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Abstract. Implicit models, an emerging model class, compute outputs by iterating a single param-
eter block to a fixed point. This architecture realizes an infinite-depth, weight-tied network that

trains with constant memory, significantly reducing memory needs for the same level of performance

compared to explicit models. While it is empirically known that these compact models can often
match or even exceed larger explicit networks by allocating more test-time compute, the underlying

reasons are not yet well understood.

We study this gap through a non-parametric analysis of expressive power. We provide a strict
mathematical characterization, showing that a simple and regular implicit operator can, through

iteration, progressively express more complex mappings. We prove that for a broad class of implicit

models, this process allows the model’s expressive power to grow with test-time compute, ultimately
matching a much richer function class. The theory is validated across three domains: image recon-

struction, scientific computing, and operations research, demonstrating that as test-time iterations
increase, the complexity of the learned mapping rises, while the solution quality simultaneously

improves and stabilizes.

1. Introduction

Many machine-learning tasks can be cast as learning a mapping F from input x to the desired
output y∗, i.e., y∗ = F(x). An emerging alternative is the implicit models (or named deep equilibrium
models, also fixed-point models): train an operator G whose fixed point matches the target, y∗ =
G(y∗,x) [3,24]. At inference, we repeatedly apply the same learned operator G (weight-tied across all
iterations t):

(1) y1 = G(y0,x), y2 = G(y1,x), y3 = G(y2,x), · · · ,

and expect yt(x) → y∗(x) = F(x) for all x. Rather than producing y∗ in a single feed-forward
pass, implicit models reach the target through gradual equilibrium-seeking updates. Here, “test-time
compute” refers to the computational budget spent at inference—primarily the number of iterations;
increasing this budget increases runtime but not the number of learned parameters. By tailoring the
structure of G, implicit models have shown strong results across many domains (e.g., imaging [35],
scientific computing [67], generative modeling [33,73], LLM reasoning [32], etc.).

Behind these successes, the advantages of implicit models include: (i) they realize an infinite-depth,
weight-tied network trainable with constant memory, which yields efficient training [29,34]; (ii) they
allow us to explicitly impose or “implicitly bake in” domain constraints and structure (e.g., physics,
geometry, safety), see [38, 70, 97]; and, most surprisingly, (iii) they can often match or even exceed
larger explicit networks by allocating more iterations [32,67,94]. Point (i) stems from the weight-tied
architecture and avoiding full back-propagation. Point (ii) arises from the inherently implicit nature
of many real-world, equation-based constraints. In contrast, the mechanism underlying the surprising
effectiveness of (iii) remains less well understood.

We study this through the lens of expressive power—the set of input–output maps a model family
can represent. We ask two questions. First, as a baseline: (Q1) Do implicit models (at least) match
the expressive power of explicit ones? Concretely, for a target map F : x 7→ y∗, does there always
exist an implicit operator G such that the iterates of (1) satisfy yt(x) → F(x) for all x? If yes, a more
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insightful question follows: (Q2) Do implicit models offer an expressive advantage? In particular,
can a relatively simple implicit operator G, through iteration, represent a complex explicit map F? A
positive answer to (Q2) would directly explain phenomenon (iii).

To our knowledge, these questions remain largely open, as prior work on the topic is limited.
For instance, the universality of implicit models was discussed in specific settings as a secondary
result [3, 67], and a complete theory is missing. Closer to our goal, [96] focus on expressive power,
partially answering (Q2) by proving a key separation result: some mappings can be realized by an
implicit model but not by much larger explicit counterparts. However, a precise characterization of
the function class that implicit models can represent remains open. Our work fills this gap from a
nonparametric, function-space perspective, revealing a key principle: an implicit model’s expressive
power scales with test-time compute. Specifically:

• Expressive boundary. We identify a natural target class (locally Lipschitz mappings) and prove:
simple and well-behaved (which we term “regular”) implicit models, by progressive iterations, can
express any mapping in this class and can only express mappings in this class.

• Emergent expressive power. Our theory yields a new viewpoint on implicit models: the
expressive power of a regular implicit operator is not static but grows with iteration (i.e., scales
with test-time compute) and finally matches a much richer function class.

• Validation across domains. We validate our theory with case studies in a wide range of ap-
plications (e.g., image reconstruction, scientific computing, and operations research). For a rep-
resentative problem in each domain, we demonstrating that as test-time iterations increase, the
empirical complexity of the iterate yt(x) rises while solution quality improves and stabilizes.

