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Abstract. This paper presents an implicit solution formula for the Hamilton-Jacobi partial4
differential equation (HJ PDE). The formula is derived using the method of characteristics and is5
shown to coincide with the Hopf and Lax formulas in the case where either the Hamiltonian or the6
initial function is convex. It provides a simple and efficient numerical approach for computing the7
viscosity solution of HJ PDEs, bypassing the need for the Legendre transform of the Hamiltonian8
or the initial condition, and the explicit computation of individual characteristic trajectories. A9
deep learning-based methodology is proposed to learn this implicit solution formula, leveraging the10
mesh-free nature of deep learning to ensure scalability for high-dimensional problems. Building upon11
this framework, an algorithm is developed that approximates the characteristic curves piecewise12
linearly for state-dependent Hamiltonians. Extensive experimental results demonstrate that the13
proposed method delivers highly accurate solutions, even for nonconvex Hamiltonians, and exhibits14
remarkable scalability, achieving computational efficiency for problems up to 40 dimensions.15
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1. Introduction. Hamilton-Jacobi partial differential equations (HJ PDEs) are18

of paramount importance in various fields of mathematics, physics, and engineering,19

including optimal control [27, 74, 4], mechanics [23, 21], and the study of dynamic20

systems [44, 73]. As they provide a powerful framework for modeling systems governed21

by physical laws, HJ PDEs have a wide range of applications in diverse areas such as22

geometric optics [63, 59], computer vision [8, 33, 65], robotics [53, 51, 3], trajectory23

optimization [22, 68], traffic flow modeling [37, 49], and financial strategies [32, 7].24

These applications illustrate the versatility and significance of HJ PDEs, emphasizing25

the necessity for effective methods to solve them in both theoretical and practical26

contexts. It is well-known that the solutions to HJ PDEs are typically continuous27

but exhibit discontinuous derivatives, irrespective of the smoothness of the initial28

conditions or the Hamiltonian. Moreover, such solutions are typically non-unique.29

In this regard, viscosity solutions [14] are commonly considered as the appropriate30

notion of solution, as they reflect the physical characteristics inherent to the problem.31

Numerical methods for solving HJ PDEs have been extensively developed, with32

numerous practical applications across various fields. The most prominent methods33

include essentially non-oscillatory (ENO) and weighted ENO (WENO) type schemes34

[67, 38, 6, 71], semi-Lagrangian methods [28, 15, 29], and level set approaches [66,35

63, 64, 60, 2]. However, they encounter significant scalability challenges as the di-36

mensionality of the state space increases. These methods rely on discretization of37

the state space with a grid and approximating the Hamiltonian in a discrete form.38

Consequently, the number of grid points required to obtain accurate solutions grows39

exponentially with the dimensionality of the problem, resulting in prohibitive compu-40

tational costs. In high-dimensional settings, particularly those involving more than41
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2 Y. PARK AND S. OSHER

four dimensions, this scaling issue renders the classical methods impractical for many42

real-world applications, where high-dimensional state spaces are prevalent.43

Several approaches have been proposed to address the curse of dimensionality in44

solving HJ PDEs. Methods based on max-plus algebra [58, 1, 31] show promise but45

are restricted to specific classes of optimal control problems and encounter significant46

challenges in practical implementation due to their complexity. Another promising47

approach involves the use of Hopf or Lax formulas to represent solutions to HJ PDEs48

[20, 12, 13, 10]. These formulas offer a causality-free approach, where solutions at each49

spatial and temporal point can be computed by solving an optimization problem, thus50

enabling parallel computation. This approach eliminates the reliance on grid-based51

discretization, making it particularly well-suited for high-dimensional problems. How-52

ever, these methods require computing the Legendre transform of the Hamiltonian or53

initial function and are generally applicable only under specific assumptions, such as54

convexity, or when the problem can be framed as a particular type of control prob-55

lem. In parallel, algorithms based on optimal control theory have been developed.56

For problems with convex Hamiltonians, HJ equations are closely connected to op-57

timal control formulations, where Pontryagin’s maximum principle (PMP) provides58

necessary conditions for optimality. Several PMP-based methods have been proposed59

[41, 42, 82], which are essentially equivalent to employing the method of characteris-60

tics for solving the associated Hamiltonian system. Despite their theoretical appeal,61

the practical effectiveness of these methods is often limited by the need to solve a62

system of ordinary differential equations (ODEs) at each point. Additionally, some63

of these methods assume that multiple characteristics do not intersect, a condition64

that may not hold in general scenarios. Furthermore, alternative techniques, such as65

tensor decomposition [24] and polynomial approximation [40, 39], have been studied66

for specific control problems.67

Recent advancements in deep learning have given rise to a growing interest in68

leveraging the extensive representational capabilities of neural networks to solve PDEs69

[75, 83, 72, 57, 52, 81]. The viscosity solution of HJ PDEs is challenging to ob-70

tain directly from the PDE itself, which underscores the development of alternative71

approaches beyond the established methods like physics-informed neural networks72

(PINNs) [72]. In response, data-driven methods have been proposed for solving HJ73

PDEs [61, 25, 16]; however, these methods face several challenges, including the need74

for large amounts of training data, the limitation that their performance cannot ex-75

ceed the accuracy of the numerical methods used to generate the data, and concerns76

regarding their ability to generalize to unseen scenarios. Moreover, the integration77

of reinforcement learning techniques to solve HJ PDEs related to control problems78

has been studied [86, 54]. Another line of research has focused on the development79

of specialized neural network architectures that express representation formulas to80

specific HJ PDEs. Notable examples include architectures leveraging min-max alge-81

bra to model the value function in optimal control [17], as well as designs based on82

Hopf-type formulas [18, 19]. Although these approaches effectively bridge mathemat-83

ical solution representations and network architecture, their applicability is limited84

to specific classes of problems. Additionally, for problems formulated as stochastic85

optimal control, deep learning methods leveraging the backward stochastic differential86

equation (BSDE) representations have been developed [36, 62, 70], providing a prob-87

abilistic framework for approximating solutions in high-dimensional settings. One of88

the most closely related prior works introduces a deep learning approach for learning89

implicit solution formulas along with characteristics for scalar conservation laws as-90

sociated with one-dimensional HJ PDEs [84]. However, this method does not ensure91
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the attainment of an entropy solution.92

This study presents a novel implicit solution formula for HJ PDEs. The proposed93

implicit solution formula is derived through the characteristics of the HJ PDE, with94

the costate identified as the gradient of the solution at the current spatio-temporal95

point, leading to an implicit representation formula for the solution. We demonstrate96

that this new formula coincides with the classical Hopf and Lax formulas, which pro-97

vides the viscosity solution for HJ PDEs in the case where either the Hamiltonian or98

the initial function is convex (or concave). Notably, the implicit solution formula is99

simpler than both the Hopf and Lax formulas, as it does not require the Legendre100

transform of either the Hamiltonian or the initial function, thereby broadening its101

practical applicability. Furthermore, although being based on characteristics, the im-102

plicit solution formula alleviates the need to solve the system of characteristic ODEs103

from the initial state to the present time. From an optimal control perspective, we104

further explore the connection of the proposed formula with the Pontryagin’s maxi-105

mum principle and Bellman’s principle, showing that the proposed implicit solution106

formula serves as an implicit representation of Bellman’s principle.107

Building on this foundation, we propose a deep learning-based approach to solve108

HJ PDEs by learning the implicit solution formula. This method approximates the109

solution as a Lipschitz continuous function, leveraging the powerful expressive capac-110

ity of neural networks. Unlike traditional grid-based methods, our approach does not111

require discretization of the domain, making it highly scalable and efficient, especially112

for high-dimensional problems. This effectively mitigates the curse of dimensionality,113

ensuring that computational time and memory usage scale efficiently with dimension-114

ality. Thanks to the inherent simplicity of the implicit solution formula, it obviates115

the need for computing the Legendre transform and individual characteristic trajec-116

tories, thereby enhancing both its applicability and computational efficiency across a117

wide range of problems. Through extensive and rigorous experimentation, we show118

that the proposed algorithm provides accurate solutions even for problems with up119

to 40 dimensions with negligible increases in computational cost. Importantly, the120

method also shows robust performance on various nonconvex HJ PDEs, for which121

mathematical demonstration has not been established, underscoring its versatility122

and potential.123

We extend our approach to handle HJ PDEs with state-dependent Hamiltonians.124

In such cases, where the characteristic curves are no longer linear, deriving an im-125

plicit solution formula becomes more intricate. To address this, we approximate the126

characteristic curves as piecewise linear segments over short time intervals, applying127

the proposed implicit solution formula at each interval. This leads to an efficient128

time-marching algorithm that can handle state-dependent Hamiltonians, which we129

validate through a series of experiments involving high-dimensional optimal control130

problems. The results demonstrate that the proposed method is not only simple and131

efficient but also effectively solving a wide range of high-dimensional, nonconvex HJ132

PDEs, highlighting its potential as a valuable tool for addressing complex optimal133

control problems and dynamic systems.134

2. Implicit Solution formula of Hamilton-Jacobi Equations.135

2.1. Implicit Solution Formula along Characteristics. In this subsection,136

we introduce a novel implicit solution formula for the Hamilton-Jacobi partial differ-137
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ential equation (HJ PDE):138

(2.1)

{
ut +H (∇u) = 0 in Ω× (0, T )

u = g on Ω× {t = 0},
139

where Ω ⊂ Rd is the spatial domain, H : Rd → R is the Hamiltonian and g : Ω→ R is140

the initial function. System of characteristic ODEs for (2.1), also known as Hamilton’s141

system, is given by the following:142

(2.2a)

(2.2b)

(2.2c)

(2.2d)


ẋ = ∇H
u̇ = q + pT∇H = −H + pT∇H
q̇ = 0

ṗ = 0,

143

where the variables q and p are shorthand for the partial derivatives q = ut and144

p = ∇u, respectively. From (2.2d) it is clear that the value of p, which is the sole145

argument of the Hamiltonian, remains constant along the characteristic. Therefore,146

the characteristic emanated from x (0) = x0 ∈ Ω is a straight line147

x (t) = t∇H (p) + x0,148

implying that149

u (t,x (t)) = −tH (p) + tpT∇H (p) + u (x0, 0)150

= −tH (p) + tpT∇H (p) + g (x0) .151

Given the constant nature of p along each characteristic line, its value can be deter-152

mined at any intermediate time between the initial and current times. In this context,153

we adopt p as the gradient of the solution at the current time. Substituting p = ∇u154

and expressing x (t) = x ∈ Ω induces that155

x0 = x− t∇H (∇u (x, t)) ,156

and hence we attain the following implicit solution formula for HJ PDEs (2.1):157

(2.3) u (x, t) = −tH (∇u) + t∇uT∇H (∇u) + g (x− t∇H (∇u)) .158

It is worth noting that this implicit solution formula expresses the solution without159

requiring the Legendre transform of the Hamiltonian H or the initial function g.160

Moreover, it does not require to compute individual characteristic trajectories by161

solving the system of characteristic ODEs. Therefore, it provides a highly practical162

and straightforward approach to solving HJ PDEs. Building upon this formula, we163

propose a highly simple and effective deep learning-based methodology for solving HJ164

