solve that problem, [140]472

extended the work of [137] to produce second-order accurate solutions, albeit non-symmetric linear473

systems, where one of the main ingredients is the evaluation of the fluxes between cells that are474

discretized using the ideas of [141]. The methodology was then extended in [142] to the case where475

the boundary is piece-wise continuous, i.e., applicable to the case where the interface itself has476

kinks. The method retains second-order accuracy in the maximum norm, including on adaptive477

grids and in the presence of kinked interfaces, and thus constitutes the most advanced available478

approach.479

3. Application - Solidification of Multicomponent Alloys in Additive Manufacturing480

3.1. Sharp Interface Model481

Consider the solidification of an alloy system composed of N+1 chemical species: a dominant482

solvent element that forms the primary matrix of the alloy, and N additional solute elements present483

in lesser concentrations. Such multicomponent alloy systems are representative of many techno-484

logically important materials, including high-entropy alloys and advanced superalloys, where the485

interactions between multiple solute elements and the solvent play a critical role in determining486

microstructural evolution during solidification. The thermodynamic and kinetic complexities intro-487

duced by the presence of multiple solutes (including solute partitioning, cross-diffusion effects, and488

non-linear phase equilibria) make the modeling and control of solidification processes in these sys-489

tems particularly challenging. Accurate description of these phenomena is essential for predicting490

phase selection, morphology development, and segregation patterns, which ultimately govern the491

mechanical and functional properties of the solidified material.492

We denote the evolving solid-liquid interface by Γ(t), and define the domains within the com-493

putational domain Ω that are occupied by the solid and liquid phases as Ωs and Ωl . We also define494

the temperature, at time t and location x, as T = T (t,x) and the N different compositions as495

CJ = CJ(t,x), J ∈ [1, N ] in the solid and liquid regions as:496

T (t,x) =

{
T l(t,x), x ∈ Ωl(t)

T s(t,x), x ∈ Ωs(t)
, and CJ(t,x)=

{
C l

J(t,x), x ∈ Ωl(t)

Cs
J(t,x), x ∈ Ωs(t)

, J ∈ [1, N ] .497

In the absence of convective transport, the evolution of thermal and solutal fields is governed498

by diffusion-dominated processes. The energy and species conservation laws reduce to classical499

diffusion equations within each phase:500

ρνcp
ν∂tT

ν − λν∇2T ν = 0, x ∈ Ων(t), ν = s, l ,

∂tC
ν
J −Dν

J∇2Cν
J = 0, x ∈ Ων(t), ν = s, l , J ∈ [1, N ] ,

(5)

(6)
501

where, ρν , cp
ν , and λν denote the mass density, specific heat capacity, and thermal conductivity,502

respectively, within each phase ν ∈ s, l , corresponding to solid and liquid states. Similarly, Dν
J503

represents the diffusivity of the J th solute species in phase ν. The domains Ωs(t) and Ωl(t) evolve504

over time due to phase transformation at the solid-liquid interface.505

For the sake of clarity and tractability, we assume constant material properties within each phase,506

i.e. ρν , cp
ν , λν , and Dν

J are considered independent of temperature and composition. Although507

more sophisticated models may account for their dependence on local thermodynamic conditions,508

this simplification is often adequate for capturing the essential features of diffusion-driven solidi-509

fication dynamics, and the resulting equations provide the foundation for more advanced models510
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incorporating interface kinetics, interfacial energy effects, and thermodynamic equilibrium condi-511

tions at the moving boundary. It is also important to note that in the context of multicomponent512

alloy solidification, it is standard practice to solve the energy conservation equation in both the513

liquid and solid phases, as thermal diffusion occurs at comparable timescales in both regions. In514

contrast, the governing diffusion equations for the chemical species are generally restricted to the515

liquid phase, a modeling choice that is justified by the fact that solute diffusion in the solid is516

several orders of magnitude slower than in the liquid and can, to a good approximation, be ne-517

glected over the solidification timescale. Consequently, the solid is often treated as a stationary518

phase with respect to solute transport, which simplifies the computational model without compro-519

mising accuracy. This assumption is widely adopted in the literature and forms the basis of many520

sharp-interface and phase-field models of alloy solidification.521

In the modeling of multicomponent alloy solidification, the temperature and concentration fields522

must satisfy a series of thermodynamic and interfacial conditions at the evolving solid-liquid in-523

terface. A fundamental assumption in this framework is that the phase transformation occurs at524

local thermodynamic equilibrium. Consequently, the temperature field is continuous across the525

solidification front, leading to the condition:526

[T ] = 0, on Γ(t), (7)527

where the jump operator [·] represents the difference in a field variable across the interface (i.e.,528

