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Abstract

We introduce the Closest Point Heat Method (CPHM), a novel approach for solving
the surface Eikonal equation on general smooth surfaces. Building on the strengths of the
classical heat method, such as simplicity of implementation and computational efficiency,
CPHM integrates closest point techniques to reduce dependence on surface meshes. This
embedding framework naturally extends the heat method to implicit surfaces while pre-
serving both its efficiency and intrinsic geometric properties. Numerical experiments on
benchmark geometries confirm the accuracy and convergence of the proposed method and
demonstrate its effectiveness on complex shapes.

Keywords— Closest point method, Heat method, Surface Eikonal equations
AMS subject classifications— 58J05, 65M06, 65M20, 65N06, 65N40, 65D18

1 Introduction

The Eikonal equation is a fundamental nonlinear partial differential equation that arises in a variety
of contexts involving wavefront propagation, most notably in geometric optics and computational
geometry. On a smooth surface S embedded in R3, this equation takes the form of the surface Eikonal
equation, which underpins the analysis of high-frequency surface wave propagation [1], and is given
by:

∥∇Sϕ(y)∥ =
1

F (y)
, y ∈ S \ P,

ϕ(y0) = 0, y0 ∈ P,

(1.1)

where ∥ · ∥ is the Euclidean norm, P is the set of source points, F (y) is the wave speed, and ϕ(y)
denotes the shortest traveling time of the wave from the source set P to a point y ∈ S. The surface
gradient ∇Sϕ is defined by

∇Sϕ(y) = ∇ϕ− (N · ∇ϕ)N
where N is the unit normal vector to the surface S. Beyond wave propagation, the surface Eikonal
equation is a fundamental tool in computer graphics, geometric processing, and machine learning
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applications such as surface reparameterization [2], image segmentation on manifolds [3], and intrinsic
distance-based feature extraction [4]. While the general Eikonal equation allows for spatially varying
wave speed, the present work focuses on the special case when F (y) = 1, corresponding to the
unit-speed formulation ∥∇Sϕ∥ = 1. This simplification is sufficient for computing geodesic distance
functions and enables the development of efficient projection-based solvers.

Despite its wide applicability, computing numerical solutions to the surface Eikonal equation on
general surfaces remains challenging due to the need to respect the underlying geometry and the
nonlinearity of the PDE. Following the work of [5], approximation-based approaches such as variants
of fast marching [6] and fast sweeping [7] methods have been widely adapted to surface domains.
For instance, a triangulation-invariant method for anisotropic geodesic map computation improves
robustness to mesh irregularities and anisotropy [8]. Fast sweeping techniques have also been extended
to triangulated surfaces for geodesic computation [9], and even to implicit surfaces [10]. In addition,
a number of methods based on parametric surface representations have been proposed to enhance
computational efficiency: these include weighted distance map computation [11], efficient Eikonal
solvers on parametric manifolds [12], and parallel algorithms for approximating distance maps [13].
An optimal control approach [14] has also been developed, employing the Hopf–Lax formula to recast
the Eikonal equation [15, 16] as a variational problem solved via convex optimization techniques.
Together, these methods form a diverse set of tools for surface Eikonal solvers, though many rely on
surface discretization quality and parametrization, which can limit robustness in general geometric
settings.

An alternative approach, known as the heat method, sidesteps these difficulties by exploiting the
short-time behavior of the heat equation to approximate geodesic distances. First introduced by [17],
the heat method solves a pair of linear problems, heat diffusion followed by the solution of a Poisson
equation, making it efficient, robust to mesh quality, and naturally compatible with intrinsic surface
geometry. However, the heat method typically relies on a mesh or parametrization of the surface,
which can limit its applicability to more general implicit surfaces or point cloud data where such
discretizations are unavailable or unreliable.

In this paper, we devote ourselves to extending the heat method through the use of closest point
techniques, which allow for solving surface partial differential equations (PDEs) without requiring an
explicit parametrization or triangulated mesh. The closest point method (CPM) embeds the surface
problem into a higher-dimensional Cartesian space by extending functions off the surface via a closest
point extension, where each point in a tubular neighborhood is mapped to its nearest point on the
surface. This enables the use of standard Cartesian finite difference schemes to approximate differential
operators, such as gradients and Laplacians, directly on the surface. By avoiding mesh generation and
surface fitting, this approach naturally handles surfaces represented implicitly, such as level sets or point
clouds, and improves robustness in complex geometric settings. Through this embedding framework,
we generalize the heat method to implicit surfaces while preserving its efficiency and intrinsic geometric
fidelity.

We acknowledge that similar ideas have been explored in prior work. In particular, the authors
of [18] proposed a CPM-based variant of the heat method that incorporates internal boundary con-
ditions (IBCs) to enforce Dirichlet constraints near the source point. Their formulation modifies the
right-hand side of the heat equation using a smoothed Heaviside function, requiring careful treatment
of boundary interpolation and stabilization. In contrast, our approach maintains the original two-step
structure of the heat method, consisting of heat diffusion followed by Poisson recovery, while leverag-
ing explicit closest point extensions for both scalar and vector fields. This avoids the complexity of
IBC enforcement and results in a simpler, mesh-free framework that naturally accommodates implicit
surface representations.

Our main contributions are summarized as follows:

• We introduce a fast and reliable method for solving the surface Eikonal equation, called the
Closest Point Heat Method (CPHM), for computing geodesic distances.

• The proposed method eliminates the need for surface parameterizations or triangulated meshes
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Figure 1: Overview of the proposed method. As in the original heat method [17], the approach
consists of two steps: (CPHeatSolve, left) the heat equation is solved in the embedding space
using the closest point extension ũ = u ◦ cp, allowing heat flow on the surface S ⊂ R3 via
∂ũ/∂t = ∆ũ;(CPPoissonSolve, right) the normalized gradientX = ∇ũ/∥∇ũ∥ is computed and
extended, and the Poisson equation ∆ϕ = ∇·X̃ is then solved to recover approximate geodesic
distances. All computations are carried out in R3 using the closest point map cp : R3 → S.

by leveraging standard Cartesian finite difference schemes.