PDEs in section 3.165

A key distinction between conventional approaches based on characteristics and166

the proposed implicit solution formula lies in the treatment of p, which is chosen167

as the gradient of the solution ∇u at the current time t. Since p remains constant168

along each characteristic line, it can be readily determined from the initial data.169

Consequently, conventional methods typically express p in terms of∇g (x0). However,170

these approaches are limited in situations where no characteristic traces back to the171
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initial time t = 0, resulting in the gradient at the current time not being accessible172

from the initial data. In contrast, our approach employs the current value of p (t) =173

∇u (x, t), allowing the implicit solution formula to effectively handle such scenarios.174

It is well-established that under certain assumptions on the Hamiltonian H and175

the initial function g, a representation formula for the viscosity solution can be derived.176

The first is the Hopf-Lax formula177

(2.4) u (x, t) = inf
y

{
tH∗

(
x− y

t

)
+ g (y)

}
,178

which holds for convex (or concave) H and Lipschitz g [35, 5, 55], or for Lipschitz and179

convexH and continuous g [77], or also for strictly convexH and lower semicontinuous180

(l.s.c.) g [46, 47]. Here, H∗ is the Legendre transform of H. On the other hand, Hopf181

formula182

(2.5) u (x, t) = − inf
z

{
g∗ (z) + tH (z)− xTz

}
183

is valid for Lipschitz and convex (or concave) g and merely continuous H [35, 5], or for184

convex g and Lipschitz H [77]. In the following, we demonstrate that the proposed185

implicit solution formula (2.3) represents these two respective formulas under the186

conditions under which they hold.187

Theorem 2.1. Assume the Hamiltonian H is differentiable and satisfies188

(2.6)

{
p 7→ H (p) is strictly convex or concave,

lim|p|→∞
H(p)
|p| = +∞,

189

and the initial function g is l.s.c. Then, the continuous function u that satisfies the190

implicit solution formula (2.3) is the viscosity solution of (2.1) a.e.191

Proof. The proof is provided in Appendix A.1.192

Theorem 2.2. Assume the initial function g satisfies193 {
x 7→ g (x) is convex or concave,

lim|x|→∞
g(x)
|x| = +∞,

194

that the Hamiltonian H is continuous, and that either the H or g is Lipschitz con-195

tinuous. Then, the continuous function u that satisfies the implicit solution formula196

(2.3) is the viscosity solution of (2.1) a.e.197

Proof. The proof is provided in Appendix A.2.198

Theorems 2.1 and 2.2 offer the theoretical validation of the implicit solution for-199

mula (2.3) under the assumption of convexity of the Hamiltonian H or the initial200

function g. However, this result has not yet been extended to the nonconvex case.201

Nonetheless, as illustrated in subsection 4.2, we present robust empirical evidence202

demonstrating the performance of the proposed approach through extensive exper-203

iments on a diverse range of nonconvex examples, where neither the Hamiltonian204

nor the initial function is convex (or concave). These results suggest the potential205

applicability and validity of the proposed formula in such scenarios.206

To facilitate comprehension of the implicit solution formula, a simple example is207

presented.208
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Example 2.1. Consider a one-dimensional example with a quadratic Hamilton-209

ian and a homogeneous initial condition:210

(2.7)

{
ut + u2x = 0 in R× (0,∞)

u = 0 on R× {t = 0}.
211

The viscosity solution to this problem is u∗ = 0. Note that there are infinitely many212

Lipschitz functions satisfying (2.7) a.e. [26], for instance,213

v (x, t) =


0 if | x |≥ t
x− t if 0 ≤ x ≤ t
−x− t if − t ≤ x ≤ 0.

214

This example shows that, although there are infinitely many Lipschitz functions that215

satisfy the HJ PDE, the implicit solution formula uniquely characterizes the viscosity216

solution. The implicit solution formula (2.3) corresponding to (2.7) is written as217

(2.8) u = tux.218

For t = 0, (2.8) satisfies the initial condition u = 0. For a fixed time t > 0, (2.8)219

represents an ordinary differential equation (ODE) with respect to the variable x with220

a coefficient that depends on t, and the ODE admits infinitely many solutions221

u = Cex/t, ∀C ∈ R.222

However, in order to satisfy the initial condition u = 0 at t = 0, it follows that C must223

be zero. Therefore, the viscosity solution u∗ = 0 is the unique continuous function224

that satisfies the implicit solution formula (2.8).225

This example illustrates that, despite the existence of an infinitely many weak226

solutions to the governing HJ PDE, the continuous function that satisfies the implicit227

solution formula (2.3) is the unique viscosity solution. However, it also suggests that,228

at a fixed time t > 0, the implicit solution formula may admit multiple solutions.229

For a fixed t > 0, the implicit solution formula (2.3) describes a first-order nonlinear230

static PDE (or an ODE in the one-dimensional case) in x, where the time variable231

t appears as coefficients. The absence of boundary conditions in this static PDE at232

fixed t > 0 naturally leads to the ill-posedness of the PDE with multiple solutions.233

Therefore, the condition that the implicit solution formula (2.3) satisfies the initial234

condition at t = 0 is crucial, and finding a continuous function that satisfies the235

implicit solution formula across the entire spacetime domain from the initial data is236

essential for obtaining the unique viscosity solution. It is noteworthy, however, that237

the above example is taken in the unbounded spatial domain R. For the general case238

of HJ PDEs on a bounded domain Ω, boundary conditions are specified. In such cases,239

the given boundary condition serves as the boundary condition for the static PDE240

described by (2.3) at a fixed time, thereby ensuring the uniqueness of the solution.241

Remark 2.3. (Level set propagation) If the Hamiltonian H is homogeneous of242

degree one in its gradient argument, i.e., for all λ > 0.243

H (λp) = λH (p) ,244

then the implicit solution formula (2.3) comes down to the following simple formula245

a.e.246

(2.9) u (x, t) = g (x− t∇ H (∇u)) ,247
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where the solution u is constant along the characteristics.248

2.2. Control Perspectives on the Implicit Solution Formula. In this sub-249

section, we revisit the implicit solution formula (2.3) from the perspective of control250

theory, elucidating that it represents an implicit formulation of Bellman’s principle.251

This perspective also enables a comprehensive exploration of the relationships be-252

tween the implicit solution formula and Pontryagin’s maximum principle (PMP) and253

the Hopf-Lax formula (2.4), while also highlighting the distinctions between these254

established approaches and the proposed implicit solution formula.255

Let L = L (q) : Rd → R be the corresponding Lagrangian, that is, L = H∗, the256

Legendre transform of H. Under the assumption (2.6) on the Hamiltonian H, the257

Lagrangian satisfies258 {
q 7→ L (q) is convex,

lim|q|→∞
L(q)
|q| = +∞,

259

and H (p) = L∗ (p) = sup
q

{
pTq− L (q)

}
.260

It is well-known that the viscosity solution u of the HJ PDEs261

(2.10)

ut +H (∇u) = ut + sup
q

{
∇uTq− L (q)

}
= 0,

u (x, 0) = g (x)
262

is represented by the value function of the following corresponding optimal control263

problem:264

(2.11) u (x, t) = inf
q

{∫ t

0

L (q (s)) ds+ g (y (0)) : y (t) = x, ẏ(s) = q(s), 0 ≤ s ≤ t
}
.265

Pontryagin’s maximum principle (PMP) states that the optimal trajectory of266

state y (t) arriving at y (t) = x and costate p (t) satisfies267

(2.12a)

(2.12b)

(2.12c)


ẏ = q, y (t) = x,

ṗ = 0, p (0) = ∇g (y(0)) ,
q = argmax

v

{
pTv − L (v)

}
.

268

Note that this is identical to the characteristic ODEs for the state x (2.2a) and269

the gradient of the solution (2.2d) of the HJ PDEs. Therefore, PMP implies that the270

characteristic of the HJ PDEs corresponds to the optimal trajectory.271

We now establish that both the Hopf-Lax formula and the implicit solution for-272

mula can be derived from the PMP in conjunction with the definition of the value273

function. This facilitates a comprehensive understanding of their relationships and274

differences.275

Hopf-Lax Formula. Since the costate p is constant along the optimal trajec-276

tory (2.12b), the last condition (2.12c) of the PMP implies that q is also constant.277

Therefore, from (2.12a), it follows that the optimal trajectory of y is a straight line,278

whose solution is given by279

(2.13) y (0) = y (t)− tq = x− tq.280
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Therefore, the optimal q is expressed by y (0) as follows:281

(2.14) q =
x− y (0)

t
,282

and hence, the minimization with respect to q can be transformed into a minimization283

with respect to y (0) ∈ Rd. Substituting this relation (2.14) into the definition of the284

value function (2.11) leads to the following Hopf-Lax formula:285

u (x, t) = inf
y∈Rd

{∫ t

0

L

(
x− y

t

)
ds+ g (y)

}
286

= inf
y∈Rd

{
tL

(
x− y

t

)
+ g (y)

}
287

= inf
y∈Rd

{
tH∗

(
x− y

t

)
+ g (y)

}
.288

In other words, the Hopf-Lax formula is derived by substituting the control q in terms289

of the initial state y (0) = y, leveraging the fact that the optimal trajectory is linear290

(2.14), as determined by the characteristic ODE of the PMP.291

Implicit Solution formula. The implicit solution formula (2.3) is derived in292

a manner analogous to the Hopf-Lax formula, but it differs by expressing p as the293

gradient of the value function ∇u and additionally removing the Legendre transform.294

From the optimality of q in (2.12c), the Hamiltonian is written as295

(2.15) H (p) = pTq+ L (q) .296

It follows that297

(2.16) ∇pH =
∂H

∂p
+
∂H

∂q

∂q

∂p
=
∂H

∂p
= q,298

where ∂H
∂q = 0 is induced from (2.12c). Let q∗ be the optimal control. Putting (2.12c),299

(2.13), and (2.14) to the definition of the value function in (2.11) leads to the following300

formula of the value function:301

u (x, t) = tL (q∗) + g (x− tq∗)

= t
(
H (p)− pTq∗)+ g (x− tq∗)

= t
(
H (p)− pT∇pH (p)

)
+ g (x− t∇pH (p)) ,

(2.17)302

where the second and third equalities are derived from (2.15) and (2.16), respectively.303

In other words, by substituting these two expressions (2.15) and (2.16), we derive the304

formula for the value function u that is independent of both the control q and the305

Legendre transform. Since the optimal p is the gradient of the value function ∇u, the306

solution formula (2.17) derived from PMP is identical to the implicit solution formula307

(2.3). Furthermore, it is important to note that the definition of the value function308

(2.11) precisely encapsulates the integral of the characteristic ODE of u (2.2b); that309

is, it directly represents the solution to the characteristic ODE of u (2.2b). In other310

words, the characteristic ODE of u (2.2b), which is not explicitly included in the311

PMP formula (2.12), is inherently embedded within the construction of Bellman’s312

value function.313
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Consequently, the PMP (2.12a)-(2.12c), the Bellman’s value function (2.11), the314

Hopf-Lax formula (2.4), and the proposed implicit solution formula (2.3) are all in-315

terconnected. The PMP states that the characteristics of the HJ PDEs correspond to316

the optimal trajectory, and Bellman’s principle expresses the value function in terms317

of the solution to the characteristic ODE of u (2.2b). Together, they imply that the318

viscosity solution to the HJ PDEs (2.1) is defined along the characteristics.319

However, there are notable differences in how these formulas yield the solution to320