2. Main Results

We now return to (Q1): given a target map F , does there exist an implicit operator G whose
fixed-point iteration yields yt(x) → F(x)? A naive construction answers “yes”: define, for 0 < η < 1,

(2) G(y,x) := (1− η)y + ηF(x).

Then the fixed-point iteration reduces to yt = (1−η)yt−1+ηF(x), hence yt−F(x) = (1−η)(yt−1−
F(x)). As 0 < η < 1, it holds that, for all x, yt(x)−F(x) → 0 as t→ ∞.

However, (2) is merely a trivial averaging of y and F(x); learning such an implicit model is no
different from learning F directly. This prompts the natural follow-up: is there any nontrivial implicit
representation that is able to indicate the expressive benefits of implicit models?

An illustrative example. Let F(x) = 1/x on [−1, 1]\{0}. This function is smooth (differentiable
to any order) almost everywhere, but blows up near the singular point x = 0:

|F(x)| =
∣∣∣∣ 1x
∣∣∣∣→ ∞,

∣∣∣∣dFdx
∣∣∣∣ = ∣∣∣∣− 1

x2

∣∣∣∣→ ∞, as x→ 0.

Neural networks approximating 1/x on [−1,−δ) ∪ (δ, 1] typically demands higher network complex-
ity—i.e., increasing depth/width as δ → 0 to capture the growing steepness near the singularity [90].
If we adopt the naive implicit form (2), G(y, x) = (1 − η)y + η/x, nothing is gained: the model still
inherits the singular behavior |∂G/∂x| = η/x2 → ∞.

What would be a nontrivial implicit representation in this setting? Instead of writing (1/x) explic-
itly, we can regard it as the solution of the equation xy− 1 = 0 (implicit representation). Inspired
by this, we apply a fixed-point iteration to xy − 1 = 0: G(y, x) = y − η(xy − 1). Using the general
scheme in (1), we have yt = yt−1 − η(xyt−1 − 1). Subtracting the true solution gives

yt −
1

x
= yt−1 −

1

x
− ηx

(
yt−1 −

1

x

)
= (1− ηx)

(
yt−1 −

1

x

)
For any 0 < η < 1 and any x ∈ (0, 1], we have 0 < (1− ηx) < 1 which implies yt → 1/x. (For x < 0,
simply flip the stepsize sign, η to −η.) This implicit formulation is much simpler and more elegant:
the operator G(y, x) = y − η(xy − 1) has no singularity and no blow-up.
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The example indicates: intuitively, an implicit representation can realize a complicated map with
singularities via a much simpler, smoother update operator G. Next, we make it precise: we formally
define what we mean by “simple” versus “complex,” and characterize—beyond the 1/x example—the
class of target functions for which an implicit representation admits such a simple form.

Definition 2.1 (Lipschitz continuity). Let (X, ∥·∥) and (Y, ∥·∥) be normed spaces, and let Q : X → Y.
We say Q is L-Lipschitz (globally Lipschitz) on X if there exists L > 0 such that

∥Q(x1)−Q(x2)∥ ≤ L ∥x1 − x2∥ for all x1,x2 ∈ X,
and the smallest such L is the Lipschitz constant (or Lipschitz modulus), denoted as Lip(Q). If the
Lipschitz constant L < 1, we say Q is L-contractive on X. Given x ∈ X, we say Q is locally Lipschitz
at x if there exists a neighborhood U of x on which Q is LU-Lipschitz continuous for some LU > 0. If
Q is locally Lipschitz at every x ∈ X, we say Q is locally Lipschitz on X.

Intuitively, Lipschitz continuity limits how quickly a function’s value can change. When a function
is differentiable, its Lipschitz modulus can be characterized by the norm of its first derivative via the
mean-value theorem. For example, F(x) = 1/x is locally Lipschitz on [−1, 1] \ {0} but not globally
Lipschitz there, since |dF/dx| = 1/x2 is unbounded as x → 0, causing local Lipschitz constants to
blow up near the singularity. In contrast, the implicit update G(y, x) = y − η(xy − 1) has simple
partial derivatives |∂G/∂x| = |η y| and |∂G/∂y| = |1− ηx| without singularity.