• By embedding the problem in the ambient space, the method extends the classical heat method
to implicit surfaces while preserving intrinsic geometric properties.

The overall procedure of CPHM is illustrated in Figure 1.
This paper is organized as follows. Section 2 provides brief reviews of the CPM and the heat

method. In Section 3, we present the proposed method for solving the surface Eikonal equation, the
Closest Point Heat Method (CPHM). Section 4 presents various numerical results that validate the
performance of the method, and the final section offers conclusions and discusses directions for future
work.

2 Preliminaries

This section offers brief overviews of the two principal ingredients of this work: the CPM [19] and the
heat method [17].

2.1 The Closest Point Method

The closest point method (CPM) is a numerical technique for solving partial differential equations
(PDEs) defined on surfaces embedded in higher-dimensional spaces. The main idea of CPM is to
extend the surface PDE to a neighborhood in the embedding space, enabling the use of standard
Cartesian finite difference or finite element methods. We shall first introduce some key terminologies.
Give a smooth surface S ⊂ Rn, there is a tubular neighborhood B(S) such that each point x ∈ B(S)
has a unique nearest point on S (in Euclidean distance). As such, we introduce the closest point
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function:
cp(x) = argmin

y∈S
∥x− y∥ , x ∈ B(S) , (2.1)

Using this function, a surface function u : S → R can be extended to B(S) via the closest point
extension,

Eu(x) := u (cp(x)) , x ∈ B(S) (2.2)

We emphasize that Eu is a function that is defined in the tubular neighborhood B(S). Such exten-
sion propagates the surface function constantly along the normal direction of S, and therefore allows
standard differential operators (e.g., gradient, Laplacian) to act on Eu in the embedding space while
still capturing the surface behavior. We shall state the key principles [19] that allow us to extend a
surface PDE into the embedding space:

Principle 1 (Gradient principle). Let y ∈ S. Then

∇Su (y) = ∇ [Eu (y)] . (2.3)

Principle 2 (Divergence principle). Denote the surface divergence operator by ∇S ·. Let Sδ be the
surface that is constantly displaced by a displacement of δ from S. Suppose v is a vector field on R3

that is tangent at S and all Sδ ⊂ B(S). Then for y ∈ S, we have

∇S · v(y) = ∇ · v(y) . (2.4)

By applying divergence principle on v = ∇Su = ∇u|S , we derive the Laplacian principle,

∆Su(y) = ∆ [Eu] (y) , y ∈ S . (2.5)

This allows us to approximate the surface Laplace–Beltrami operator ∆Su by the standard Laplacian to
Eu near the surface. This approach eliminates the need for surface parameterizations or triangulations
and is particularly effective when combined with implicit surface representations [20]. For further
details on CPM, see [19, 21].

2.2 The Heat Method

To compute geodesic distances on a surface, the heat method leverages the connection between heat
diffusion and shortest paths, formalized by Varadhan’s asymptotic formula [22]:

ϕ(x,y) = lim
t→0

√
−4t log kt,x (y), (2.6)

where ϕ(x,y) denotes the geodesic distance between points x and y, and kt,x(y) is the heat kernel,
which is the fundamental solution of the heat equation initiated at x.

Rather than evaluating the limit directly, the heat method approximates the distance by simulating
heat flow. It begins by solving the heat equation with an initial delta impulse at x:

∂tu = ∆Su, u (x, 0) = δx0 (x) ,

where ∆S is the Laplace–Beltrami operator. The solution u (y, t) approximates the heat kernel kt,x (y)
for small t, providing a smooth function from which distance information can be inferred.

From the asymptotic form of the heat kernel in (2.6), we have

u(y, t) ≈ kt,x (y) ∼ 1

(4πt)n/2
e−ϕ(x,y)2/4t · a(x,y),

where a (x,y) is a smooth, positive function. Neglecting the lower-order variation introduced by
a (x,y), we take the logarithm and differentiate with respect to y to obtain

∇Su ≈ u (y, t) · ∇S log kt,x (y) ∼ −ϕ (x,y)

2t
∇Sϕ · u (y, t) ,
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which implies ∇Su ∝ −∇Sϕ. In other words, the direction of steepest decrease in heat closely approx-
imates the direction of shortest paths, that is, the geodesics on the surface.

Finally, to recover an approximation of the geodesic distance, the method solves a Poisson equation
whose divergence matches that of the normalized vector field X = −∇Su/∥∇Su∥:

∆Sϕ = ∇S ·X.

For more information on the heat method, we refer the reader to [17].

3 Closest Point Heat Method

This section introduces a new method for solving the surface Eikonal equation, the Closest Point Heat
Method (CPHM). It builds upon the classical heat method introduced by [17], adapting it to the CPM
framework so that all computations are carried out in the ambient Euclidean space. This formulation
removes the need for surface parameterizations or triangulated meshes and instead leverages standard
Cartesian finite difference schemes. In this work, we restrict ourselves to surfaces embedded in R3,
where the closest point extension and finite difference discretization can be eifficiently implemented on
regular grids.

The method begins by solving the surface heat equation using CPM for a prescribed time T . As
suggested in [17], we set T = (∆x)2 throughout the paper. Since the geodesic distance on the surface,
the solution to the surface Eikonal equation, can be approximated by solving a related Poisson equation,
the second step recovers the distance function by solving this equation within the CPM framework,
with careful attention to the extension and projection steps. Algorithm 1 provides a summary of the
CPHM procedure for a single source point. The algorithm can be easily generalized to multiple source
points, which will be discussed in Sec. 3.2.

Algorithm 1 Closest Point Heat Method for the Surface Eikonal Equation

1 Input: Grid points x ∈ R3, surface S, closest point map cp, time step ∆t, penalty parameter γ,
interpolation orders p, q

2 Initialize: u0 ← δcp(x0) for a source point x0 ∈ S
3 Compute extension matrices Ep, Eq, discrete Laplacian matrix L, and finite difference derivative
matrices Dx1 , Dx2 , Dx3 that approximate ∂x1 , ∂x2 , ∂x3 , respectively.