(2.1) from a practical perspective. The PMP necessitates the solution of a single tra-321

jectory of the characteristic ODEs, which implies that, when attempting to compute322

the value function, one must solve a system of ODEs for each trajectory, introducing323

significant computational complexity. The Hopf-Lax formula, by exploiting the lin-324

earity of the optimal trajectory, eliminates the need to solve such ODEs. However, it325

involves the computation of the Legendre transform of the Hamiltonian H, ultimately326

leading to a challenging min-max problem. In contrast, the implicit solution formula327

(2.3) alleviates both the ODE solving of PMP and the min-max problem from the328

Hopf-Lax formula by leveraging the fact that the optimal costate p is the gradient of329

the solution ∇u. Consequently, compared to the PMP and the Hopf-Lax formula, the330

proposed implicit solution formula provides a more practical and widely applicable331

approach for solving HJ PDEs.332

3. Learning Implicit Solution with Neural Networks. In this section, we333

introduce a deep learning-based approach for solving the implicit solution formula334

(2.3). Building upon the implicit solution formula, we propose the following mini-335

mization problem:336

(3.1) min
u
L (u) :=

∫ T

0

∫
Ω

(
u+tH (∇u)−t∇uT∇H (∇u)−g (x− t∇H (∇u))

)2

dx dt.337

The minimization problem (3.1) is inherently complex to be efficiently solved using338

classical numerical methods. To address this challenge, we propose a deep learning339

framework that has shown significant effectiveness in optimizing complex problems.340

This approach enables the scalable learning of the implicit solution formula, even in341

high-dimensional settings, thereby allowing the solution of the HJ PDEs (2.1) to be342

represented by a neural network, which is a Lipschitz function.343

3.1. Implicit Neural Representation. We represent the solution u of the344

HJ PDEs (2.1) using a standard artificial neural network architecture, a multi-layer345

perceptron (MLP). The MLP is a function uθ : Rd×R→ R defined as the composition346

of functions, which can be expressed as follows:347

(3.2) uθ (x, t) =W (hL ◦ · · · ◦ h0 (x, t)) + b, (x, t) ∈ Rn × R,348

where L ∈ N is a given depth, W ∈ R1×dL is a weight of the output layer, b ∈ R is349

an output bias and the perceptron (also known as the hidden layer) hℓ : Rdℓ−1 → Rdℓ350

is defined by351

hℓ (y) = σ (Wℓy + bℓ) , y ∈ Rdℓ−1 , for all ℓ = 0, . . . , L,352

for weight matrices Wℓ ∈ Rdℓ×dℓ−1 with the input dimension d−1 = d+1, bias vectors353

bℓ ∈ Rdℓ , and a non-linear activation function σ. The dimensions dℓ of the hidden354

layers are also called by the width of the network. A shorthand notation θ is used355

to refer to all the parameters of the network, including the weights {W,W0, · · · ,WL}356
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10 Y. PARK AND S. OSHER

and biases {b,b0, · · · ,bL}. Since Lipschitz continuous activation functions σ are357

used, the MLP fθ is a Lipschitz function and is also bounded on a bounded domain.358

Given the current parameter configuration, the parameters θ are successively adapted359

by minimizing an assigned loss function explained in the subsequent section.360

Representing the solution of HJ PDEs using neural networks offers a scalable361

and efficient approach for modeling the spatio-temporal dependencies of the solution,362

offering several advantages over classical numerical schemes. Classical methods dis-363

cretize the spatial vector field using primitives such as meshes, which scale poorly with364

the number of spatial samples. In contrast, representing the spatio-temporal function365

through networks known as implicit neural representations (INRs) encodes spatial366

and temporal dependencies through neural network parameters θ, each globally influ-367

encing the function. Consequently, the memory usage of INRs remains independent368

of the spatial sample size, being determined solely by the number of network param-369

eters, which enables scalability in high-dimensional settings as evidenced in Section370

4 for the proposed method. Additionally, INRs are adaptive, leveraging their ca-371

pacity to represent arbitrary spatio-temporal locations of interest without requiring372

memory expansion or structural modifications. The expressivity of non-linear neu-373

ral networks enables INRs to achieve superior accuracy compared to mesh-based and374

meshless methods, even under the same memory constraints [78, 9]. Furthermore,375

INRs represent the solution as a continuous function rather than at discrete points,376

with activation functions that can be tailored to the solution’s regularity. Thanks377

to the architecture of MLPs, exact derivatives can be computed via the chain rule,378

eliminating the need for numerical differentiation methods such as finite differences.379

The partial derivatives of uθ are efficiently computed using automatic differentiation380

library (autograd) [69].381

3.2. Training. Given that the solution u is represented by the neural network382

uθ, the minimization problem (3.1) reduces to finding the network parameters θ that383

minimize L in (3.1). For notational convenience, we denote384

(3.3) S (u) = u+ tH (∇u)− t∇uT∇H (∇u)− g (x− t∇H (∇u)) .385

The integral of L is approximated using Monte Carlo methods386

(3.4) L̂ (θ) = 1

M

M∑
j=1

S (uθ (xj , tj))
2
,387

with the M collocation points {(xj , tj)}Mj=1 randomly sampled from a uniform distri-388

bution U (Ω× [0, T ]). This empirical loss L̂ serves as the loss function for training389

the neural network. The current network parameters are updated using a gradient-390

based optimizer to minimize the loss function L̂. During training, different random391

collocation points are employed in each iteration to ensure accurate learning across392

the entire domain. The partial derivatives of the network uθ are computed through393

autograd when calculating the loss. The training procedure for optimization using394

gradient descent is summarized in Algorithm 3.1.395

This algorithm is considerably simpler than existing methodologies in several396

respects and yields remarkable results, as demonstrated in section 4. Previous ap-397

proaches [20, 12, 13, 10], which aimed to obtain the viscosity solution via the Hopf398

or Lax formula, involved calculating the Legendre transform of the Hamiltonian or399

the initial function. Therefore, these methods were restricted to problems where the400
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Algorithm 3.1 Algorithm for Learning Implicit Solution of HJ PDEs

1: Initialize the network uθ with an initial network parameter θ0.
2: for n = 0, · · · , N do
3: Randomly sample M collocations points {(xj , tj)}Mj=1 ∼ U (Ω× [0, T ]).
4: Calculate the loss by Monte Carlo integration

L̂ (θn) =
1

M

M∑
j=1

S (uθn (xj , tj))
2
.

5: Update θn by gradient descent with a step size α > 0

θn+1 ← θn − α∇θL̂ (θn) .

6: end for
7: return uθN as the predicted viscosity solution to the HJ PDEs (2.1).

Legendre transform was easily computable or required solving numerically intensive401

min-max problems for each spatio-temporal point, limiting their general applicabil-402

ity. In contrast, our approach bypasses the Legendre transform by using an implicit403

formula, enabling us to handle a broader class of Hamiltonians and initial functions.404

Moreover, while prior methods based on characteristics or PMP [41, 42, 82] necessi-405

tated solving a system of ODEs to track individual trajectories, the proposed method406

eliminates the requirement for explicit trajectory computation.407

The proposed method also overcomes the limitations of classical grid-based nu-408

merical methods, which face challenges when dealing with high-dimensional or large-409

scale problems due to the increasing number of grid points required as the dimension410

or domain size grows. Unlike classical methods, the deep learning approach is charac-411

terized by its mesh-free nature, which precludes the necessity for a grid discretization412

of the computational domain. The mesh-free approach allows for the random selec-413

tion of collocation points in each iteration, with the selected points gradually covering414

the domain as iterations proceed. Consequently, the computational and memory re-415

quirements do not increase significantly with higher dimensions, as evidenced in ??416

for the proposed method. Furthermore, under certain mild assumptions, it has been417

demonstrated that this stochastic gradient descent applied using randomly sampled418

collocation points converges to the minimizer of the original expectation loss [43].419

The absence of mesh generation also simplifies the practical implementation of the420

method.421

This approach also offers distinct advantages over existing deep learning methods422

for solving PDEs. As an unsupervised learning method, it solves HJ PDEs given the423

Hamiltonian and initial condition, without requiring solution data for training. This424

addresses the limitations of supervised learning methods [61, 25, 16], which rely on425

extensive solution data and do not guarantee generalization to unseen problems. The426

proposed approach also offers strengths compared to the established unsupervised427

methods, such as PINNs [72] and the DeepRitz method [83]. DeepRitz, which is428

based on a variational formulation, is not suitable for HJ PDEs. PINNs, on the429

other hand, use the residual of the PDE itself as the loss function, which cannot430

guarantee obtaining the viscosity solution for HJ PDEs among multiple solutions.431

Since the viscosity solution cannot be directly derived from the PDE itself, there are432
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12 Y. PARK AND S. OSHER

inherent challenges in obtaining it from the PDE residual loss used in PINNs. In433

comparison, the proposed method learns an implicit formula for the solution that434

naturally inherits the properties of the viscosity solution through the characteristic435

equation, enabling effective solutions to HJ PDEs. Furthermore, most deep learning436

methods for solving PDEs, including PINNs and DeepRitz method, use a training437

loss function that is the linear sum of the loss term corresponding to the PDE and438

the loss term for the initial condition. This requires a regularization parameter to439

balance the two loss terms, which is highly sensitive and difficult to optimize [79].440

In contrast, the proposed method employs an implicit solution formula, whereby the441

initial condition is automatically incorporated by substituting t = 0 into (3.4). As a442

result, our approach eliminates the need for a regularization parameter, using only443

a single loss function and obviating the distinction between the initial condition and444

the PDE.445

When boundary conditions are specified in the spatial domain Ω, we incorporate446

additional loss terms to enforce these conditions. For instance, when a Dirichlet447

boundary condition is imposed with the boundary function h : ∂Ω→ [0, T ]→ R, the448

following loss function is used:449

1

Mb

Mb∑
j=1

(
u
(
xb
j , t

b
j

)
− h

(
xb
j , t

b
j

))2
,450

where the Mb boundary collocation points
(
xb
j , t

b
j

)
∈ ∂Ω × [0, T ] are randomly sam-451

pled from a uniform distribution. Similarly, for a periodic boundary condition, the452

boundary loss term is given as follows:453

1

Mb

Mb∑
j=1

(
u
(
xb
j , t

b
j

)
− u

(
yb
j , t

b
j

))2
,454

where yb
i ∈ ∂Ω represents the point on the opposite side of the domain Ω correspond-455

ing to xb
i . This boundary loss, weighted by the regularization parameter λ > 0, is456

then added to the implicit solution loss L̂ (3.4) to form the total training loss.457