Locally Lipschitz mappings form a much richer class than globally Lipschitz ones. Typical examples
(locally Lipschitz everywhere in their domains but not globally Lipschitz on the whole set) include:
log x in (0, 1], tanx in

(
−π

2 ,
π
2

)
,
√
x in (0, 1], Γ(x) in R\{0,−1,−2, · · · }, etc.

For this reason, we refer to globally Lipschitz maps as “simple” operators and locally Lipschitz
maps (which may exhibit large local slopes near certain inputs) as “complex.” Next, we formally
state our main result: identifying a broad family of target functions for which implicit representations
provide such simple update operators while expressing complex fixed-point mappings.

Assumption 2.2. Let X ⊂ Rd be bounded and F : X → Rn be locally Lipschitz on X.

We only assume the domain X is bounded ; it need not be compact, closed, or connected. For
instance, X = [−1, 0) ∪ (0, 1] excludes the singular point and permits F(x) = 1/x to blow up at the
interior gap x = 0 while remaining locally Lipschitz on X. Another example is X =

(
−π

2 ,
π
2

)
, where

F(x) = tanx is locally Lipschitz though it blows up at the boundary points ±π
2 (not in X).

We now formalize what we mean by “simple” update rules—namely, regular implicit operators.

Definition 2.3 (Regular implicit operator). Let X ⊂ Rd be bounded. An operator G : Rn ×X → Rn

is regular if: (i) For any y ∈ Rn, the map x 7→ G(y,x) is globally Lipschitz (w.r.t. x) on X, and the
Lipschitz constant grows linearly w.r.t. ∥y∥, and (ii) For each x ∈ X, there exists µ(x) ∈ (0, 1), the
map y 7→ G(y,x) is µ(x)-contractive on Rn, and µ(x) is continuous w.r.t. x.

Explanation. A regular G satisfies: (i) Fixing y, G(y, ·) is globally Lipschitz in x, this makes it a
“simple” operator, and (ii) Fixing x, G(·,x) is contractive in y; by Banach’s theorem, this yields a
unique fixed point y∗(x) for each x and guarantees that iterates of (1) converge to it: yt(x) → y∗(x).
An example of such a regular G is the aforementioned G(y, x) = y − η(xy − 1) on x ∈ (0, 1] with
0 < η < 1. With this definition, we present our main results.

Theorem 2.4 (Sufficiency). Under Assumption 2.2, for any F there exists a regular implicit operator
G : Rn × X → Rn whose fixed-point map reproduces F : Fix

(
G(·,x)

)
= F(x) for all x ∈ X.

Theorem 2.5 (Necessity). Let X ⊂ Rd be bounded and let G : Rn × X → Rn be regular. Then, for
every x ∈ X, the map y 7→ G(y,x) has a unique fixed point y∗(x), and the resulting fixed-point map
y∗(x) must be locally Lipschitz on X.

Proofs are deferred to Appendix A. Theorem 2.4 provides an affirmative answer to (Q1) and (Q2)
posed in the introduction. It proves that for any locally Lipschitz target F on a bounded domain, there
exists a regular implicit operator G, whose iterations converge to the target yt(x) → F(x) for all x.
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Figure 1. (Conceptual diagram) A simple implicit update expresses a complex map
via iteration.

This demonstrates that the expressive power of implicit models not only matches that of explicit
models but also provides a distinct expressive benefit: a relatively simple (regular) implicit
representation can yield a complex fixed-point mapping. Complementarily, Theorem 2.5 shows the
boundary is tight: fixed points induced by any regular G are necessarily locally Lipschitz. Together,
the two results give an exact expressivity characterization for regular implicit models.

What does our theory imply? Take any locally Lipschitz target F (e.g., the curve in Fig. 1). Our
results guarantee the existence of a regular implicit operator G such that the iteration yt = G(yt−1,x)
with y0 = 0 converges: yt(x) → F(x). Consider the first iterate:

y1(x) = G(0,x) =⇒ Lip(y1) = sup
x,x′

∥G(0,x)− G(0,x′)∥
∥x− x′∥

= Lip(G(0, ·)).

Thus, after a single iteration, y1(·) is exactly as smooth as G(0, ·). By Definition 2.3, G(0, ·) is globally
Lipschitz in x with a uniform constant, hence the map y1(·) inherits the same property. With more
iterations, yt approaches F , so the Lipschitz constant of yt(·) approaches that of F(·):

lim
t→∞

∥yt(x)− yt(x
′)∥

∥x− x′∥
=

∥F(x)−F(x′)∥
∥x− x′∥

.