4 Initialize identity matrix I
5 u1 ← CPHeatSolve(u0, ∆t, γ, I, Ep, Eq, L) ▷ Algorithm 2
6 ϕ ← CPPoissonSolve(u1, γ, I, Ep, Eq, L, Dx1

, Dx2
, Dx3

) ▷ Algorithm 3
7 Output: ϕ restricted to S

3.1 Closest Point Treatment of Surface Equations

To solve PDEs on a surface S without requiring explicit surface parameterizations, we use the CPM.
This approach extends a surface PDE on the embedded surface S ∈ R3 into a narrow tubular neigh-
borhood B(S) where the closest point function (2.1) is well-defined. Here, we give a brief review on
the CPM for a screened Poisson equation,

∆Su (y)− cu (y) = f (y) , y ∈ S , (3.1)

where c > 0 and ∆S denotes the Laplace–Beltrami operator on S. Firstly, we denote the closest point
extension of the surface solution as ũ(x) = Eu(x) for x ∈ B(S). Similarly, f̃ = Ef in B(S). Since
u ≡ ũ and f ≡ f̃ on S, we can replace u by ũ and f by f̃ in (3.1):

∆S ũ (y)− cu (y) = f̃ (y) , y ∈ S . (3.2)
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Note that the closest point extension is idempotent, we have ũ = Eũ in B(S). Therefore, we have

∆S ũ = ∆S (Eũ) = ∆ũ |S on S , (3.3)

where the second equality is due to the Laplacian principle (2.5). With (3.3), the surface equation
(3.2) can be expressed in terms of the Cartesian Laplacian,

∆ũ (y)− cu (y) = f̃ (y) , y ∈ S . (3.4)

Next, we apply the closest point extension to (3.4). In this way, we obtain an embedding equation for
ũ in B(S),

E∆ũ (x)− cũ (x) = f̃ (x) , x ∈ B(S) (3.5a)

subject to ũ (x) = Eũ (x) , x ∈ B(S) . (3.5b)

The constraint (3.5b) effectively enforces that the extended solution ũ being a closest point extension of
the surface solution u, and hence maintains constancy of ũ along the normal direction of S. Following
[23], we enforce the constraint (3.5b) through a penalty formulation that discourages deviations from
the extension condition,

E∆u− cu− γ (u− Eu) = f in B(S) , (3.6)

which is referred as the embedding equation of the surface equation (3.1). We omit the tilde on ũ and
f̃ for notational convenience. In (3.6), γ > 0 is a parameter that represents the penalty strength.
Let n ∈ N be the dimension of the embedding space. Following [24, 23], we choose γ = 2n/(∆x)2 to
balance the accuracy and effectiveness to enforce the extension condition (3.5b).

Now, we review a matrix formulation (Sec. 2.2 in [21]) of a finite difference scheme for the em-
bedding equation (3.6). Let Ω∆x be the collection of rectangular grid points inside the narrow band
B(S). Assume |Ω∆x| = N . We introduce the vector u ∈ RN with entries ui ≈ u(xi) for each grid
point xi ∈ Ω∆x. We approximate the Cartesian Laplacian by ∆u ≈ Lu, where L ∈ RN×N is a Lapla-
cian matrix that contains the weights of the standard second-order central difference scheme. When
handling the closest point extension E of a surface quantity, we need to assign the value at each grid
point xi to be the value at the corresponding closest point cp (xi). Since cp (xi) generally does not
coincide with the grid points, we obtain the closest point value through polynomial interpolation of
the surrounding grid values. Suppose the p-th order interpolation is used to approximate the closest
point values. We may collect the interpolation weights at the stencils and incorporate them into the
extension matrix Ep ∈ RN×N . In this way, the closest point extension Eu is numerically performed
by Epu. To balance accuracy and efficiency, we use a lower-order approximation when applying the
Laplacian and higher-order interpolation for the penalty term. For example, a typical discretization
of (3.1) takes the form

[EpL− cI− γ (I− Eq)] u = f . (3.7)

where I is the N -by-N identity matrix. f ∈ RN is the discretization of f in Ωh. Ep and Eq denote
the interpolation matrices of degree-p and degree-q, respectively. A common choice is p = 1, q = 3.
This strategy ensures that off-surface computations remain consistent with the surface geometry while
maintaining the stability and robustness of the scheme. This section leads to a unified framework
applicable to both time-dependent and steady-state surface equations in CPHM, as outlined below.

3.1.1 Time-Dependent Case: Surface Heat Equation

In the heat method, we have to compute a short-time solution to the surface heat equation

∂tu (y, t) = ∆Su (y, t) , y ∈ S, t > 0 ,

u (y, 0) = u0 (y) , y ∈ S .
(3.8)
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The initial condition u0(y) is taken to be the Dirac Delta distribution at the source point y0. In CPHM,
we adopt a regularized Dirac Delta initial condition. See the details in Sec. 3.2. Let u1 (y) ≈ u (y,∆t)
be the approximated short-time heat solution. Following [17], we obtain u1 by applying the Backward
Euler method to (3.8) for one time step ∆t. This leads to a screened Poisson equation for u1,

∆Su1(y)−
1

∆t
u1(y) = −

1

∆t
u0(y) , y ∈ S . (3.9)

Define the closest point extensions ũ0 = Eu0 and ũ1 = Eu1. The corresponding embedding equation
of (3.9) for ũ1 is

E∆ũ1 −
1

∆t
ũ1 − γ(ũ1 − Eũ1) = −

1

∆t
ũ0 in B(S) , (3.10)

which we numerically solve with the CPM. A detailed description of the numerical procedure is sum-
marized in Algorithm 2.