Remark 3.1. If the goal is to obtain a solution at a specific time t = T rather458

than over the entire temporal evolution, integrating over time in the loss function459

may not be necessary. However, as shown in Example 2.1 in subsection 2.1, when460

the PDE lacks boundary conditions, the implicit solution formula at a fixed t results461

in a differential equation without boundary conditions, leading to the possibility of462

multiple spurious solutions. To address this, it is preferable to incorporate an integral463

over the entire temporal domain in the loss function, thereby training a continuous464

network to find a continuous solution that satisfies (2.3) across the entire spacetime465

domain. On the other hand, when boundary conditions are given in the HJ PDEs466

(2.1), these can serve as the boundary condition for the differential equation (2.3) at467

the fixed time, ensuring the uniqueness of the solution. In such cases, training the468

model exclusively with respect to the terminal time t = T may suffice.469

3.3. State-dependent Hamiltonian. In this subsection, we propose an algo-470

rithm for the case of a state-dependent Hamiltonian, inspired by the implicit solution471

formula (2.3). Consider the state-dependent HJ PDEs defined in a domain Ω ⊂ Rd472

(3.5)

{
ut +H (x,∇u) = 0 in Ω× (0, T )

u = g on Ω× {t = 0}.
473
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The system of characteristic ODEs of (3.7) is given by474

(3.6a)

(3.6b)

(3.6c)


ẋ = ∇pH

u̇ = −H + pT∇pH

ṗ = −∇xH,

475

where p = ∇u. Given that p is no longer a constant along the characteristic (3.6c),476

the characteristics are not linear but instead curves. Consequently, computing the477

integral along these curves becomes highly challenging, making the derivation of an478

implicit solution formulation difficult.479

Piecewise Linear Approximation of Characteristic Curves. We assume that p480

remains relatively constant over short time intervals. In other words, we approximate481

the characteristic curve as linear over short time segments. To this end, we discretize482

the temporal domain by483

t0 = 0 < t1 = ∆t < t2 = 2∆t < · · · < tN = N∆t = T.484

For each k = 0, · · · , N − 1, we can write the solution as follows: for t ∈ [tk, tk +∆t],485

u (x, t) = u (x, tk + τ) = uk (x, τ)486

with t = tk+τ , τ ∈ [0,∆t]. Then uk can be regarded as the solution of the following HJ487

PDEs for time 0 ≤ t ≤ ∆t with the initial function uk (·, 0) = uk−1 (·,∆t) = u (·, k∆t):488

489

(3.7)

{
ukt +H

(
x,∇uk

)
= 0 in Ω× (0,∆t)

uk (x, 0) = uk−1 (x,∆t) on Ω.
490

Assuming that p remains constant within each short time interval [tk, tk +∆t], similar491

to the state-independent Hamiltonian discussed in subsection 2.1, we can derive the492

following implicit solution formula for (3.7):493

uk (x, τ) = −τH
(
x,∇uk (x, τ)

)
+ τ∇uk (x, τ)T∇pH

(
x,∇uk (x, τ)

)
(3.8)494

+ uk−1
(
x− τ∇pH

(
x,∇uk

)
,∆t

)
.(3.9)495

This can be regarded as an implicit Euler discretization of the characteristic ODE496

(3.6a):497

x (τ) = x (0) + τ∇pH (x (τ) ,∇u (x (τ) , τ)) +O
(
τ2
)

498

for small τ ∈ [0,∆t]. For notational simplicity, let us denote499

S
[
uk, uk−1

]
(x, τ) =uk (x, τ)− τ∇uk (x, τ)T∇pH

(
x,∇uk (x, τ)

)
500

+ τH
(
x,∇uk (x, τ)

)
− uk−1

(
x− τ∇pH

(
x,∇uk

)
,∆t

)
.501

Time Marching Algorithm. Based on these, we propose the following time march-502

ing method that solves the HJ PDEs (3.7) with the state dependent H sequentially503

over short time intervals [tk, tk +∆t]:504

1. Set the initial condition u0 = g.505
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14 Y. PARK AND S. OSHER

2. For k = 1, · · · , N ,506

(3.10) uk = argmin
v

∫ ∆t

0

∫
Ω

(
S
[
v, uk−1

]
(x, τ)

)2

dx dt.507

For each k, the predicted function uk approximates the solution u of (3.7) on tk ≤508

t ≤ tk+1, i.e.,509

uk (x, τ) ≈ u (x, k∆t+ τ) , ∀τ ∈ [0,∆t] ,x ∈ Ω.510

It is important to note that rather than using separate neural networks for each511

uk, the model is trained using a single network, ensuring memory efficiency. After512

training the network for the solution uk−1 on the time interval [tk−1, tk−1 +∆t], the513

network parameters are saved. These saved parameters are then used as the initial514

function to train the same network for the subsequent solution uk by (3.10). As515

a result, when training uk, the network is initialized with uk−1, which accelerates516

the training process. Consequently, although the learning process is divided for time517

marching, the rapid convergence for each uk ensures that the overall training time518

does not increase significantly.519

4. Numerical Results. In this section, we evaluate the performance of the pro-520

posed deep learning-based method for learning the implicit solution formula through a521

series of diverse examples and high-dimensional problems. Experiments are conducted522

on up to 40 dimensions, and both qualitative and quantitative results are presented.523

Although theoretical verification has not yet been established, extensive experiments524

on nonconvex Hamiltonians are also included, demonstrating the effectiveness of the525

proposed method in learning viscosity solutions.526

To assess the scalability of the proposed method, we maintain the same exper-527

imental configurations across all cases, regardless of dimensionality or domain size.528

All experiments are conducted using an MLP (3.2) of a depth L = 5 and a width529

dℓ = 64 with the SoftPlus activation function σ (x) = 1
β log

(
1 + eβx

)
with β = 100.530

Additional experiments on alternative network architectures are presented in Appen-531

dix C.1. The network is trained for N = 200, 000 epochs using Adam optimizer [45]532

with an initial learning rate of 10−3 decayed by a factor of 0.99 whenever the loss533

decreased. In each epoch, M = 5, 000 collocation points were uniformly randomly534

sampled from the domain. When boundary conditions are given, the regularization535

parameter λ is set to 0.1 and the number of boundary collocation points Mb is set536

to 200. All experiments are implemented on a single NVIDIA GV100 (TITAN V)537

GPU. A more detailed description of the experimental configuration is provided in538

Appendix B.539

4.1. Convex Hamiltonians. We begin by measuring the error with respect540

to the true solution for the theoretically validated convex (or concave) Hamiltonian.541

Experiments are conducted in up to 40 dimensions. In addition to accuracy, we542

evaluate computational time and memory consumption to assess the efficiency of the543

approach in high-dimensional settings. We also investigate the effects of the sampling544

strategy for collocation points and the network size on performance.545

Example 4.1 (Quadratic Hamiltonians). Consider two HJ equations with the546

quadratic Hamiltonians for which the true viscosity solutions are known analytically:547

• Quadratic: H (p) = 1
2 ∥p∥

2
2 and initial function g (x) = ∥x∥1. The exact548

solution is given by u∗ (x, t) =
∑

i:|xi|≥t

(
|xi| − t

2

)
+

∑
i:|xi|<t

x2
i

2t .549
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Table 1
Quantitative results for quadratic Hamiltonian Example 4.1 in dimensions d = 1, 2, 3, 10, 40.

The mean squared errors (MSE) with respect to the exact solution and the memory usage (Mem, in
MB) for storing the predicted solutions are reported.

d = 1 d = 2 d = 3 d = 10 d = 40
Method MSE Mem MSE Mem MSE Mem MSE Mem MSE Mem

Ours 1.14E-7 0.06 1.91E-7 0.06 3.21E-6 0.06 2.56E-5 0.06 1.30E-3 0.07
PINNs 2.39E-6 0.06 2.14E-5 0.06 1.98E-4 0.06 5.78E-3 0.06 8.00 0.07
WENO (same Mem) 3.84E-5 0.06 1.3E-3 0.06 3.68E-3 0.06 N/A N/A N/A N/A
WENO (same MSE) 1.14E-7 6.17 1.83E-7 51498.41 N/A N/A N/A N/A N/A N/A

• Negative quadratic: H (p) = − 1
2 ∥p∥

2
2 and initial function g (x) = ∥x∥1. The550

exact solution is u∗ (x, t) = ∥x∥1 +
dt
2 .551

Experiments were conducted on the 1, 2, 3,10, and 40 dimensions. We evaluate the per-552

formance of the proposed method in comparison with physics-informed neural networks553

(PINNs) and the classical weighted essentially non-oscillatory (WENO) scheme. The554

PINNs were trained using the same neural network architecture as our model, while555

the WENO scheme was implemented on a uniformly discretized grid. Following the556

evaluation setup of a prior study [9], we considered two WENO configurations to557

ensure a fair comparison with our deep learning-based approach: one with memory558

usage comparable to that of the neural networks employed in our method and PINNs559

for solution storage, and another yielding a similar level of accuracy to our method.560

The errors with respect to the exact solutions, along with the corresponding mem-561

ory usage for storing solutions, are summarized in Tables 1 and 2 for two test cases.562

The results demonstrate that the proposed method effectively computes solutions to HJ563

equations even in high-dimensional settings. In contrast, PINNs exhibit significantly564

higher errors compared to our approach. This discrepancy highlights the difference565

between the PDE-based loss in PINNs, which lacks information about the viscosity so-566

lution, and our implicit formula, which inherently captures the characteristic structure567

of the solution. For the WENO scheme, mesh resolutions with memory consumption568

comparable to that of the neural networks are generally insufficient to achieve the same569

level of accuracy as our proposed method. Achieving comparable accuracy with WENO570

requires significantly higher resolution, leading to substantially increased memory us-571

age, which becomes computationally infeasible in high-dimensional settings.572

It is important to emphasize that the memory usage reported for both our method573

and PINNs corresponds to the memory required to store a continuous solution func-574

tion over the entire spatio-temporal domain. In contrast, the WENO scheme computes575

solutions only at discrete grid points. Therefore, despite using comparable amounts576

of memory, the proposed method and PINNs offer a significant advantage by provid-577

ing a global, continuous solution that generalizes across the domain. As discussed in578

subsection 3.1, the memory requirements of INRs are primarily governed by the net-579

work size. While increasing the input dimension enlarges the input layer, the overall580

network size remains largely unaffected. Consequently, the results presented in Tables581

1 and 2 indicate that memory usage is nearly independent of dimensionality. These582

findings highlight the strong scalability of deep learning approaches with respect to di-583

mension, making them particularly well-suited for solving high-dimensional problems.584

The computational time and peak memory usage are provided in Appendix C.4.585

Example 4.2 (Nonsmooth Solutions). To more closely examine the proposed586

method, we conduct ablation studies on the distribution of collocation points and the587
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Table 2
Quantitative results for negative quadratic Hamiltonian in Example 4.1 in dimensions d =

1, 2, 3, 10, 40. The mean squared errors (MSE) with respect to the exact solution and the memory
usage (Mem, in MB) for storing the predicted solutions are reported.

d = 1 d = 2 d = 3 d = 10 d = 40
Method MSE Mem MSE Mem MSE Mem MSE Mem MSE Mem

Ours 8.59E-6 0.06 1.10E-4 0.06 1.15E-4 0.06 1.63E-4 0.06 1.23E-3 0.07
PINNs 1.40E-5 0.06 2.98E-4 0.06 5.53E-4 0.06 2.20E-2 0.06 11.90 0.07
WENO (same Mem) 1.01E-6 0.06 1.30E-3 0.06 1.35E-1 0.06 N/A N/A N/A N/A
WENO (same MSE) – – 1.11E-4 3.81 1.53E-4 686.33 N/A N/A N/A N/A

network size and for the following two HJ, both of which admit non-smooth solutions:588