If F has singularities (where local slopes are large or even unbounded), then the effective Lipschitz
constants of yt(·) necessarily grow with t to match that complexity—illustrated in Fig. 1. In short: a
regular operator G gains expressive power through iteration (“test-time compute”), ultimately matching
a richer function class that can include singularities and unbounded Lipschitz behavior.

Generalization. Someone may ask: does a large Lipschitz constant of the fixed-point map y∗(x)
imply sensitivity or poor generalization (cf. [71])? Our view is that this sensitivity is inherent to the
target F , not to the implicit representation—any faithful model, explicit or implicit, must track F ’s
sharp variations. Our case studies in Section 3 confirm this: the target F in many tasks is indeed
steep somewhere and the effective Lipschitz growth as accuracy improves. Crucially, the implicit
formulation can realize such targets with a simple operator G, which regularizes training and supports
good generalization in practice.

Insights for practitioners. A substantial line of work (e.g., [24, 39, 45, 80, 95]) enforces a global
Lipschitz bound on the fixed-point map y∗(x). Typically, the model is parameterized as G(y,x) =
σ(Ay +Bx + b), and by imposing specific algebraic structure on A and B, one ensures that y∗(x)
is globally Lipschitz in x. While this indeed improves robustness, our theory shows it constrains
expressivity and undercuts the unique advantage of implicit models. Our recommendation
is different: rather than imposing uniform Lipschitz constraints, incorporate case-by-case domain-
specific knowledge, priors, or constraints (as illustrated in our case studies Sec. 3). This method
provides effective regularization, leading to robustness and strong test performance while unlocking
the full power of implicit models—representing complex maps with relatively simple operators.

3. Case Studies

In this section, we present three case studies. For each task, we (i) show that the target map satisfies
Assumption 2.2, bringing it under our theory; (ii) specify a G architecture infused with domain priors
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or constraints; (iii) verify—without any explicit Lipschitz control, using only vanilla training—that
the learned G is regular (i.e., G is Lipschitz in x with a modest constant and the iterates converge
yt(x) → F(x); and (iv) test whether increasing test-time iterations enables G to realize progressively
more complex mappings.

3.1. Case Study 1: Image Reconstruction (Inverse problems). Inverse problems in imaging
seek to recover an image y∗ ∈ Rn from partial, noisy measurements x = Ay∗ + n ∈ Rd (d < n),
where A is a known linear operator and n is noise. A common prior is that y∗ lies near a smooth
data manifold M ⊂ Rn. To recover y∗, a standard estimator solves

(3) min
y∈Rn

1

2
∥x−Ay∥2 +

α

2
dist2(y,M),

or, equivalently, a variable–splitting surrogate

(4) min
y,z∈Rn

1

2
∥x−Ay∥2 +

α

2
dist2(z,M) +

β

2
∥y − z∥2.

Next we will show that, under mild assumptions, both (3) and (4) admit a unique minimizer for each
x in a bounded set, and the solution map x 7→ ŷ(x) is locally Lipschitz. Hence the reconstruction
target falls within Assumption 2.2 and is covered by our expressivity results in Section 2.

Assumption 3.1. Let M ⊂ Rn be a compact, C2, embedded (possibly nonconvex) submanifold with
positive reach τ > 0. Assume the forward operator A : Rn→Rd is (µ,L)–bi-Lipschitz when restricted
to M and let σmax denote the maximal singular value of A.

These assumptions are modest: they are standard in prior work and supported by existing theory.
Formal definitions (reach and bi-Lipschitz continuity) and relevant literature appear in Appendix C.

Definition 3.2. Define the admissible set of observations x for (3) and (4):

X :=

{
x : x = Ay∗ + n, for some y∗ ∈ M, ∥n∥ < 1

80

µ5

σ2
maxL

2
τ.

}
Theorem 3.3. Under Assumption 3.1, there exists α > 0 for all x ∈ X such that the minimization
problem (3) yields a unique minimizer ŷ. Let F1a: x 7→ ŷ denote the associated solution map from
input x to the recovery ŷ. Then F1a is locally Lipschitz continuous on X.

Theorem 3.4. Under Assumption 3.1, there exist α, β > 0 for all x ∈ X such that the minimization
problem (4) yields a unique minimizer (ŷ, ẑ). Let F1b: x 7→ ŷ denote the associated solution map
from input x to the recovery ŷ. Then F1b is locally Lipschitz continuous on X.