Algorithm 2 CPHeatSolve: Closest Point Method for Surface Heat Equation

1 function CPHeatSolve(u0, ∆t, γ, I, Ep, Eq, L)
2 Let u1 ∈ RN with entries [u1]i ≈ ũ1 (xi) in (3.10). Compute u1 by solving the linear system:[

EpL−
1

∆t
I− γ(I− Eq)

]
u1 = − 1

∆t
u0 (3.11)

3 return u1

3.1.2 Steady-State Case: Surface Poisson Equation

To obtain the Eikonal solution, we have to solve the surface Poisson equation,

∆Sϕ = ∇S ·X on S , where X = −∇Su1/∥∇Su1∥ , (3.12)

which corresponds to (3.1) with c = 0 and f = ∇S ·X. In order to derive the embedding equation for
(3.12), we provide some details on how to perform the closest point extension of its right-hand side
function f . By the gradient principle (2.3), we can replace the surface gradient of u1 by the Cartesian
gradient of ũ1 = Eu1. Therefore, we have

X = −∇ũ1/∥∇ũ1∥ on S . (3.13)

Since X is parallel to ∇Su1, hence it is tangent to S. Define X̃ as the closest point extension of
the vector field X, i.e., X̃(x) = X (cp(x)). By the Divergence principle, we can replace the surface
divergence of X by the Cartesian divergence of X̃ when computing

f = ∇S ·X = ∇ · X̃ on S . (3.14)

Following the derivation in the previous sections, the embedding equation of ϕ̃ = Eϕ for (3.12) is

E∆ϕ− γ(ϕ− Eϕ) = f̃ in B(S) , where f̃ (x) = [∇ · X̃] (cp(x)) . (3.15)

The corresponding solution method is outlined in Algorithm 3.
By using the closest point extension operator and a penalty-based embedding strategy, both

parabolic and elliptic surface PDEs can be treated in a consistent and efficient framework. This ap-
proach allows the use of standard Cartesian discretizations within a narrow band around the surface,
simplifying implementation while preserving the intrinsic geometry of the problem.
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Algorithm 3 CPPoissonSolve: Recovery of Distance via Closest Point Poisson Solve

1 function CPPoissonSolve(u1, γ, I, Ep, Eq, L, Dx1
, Dx2

, Dx3
)

2 Compute ∇ũ1 = [∂x1
ũ1, ∂x2

ũ1, ∂x3
ũ1]

T at each grid point xi component-by-component:

∂xj ũ (xi)←
[
Dxju1

]
i
, for j = 1, 2, 3 .

3 Compute normalized heat gradient X = [X1, X2, X3]
T at each grid point xi:

X(xi) = −∇ũ1(xi)/∥∇ũ1(xi)∥ .

4 Compute ∂xj
Xj for each grid point xi, for j = 1, 2, 3:

∂xjXj (xi)←
[
Dxj [Xj(x1), Xj(x2), · · · , Xj(xN )]

T
]
i

5 Compute f = ∇ ·X = ∂x1
X1 + ∂x2

X2 + ∂x3
X3 at each grid point xi, ▷ Cartesian divergence

f(xi)← ∂xjX1 (xi) + ∂xjX2 (xi) + ∂xjX3 (xi)

6 Let f ∈ RN with entries fi = f(xi). Solve for ϕ from the embedding equation:

[EpL− γ(I− Eq)]ϕ = Eqf. (3.16)

7 return ϕ

3.2 Approximation of the Dirac Delta Function on a Surface

In the CPHM, the accuracy of the surface delta function approximation plays a crucial role in the
overall quality of the solution. Since this approximation represents a concentrated source term, any
error in its support width, placement, or the underlying geodesic distance can propagate through the
simulation and degrade the fidelity of results such as heat flow or distance maps.

Let ϕS(x) be the geodesic distance between the source point x0 and x on the surface S. When
solving the heat equation (3.8), we approximate the surface Dirac Delta initial condition by

δx0,H(x) =


2π

(π2 − 4)H2

[
1 + cos

(
π ϕS(x)

H

)]
, if ϕS(x) ≤ H,

0, if ϕS(x) > H,

(3.17)

which is obtained by generalizing a radially symmetric approximation of the Dirac delta distribution
on R2 with compact support of radius H [25], replacing the Euclidean distance with the geodesic
distance dS .

To assign such an initial condition in a narrow band of the surface S, we first search for the grid
points whose closest points lie within a Euclidean ball of radius H centered at x0. Then, for each of
these closest points, we approximate their geodesic distance from x0 by fitting a bivariate polynomial
surface S̃ near x0. The geodesic distance on the original surface is then approximated by that on the
fitting surface S̃, which can be computed by solving a geodesic equation [26].

The local reconstructed surface S̃ is defined in a local coordinate system centered at x0, where the
coordinate axes are aligned with the principal directions at that point: the surface normal N(x0) and
two orthonormal tangent vectors t1(x0) and t2(x0) spanning the tangent plane, as described in [27].
In this coordinate frame, any point near x0 can be expressed as (ξ, η, z̃), where (ξ, η) are coordinates
in the tangent plane and z̃ is the height along the normal direction.

We fit a second-order polynomial surface of the form

z̃(ξ, η) = a0 + a1ξ + a2η + a3ξ
2 + a4ξη + a5η

2,
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<latexit sha1_base64="0GGKMiF1kHlZgqJ2Jjkg/P3bKcg="></latexit>

Locally reconstructed surface S̃

<latexit sha1_base64="lX5HqQxkLvM04sl+zQ/mEqcUcy8="></latexit>x0

<latexit sha1_base64="yQc2bV/Mv7wXPsEXK8PWxsa+fRA="></latexit>

cp(xi) <latexit sha1_base64="nq0z0wRuDV6YXvViY4qkwJPLAIQ="></latexit>

ω (cp(xi))

Figure 2: Here, we illustrate the local reconstruction of the surface S used to approximate the
geodesic distance near the source point x0. The intersection of a Euclidean ball centered at
x0 and the surface S is approximated by a bivariate polynomial surface S̃ defined in a local
coordinate system at x0. The geodesic distance between x0 and a closest point cp(xi,j) on S
is then approximated by the geodesic distance between the corresponding points on S̃ within
this local frame.

using least squares fitting from the local closest point data transformed into this coordinate system.
This reconstructed surface S̃ captures the local curvature of S near x0 and enables accurate approxi-
mation of intrinsic quantities such as geodesic distance.

Empirically, we have found that H = 2∆x gives the optimal accuracy. Note that this surface
local reconstruction procedure can be easily generalized to multiple source points, provided that their
support do not overlap.