[T ] = T s−T l, with T s and T l denoting the temperatures on the solid and liquid sides, respectively).529

Furthermore, the temperature at the interface must satisfy a generalized Gibbs-Thomson condition530

that accounts for both interface kinetics and curvature effects:531

T l = T liq (C1, . . . , CN ) + ϵv(n)vn + ϵc(n)κ, on Γ(t), (8)532

where T liq (C1, . . . , CN ) defines the local liquidus temperature as a function of the solute concen-533

trations. The normal velocity of the interface is denoted vn, and κ represents the mean curvature534

of the interface, while ϵv(n) and ϵc(n) are the kinetic and capillary coefficients, respectively, which535

may depend on the orientation of the interface normal n.536

In classical solidification models, the liquidus temperature is often approximated as a linear537

function of composition:538

T liq (C1, . . . , CN ) = Tm +m1C1 + . . .+mNCN ,539

where Tm is the melting temperature of the pure solvent, and mJ are referred to as the liquidus540

slopes for the solutes C1, . . . , CN . However, such linear approximations are insufficient for capturing541

the thermodynamic complexity of multicomponent alloys, where interactions between solutes can542

lead to highly nonlinear behavior in the phase diagram. To address this, [70] adopted a more gen-543

eral approach by allowing the liquidus temperature T liq to be an arbitrary, composition-dependent,544

function. Accordingly, the liquidus slopes mJ = ∂T liq/∂CJ are treated as functions of the lo-545

cal composition, enabling a more accurate and physically realistic description of the solidification546

process. For the numerical simulations reported in [70], the necessary thermodynamic data are547

obtained from the PANDAT™ database, which provides reliable multicomponent phase equilibria548

for engineering alloys (see Figure 9).549

The thermal and chemical conditions at the solid-liquid interface play a critical role in determin-550

ing the morphology and composition of the resulting microstructure. The thermal balance at the551

moving interface is governed by a Stefan-type condition, which enforces the conservation of energy552

by equating the net heat flux across the interface to the latent heat released or absorbed during the553

phase transition:554

[λ∂nT ] = vnLf , x ∈ Γ(t), (9)555

where Lf denotes the latent heat of fusion per unit volume, λ is the thermal conductivity, ∂nT is556

the temperature gradient normal to the interface, and vn is the normal velocity of the interface.557

This condition ensures that the local thermal field responds dynamically to the evolving interface558

and accommodates the release or absorption of latent heat associated with phase change.559
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Figure 9: Phase-diagram of Co-W-Al as predicted by the PANDAT™database (dots) and polynomial approximations
(solid surface) used in this work. Figure adapted from [70].

In addition to thermal equilibrium, chemical equilibrium must be maintained at the solidification560

front. For multicomponent systems, this is typically captured through the concept of partition561

coefficients kJ , which describe the equilibrium distribution of each solute species between the solid562

and liquid phases. These coefficients are defined as:563

Cs
J = kJC

l
J , x ∈ Γ(t), J ∈ [1, N ] ,564

where C l
J and Cs

J are the concentrations of species J in the liquid and solid phases, respectively.565