• L2 Hamiltonian: H (p) = ∥p∥2 and the initial function is the signed distance589

function from two (d−1)-spheres g (x) = min {∥x− c1∥2 − r, ∥x− c2∥2 − r},590

where c1 = (−0.3, 0, · · · , 0), c2 = (0.3, 0, · · · , 0), and r = 0.2. This rep-591

resents the level set equation [64] that governs the collision of two spheres,592

initially separated and moving along their respective normal directions, which593

ultimately results in a collision. The exact solution is given by u∗ (x, t) =594

min {∥x− c1∥2 − r − t, ∥x− c2∥2 − r − t}.595

• L∞ Hamiltonian: H (p) = ∥p∥∞ and g (x) = ∥x∥1, where the exact solution596

is u∗ (x, t) = max {∥x∥1 − t, 0} .597

Effect of Collocation Sampling Strategies. To investigate the impact of the598

sampling strategy for collocation points on solving the HJ equation, we compare three599

different strategies for selecting collocation points {(xj , tj)}Mj=1 used in computing the600

loss defined in (3.4):601

1. Uniform Random: Sampling uniformly at random over the spatio-temporal602

domain.603

2. Residual-Adaptive: Adaptive sampling based on regions where the residual of604

the implicit solution formula (3.3) is large.605

3. Gradient-Adaptive: Adaptive sampling that emphasizes regions with large gra-606

dients of the solution.607

In the limit as the number of collocation points increases, uniform random sampling608

may under-represent regions where the solution exhibits high curvature or non-smooth609

behavior. The proposed adaptive strategies aim to counteract this imbalance by con-610

centrating points where the solution is less regular, aligning with ideas from impor-611

tance sampling or adaptive quadrature. Gradient-adaptive sampling is motivated by612

the observation that non-smooth features such as kinks are often associated with large613

solution gradients. By focusing collocation points in such regions, the network is bet-614

ter trained to capture these non-smooth characteristics. Residual-adaptive sampling,615

on the other hand, aims to minimize the training loss more effectively by allocating616

more samples where the residual of the implicit solution formula is high, acting as a617

heuristic form of importance sampling. Notably, residuals are likely to be large in the618

vicinity of kinks, further reinforcing the coherence between the two adaptive strategies.619

A visual comparison of the sampled point distributions, provided in Appendix C.5, sup-620

ports the intended effect of these adaptive sampling strategies. Implementation details621

for the two adaptive sampling strategies are provided in Appendix B.622

Table 3 presents the MSE with respect to the true solution for both L2 and L∞623

Hamiltonian problems under different sampling strategies. Across all dimensions and624

sampling methods, our implicit solution formula-based method accurately captures the625
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Table 3
Comparison of sampling strategies for collocation points in terms of MSE for problems in

Example 4.2. Three different methods—uniform random sampling, residual-adaptive sampling, and
gradient-adaptive sampling—are evaluated across dimensions d = 1, 10, and 40.

L2 Hamiltonian L∞ Hamiltonian
Sampling Strategy d = 1 d = 10 d = 40 d = 1 d = 10 d = 40

Uniform random 7.08E-6 5.57E-5 1.13E-3 4.62E-3 1.71E-3 2.89E-3
Residual-adaptive 8.66E-6 1.21E-5 3.87E-4 6.67E-3 5.46E-3 1.27E-3
Gradient-adaptive 5.94E-6 1.91E-6 2.51E-4 4.24E-3 1.63E-3 7.87E-4

Fig. 1. Effects of network width (left) and depth (right) on the solution accuracy of 40-
dimensional Hamilton–Jacobi equations in Example 4.2. In the left plot, the depth is fixed at 5
while varying the width; in the right plot, the width is fixed at 64 while varying the depth. The
plots depict mean squared errors (MSE) on a logarithmic scale for both L2 and L∞ Hamiltonians.
Results demonstrate that increasing the network size enhances accuracy.

non-smooth viscosity solution, demonstrating its robustness even in high-dimensional626

settings. While all methods yield accurate solutions, adaptive sampling strategies627

generally lead to improved performance compared to uniform random sampling. In628

particular, the gradient-based adaptive sampling, which concentrates points near kink629

regions, consistently achieves the best accuracy across all dimensions.630

Effect of Network Capacity. We further investigate the effects of network631

width and depth on the solution accuracy for the 40-dimensional problems introduced632

in Example 4.2. Figure 1 illustrates the MSE on a logarithmic scale for both L2 and633

L∞ Hamiltonians as network size varies. All experiments were conducted using our634

default configuration, which employs a uniform random sampling strategy for the col-635

location points. The results clearly demonstrate that increasing the network width and636

depth consistently improves the accuracy of the learned solution. Increasing the net-637

work size enhances the representational capacity of the model, enabling it to accurately638

approximate solutions even in the 40-dimensional setting. Consequently, the error is639

reduced to the order of 10−4, demonstrating the effectiveness of scaling network size640

for high-dimensional HJ equations.641

4.2. Nonconvex Hamiltonians. In this subsection, we present experimental642

results for various Hamiltonians that are neither convex nor concave. While the the-643

oretical proof for the proposed implicit solution formula has not yet been established644

in the nonconvex case, the experiments show that the proposed method effectively645
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(a) Ours

(b) PINNs

Fig. 2. The numerical results for one-dimensional Example 4.3. The horizontal axis represents
the spatial domain, while the vertical axis corresponds to the solution values. A zoomed-in view at
time t = 3

4
T highlights the kink region to better illustrate the differences between the two methods,

where the dashed boxes delineate the regions selected for magnification

yields viscosity solutions.646

Example 4.3. We solve the nonlinear equation with a nonconvex Hamiltonian647

H (∇u) = − cos
(∑d

i=1 uxi
+ 1

)
, the initial function g (x) = − cos

(
π
d

∑d
i=1 xi

)
, and648

periodic boundary conditions presented in [67]. The results for d = 1, 2 are shown649

in Figures 2 and 3, respectively, with solutions plotted up to time T = 0.2, at which650

point kinks have emerged. Both the proposed method and PINNs capture the solution651

behavior consistent with the findings in [67]. However, upon closer inspection of the652

zoomed-in regions, it is evident that the PINN solutions do not accurately capture the653

kink formation. In contrast, our proposed method accurately captures the formation654

of kinks in both the one- and two-dimensional cases, demonstrating its effectiveness.655

Example 4.4. We solve the two-dimensional Riemann problem [67] with a non-656

convex sinusoidal Hamiltonian H (∇u) = sin (ux + uy) and initial function g (x) =657

π (|y| − |x|).658

The predicted solution up to T = 1 obtained by the proposed method and PINNs659

are presented in Figure 4. Our method demonstrates behavior consistent with the660

numerical results in [67], where the initially smooth solution profile gradually sharpens661

over time. In contrast, although the PINN accurately captures the initial condition, it662

learns a solution that deviates from the correct viscosity solution. This highlights the663

strength of the proposed implicit solution formula, particularly in capturing the correct664

dynamics of kink dynamics where PINNs tend to fail.665

Example 4.5. The above nonconvex examples are actually one-dimensional along666

the diagonal. To evaluate the performance of the proposed method on fully two-667

dimensional problems [6], we solve the HJ PDE with H (∇u) = uxuy and g (x) =668

sin(x)+ cos(y) with periodic boundary condition and T = 1.5. The solution is smooth669

for t < 1 and exhibits kinks for t ≥ 1. Consistent with the findings in [6], the results670

of both the proposed method and PINNs shown in Figure 5 indicate that the proposed671
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(a) Ours

(b) PINNs

(c) Cut along x = y

Fig. 3. The numerical results for two-dimensional Example 4.3. Figures (a) and (b) depict
surface plots of the predicted solutions by the proposed method and PINNs, respectively, where the
vertical axis represents the solution values over the two-dimensional domain. To examine the dif-
ferences between the two methods in greater detail, Figure (c) shows cross-sectional plots along the
line x = y at the final time. The regions indicated by dashed boxes are zoomed in to provide a clearer
visualization of these differences.

(a) Ours

(b) PINNs

Fig. 4. Surface plot illustrating the temporal evolution of the numerical solutions obtained by
the proposed method and PINNs for Example 4.4 at times t = 0, T/4, T/2, 3T/4, T , where the vertical
axis represents the solution values over the two-dimensional spatial domain.
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(a) Ours

(b) PINNs

(c) Cut along y = 0

Fig. 5. The numerical results for two-dimensional Example 4.5. Figures (a) and (b) depict
surface plots of the predicted solutions by the proposed method and PINNs, respectively, where the
vertical axis represents the solution values over the two-dimensional domain. To examine the dif-
ferences between the two methods in greater detail, Figure (c) shows cross-sectional plots along the
line y = 0 at the final time. The regions indicated by dashed boxes are zoomed in to provide a clearer
visualization of these differences.

method continues to accurately capture the solution even after the formation of a kink.672

A closer examination of Figure 5(c) further reveals that, compared to the PINN, our673

method more precisely captures the kink and also produces a smoother approximation674

in the non-singular regions.675

Example 4.6 (Eikonal equation). Consider a two-dimensional nonconvex prob-676

lem [67] with H (∇u) =
√
ux + uy + 1 and g (x) = 1

4 (cos (2πx)− 1) (cos (2πy)− 1)−677

1 that arises in geometric optics. The results up to time T = 0.45 are shown in678

Figure 6. For the proposed method, the initially smooth function progressively con-679

centrates toward the center of the spatial domain and becomes increasingly sharp over680

time, in agreement with the numerical findings reported in [67]. In contrast, while the681

PINN appears to capture the overall shape of the solution, its predictions deteriorate682

over time—particularly near the flat outer regions of the solution, which become dis-683

torted. This behavior highlights a key distinction between the two approaches: PINNs684

rely solely on minimizing the PDE residual, whereas our method leverages an implicit685

solution formula grounded in the method of characteristics.686

Example 4.7. (Combustion problem) Consider the combustion problem [48] with687

H (∇u) = −
√
ux + uy + 1 and g (x) = cos (2πx)− cos (2πy) . Results up to time 0.27688

are given in Figure 7 for both our method and PINNs. The proposed method accurately689
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(a) Ours

(b) PINNs

Fig. 6. Surface plot illustrating the evolution of the numerical solutions obtained by the pro-
posed method and PINNs for Example 4.6 at times t = 0, T/4, T/2, 3T/4, T , where the vertical axis
represents the solution values over the two-dimensional spatial domain.

(a) Ours

(b) PINNs

Fig. 7. Surface plot of the solutions obtained by the proposed method and PINNs for Ex-
ample 4.7, where the vertical axis represents the solution values over the two-dimensional spatial
domain.

captures the initial condition and effectively models the formation of pronounced kinks,690

consistent with the results reported in [48]. In contrast, despite accurately representing691

the initial condition, the PINN fails to learn the correct solution dynamics.692

Example 4.8. Consider the one-dimensional nonconvex problem with H (∇u) =693

u3x−ux and g (x) = − 1
10 cos (5x) . The results for the proposed method, in comparison694

with PINNs, up to time T = 0.7 are shown in Figure 8. For the proposed method,695

the sinusoidal wave is observed to sharpen progressively over time. This behavior696

is consistent with the well-established theoretical result that viscosity solutions to HJ697

equations with polynomial Hamiltonians and sinusoidal initial data evolve into sharp,698

sawtooth-like profiles while preserving periodicity [50, 26]. In contrast, although the699

PINN solution also exhibits sharpening, it fails to maintain periodicity, indicating that700

it learns an incorrect solution structure.701
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(a) Ours

(b) PINNs

Fig. 8. The numerical solution for Example 4.8 obtained by the proposed method and PINNs,
where horizontal axis represents the one-dimensional spatial domain, while the vertical axis corre-
sponds to the solution values.