3.3 Extension to Open Surfaces

Here, we consider an embedded surface S ⊂ R3 with a smooth and co-dimension one boundary ∂S.
Such open surfaces pose two challenges to CPHM. Firstly, we must impose appropriate boundary
conditions (BCs) for both the surface heat and Poisson equations on ∂S. Secondly, we must adapt the
closest point extension to the surface PDEs with the presence of BCs. Throughout this section, we let
n = n(y) be the unit outward normal at a point y ∈ ∂S.

3.3.1 Correct boundary conditions

Our objective is to compute the geodesic distance field from the source points without boundary effects;
a crucial step is to compute a boundary-free heat gradient. To begin the discussion, suppose we solve
the heat equation (3.8) with homogeneous Neumann (no-flux) BC,

∂nu = ⟨n,∇Su⟩ = 0 on ∂S .

Under this BC, the resulting heat gradient is orthogonal to the unit outward normal of ∂S. Hence,
we can see that the boundary geometry alters the heat gradient, which leads to a distorted Eikonal
solution that differs from the geodesic distance field. To improve this, [17] proposes averaging the
(homogeneous) Neumann heat solution with the Dirichlet heat solution. Such heuristic modification
appears to mitigate the boundary effect. Alternatively, we consider a modified Neumann BC for (3.8)

∂nu = g , where g = ⟨n,∇Su⟩ . (3.18a)

In this formalism, the heat gradient∇Su is completely determined by the heat source. At the boundary,
the normal derivative of the heat solution is defined by the inner product of the heat gradient and the
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unit outward normal of ∂S. This self-consistent BC does not interfere with the heat propagation from
the source points. Consequently, we obtain the heat gradient that has the boundary effects eliminated.
As in Sec. 3.1.2, we impose the Eikonal gradient to be the normalized heat gradientX = −∇Su/∥∇Su∥
on S ∪ ∂S. This constraint leads to the minimization problem min

ϕ
∥∇Sϕ−X∥2. The Euler–Lagrange

equation of this problem is the Poisson equation (3.12) with the Neumann BC

∂nϕ = ⟨n,X⟩ on ∂S . (3.18b)

In conclusion, we supplement the surface heat and Poisson equations with the correct BCs (3.18a) and
(3.18b), respectively.

3.3.2 Modified CPHM for boundary condition

To handle an open surface, we adopt a modified closest point function [28] for the grid points near
the boundary. Moreover, the discretization of the inhomogeneous Neumann BC requires special care
such that the second-order accuracy of the Poisson solver can be retained. We leave the details in the
Appendix A. Firstly, the discretization (3.11) of the heat solution is changed to(

ĒpL−
1

∆t
I

)
u1 − γ(u1 − Ēqu1 − g) = − 1

∆t
u0 (3.19)

where Ēp and Ēq are the interpolation matrices of order p and q at the modified closest points, re-
spectively. The vector g ∈ RN encodes a second-order accurate discretization of the Neumann BC
(3.18a). Since the right-hand side function g of (3.18a) is a linear operator of the heat solution u, its
corresponding discretization g is also a linear with respects to the discretized heat solution u1. Hence,
we can explicitly write

g = Ēgu1 , for some matrix Ēg ∈ RN×N . (3.20)

Upon substituting (3.20) into (3.19), u1 now satisfies the linear system:[
ĒpL−

1

∆t
I− γ(I− Ēq − Ēg)

]
u1 = − 1

∆t
u0 (3.21)

Similarly, for the discrete Poisson solution ϕ in (3.16), a second-order discretization of the Neumann
BC (3.18b) modifies the extension constraint to ϕ = Eqϕ+ g2, where g2 ∈ RN encodes a second-order
accurate discretization of the Neumann BC (3.18b). Upon substituting the modified constraint into
(3.16), we have [

ĒpL− γ(I− Ēq)
]
ϕ = Ēqf + γg2 . (3.22)

These modifications allow CPHM to incorporate second-order accurate treatments of Neumann bound-
ary conditions on open surfaces while maintaining the overall structure of the original algorithm.

Remark (On the Accuracy of CPHM). Although CPHM incorporates higher-order accurate discretiza-
tions for interpolation and the Laplacian within the closest point framework, the overall accuracy of
the method remains first-order, consistent with the original heat method [17]. This limitation primar-
ily stems from the design of CPHeatSolve (Algorithm 2), which adopts the same time discretization
strategy, using a time step of ∆t = (∆x)2 to ensure stability. The resulting distance function inherits
the O(∆x) error introduced by the short-time heat flow approximation, which only asymptotically
recovers the gradient direction of the true geodesic distance. We also observe a potential further
reduction in accuracy for certain open surface problems, primarily due to errors in the boundary con-
dition approximation. A more detailed investigation into the accuracy of CPHM will be provided in
Section 4.1.
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4 Numerical results

In this section, we present numerical results to validate the performance of the proposed method,
CPHM. The first subsection is dedicated to a convergence study, which includes two parts: numerical
tests on the unit sphere, a closed surface, with both single and multiple point sources; and experiments
on an open surface to evaluate the method’s behavior near boundaries. A series of examples on
complex surfaces follows, demonstrating the versatility of CPHM in accurately capturing geodesic
distances on geometries with intricate features and topology. The penalty parameter γ is chosen
to be 2n/ (∆x)

2
, where n is the dimension of the data, and this value is used consistently across

all examples. All computations were implemented in MATLAB using code based on the GitHub
repository at https://github.com/cbm755/cp_matrices, and executed on a personal laptop (Apple
M1 Pro, 3.2 GHz processor, 16 GB memory). Every linear system arising in the CPHM algorithm
(Algorithm 1) is solved using MATLAB’s backslash operator. We note that one could also adopt a
multigrid approach, as in [23], to enhance the efficiency of the solver.