Importantly, for general multicomponent alloys where the phase diagram is nonlinear and the566

liquidus/solidus surfaces are curved, the partition coefficients are not constant. Instead, they depend567

on the local composition of the alloy at the interface:568

kJ = kJ
(
C l

1, . . . , C
l
N

)
, J ∈ [1, N ] .569

Mass conservation of each species at the moving interface further imposes a set of interfacial570

boundary conditions known as the solute-rejection equations. These conditions ensure that the571

solute flux in the liquid and the rate of incorporation (or rejection) of solute into the solid phase572

are consistent:573

Dl
J∂nl

C l
J − (1− kJ)vnC

l
J = 0, x ∈ Γ(t), J ∈ [1, N ] , (10)574

where Dl
J denotes the diffusivity of species J in the liquid phase. These equations capture the com-575

plex coupling between solute transport, interface motion, and phase equilibrium, and are essential576

for predicting microsegregation, solute trapping, and morphological stability during solidification of577

multicomponent alloys. Once the normal velocity at the interface is defined, the level-set evolution578

equation is solved as described in section 2. We refer the interested reader to [70] for the details579

of the numerical implementation and to [143] for a coupling of simulation of a pure substance with580

fluid flows.581

3.2. Level-Set Simulations582

A detailed accuracy analysis of the temperature, concentration, interface velocity, and interface583

location was conducted in [70] and is shown in Figure 10 for a ternary Co-W-Al solidification584

case. Errors are measured in the L∞-norm over the full simulation time, capturing the worst-case585

deviation from the reference solution. The results indicate convergence rates approaching second586

order. This is particularly important in multicomponent alloy solidification, where strong thermal587

and solutal gradients interact with a moving interface. The verified accuracy supports the model’s588

reliability for predictive simulations of complex solidification phenomena.589

A practical simulation of directional solidification of a ternary Co-W-Al system is given in Figure590

11. Denoting the computational domain Ω, with boundary ∂Ω, it is assumed that the total heat591

flux is specified and the boundary is impermeable to solutes:592

λν∂nνT
ν = gT ν , x ∈ Ων ∩ ∂Ω, ν = s, l ,

Dl
J∂nl

C l
J = 0, x ∈ Ωl ∩ ∂Ω, J ∈ [1, N ] ,

(11)593
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Figure 10: Overall accuracy of the computational method in the case of stable axisymmetric solidification. Figure
adapted from [70].

where gT ν = gT ν (t,x), ν = s, l , are prescribed heat fluxes for the liquid and solid phases. The594

simulation investigates the influence of the thermal gradient G and the diffusion coefficient of595

aluminum (Al) on dendritic growth during solidification. As expected, increasing the thermal596

gradient leads to finer dendritic structures. The qualitative dependence of dendrite arm spacing on597

both G and the solidification rate R is consistent with observations in binary alloy systems. However,598

the quantitative details, such as the coefficients and exponents in the scaling laws, may differ599

due to additional complexities inherent in multicomponent systems. These include the presence600

of nontrivial phase diagrams, cross-diffusion effects (e.g., Onsager coupling), and unequal solute601

diffusivities in the liquid phase. The level-set simulation framework is particularly well-suited to602

capturing these effects, enabling systematic studies of how they influence microstructural evolution.603

4. Application - Epitaxial Growth and the Island Dynamics Model604

4.1. The Island Dynamics Model605

In [86, 144], Caflisch et al. introduced the Island Dynamics Model (IDM) as well as its numerical606

approximation using the level-set method in [87, 145] and later analyzed the IDM and developed607

step edge boundary conditions for well-posedness [146]. The core idea of the IDM is to represent608

the boundary of atomic-height islands using a continuous level-set function ϕ(x, t), such that Is-609

lands of heights k are represented by the level sets ϕ(x, t) = k − 1, and to consider a mean-field610

adatom density ρ = ρ(x, t). As such, the IDM achieves atomistic fidelity in the growth direction,611

while employing a continuum description in the lateral directions. The method also accounts for612

nucleation events, and other atomistic processes influencing island growth. The level-set function613

evolves according to the transport equation:614

∂ϕ

∂t
+ vn|∇ϕ| = 0,

where vn is the interface normal velocity field, which is computed from the adatom fluxes across615

the island boundary from the upper (k+1) and lower terraces (k):616

vn = aD(n · ∇ρ(k+1) − n · ∇ρ(k)),

where D is the adatom diffusion coefficient and a is the lattice constant.617

The adatom concentration ρ(x, t) satisfies a reaction-diffusion equation with source and sink618

terms:619

∂ρ

∂t
= F +D∇2ρ− dNnuc

dt
,
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Figure 11: Solidification microstructures obtained for values of Al diffusivity from DAl = 10−5 cm2/s to 8 · 10−5

cm2/s and GT from 100 K/cm to 5000 K/cm in case of L = 0.05 cm and V = 0.01 cm/s. Displayed in color is the
concentration field of Al and W. Figure adapted from [70].