4.3. State-dependent Hamiltonians. This subsection provides experimental702

validation of the methodology proposed for the state-dependent Hamiltonian in sub-703

section 3.3. It includes error analyses with respect to ∆t and addresses various state-704

dependent Hamiltonians, including a 10-dimensional optimal control problem.705

Example 4.9. We evaluate the numerical error and the numerical error and in-706

vestigate the convergence behavior as the time step ∆t varies in the following two707

problems:708

• Example 4.9.1: One-dimensional variable coefficient linear equation [80] with709

H (x, ux) = sin (x)ux and g (x) = sin (x) with periodic boundary condition.710

The exact solution is expressed by711

u⋆ (x, t) = sin
(
2 arctan

(
e−t tan

(x
2

)))
.712

• Example 4.9.2: Two-dimensional problem which describes a solid body rota-713

tion around the origin [11], where H (x,∇u) = −yux + xuy with the periodic714

boundary condition, and the initial condition is given by715

g (x, y) =


0 0.3 ≤ r,
0.3− r 0.1 < r < 0.3

0.2 r ≤ 0.1,

716

where r =
√

(x− 0.4)2 + (y − 0.4)2 The exact solution is717

u⋆ (x, y, t) = g (x cos t+ y sin t,−x sin t+ y cos t) .718

For both problems, we compute the solution up to T = 1. Since the characteristic719

curve for the state-dependent Hamiltonian is approximated linearly, the accuracy of720

the algorithm is influenced by the size of ∆t. To verify this, we conducted experiments721
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Fig. 9. Mean squared errors (MSE) and relative mean squared errors (RMSE) between the
predicted and exact solutions for Examples 4.9.1 and 4.9.2, plotted as functions of the time step size
∆t.

(a) Ours (b) PINNs

Fig. 10. Surface plot of the numerical solutions obtained by the proposed method and PINNs
at terminal time for Example 4.10, where the vertical axis represents the solution values over the
two-dimensional spatial domain.

for various values of ∆t = 0.5, 0.25, 0.1, and the results are summarized in Figure 9.722

The results show that the linear approximation of the proposed algorithm yields first-723

order accuracy with respect to ∆tblue, which is consistent with the use of a first-order724

temporal discretization scheme.725

Example 4.10. We solve an optimal control problem related to cost determina-726

tion [67] with H (x,∇u) = ux sin y+ (sin y + sign (uy))uy − 1
2 sin

2 y− (1− cosx) and727

g (x) = 0 with periodic boundary conditions. The result at T = 1 is presented in Fig-728

ure 10, along with the PINNs result for comparison. As shown, the proposed method729

successfully captures the kink in the solution, which is qualitatively consistent with the730

findings reported in [67]. In contrast, the PINN fails to recover the correct solution731

behavior.732

Example 4.11. We solve the problem associated with the state-dependent Hamil-733

tonian well-known as the harmonic oscillator:734

H± (x,p) = ±1

2

(
∥x∥22 + ∥p∥

2
2

)
.735
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(a) Ours

(b) PINNs

Fig. 11. Evolution of the numerical solutions for Example 4.11 with H+. Contour plots over the
two-dimensional spatial domain illustrate level sets of the solutions at times t = 0, T/4, T/2, 3T/4, T .
The horizontal and vertical axes correspond to the x- and y-coordinates, respectively.

We consider the two-dimensional problem where the initial function is the level set736

function of an ellipsoid737

(4.1) g (x, y) =
1

2

(
x2

2.52
+ y2 − 1

)
.738

The results for H+ and H− up to T = 0.4 are depicted in Figures 11 and 12, respec-739

tively. For Hamiltonians with both positive and negative signs, the proposed method740

successfully captures the corresponding solution behaviors, exhibiting characteristic741

dispersive and contracting dynamics. In contrast, the PINN fails to learn appropri-742

ate solutions in either case, further underscoring the effectiveness of our approach in743

modeling such dynamic behaviors.744

Example 4.12. We consider a state-dependent nonconvex Hamiltonian of the fol-745

lowing form given in [13]:746

H (x,p) = −c (x) p1 + 2 |p2|+ ∥p∥2 − 1,747

where p = (p1, p2) and748

(4.2) c (x) = 2
(
1 + 3 exp

(
−4 ∥x− (1, 1)∥22

))
.749

We employ the initial function as presented in Example 4.11. The results up to T = 1750

are presented in Figure 13. For this problem, both the proposed method and PINN751

learn similar solutions, which are consistent with those reported in [13].752

Example 4.13. We test the proposed method for a state-dependent nonconvex753

Hamiltonian of the following form given in [13]:754

H (x, p) = −c (x) |p1| − c (−x) |p2| ,755

where we write p = (p1, p2) and c (x) is a coefficient function as given in (4.2). The756

initial function g (4.1) presented in Example 4.11 is employed in this instance. The757
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(a) Ours

(b) PINNs

Fig. 12. Evolution of the numerical solutions for Example 4.11 with H−. Contour plots over the
two-dimensional spatial domain illustrate level sets of the solutions at times t = 0, T/4, T/2, 3T/4, T .
The horizontal and vertical axes correspond to the x- and y-coordinates, respectively.

(a) Ours

(b) PINNs

Fig. 13. Contour plot of the numerical solution obtained by the proposed method and PINNs for
Example 4.12 over the two-dimensional spatial domain at times t = 0, T/4, T/2, 3T/4, T , illustrating
level sets of the solution. The horizontal and vertical axes represent the x- and y-coordinates,
respectively.

results up to T = 0.3 are presented in Figure 14, alongside those obtained by PINNs.758

The solution attained by the proposed methods is in agreement with those reported in759

[13], whereas the PINN yields a qualitatively different solution.760

Example 4.14. We solve the following optimal control problem:761

u (x, t) = inf
{
g (x (0)) ; ẋ (t) = f (x (t))a (t) , x (t) = x, ∥a (t)∥2 ≤ 1

}
,762

where g is defined by763

g (x) =
1

2

(
xTAx− 1

)
764
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(a) Ours

(b) PINNs

Fig. 14. Contour plot of the numerical solution obtained by the proposed method and PINNs for
Example 4.13 over the two-dimensional spatial domain at times t = 0, T/4, T/2, 3T/4, T , illustrating
level sets of the solution. The horizontal and vertical axes correspond to the x- and y-coordinates,
respectively.

with A = diag(0.25, 1) and f is given by765

f (x) = 1 + 3 exp
(
−4 ∥x− (1, 1)∥22

)
.766

This corresponds to the HJ PDE given in [13]:767 {
ut + f (x) ∥∇u∥2 = 0

u (x, 0) = g (x) .
768

When solving the maximization problem sup g (x (T )) with the same constraints, we769

obtain the following HJ PDE:770 {
ut − f (x) ∥∇u∥2 = 0

u (x, 0) = g (x) .
771

The results for both the minimization (at T = 0.2) and maximization (at T = 0.5)772

problems are presented in Figure 15, alongside the corresponding results from PINNs.773

For both problems, the solutions produced by the proposed method are consistent with774

those reported in [13]. In contrast, while the PINN captures the general trend distin-775

guishing the minimization and maximization cases, it yields overly flattened solutions776

that fail to accurately represent the correct structure.777

Example 4.15. Consider the following 10-dimensional quadratic optimal control778

problem presented in [10]:779

u (x, t) = inf
{∫ t

0

∥ẋ (s)∥2 − ψ (x (s)) ds+ g (x (0)) ;x (t) = x
}
,780

where the potential function ψ : Rd → (−∞, 0] is ψ (x) =
∑d

i=1 ψi (xi), where each781
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Ours PINNs Ours PINNs

(a) Minimization (b) Maximization

Fig. 15. Numerical solutions at the terminal time computed by the proposed method and PINNs
for Example 4.14 over the two-dimensional spatial domain. Contour plots illustrate level sets of
the solution at the terminal time. The horizontal and vertical axes correspond to the x- and y-
coordinates, respectively.

function ψi : R→ (−∞, 0] is a positively 1-homogeneous concave function given by782

ψi (x) =

{
−aix x ≥ 0,

bix x < 0,
783

with parameters (a1, · · · , ad) = (4, 6, 5, · · · , 5) and (b1, · · · , bd) = (3, 9, 6, · · · , 6). The784

corresponding HJ PDE reads:785 {
ut +

1
2 ∥∇u∥

2
+ ψ (x) = 0

u (x, 0) = g (x) .
786

We conduct experiments for the two initial cost functions:787

• A quadratic initial function g1 (x) = 1
2 ∥x− 1∥22, where 1 denotes the d-788

dimensional vector whose elements are all one.789

790

• A nonconvex initial function791

g2 (x) = min
j∈{1,2,3}

gj (x) = min
j∈{1,2,3}

1

2
∥x− yj∥22 − αj ,792

where y1 = (−2, 0, · · · , 0), y2 = (2,−2,−1, 0, · · · , 0), y3 = (0, 2, 0, · · · , 0),793

α1 = −0.5, α2 = 0, and α3 = −1.794

Figures 16 and 17 present two-dimensional slices of the solutions in the xy plane795

for both cases up to time T = 0.5.796

For both cases, the results obtained by the proposed method are consistent with the797

experimental findings presented in [10], which demonstrate that the solution exhibits798

non-trivial dynamics, as evidenced by the nonlinear evolution of the level sets and the799

formation of multiple kinks over time. In contrast, PINNs fail to recover the correct800

solution, highlighting the advantage of the proposed method over PINNs in solving801

high-dimensional optimal control problems.802

5. Conclusion. We have introduced a novel implicit solution method for HJ803

PDEs derived from the characteristics of the PDE. This formula aligns with the804

Hopf-Lax formula for convex Hamiltonians but simplifies it by removing the need805

for Legendre transforms, thereby enhancing computational efficiency and broadening806

its practical applicability. The proposed formula not only bridges the method of807

characteristics, the Hopf-Lax formula, and Bellman’s principle from control theory808
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(a) Ours

(b) PINNs

Fig. 16. Evolution of the numerical solutions of the proposed method and PINNs for the 10-
dimensional optimal control problem in Example 4.15 with the quadratic initial function g1. Contour
plots of two-dimensional slices of the solutions in the xy-plane at times t = 0, T/4, T/2, 3T/4, T are
presented. The horizontal and vertical axes represent the x- and y-coordinates, respectively.