4.1 Convergence Study

4.1.1 Closed Surface: Unit Sphere

We begin our convergence study of CPHM with a simple benchmark problem. Let S be the surface of
the unit sphere ∥x∥ = 1 embedded in R3. We adopt the spherical coordinates (φ, θ), where φ ∈ [0, 2π)
represents the azimuth angle and θ ∈ [0, π/2] denotes the co-latitudinal angle measured from the
positive z-axis. In the first example, we set a single source point at (φ, θ) = (π/4, π/3). The Eikonal
solution shown in Fig. 3(a,b) exhibits a smooth profile and equispaced contour lines that are consistent
with the exact geodesic distance on the unit sphere. The plots of relative error in Fig. 3(c) confirm
that the proposed method achieves almost first-order convergence, in agreement with the original heat
method [17]. We give the number of grid points inside the computational band (Length(ϕh)) and
computational times for the main steps of CPHM, including the total time for local reconstruction in
approximating Dirac Delta initial condition, the heat solver, and the Poisson solver. It is noteworthy
that the computational time for local reconstruction is largely independent of the mesh size ∆x. It
is because the support H of the smoothened Dirac Delta initial condition scales with ∆x (we choose
H = 2∆x) In the second example, we consider five source points at (φ, θ) = (0, 0), (±π/3, ±π/3).
Unlike the case of a single source point, the CPHM Eikonal solution in Fig. 4(a-c) is able to accurately
capture the kinks at the intersection of characteristic curves of the Eikonal equation, supported with
a first-order convergence in Fig. 4(d).

Table 1: Computational complexity and times for Fig. 3.
∆x Length(ϕh) Time (Local reconstruction) Time (Heat solver) Time (Poisson solver)

0.1 10,906 0.7072 (s) 0.2387 (s) 0.2193 (s)
0.05 41,870 0.5982 (s) 1.6003 (s) 1.6593 (s)
0.025 166,390 0.4262 (s) 15.7687 (s) 16.1150 (s)
0.0125 663,454 0.4366 (s) 306.1670 (s) 191.4646 (s)

4.1.2 Open Surfaces

First, to validate the proposed boundary condition in Sec.3.3, we apply the modified CPHM to the
(planar) unit disk embedded in R2. We observe that the Eikonal solution in Fig. 5 propagates correctly
near the boundary. The relative error in L∞-norm confirms the first-order convergence of the modified
CPHM solution (Fig.5(b)).

Next, we consider the upper hemisphere {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1, z > 0}. As shown
in Fig. 6(a-b), the CPHM Eikonal solution is qualitatively correct, particularly near the boundary.
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Figure 3: (a) CPHM Eikonal solution obtained with ∆x = 0.05 (number of grid points is
41,870, see Table 1). The source point is located by the black marker. In (b), we show the
eikonal solution from the bottom view. (c) We show the first-order convergence in the relative
error l∞ norm.
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(c)

Figure 4: (a), (b), (c): CPHM Eikonal solution with 5 source points, and ∆x = 0.025 (number
of grid points is 166,390) in different viewing angles. Each source point is located by a black
marker. In (d), we show the first-order convergence in the relative errors in l∞ norm.

However, the relative error converges slower than first-order (see Fig. 6(c)). We attribute the slow
convergence to error propagation from the heat solver into the Poisson solver. More precisely, the
right-hand side of (3.12) is computed by taking the numerical divergence of the normalized gradient
of the discrete heat solution. Since the heat equation (3.8) is solved with a standard second-order
Laplacian discretization, the resulting (normalized) gradient is only first-order accurate. Thus the
Poisson right-hand side carries an O(∆x) truncation error that limits the overall convergence rate.
This accuracy bottleneck is inherent to the heat-method pipeline, not to the proposed boundary
condition or the underlying closest point framework: as shown for the unit disk (Fig. 5(b)), we do
obtain first-order convergence. The boundary condition is correct at the continuous level, but a first-
order convergence may require higher-accuracy discretizations in both the heat and Poisson solvers.
Open surfaces therefore remain an important challenge for further improving the heat method.

4.2 Miscellaneous Examples

We present the Eikonal solution with a single source on various surfaces in Fig. 7: Bunny, Bumpy
Sphere, Pig, Hippo, and Sappho’s Head. The corresponding number of grid points (inside the compu-
tational band) is provided in Table 2. Each row shows a different surface geometry, with the left column
displaying the surface mesh, and the middle and right columns illustrating the computed geodesic dis-
tance via isolines from different viewpoints. The smoothness and density of the contours demonstrate
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Figure 5: (a): CPHM Eikonal solution of the planar unit disk with source point x0 =
−(π−1, e−1) obtained with ∆x = 0.01 (number of grid points = 33,745). (b): First-order
convergence of relative errors in L∞-norm.
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Figure 6: (a), (b): CPHM Eikonal solution on the upper hemisphere with source point (shown
as black marker) at (φ, θ) = (5π/3, 3π/10) obtained with ∆x = 0.025 (number of grid points
= 89,989). (b): The relative errors in L∞-norm.

the effectiveness of the method in capturing intrinsic distances across a variety of topologies and surface
complexities.

5 Concluding Remarks

In this paper, we presented the Closest Point Heat Method (CPHM), a novel approach for solving the
surface Eikonal equation on general smooth surfaces. By extending the heat method to an embedding
framework using the closest point methodology, CPHM overcomes several limitations of traditional
techniques that rely on surface meshes or parametrizations. Our method enables intrinsic geodesic
distance computations without requiring explicit surface discretizations, making it particularly effective
for implicit surfaces or data represented as level sets or point clouds.

The key strengths of CPHM lie in its simplicity, mesh-free nature, and compatibility with stan-
dard finite difference tools on Cartesian grids. Through numerical experiments, we demonstrated the
accuracy and convergence of the method on benchmark geometries and illustrated its applicability to
complex shapes. The method maintains robustness even in the presence of geometric irregularities,
while preserving the desirable properties of the original heat method, such as efficiency and stability.

Several promising directions remain for future research. A primary avenue is the enhancement of
numerical accuracy and efficiency through adaptive or higher-order discretizations, as well as through
the use of CPHM to generate high-quality initializations, for example, for learning-based methods
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Figure 7: CPHM solution of the Eikonal equation ∥∇Sϕ∥ = 1 on various surfaces (in vertical
order): Bunny, Bumpy Sphere, Pig, Hippo, and Sappho’s Head. The numerical resolution for
each case can be found in Table 2.