where F is the deposition flux and the last term models the nucleation rate of new dimers assuming620

a probability proportional to ⟨ρ2⟩, i.e., the integral of ρ2, and written as:621

dNnuc

dt
= 2Dσ1⟨ρ2⟩,

where σ1 is the capture number for nucleation [147]. The factor of 2 accounts for the capture of 2622

adatoms during nucleation and the fact that dimers are assumed to be stable. In [148, 149], it was623

established that the capture numbers σs associated with islands of size s obey the scaling relation624

σs/σav = L(s/sav), where L denotes a linear functional dependence. This representation provides a625

consistent framework in which the reference value σ1 may be prescribed explicitly. This stochastic626

nucleation mechanism has been validated using KMC simulations [150]. Anisotropic growth can be627

captured by modifying vn. A key advantage of the Island Dynamics Model is its ability to take large628

time steps while accurately capturing the essential physics of adatom diffusion and detachment. A629

notable application of this approach is presented in [151], where an Island Dynamics Model was630

employed to study the narrowing and sharpening of the island-size distribution as a function of631

strain in the submonolayer heteroepitaxial growth regime. In that work, the model is coupled to632

an elastic formulation based on atomistic interactions, which is solved efficiently at each simulation633

step.634

The diffusion equation governing the adatom density ρ requires the specification of appropriate635

boundary conditions at island boundaries to accurately describe the underlying atomistic pro-636

cesses. These boundary conditions play a critical role in determining the predictive capabilities of637

the IDM, as they directly influence mass transport at the evolving interface. In the case where638

the diffusion from the upper and lower terraces are equal, the boundary condition is ρ = ρeq,639

where ρeq denotes the equilibrium adatom density. However, for most epitaxial growth, the dif-640

fusion coefficients are not equal, which promotes the growth of mounds with important practical641
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applications in photonic-crystal lasers, quantum dot lasers, single-photon emitters, solar cells, cat-642

alytic converters, lithography, and more. This boundary condition encapsulates the influence of the643

Ehrlich-Schwoebel (ES) barrier [152, 153] and serves as a key element in bridging atomistic-scale644

kinetics with continuum-scale morphological evolution [154, 155, 156]:645

∇ρ · n+
D′

D −D′ ρ =
D′

D −D′ ρeq, (12)

where ρ and its gradient ∇ρ are evaluated at the island boundary, D′ is an atomistic rate that646

characterizes the energy barrier for adatom diffusion across the island edge and n is the outward647

normal to the boundary. In the limit D′ → D, the boundary condition (12) simplifies to the648

Dirichlet condition ρ(x) = ρeq, as found in classical theories of step-flow growth [157, 158, 159]. The649

equilibrium adatom density ρeq plays a central role in defining attachment kinetics at step edges.650

In [160], an expression for ρeq is derived under the assumption of no Ehrlich-Schwoebel barrier,651

while in [137], the authors develop and implement a formulation that incorporates the effects of652

a finite Ehrlich-Schwoebel barrier. More generally, the value of ρeq depends on atomistic kinetic653

parameters, including the detachment rate and the rate of edge diffusion, as discussed in [144].654

4.2. Level-Set Simulation655

As an illustrative example, we report the results of level-set simulations from [161]. In the656

case of irreversible aggregation, corresponding to the boundary condition ρ = 0 at island edges,657

the Island Dynamics Model yields results that are in good agreement with kinetic Monte Carlo658