Corollary 3.5. There must be a regular implicit operator G(y,x) such that Fix(G(·,x)) = F1a(x) for
all x ∈ X. The same conclusion holds for F1b(x).

Proofs of the theorems are deferred to Appendix C, and Corollary 3.5 follows immediately from
Theorems 2.4, 3.3, and 3.4. This corollary guarantees the existence of regular implicit models G for
image reconstruction. Next, we present how to implement G in this context.

Problem-specific G. We adopt algorithm-inspired designs that mirror classical solvers for (3) and
(4). Parameterizing these iterative solvers gives problem-tailored implicit models. In particular,

• Option I (PGD-style). To solve (3), if M were known, one would use proximal gradient descent
(PGD): yt+1 = proxσ(yt−γA⊤(Ayt−x)), with parameters σ, γ > 0, where proxσ is the proximal
map of (σ/2)dist2(y,M) (see Appendix C.1). In practice, we replace proxσ by a learnable neural
network denoiser Hθ,σ (parameters θ and noise level input σ) and obtain

(5) GΘ(y,x) = Hθ,σ

(
y − γA⊤(Ay − x)

)
, Θ = {θ, σ, γ}.

• Option II (HQS-style). For (4), a standard solver is half–quadratic splitting (HQS, see Appen-
dix C.2). Similar to Option I, we replace the proximal map by a learned module and obtain

(6) GΘ(y,x) = Hθ,σ

( (
A⊤A+ βI

)−1(
A⊤x+ β y

))
, Θ = {θ, σ, β}.
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Here we follow the long-standing “plug-in denoiser” idea from Plug-and-Play (PnP) methods [92],
which replaces a proximal operator with an off-the-shelf denoiser inside an iterative solver (see brief
bibliography in Appendix C.2). Unlike PnP, one can also train the entire GΘ as an implicit model, in
both PGD-style [19,35,86,95,101,104] and HQS-style [36] formulations. We adopt the latter.

Questions. Given the parameterizations in (5) and (6), we examine: (i) are these GΘ operators
Lipschitz with respect to x; and (ii) do they, as our theory predicts, realize progressively more complex
input–output mappings over iterations despite having simple per-iteration operators?

Experiment settings. We study image deblurring, x = A(y∗) + n, where A is a motion-
blur operator and n is additive Gaussian noise. Using BSDS500 [66], we construct 200 training, 100
validation, and 200 test pairs (x,y∗), yielding datasets Dinv,train, Dinv,val, and Dinv,test. Implementation
details (data preprocessing, model choices, and training) are in Appendix F.

For evaluation, we analyze 100 iterations of the learned dynamics, yt+1(x) = GΘ(yt(x),x), 0 ≤ t ≤
99 and y0 = 0, on the test set Dinv,test = {(xi,y

∗
i )}200i=1. For each i, we create 5 perturbed ground

truths y∗
i,j , 1 ≤ j ≤ 5, and for each y∗

i,j , we apply A, add noise, and then obtain xi,j . The perturbed
pairs {(xi,j ,y

∗
i,j)}i,j form the perturbed dataset D′

inv,test. Details appear in Appendix F. We track

two metrics, including an empirical Lipschitz estimate and reconstruction quality in PSNR (i.e., Peak
Signal-to-Noise Ratio, higher PSNR means more accurate reconstruction, see appendix):

Lt := max
1≤i≤200

max
1≤j≤5

∥yt(xi)− yt(xi,j)∥
∥xi − xi,j∥

, and Pt(i, j) := PSNR(yt(xi,j),y
∗
i,j),

for 1 ≤ i ≤ 200, 0 ≤ j ≤ 5, where j = 0 means the original (unperturbed) sample, xi,0 := xi,y
∗
i,0 :=

y∗
i . Here, Lt estimates how complex the t-th iterate map yt(·) is, while Pt measures the reconstruction

quality on both the original dataset Dinv,test and the perturbed set D′
inv,test.