(a) Ours

(b) PINNs

Fig. 17. Evolution of the numerical numerical solutions of the proposed method and PINNs
for the 10-dimensional optimal control problem in Example 4.15 with the nonconvex initial func-
tion g2. Contour plots of two-dimensional slices of the solutions in the xy-plane at times
t = 0, T/4, T/2, 3T/4, T are presented. The horizontal and vertical axes represent the x- and y-
coordinates, respectively.

but also offers a simple and effective numerical approach for solving HJ PDEs. By809

integrating deep learning, the formula provides a scalable method that effectively810

mitigates the curse of dimensionality. Experimental results demonstrate its robustness811

and effectiveness across various high-dimensional and nonconvex problems without812

tuning the configuration of the deep learning model. These findings validate the813

method as a versatile and computationally efficient tool for solving high-dimensional,814

nonconvex dynamic systems and optimal control problems governed by HJ PDEs.815

An important direction for future work includes a rigorous analysis of the pro-816

posed implicit solution formula. While experimental results demonstrate the method’s817
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effectiveness on various nonconvex problems, a comprehensive analysis is needed to818

confirm whether the proposed formula describes the viscosity solution of HJ PDEs in819

nonconvex problems. Since the formula involves the first derivatives and is a compos-820

ite of multiple terms, the proposed minimization problem (3.1) is nonconvex, making821

the convergence of gradient descent non-trivial. Consequently, a convergence analysis822

would be an important future endeavor.823

Regarding the deep learning approach, we approximate the expectation loss (3.1)824

using Monte Carlo integration (3.4), which introduces a discrepancy between the825

empirical and expectation losses. A valuable research direction could involve investi-826

gating whether the stochastic gradient descent process, with its random collocation827

points at each epoch, converges to the global minimum of the expectation loss in the828

context of stochastic approximation. Although we focused on scalability by maintain-829

ing a fixed model configuration across experiments, future research should explore the830

optimal selection of collocation points and network size for different problem dimen-831

sions. Furthermore, the investigation of using automatic differentiation to compute832

exact derivatives of the network, rather than finite differences such as ENO/WENO,833

presents an intriguing avenue for future research, particularly in its ability to capture834

kinks. For state-dependent Hamiltonians, the development of higher-order methods835

beyond the proposed first-order linear approximation of the characteristic curve would836

be a promising direction. Finally, the simplicity and efficiency of the proposed method837

open up avenues for its application to a wide range of problems, including level set838

evolutions, optimal transport, mean field games, and inverse problems, which would839

constitute valuable extensions of this work.840
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Appendix A. Proofs of Theorems.844

A.1. Proof of Theorem 2.1.845

Proof. The differentiability of the Hamiltonian, assumed in both theorems, is846

required for the implicit solution formula (2.3).847

The remaining assumptions on the Hamiltonian and the initial condition, as stated848

in Theorems 2.1 and 2.2, are required to ensure the validity of the Hopf–Lax (2.4) and849

Hopf (A.12) formulas, respectively. First, we can observe that the implicit solution850

formula (2.3) exactly satisfies the initial condition u = g of (2.1) at the initial time851

t = 0.852

Under the assumptions (2.6) on H and the l.s.c. condition on g, the viscosity853

solution of the HJ PDE is described by the Hopf-Lax formula (2.4)854

(A.1) u (x, t) = tH∗
(
x− y⋆

t

)
+ g (y⋆) ,855

where856

(A.2) y⋆ = argminy

{
tH∗

(
x− y

t

)
+ g (y)

}
.857

Given that H is differentiable, differentiating both sides of (A.1) with respect to x858

at the point leads to the Euler-Lagrange equation corresponding to the Hopf-Lax859

formula:860

∇u (x, t) = ∇H∗
(
x− y⋆

t

)
+

∂

∂y

(
H∗

(
x− y

t

)
+ g (y)

)
· ∂y
∂x
|y=y⋆(A.3)861

= ∇H∗
(
x− y⋆

t

)
,(A.4)862

where the last equality follows from the fact that y⋆ is the optimizer as in (A.2). Since863

H is strictly convex (or concave), it satisfies (∇H∗)
−1

= ∇H. Therefore, it follows864

that865

(∇H∗)
−1

(∇u (x, t)) = x− y⋆

t
(A.5)866

⇐⇒ y⋆ = x− t (∇H∗)
−1

(∇u (x, t))(A.6)867

= x− t∇H (∇u (x, t))(A.7)868

By expanding the Legendre transform in the Hopf-Lax formula (2.1), the viscosity869

solution is expressed as follows870

u (x, t) = inf
y

sup
z

{
t
(
zT

(
x− y

t

)
−H (z)

)
+ g (y)

}
(A.8)871

= inf
y

sup
z

{
zT (x− y)− tH (z) + g (y)

}
.(A.9)872

Differentiating (A.9) with respect to z provides that the optimal z⋆ satisfies873

x− y⋆ − t∇H (z⋆) = 0.874

Together with (A.7), we have875

(A.10) z⋆ = ∇u.876

Substituting these (A.7) and (A.10) into (A.9) results in the implicit solution formula877

(2.3).878
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A.2. Proof of Theorem 2.2.879

Proof. First, we can observe that the implicit solution formula (2.3) exactly sat-880

isfies the initial condition u = g of (2.1) at the initial time t = 0.881

Under the assumptions on H and g stated in the theorem, the viscosity solution882

of the HJ PDE is described by the Hopf formula (A.12)883

(A.11) u (x, t) = −
{
g∗ (z⋆) + tH (z⋆)− xTz⋆

}
,884

where885

(A.12) z⋆ = argminz

{
g∗ (z) + tH (z)− xTz

}
.886

By expanding the Legendre transform of g in (A.11), we have887

u (x, t) = inf
y

{
z⋆T (x− y)− tH (z⋆) + g (y)

}
888

= z⋆T (x− y⋆)− tH (z⋆) + g (y⋆) .889

Differentiating the both side of (A.11) with respect to x induces890

∇u = − ∂

∂z

{
g∗ (z⋆) + tH (z⋆)

}
· ∂z

⋆

∂x
+ z⋆ = z⋆,891

where the last equality follows from the optimality of z⋆. Consequently, we have892

z⋆ = ∇u. Furthermore, differentiating (4) with respect to z provides that the optimal893

y⋆ satisfies894

x− y⋆ − t∇H (z⋆) = 0,895

that is,896

y⋆ = x− t∇H (z⋆) = x− t∇H (∇u) ,897

which concludes the proof.898

Appendix B. Implementation Details. All derivatives required for the loss899

computation are evaluated using PyTorch’s automatic differentiation. Collocation900

points are sampled uniformly at random from the spatio-temporal domain using Py-901

Torch’s built-in random number generation utilities. For clarity and reproducibility,902

we include a representative pseudocode in Python illustrating the training loop based903

on the implicit solution formulation below.904

...905

906
1 # Problem setup907
2 dim = 2908
3 T = 1909
4 domain_min = [-1, -1]910
5 domain_max = [1, 1]911
6912
7 # Network initialization913
8 network = MLP(input_dim=dim + 1, layers =[64, 64, 64, 64, 64], activation914

=’softplus ’)915
9 optimizer = Adam(network.parameters (), lr=1e-3)916

10917
11 for epoch in range (200000):918
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12 # Sample collocation points uniformly in space -time domain919
13 pnts = random_sampler(M, domain_min , domain_max , T) # (M, dim +1)920

with time in pnts [: ,0]921
14922
15 # Forward pass: predict solution at collocation points923
16 pred = network(pnts) # (M, 1)924
17925
18 # Compute spatial gradients of predictions926
19 grad_pred = gradient(pnts , pred)[:, 1:] # exclude time dimension927
20928
21 # Evaluate Hamiltonian and its gradient929
22 Hamiltonian_pred = H(grad_pred)930
23 H_diff_grad = H_diff(grad_pred)931
24932
25 # Compute implicit solution formula loss933
26 loss = ((pred934
27 - pnts[:, [0]] * torch.sum(H_diff_grad * grad_pred , dim=1,935

keepdim=True)936
28 + pnts[:, [0]] * Hamiltonian_pred937
29 - u0(pnts[:, 1:] - pnts[:, [0]] * H_diff_grad)) ** 2).mean938

()939
30940
31 # Backpropagation and optimization step941
32 optimizer.zero_grad ()942
33 loss.backward ()943
34 optimizer.step()944945

Listing 1
Training procedure using implicit solution formula for HJ equations.

If boundary conditions are specified, 200 points are uniformly sampled from the946

boundary of the domain. The corresponding boundary loss is computed using the947

formulations given in (3.2) and (3.2). This boundary loss is scaled by a factor of 0.1948

and added to the loss from the implicit solution formula to form the total loss used949

for training.950

The PINN baseline are trained under the same network architecture and exper-951

imental configuration as the proposed method. For the PDE loss, we used 5,000952

collocation points, consistent with those used to compute the loss from the implicit953

representation formula. An additional 200 points are sampled to compute the loss as-954

sociated with the initial condition. All collocation points are randomly sampled from955

a uniform distribution at each training epoch. The PDE loss and the initial condition956

loss are combined with equal weights, both having a regularization coefficient of 1.957

We observed that both loss terms decreased consistently during training, indicating958

stable convergence.959

For WENO, the spatial and temporal domains are discretized using uniform grids.960

A fifth-order WENO reconstruction is employed to approximate spatial derivatives,961

and the Lax-Friedrichs numerical flux is adopted for Hamiltonian evaluation. For time962

integration, a third-order strong stability-preserving Runge-Kutta (SSP-RK3) method963

with a CFL number of 0.2 is utilized, effectively balancing accuracy and stability in964

the presence of nonlinearities.965

Adaptive Sampling. Residual-based adaptive sampling selects half of the total966

M collocation points (M/2) uniformly at random from the computational domain,967

while the remainingM/2 points are chosen based on large residual values. Specifically,968

5M candidate points are first sampled uniformly at random, and from these, the top969

M/2 points with the highest residual values—computed using the implicit solution970

formula—are selected.971
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Fig. 18. Effect of the smoothness parameter β on the SoftPlus activation function. (Left)
Experimental results for the 10-dimensional cases of two examples from Example 4.1, demonstrating
the impact of different β values. (Right) The SoftPlus activation function plotted for various β
values.

Gradient-based adaptive sampling follows a similar approach: M/2 points are972

drawn uniformly at random, and the remainingM/2 are selected based on the magni-973

tude of the solution gradient. To identify high-gradient regions, 5M candidate points974

are uniformly sampled, and the gradient of the solution is evaluated at each point.975

The M/2 points with the largest gradient magnitudes are then selected for training.976

Appendix C. Additional Results.977

C.1. Influence of Network Architecture. Throughout our experiments, we978

employed an MLP with the SoftPlus activation function to approximate the solution.979

While the ReLU activation function is widely adopted due to its practical advan-980

tages—including the ability to approximate non-smooth functions—it is not suitable981

for our setting because the loss function involves computing derivatives of the network982

with respect to its input. To address this, we use the SoftPlus activation, a smooth983

approximation of ReLU that has been widely adopted in the context of implicit neural984

representations (INRs) [34, 56, 30].985

986

Impact of SoftPlus Smoothness Parameter β.. The smoothness of the987

SoftPlus activation function is controlled by the parameter β, as illustrated in the988

right subfigure of Figure 18. To examine its effect, we conducted experiments on989

10-dimensional instances of two test cases from Example 4.1 using various β values.990

The results, presented in Figure 18, show that the quadratic example yields a smooth991

solution, while the negative quadratic case produces a non-smooth solution charac-992

terized by a kink. Notably, for the non-smooth problem, increasing β sharpens the993

activation function, resulting in a more accurate approximation of the solution. This994

suggests that sharper activations are beneficial for capturing kinks in the solution. In995

contrast, the smooth quadratic case exhibits minimal sensitivity to changes in β, with996

only a slight increase in error observed as β increases.997

Evaluation of Alternative Network Architectures.. To examine the impact998

of network architecture on performance, we conducted additional experiments using999

alternative configurations. Specifically, we evaluated an MLP with the tanh activa-1000

tion function, as well as the SIREN architecture [76], which incorporates sinusoidal1001

activations. For both models, we preserved the same network structure as in our1002

baseline architecture of width 64 and depth 5, modifying only the activation function.1003

For SIREN, we adopted the initialization scheme proposed in the original paper [76]1004
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Table 4
Comparison of network architecture in terms of MSE for problems in Example 4.1. Three

different methods—MLP with SoftPlus activation function, MLP with tanh activation function,
SIREN, and Transformer—are evaluated across dimensions d = 1, 10, and 40.