(KMC) simulations, as shown in [87]. Figure 12 illustrates this agreement by showing the evolution659

of the adatom density and island density as functions of surface coverage for various values of660

the ratio D/F . Additionally, the cluster size distribution at a final coverage of 20% is presented,661

further demonstrating the consistency between the IDM and atomistic simulation results. Level-set662

simulations have been used to find the functional form of capture numbers used in rate equations663

expressing the densities of islands of all sizes. The capture numbers quantify the efficiency with664

which an island of a given size, in a specified environment, competes for available monomers. A665

key advantage of the Island Density Model is its implicit incorporation of island-island correlations,666

thereby accounting for the geometric arrangement of islands relative to their neighbors. Notably,667

the capture numbers were found to exhibit a linear dependence on island size [162, 163, 164].668

Level-Set

KMC
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Figure 12: The island density (left) and adatom density (center) and cluster size distribution (right) for different
values of D/F in the case of the boundary condition ρ = 0 (irreversible aggregation). Each simulation has a final
coverage of 20%. The KMC simulations are from [87]. Figure adapted from [161].

Figure 13 illustrates the influence of the step-edge barrier on surface morphology during epitaxial669

growth. For a strong Ehrlich-Schwoebel barrier, corresponding to a small ratio D′/D = 0.01, the670

simulation exhibits the formation of well-defined mounds with a characteristic “wedding cake”671

structure, featuring approximately ten exposed terraces after the deposition of eleven monolayers.672

As D′/D increases, reflecting a reduction in the strength of the Ehrlich-Schwoebel barrier, the673

mounding becomes less pronounced. In the case where D′/D = 0.95, which is a very high ratio,674

the surface evolves toward a morphology consistent with near layer-by-layer growth, indicating that675

the suppression of interlayer transport asymmetry promotes smoother film evolution.676
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Figure 13: Effects of the Ehrlich-Schwoebel barrier and formation of mounds with D′/D = 0.01 (left) corresponding
to a strong Ehrlich-Schwoebel barrier and D′/D = 0.95 (right), corresponding to a scenario close to ρ(x) = ρeq.
Both simulations are at the same times. Figure adapted from [161].

5. Conclusion and Perspective677

The level-set method has emerged as a unifying computational framework for modeling free678

boundary problems across a wide spectrum of materials science applications. This review has679

synthesized its role in two contrasting yet complementary contexts: the solidification of multicom-680

ponent alloys and the mesoscale dynamics of epitaxial growth. In both application, the method’s681

ability to maintain a sharp interface, naturally handle topological changes, and flexibly incorporate682

boundary conditions provides significant advantages over alternative approaches.683

For alloy solidification, particularly in the context of additive manufacturing, the level-set formu-684

lation enables high-fidelity simulations of solid-liquid interfaces, capturing complex thermodynamic685

interactions and multi-species transport with high accuracy. It accommodates multicomponent686

systems and sharp-interface physics that are beyond the reach of phase-field models, especially for687

more than three component alloys. In the context of epitaxial growth, the Island Dynamics Model688

and its level-set implementation offers a continuum-scale alternative to stochastic kinetic Monte689

Carlo simulations, dramatically reducing computational cost while preserving physical accuracy. It690

efficiently models nucleation, coalescence, and step-edge kinetics, with the flexibility to incorporate691

key phenomena such as the Ehrlich-Schwoebel barrier through Robin-type boundary conditions.692

Taken together, these applications underscore the versatility and robustness of level-set methods in693

materials science. Their seamless integration with finite volume and finite difference discretizations,694

adaptive mesh refinement, and physically grounded boundary conditions makes them a powerful695

tool for predictive modeling and design.696

Further developments in multiscale coupling, uncertainty quantification, and high-performance697

implementations will continue to expand the frontiers of level-set-based simulation in materials698

science. An especially promising direction is the integration of machine learning (ML) with level-699

set frameworks in materials science for designing hybrid physics-based/data-driven simulations.700

ML can assist in learning surrogate models for expensive forward simulations, accelerating inverse701

design by providing data-driven approximations of the shape-to-structure map. Recent advances702

in computational materials science have explored this integration to enhance modeling capabilities,703

improve computational efficiency, and enable data-driven materials design. One such effort is the704