Experiment results. (i) Results in Figure 2 support our theory. Figure 2a plots Lt versus t, while

Figure 2b reports the mean ± std of {Pt(i, j)}i,j versus t. At t = 1, the mapping y1(x) = GΘ(0,x)
reflects a single application of GΘ and exhibits low Lipschitz constant : L1 = 0.140 for PGD and L1 =
0.436 for HQS. As t increases, yt approaches the fixed point and Lt grows substantially, saturating
around ≈ 5.0 for both models (Figure 2a). Meanwhile, the PSNR rises and stabilizes, indicating
that yt(x) converges toward the ground truth (Figure 2b). Thus, the increase in Lt does not reflect
divergence or instability; rather, it captures the greater complexity of the underlying target mapping
x 7→ y∗, which is progressively expressed through iteration. (ii) We also provide a comparison (both

visually and quantitatively) to an explicit model in Figure 3. This baseline uses the identical DRUnet
and is trained on the deblurring dataset with an end-to-end MSE loss. A visual inspection reveals
that implicit models, particularly implicit HQS (6), produce sharper images with better-recovered
textures and fewer artifacts than the explicit baseline. This perceptual advantage is corroborated by
the quantitative metrics, where the DEQ-HQS model achieves a significant PSNR gain of over 2dB
on average across the entire test set. (iii) Additional experiments showing a small implicit model
outperforming larger explicit ones appear in Appendix F.

3.2. Case Study 2: Scientific Computing. The Navier-Stokes (NS) equations are foundational
to computational fluid dynamics. We focus on the 2D steady-state incompressible case on a periodic
domain Ω := [0, 2π]2:

(7) (u · ∇)u+∇p = ν∆u+ f, ∇ · u = 0 on Ω

where u : Ω → R2 is the velocity field, p : Ω → R is the pressure, ν > 0 is the viscosity, f : Ω → R2

is the external force. Solving NS equations refers to determining u solves (7) given f . Although
global existence/smoothness of the solution given general forcings is famously open, classical results
guarantee well-posedness under suitable conditions on f .

Theorem 3.6 ([91]). There exists a constant c > 0 depending only on Ω such that, if ∥f∥L2(Ω) ≤ c ν2,

then (7) admits a unique solution u∗(f). Let H denote the space of admissible forcings1, and set

1Details regarding the function spaces are provided in Appendix D.
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Figure 2. Validation on image deblurring. Iterating a simple operator GΘ produces
a complex fixed-point mapping: Lipschitz (a) grows, while accuracy (b) improves and
stabilizes.
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Figure 3. Visual results for deblurring. The top PSNR values (28.49, 30.03, or 31.53
dB) correspond to the single visualized image; the second line shows the average (±
std) over all test samples.

Bν := {f ∈ H : ∥f∥L2(Ω) ≤ cν2}. Then there exists a subset Hν ⊂ Bν that is dense in Bν , on which
the solution map f 7→ u∗(f) is locally Lipschitz.

Vorticity form. Let ω := ∇× u (and hence ω∗ := ∇× u∗). Under periodic boundary and zero-
mean conditions, one can recover the velocity u from vorticity ω by solving a Poisson equation [64].
We hence focus on the solution map in vorticity: f 7→ ω∗.

While Theorem 3.6 gives a local Lipschitz result in function spaces, our expressivity results (Section
2) are stated for finite-dimensional spaces. To bridge this gap, we discretize the NS equations.

Discretization. Partition Ω into Nh cells Ωh := {Ci}Nh
i=1 and define the cell–average restriction

Rh(f)|C := 1
|C|
∫
C
f(ξ)dξ (similarly for ω). We work with the discrete forcings and vorticities:

x := Rh(f) ∈ RNh×2, y := Rh(ω) ∈ RNh

and aim to learn x 7→ y∗ where y∗ := Rh(ω∗) is the discrete solution in vorticity form. Back to
the continuum setting, let the lifting operator Eh be the piecewise–constant reconstruction Eh(x) :=∑

C∈Ωh
xC1C , and let P be the orthogonal projection onto divergence–free, zero–mean fields.

Corollary 3.7. The mapping F2 : x 7→ y∗ is locally Lipschitz continuous on Xν,h := {x ∈ RNh×2 :
P(Eh(x)) ∈ Hν}. Consequently, there exists a regular implicit operator G(y,x) satisfying Fix(G(·,x)) =
F2(x) on any bounded subset of Xν,h.
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The corollary instantiates our expressivity theory for steady-state NS, guaranteeing the existence of
a regular implicit model G. As in the image–reconstruction case, we now (i) choose a problem-specific
parameterization of G and (ii) verify our theory numerically on this architecture.

Problem-tailored parameterization. We use [67] as our code base. In particular,

(8) z∗ = GΘ

(
z∗, QΦ(x)

)
, y∗ = QΨ(z∗).