[30, 31]. These improvements can be particularly beneficial in geometrically complex regions or learning
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Example Length(ϕh)

Bunny 108,643
Bumpy sphere 128,591
Pig 278,573
Hippo 396,311
Sappho’s head [29] 316,553

Table 2: Summary of grid resolutions used in Fig. 7.

frameworks where precise intrinsic information is crucial. Another central challenge is the extension
of CPHM to anisotropic settings, where the speed function depends not only on position but also on
direction. The anisotropic Eikonal equation arises in applications such as image processing, medical
imaging, and fiber tractography, where wavefront propagation must align with directional features of
the medium. Formally, it takes the form ∥A(y)∇Sϕ(y)∥ = 1, where A(y) is a position-dependent
tensor encoding local anisotropy. At present, our method is limited to the isotropic case with constant
unit speed (F (y) = 1), and even the extension to general spatially varying F (y) remains an open
challenge. Addressing the anisotropic case would require fundamental modifications to the heat flow
approximation and projection operations, making it a natural but ambitious direction for future work.

A Implementation of inhomogeneous Neumann boundary con-
dition

When applying the CPHM to an open surface S in Sec. 3.3, we impose inhomogeneous Neumann BCs
for the surface heat and Poisson equations. To the best of our knowledge, extending the CPM to
handle general boundary conditions (besides homogeneous Neumann and Dirichlet BCs) remains an
open challenge. Here, we generalize the modified closest point function (for open surfaces) proposed
in [28] to treat an inhomogeneous Neumann BC. First, we first introduce the terminologies that lead
to the modified closest point function.

Let’s consider a tubular neighbourhood T of an open surface S such that all grid points inside T
have a unique closest point on S. Let v := u ◦ cp be the closest point extension of a surface function
u defined on S. For any grid point xg ∈ T , we have v(xg) = v (cp(xg)). Therefore, the closest point
extension propagates the boundary values into the T along the normal directions to the boundary.
In other words, when applied to an open surface, the closest point extension effectively imposes the
homogeneous Neumann BC ∂nu = 0 on ∂S. See Fig. 8.

Now, let’s consider the modified closest point function from [28]

c̄p (xg) := cp (xg + cp(xg)− xg) = cp (2cp(xg)− xg) .

In here, 2cp(xg) − xg is the “mirror point” of xg in the direction xg − cp(xg) across S. Suppose
that xg − cp(xg) is orthogonal to S. Then both xg and its mirror point 2cp(xg) − xg share the
same orthogonal projection, cp(xg), on S. That is, cp(xg) = c̄p(xg), which is true when xg is away
from the boundary ∂S. This naturally leads to a classification of boundary points in the embedding
space. Specifically, we say that xg is a boundary point if cp(xg) ∈ ∂S. Consequently, the vector
xg − cp(xg) is not orthogonal to S and cp(xg) ̸= c̄p(xg). See Fig. 8. In this case, we identify xg as
a ghost point, whose value is treated as a boundary value. By replacing all instances of cp(xg) with
c̄p(xg) in the discretization stencil, the modified closest point extension yields a second-order accurate
discretization of the homogeneous Neumann BC. We let the modified interpolation matrix of order q
be Ēq. Numerically, the modified closest point extension is enforced by the discrete constraint,

u = Ēqu . (A.1)
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Figure 8: Illustration of mirror point construction near the boundary ∂S of the hemisphere S.
(Left) The surface normal n, boundary normal N , and tangential direction T at a boundary
point. (Right) A grid point xg, its closest point cp (xg), and the corresponding mirror point
2cp (xg)− xg.

Now, we utilize the modified closest point extension to handle the inhomogeneous Neumann BC
∂nu = g on ∂S. At a boundary point xg, let T and N be a unit tangent and normal vector of S such
that n := T ×N is the unit outward normal of ∂S. Note that {T ,N ,n} is an orthonormal basis of

R3. Let w =
xg−cp(xg)

||xg−cp(xg)|| . Since w is orthogonal to T , we have

w = ⟨w,n⟩n+ ⟨w,N⟩N . (A.2)

From (A.2), we may decompose the directional derivative in the w-direction as

∂w = ⟨w,n⟩ ∂n + ⟨w,N⟩ ∂N .

Apply this to u
(
cp(xg)), we have

∂w u
(
cp(xg)

)
= ⟨w,n⟩ g

(
cp(xg)

)
. (A.3)

where we use the given BC ∂nu = g at x = cp(xg), and the fact that u
(
cp(x)

)
is constant along the

normal direction of S, hence ∂Nu
(
cp(xg)

)
= 0. Next, we approximate the LHS of (A.3) by the central

difference,

∂wu
(
cp(xg)

)
≈ u(xg)− u

(
c̄p(xg)

)
2||xg − cp(xg)||

. (A.4)

This yields
u(xg)− u(c̄p(xg))

2∥xg − c̄p(xg)∥
≈ ⟨w,n⟩ g(cp(xg)),

which eventually leads to a second-order accurate extrapolation formula:

u(xg) = u (c̄p(xg)) + ⟨x− cp(x), n⟩ g(cp(x)). (A.5)

This modifies the constraint (A.1) to
u = Ēqu+ g , (A.6)

where g is the vector that encodes the inhomogeneous Neumann BC (the second term of the RHS
in (A.5)) at the boundary grid points. To demonstrate the second-order convergence with the mirror
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point treatment of the inhomogeneous Neumann BC, we consider a shifted Poisson equation (3.1) on
the upper hemisphere S,

∆Su− u = f in S , ∂nu = g on ∂S ,
In spherical coordinate (φ, θ) ∈ [0, 2π)×(0, π), the exact solution is chosen to be u(φ, θ) = sin θ cos θ cosφ.
Then we have f = −7u and g = − cosφ. We present the relative error and the convergence order in
Table 3.