Level-Set Learning framework, which employs reversible neural networks to identify low-dimensional705

parameterizations of level sets in high-dimensional spaces. This approach has proven especially706

effective for reducing uncertainties and avoiding overfitting when working with limited data in707

inverse design and predictive modeling applications [165]. Another direction is the use of hybrid708

inference systems that couple machine learning with classical numerical techniques to improve709
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curvature estimation in level-set computations or the evolution of the level-set itself. By using710

neural networks to refine gradient and curvature evaluations near interfaces, this approach helps711

mitigate numerical errors such as mass loss and surface tension computations, thereby increasing712

the accuracy of multiphase and interface-driven simulations [166, 167, 168, 169].713

Machine learning techniques have also been integrated into the level-set framework to address714

Stefan problems [170], and have also been employed for operator learning in the context of inverse715

problems governed by diffusion-dominated dynamics [171] on fixed irregular domains. The PINN716

approach of [170] to the solution of the Stefan problem showed success on the prediction of planar717

interfaces, but it is not clear whether or not this approach will be accurate in the practical cases718

where dendritic structures develop. In addition, [172] pointed out that the erratic convergence719

behavior often observed in physics-informed neural networks (PINNs) may stem from their reliance720

on automatic differentiation. This concern is further supported by [173], which highlights funda-721

mental flaws in software-based automatic differentiation, including its dependency on the network’s722

current approximation of the solution during training. This dependency can lead to significant723

errors, particularly when the evolving solution is far from the true one. To address this issue,724

[172] proposed incorporating a discretized formulation of the governing partial differential equation725

(PDE), thereby bypassing automatic differentiation. Their results demonstrated that convergence726

improves systematically with the introduction of additional virtual grid points, yielding more ac-727

curate and stable solutions. Other fundamental work on optimization of neural networks can be728

found in [174, 175] and the references therein. These examples collectively highlight the emerging729

role of machine learning as a powerful complement to level-set methods in addressing multiscale,730

nonlinear, and data-intensive challenges in materials science.731
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[169] Luis Ángel Larios-Cárdenas and Frederic Gibou. A deep learning approach for the com-1161

putation of curvature in the level-set method. SIAM Journal on Scientific Computing,1162

43(3):A1754–A1779, 2021.1163

[170] Sifan Wang and Paris Perdikaris. Deep learning of free boundary and stefan problems. Journal1164

of Computational Physics, 428:109914, 2021.1165

[171] Samira Pakravan, Pouria A Mistani, Miguel A Aragon-Calvo, and Frederic Gibou. Solving1166

inverse-pde problems with physics-aware neural networks. Journal of Computational Physics,1167

440:110414, 2021.1168

[172] Pouria A Mistani, Samira Pakravan, Rajesh Ilango, and Frederic Gibou. Jax-dips: neu-1169

ral bootstrapping of finite discretization methods and application to elliptic problems with1170

discontinuities. Journal of Computational Physics, 493:112480, 2023.1171

[173] David Johnson, Trevor Maxfield, Yufei Jin, and Ronald Fedkiw. Software-based automatic1172

differentiation is flawed. arXiv preprint arXiv:2305.03863, May 2023. https://arxiv.org/1173

abs/2305.03863.1174

[174] David Johnson and Ronald Fedkiw. Addressing discontinuous root-finding for subsequent1175

differentiability in machine learning, inverse problems, and control. Journal of Computational1176

Physics, 497:112624, 2024.1177

[175] David Hyde, Minghao Bao, and Ronald Fedkiw. On obtaining sparse semantic solutions for1178

inverse problems, control, and neural network training. Journal of Computational Physics,1179

443:110498, 2021.1180

29

https://www.ornl.gov/research-highlight/level-set-learning-reducing-uncertainties-function-approximation
https://www.ornl.gov/research-highlight/level-set-learning-reducing-uncertainties-function-approximation
https://www.ornl.gov/research-highlight/level-set-learning-reducing-uncertainties-function-approximation
https://arxiv.org/abs/2305.03863
https://arxiv.org/abs/2305.03863
https://arxiv.org/abs/2305.03863