Quadratic Hamiltonian Negative quadratic Hamiltonian
Sampling Method d = 1 d = 10 d = 40 d = 1 d = 10 d = 40

MLP (SoftPlus) 1.14E-7 2.56E-5 1.30E-3 8.59E-6 1.63E-4 1.23E-3
MLP (tanh) 8.11E-7 1.16E-4 8.82E-2 2.35E-5 9.95E-4 9.99
SIREN 1.53E-5 1.25E-4 3.44E-2 2.89E-5 1.98E-3 11.44
Transformer 9.57E-5 1.43E-4 3.88 1.51E-3 2.89E-3 33.87

to ensure stable training.1005

Additionally, we implemented a Transformer-based architecture inspired by [85].1006

This model consists of a single encoder-decoder block with two-headed multi-head1007

self-attention and sinusoidal activation functions. Input coordinates are embedded1008

into a latent space of dimension 32 via a linear layer, followed by encoder and decoder1009

stages. The final output is generated through a feedforward network comprising two1010

hidden layers of width 512, with sinusoidal activations applied throughout.1011

These architectures are evaluated on the two HJ equations presented in Ex-1012

ample 4.1 across spatial dimensions d = 1, 10, and 40. The MSE with respect to1013

the exact solutions are summarized in Table 4. As the input dimensionality in-1014

creases—particularly in the 40-dimensional case—we observe significant performance1015

degradation in MLPs with tanh activations, SIREN, and even Transformer architec-1016

tures. The degradation in the performance of tanh-based MLPs and SIREN can be1017

attributed to inherent limitations of their activation functions in high-dimensional1018

settings. The tanh activation saturates for large input magnitudes, leading to vanish-1019

ing gradients and inefficient optimization. Likewise, SIREN’s sinusoidal activations1020

become increasingly oscillatory in higher dimensions, resulting in unstable gradient1021

behavior and poor convergence.1022

In contrast, MLPs with SoftPlus activations exhibit improved scalability in high1023

dimensions, due to the smooth and non-saturating nature of the activation, which1024

ensures stable gradient propagation. This can be attributed to the smooth, non-1025

saturating nature of the activation function, which facilitates stable gradient propa-1026

gation throughout the network. Since the derivative of SoftPlus is a sigmoid function1027

that approaches unity for large positive inputs, it helps prevent vanishing gradients1028

during backpropagation. This property is particularly advantageous when optimizing1029

loss functions that involve nested derivatives, as in our case.1030

Although Transformer architecture offers greater expressivity through its self-1031

attention mechanism, it still suffers in high-dimensional regimes. The self-attention1032

module incurs quadratic computational and memory costs with respect to input size,1033

making it less efficient as dimensionality increases. Furthermore, standard attention1034

may struggle to capture meaningful spatial dependencies in high-dimensional Euclid-1035

ean spaces without additional structural priors or specialized encodings. Together,1036

these limitations hinder both the expressivity and scalability of the architecture in1037

high-dimensional regimes.1038

C.2. L∞ Errors. To further assess the performance of the proposed method,1039

we additionally report the L∞ norm errors of both the solution and its gradient for1040

the examples in Examples 4.1 and 4.2. These results are summarized in Table 5.1041
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Table 5
L∞ norm errors for problems in Examples 4.1 and 4.2.

Solution Error Gradient Error
Sampling Strategy d = 1 d = 10 d = 40 d = 1 d = 10 d = 40

Quadratic Hamiltonian 1.47E-3 2.19E-2 6.99E-1 2.02E-2 5.31E-2 4.99E-1
Negative quadratic Hamiltonian 4.28E-2 5.28E-2 1.02E-1 5.00E-1 1.29E0 1.37E0
L2 Hamiltonian 5.66E-3 6.15E-3 5.13E-2 1.99E-1 1.96E-1 1.27E-1
L∞ Hamiltonian 2.15E-1 9.88E-2 1.13E-1 1.14E0 9.05E-1 1.13E0

While L2 norm errors provide a global measure of accuracy, the L∞ norm captures1042

the worst-case error across the domain, offering a more stringent criterion. This is1043

particularly relevant in the context of HJ equations, where accurately capturing sharp1044

features such as kinks or discontinuities in the gradient is critical.1045

C.3. Training Dynamics. Figure 19 illustrates the training behavior of the1046

proposed model for the HJ equations presented in Example 4.1, under both quadratic1047

and negative quadratic Hamiltonians. The training loss and the mean squared error1048

(MSE) with respect to the exact solution are plotted on a logarithmic scale over1049

training epochs for three representative dimensions: d = 1, d = 10, and d = 40.1050

The HJ equation is closely related to optimal control problems, where it is important1051

not only to approximate the value function u, but also to accurately recover the1052

optimal control. To this end, we additionally evaluate the MSE of the gradient of1053

the solution ∇u, which determines the control. In the case of the quadratic-type1054

Hamiltonians considered in Example 4.1, where ∇H (∇u) = ±∇u, the gradient error1055

directly corresponds to the control error.1056

We observe that the training loss consistently decreases over epochs in all cases,1057

indicating stable optimization behavior regardless of the problem dimension. The1058

MSE of the MSE of both the solution and its gradient exhibits a similar convergence1059

trend and closely follows the training loss throughout. Interestingly, it can be ob-1060

served that the variance in both loss and MSE curves is highest in the 1D case, while1061

it noticeably decreases as the dimensionality increases. This reduction in variance in1062

higher dimensions suggests that training becomes more stable in high-dimensional set-1063

tings. These results support the conclusion that our approach generalizes well across1064

dimensions and remains robust for solving both convex and concave HJ equations.1065

C.4. Computational Complexity. To assess the scalability of each method1066

with respect to dimensionality, we measure both the total computational time and1067

peak memory usage required by the proposed method, PINNs, and the classical1068

WENO scheme to compute the solution. For deep learning–based methods, the mem-1069

ory consumption is recorded as the maximum memory usage observed during a single1070

training epoch, which typically corresponds to the backpropagation step. For the1071

WENO scheme, the reported memory usage corresponds to the maximum memory1072

required at each time step iteration. The results for the problems in Example 4.1 are1073

summarized in Table 6.1074

It can be observed that for INR-based methods—our method and PINNs—neither1075

the computational time nor the memory usage increases drastically with dimension.1076

While both methods demonstrate similar trends, PINNs generally incur slightly higher1077

computational and memory costs. This is primarily due to the need to differentiate1078

the neural network with respect to both spatial and temporal inputs, as well as the1079

necessity to compute separate loss terms corresponding to the initial condition and the1080
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(a) Quadratic Hamiltonian

(b) Negative quadratic Hamiltonian

Fig. 19. Log-scaled loss and MSE values for both the solution and its gradient are plotted
over training epochs for problems in Example 4.1 across dimensions d = 1, 10, 40. The results
demonstrate convergence of both the training loss and error, highlighting the stability and accuracy
of the method across dimensions.

Table 6
Computational time (s) and peak memory usage (MB) for solving the quadratic and negative

quadratic Hamiltonians in Example 4.1 across different problem dimensions d = 1, 2, 3, 10, 40.

d = 1 d = 2 d = 3 d = 10 d = 40
Sampling Method Mem Time Mem Time Mem Time Mem Time Mem Time

Ours 52.86 1162.38 52.92 1231.55 52.98 1238.52 53.39 1365.75 55.13 1431.31
PINNs 52.91 1294.81 52.96 1328.55 52.99 1354.11 53.28 1464.04 54.48 1654.49
WENO (same Mem) 0.09 0.06 0.19 0.07 0.62 0.06 N/A N/A N/A N/A

WENO (same Err):
Quadratic HJ 6.41 1.02 52017.08 2015.01 N/A N/A N/A N/A N/A N/A
Negative Quadratic HJ – – 4.94 0.32 813.8234 34.84 N/A N/A N/A N/A

HJ PDE. Due to the need for training, both neural network–based methods generally1081

incur higher computational costs compared to WENO. However, it is important to1082

emphasize that the reported computational times for these methods correspond to1083

learning a continuous solution representation over the entire spatio-temporal domain,1084

rather than computing solutions only at a fixed set of discretized points. Furthermore,1085

in the two-dimensional quadratic HJ case, achieving a level of accuracy comparable to1086

that of the proposed method requires WENO to use significantly more memory and1087

computational time. As discussed in Section 3.1, the memory requirements of INRs1088

are primarily determined by the network size. Consequently, as shown in Table 6,1089

memory usage remains largely independent of dimensionality.1090

In contrast, the WENO scheme—based on discretizing the spatio-temporal do-1091

main on a grid—exhibits rapidly increasing computational cost and memory usage1092
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(a) L2 Hamiltonian

(b) L∞ Hamiltonian

Fig. 20. Comparison of collocation point distributions generated by three sampling strategies
for two examples in Example 4.2. (Left) Uniform random sampling distributes points evenly across
the domain, shown overlaid on the true solution surface. (Center) Gradient-adaptive sampling
concentrates points in regions with large solution gradients (background heatmap), highlighting sharp
features such as kinks. (Right) Residual-adaptive sampling focuses points in areas with high residuals
of the implicit solution formula (background heatmap), corresponding to regions where the network
has not yet fully learned the solution.

as the dimension grows. In high-dimensional settings (e.g., d = 10, 40), the method1093

becomes computationally infeasible. These findings collectively highlight the strong1094

scalability and efficiency of deep learning–based approaches, making them particularly1095

suitable for solving high-dimensional PDEs.1096

C.5. Visualization of Sampling Distributions. Figure 20 illustrates the spa-1097

tial distributions of collocation points generated by three different sampling strategies1098

applied to the two examples described in Example 4.2. In each subplot, collocation1099

points are overlaid on a background heatmap representing a characteristic quantity1100

related to the sampling criterion: the true solution for uniform sampling, the gradient1101

norm for gradient-adaptive sampling, and the residual of the implicit solution formula1102

for residual-adaptive sampling.1103

The figures clearly demonstrate that both adaptive sampling methods concen-1104

trate points near kinks and regions where the solution is less regular or the model1105

error remains significant, in contrast to the uniform sampler which distributes points1106

homogeneously. This targeted placement of collocation points effectively enhances the1107

network’s ability to resolve challenging features and improves approximation quality1108

in these critical areas.1109
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