∆x
∥u− uh∥∞
∥u∥∞

Order

0.1 6.6396E-3 —
0.05 1.8217E-3 1.8658
0.025 4.7954E-4 1.9256
0.0125 1.2362E-4 1.9557

Table 3: Second-convergence of the inhomogeneous Neumann problem

Acknowledgement

The research of Byungjoon Lee was supported by the Catholic University of Korea, Research Fund.
The authors are grateful to anonymous reviewers for their careful reading and valuable comments.

References

[1] Grimshaw R. Propagation of surface waves at high frequencies. IMA Journal of Applied Mathe-
matics. 1968;4(2):174-93.

[2] Mémoli F, Sapiro G. Fast computation of weighted distance functions and geodesics on implicit
hyper-surfaces. Journal of computational Physics. 2001;173(2):730-64.

[3] Liu J, Leung S. A splitting algorithm for image segmentation on manifolds represented by the
grid based particle method. Journal of Scientific Computing. 2013;56:243-66.

[4] Bronstein MM, Bruna J, LeCun Y, Szlam A, Vandergheynst P. Geometric deep learning: going
beyond euclidean data. IEEE Signal Processing Magazine. 2017;34(4):18-42.

[5] Kimmel R, Sethian JA. Computing geodesic paths on manifolds. Proceedings of the national
academy of Sciences. 1998;95(15):8431-5.

[6] Tsitsiklis JN. Efficient algorithms for globally optimal trajectories. IEEE transactions on Auto-
matic Control. 2002;40(9):1528-38.

[7] Zhao H. A fast sweeping method for eikonal equations. Mathematics of computation.
2005;74(250):603-27.

[8] Yoo SW, Seong JK, Sung MH, Shin SY, Cohen E. A triangulation-invariant method for anisotropic
geodesic map computation on surface meshes. IEEE Transactions on Visualization and Computer
Graphics. 2012;18(10):1664-77.

[9] Xu SG, Zhang YX, Yong JH. A fast sweeping method for computing geodesics on triangular
manifolds. IEEE transactions on pattern analysis and machine intelligence. 2008;32(2):231-41.

[10] Wong T, Leung S. A fast sweeping method for eikonal equations on implicit surfaces. Journal of
Scientific Computing. 2016;67:837-59.

17



[11] Bronstein AM, Bronstein MM, Kimmel R. Weighted distance maps computation on parametric
three-dimensional manifolds. Journal of Computational Physics. 2007;225(1):771-84.

[12] Spira A, Kimmel R. An efficient solution to the eikonal equation on parametric manifolds. Inter-
faces and Free Boundaries. 2004;6(3):315-27.

[13] Weber O, Devir YS, Bronstein AM, Bronstein MM, Kimmel R. Parallel algorithms for ap-
proximation of distance maps on parametric surfaces. ACM Transactions on Graphics (TOG).
2008;27(4):1-16.

[14] Huynh E, Parkinson C. A Scalable Method for Optimal Path Planning on Manifolds via a Hopf-
Lax Type Formula. arXiv preprint arXiv:241213346. 2024.

[15] Chow YT, Darbon J, Osher S, Yin W. Algorithm for overcoming the curse of dimensionality for
state-dependent Hamilton-Jacobi equations. Journal of Computational Physics. 2019;387:376-409.

[16] Lee B, Darbon J, Osher S, Kang M. Revisiting the redistancing problem using the Hopf–Lax
formula. Journal of Computational Physics. 2017;330:268-81.

[17] Crane K, Weischedel C, Wardetzky M. Geodesics in heat: A new approach to computing distance
based on heat flow. ACM Transactions on Graphics (TOG). 2013;32(5):1-11.

[18] King N, Su H, Aanjaneya M, Ruuth S, Batty C. A Closest Point Method for PDEs on manifolds
with interior boundary conditions for geometry processing. ACM Transactions on Graphics.
2024;43(5):1-26.

[19] Ruuth SJ, Merriman B. A simple embedding method for solving partial differential equations on
surfaces. Journal of Computational Physics. 2008;227(3):1943-61.

[20] Osher S, Sethian JA. Fronts propagating with curvature-dependent speed: Algorithms based on
Hamilton-Jacobi formulations. Journal of computational physics. 1988;79(1):12-49.

[21] Macdonald CB, Ruuth SJ. The implicit closest point method for the numerical solution of partial
differential equations on surfaces. SIAM Journal on Scientific Computing. 2010;31(6):4330-50.

[22] Varadhan SRS. On the behavior of the fundamental solution of the heat equation with variable
coefficients. Communications on Pure and Applied Mathematics. 1967;20(2):431-55.

[23] Chen Y, Macdonald CB. The closest point method and multigrid solvers for elliptic equations on
surfaces. SIAM Journal on Scientific Computing. 2015;37(1):A134-55.

[24] von Glehn I, März T, Macdonald CB. An embedded method-of-lines approach to solving partial
differential equations on surfaces. arXiv preprint arXiv:13075657. 2013.

[25] Hosseini B, Nigam N, Stockie JM. On regularizations of the Dirac delta distribution. Journal of
Computational Physics. 2016;305:423-47.

[26] Kasap E, Yapici M, Akyildiz FT. A numerical study for computation of geodesic curves. Applied
Mathematics and Computation. 2005;171(2):1206-13.

[27] Leung S, Zhao H. A grid based particle method for moving interface problems. Journal of
Computational Physics. 2009;228(8):2993-3024.

[28] Macdonald CB, Brandman J, Ruuth SJ. Solving eigenvalue problems on curved surfaces using
the closest point method. Journal of Computational Physics. 2011;230(22):7944-56.

[29] Zhou Q, Jacobson A. Thingi10K: A Dataset of 10,000 3D-Printing Models. arXiv preprint
arXiv:160504797. 2016.

[30] Smith JD, Azizzadenesheli K, Ross ZE. Eikonet: Solving the eikonal equation with deep neural
networks. IEEE Transactions on Geoscience and Remote Sensing. 2020;59(12):10685-96.

[31] bin Waheed U, Haghighat E, Alkhalifah T, Song C, Hao Q. PINNeik: Eikonal solution using
physics-informed neural networks. Computers & Geosciences. 2021;155:104833.

18