Appendix A. ENO-WENO Schemes1181

We provide details on the ENO/WENO schemes used in this work1182

Appendix A.1. ENO Schemes1183

In the numerical solution of Hamilton–Jacobi equations and conservation laws, one of the key1184

challenges is to design reconstructions that remain accurate in smooth regions while avoiding spu-1185

rious oscillations near discontinuities. The Essentially Non-Oscillatory (ENO) schemes address this1186

challenge and are built upon two guiding principles:1187

1. The upwind direction must be correctly identified,1188

2. When extending the stencil to construct higher-order interpolants, the additional point should1189

be chosen from the region where the solution exhibits the greatest smoothness, thereby sup-1190

pressing oscillations near discontinuities.1191

A convenient framework for constructing polynomial interpolants in the context of ENO re-1192

constructions is provided by Newton’s form together with divided difference tables. Consider, for1193

example, a stencil consisting of the grid points x0, x1, x2, and x3. The Newton representation of1194

the interpolating polynomial is given by:1195

ũ(x) = a0︸︷︷︸
ũ0(x)

+ a1(x− x0)︸ ︷︷ ︸
ũ1(x)

+ a2(x− x0)(x− x1)︸ ︷︷ ︸
ũ2(x)

+ a3(x− x0)(x− x1)(x− x2)︸ ︷︷ ︸
ũ3(x)

,

where the coefficients ai ∈ R are found by imposing that:1196

ũ(x0) = u(x0), ũ(x1) = u(x1), ũ(x2) = u(x2), ũ(x3) = u(x3).

With this polynomial, the derivative at xi is expressed as:1197

dũ

dx
(xi) = ũ1(xi) + ũ2(xi) + ũ3(xi).

The divided-difference table provides a convenient framework for defining the coefficients ai1198

iteratively. Since ũ(x0) = u(x0), the first coefficient depends only on the initial data point2, which1199

we denote by1200

a0 = u[x0].

Once a0 is known, the next coefficient a1 is determined from the condition ũ(x1) = u(x1), so that1201

it depends on u(x0) and u(x1); we write1202

a1 = u[x0, x1].

Proceeding in the same way, we obtain1203

a2 = u[x0, x1, x2], a3 = u[x0, x1, x2, x3].

In general, the divided differences u[·] are defined recursively as1204

u[x0, . . . , xi] =
u[x1, . . . , xi]− u[x0, . . . , xi−1]

xi − x0
.

The standard notations are Diu = u[x0, . . . , xi]1205

The divided differences are particularly useful because their magnitudes provide a measure of1206

the local smoothness of the solution. Specifically, |D1u| reflects the strength of the first derivative,1207

|D2u| that of the second derivative, and so forth. Consequently, they offer valuable guidance in1208

selecting the most appropriate grid point to add to a stencil.1209

Third-Order ENO Reconstruction:1210

In this work we employ the third-order ENO (ENO3) scheme. Suppose that the characteristic1211

direction is determined by λ. The construction of the interpolant proceeds as follows:1212

2Indeed, a0 = u(x0).
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Step 1. Upwind selection.. The first-order interpolant ũ1(x) must account for the upwind direction:1213

ũ1(x) =

{
D1

i− 1
2

, λ ≥ 0,

D1
i+ 1

2

, λ < 0.

Step 2. Second-order extension.. To avoid including discontinuities, the stencil is extended by1214

comparing smoothness indicators. For instance, if λ < 0 the first step involves the points (xi, xi+1).1215

The candidates for extension are xi−1, associated with D2
i , and xi+2, associated with D2

i+1. The1216

second-order term is chosen as1217

ũ2(x) =

{
D2

i , |D2
i | ≤ |D2

i+1|,
D2

i+1, otherwise.

Step 3. Third-order extension.. The procedure is repeated at the third level. Suppose D2
i was1218

selected at Step 2. The candidates are then xi−2 (associated with D3
i− 1

2

) and xi+2 (associated with1219

D3
i+ 1

2

). The third-order contribution is1220

ũ3(x) =

{
D3

i− 1
2

, |D3
i− 1

2

| ≤ |D3
i+ 1

2

|,
D3

i+ 1
2

, otherwise.

Interpolant and derivative.. In this example, assuming |D3
i− 1

2

| ≤ |D3
i+ 1

2

|, the reconstructed polyno-1221

mial is1222

ũ(x) = D0
i +D1

i+ 1
2
(x− xi) +D2

i (x− xi)(x− xi+1) +D3
i− 1

2
(x− xi)(x− xi+1)(x− xi−1).

From this expression, the derivative at xi follows directly:1223

ũx(x) = D1
i+ 1

2
+D2

i [ 2x− (xi + xi+1) ]

+D3
i− 1

2

(
3x2 − 2x(xi + xi−1 + xi+1) + (xi−1xi + xixi+1 + xi−1xi+1)

)
.

Notation: In the case λ > 0, the upwind stencil involves the points i and i−1. We denote by D−
x u1224

the corresponding approximation of ux(xi). Conversely, when λ < 0, the upwind stencil involves1225

the points i and i+ 1, and we denote by D+
x u the approximation of ux(xi).1226

Appendix A.2. WENO Schemes1227

As described in Appendix A.1, the ENO scheme selects among three candidate stencils, first by1228

enforcing the correct upwind direction and then by avoiding stencils that cross discontinuities. In1229

smooth regions, a weighted convex combination of these stencils yields higher-order accuracy. This1230

principle forms the foundation of the Weighted Essentially Non-Oscillatory (WENO) schemes.1231

We illustrate the construction for the approximation of D−
x u; the case of D+

x u follows analo-1232

gously. The three possible ENO approximations of D−
x u are given by1233

u1
x = 1

3d1 − 7
6d2 +

11
6 d3,

u2
x = − 1

6d2 +
5
6d3 +

1
3d4,

u3
x = 1

3d3 +
5
6d4 − 1

6d5,

where the finite differences are defined as1234

d1 =
ui−2 − ui−3

∆x
, d2 =

ui−1 − ui−2

∆x
, d3 =

ui − ui−1

∆x
, d4 =

ui+1 − ui

∆x
, d5 =

ui+2 − ui+1

∆x
.

The WENO approximation of D−
x u is constructed as a convex combination of the above stencils:1235

D−
x u = ω1u

1
x + ω2u

2
x + ω3u

3
x, (A.1)
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where the nonlinear weights ωk are chosen such that the scheme achieves fifth-order accuracy in1236

smooth regions while retaining the ENO property near discontinuities. By construction, the weights1237

satisfy ω1 + ω2 + ω3 = 1. The optimal (linear) weights that give fifth-order accuracy in smooth1238

regions are {0.1, 0.6, 0.3}.1239

The nonlinear weights are obtained through the following procedure:1240

• Smoothness indicators. For each stencil, define1241

S1 = 13
12 (d1 − 2d2 + d3)

2 + 1
4 (d1 − 4d2 + 3d3)

2,

S2 = 13
12 (d2 − 2d3 + d4)

2 + 1
4 (d2 − d4)

2,

S3 = 13
12 (d3 − 2d4 + d5)

2 + 1
4 (3d3 − 4d4 + d5)

2.

• Nonlinear coefficients. Define1242

α1 =
0.1

(S1 + ϵ)2
,

α2 =
0.6

(S2 + ϵ)2
,

α3 =
0.3

(S3 + ϵ)2
,

with ϵ = 10−6 max(d21, d
2
2, d

2
3, d

2
4, d

2
5) + 10−99 to prevent division by zero.1243

• Nonlinear weights. Finally, set1244

ω1 =
α1

α1 + α2 + α3
,

ω2 =
α2

α1 + α2 + α3
,

ω3 =
α3

α1 + α2 + α3
.

The construction of D+
x u follows in the same manner, but with the definitions of the finite1245

differences shifted as1246

d1 =
ui+3 − ui+2

∆x
, d2 =

ui+2 − ui+1

∆x
, d3 =

ui+1 − ui

∆x
, d4 =

ui − ui−1

∆x
, d5 =

ui−1 − ui−2

∆x
.

We refer the interested reader to [43, 41, 44] for additional details on ENO/WENO schemes.1247
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