The core GΘ is implemented as a Fourier Neural Operator (FNO) [57], and both the encoder QΦ and
decoder QΨ use pointwise MLPs2. Details appear in Appendix G.

There is a growing literature on AI for scientific computing (e.g., [49, 56, 57, 63, 77, 78]; see [48, 50]
for surveys). We adopt (8) because it learns solution operators rather than per-instance solutions,
yielding discretization/mesh-resolution invariance, fast global mixing via Fourier layers, and strong
parameter efficiency.

Experiments. We use the dataset of [67] with viscosity ν = 0.01, which provides 4500 training
pairs and 500 test pairs (x,y∗), where x is the discretized force and y∗ is the corresponding vorticity;
we denote these sets by Dpde,train and Dpde,test. Details are given in Appendix G.

We test iteration-wise behavior for 50 steps starting from z0 = 0: zt+1 = GΘ

(
zt,QΦ(x)

)
for

0 ≤ t ≤ 49, and yt(x) = QΨ(zt). Analogous to the inverse-problem study, we augment the test set
with perturbations. For each (xi,y

∗
i ) ∈ Dpde,test, we construct 15 perturbed vorticities {y∗

i,j}15j=1; we

then compute compatible forces {xi,j}15j=1 by evaluating the NS operator (see Appendix G for details).
The perturbed test set is D′

pde,test = {(xi,j ,y
∗
i,j) : 1 ≤ i ≤ 500, 1 ≤ j ≤ 15}. Across iterations we

report an empirical Lipschitz estimate Lt and relative reconstruction error Et:

Lt := max
1≤i≤500

max
1≤j≤15

∥yt(xi)− yt(xi,j)∥
∥xi − xi,j∥

, and Et(i, j) :=
∥yt(xi,j)− y∗

i,j∥
∥y∗

i,j∥+ ϵ
,

for 1 ≤ i ≤ 500, 0 ≤ j ≤ 15, where j = 0 means the original (unperturbed) sample, xi,0 := xi,y
∗
i,0 :=

y∗
i . Therefore, Et evaluates accuracy on both Dpde,test and D′

pde,test.

The results in Figure 4 align with our theory. At t = 1, the mapping y1(x) reflects a single
application of GΘ and exhibits low Lipschitz constant: L1 = 23.1. As iterations proceed toward the
fixed point, the complexity grows markedly: Lt increases to ≈ 367 by t = 50 (Figure 4a). Meanwhile,
the relative error Et decreases monotonically and stabilizes at 0.078 ± 0.028 (Figure 4b), indicating
convergence to a good approximation of y∗. Thus, the learned operator GΘ is simple (Lipschitz in x),
while additional test-time iterations let yt realize progressively more complex mappings. In addition,
a comparison with an explicit baseline (vanilla FNO) in Figure 5 shows the implicit model produces
more accurate solutions, both visually and quantitatively. Additional experiments showing a small
implicit model outperforming larger explicit ones appear in Appendix G.

3.3. Case Study 3: Operations Research. Linear programm (LP) is foundamental to operations
research, of which a general form is given by

(9) min
y∈Rn

c⊤y, s.t. Ay ◦ b, l ≤ y ≤ u.

Here, A ∈ Rm×n, b ∈ Rm, c ∈ Rn, l ∈ Rn,u ∈ Rn, and ◦ ∈ {=,≤}m denotes componentwise
relations, i.e., each ◦i ∈ {=,≤} specifies whether (Ay)i equals or is bounded above by bi. Let
x := (A, b, c, ◦, l,u) as the input that discribes the LP in (9). To define the solution mapping F3

that maps x to the solution of LP, we require feasibility and boundedness (which ensure an optimal
solution [6]). Accordingly, let

X := {(A, b, c, ◦, l,u) : The resulting LP is feasible and bounded}
Within X, there are some LPs where the solution mapping is not single-valued or not continuous. By
excluding these LPs, it forms a subset Xsub ⊂ X on which F3 is single-valued and locally Lipschitz.
The strict definition of Xsub and the proof of Theorem 3.8 are provided in Appendix E.

2Introducing additional encoder and decoder is common in practice. Compared to the vanilla formulation y∗ =
G(y∗,x), it does not change our expressivity results in Section 2. Details appear in Appendix B.
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(a) Empirical Lipschitz Lt of the t-step map yt(·)
vs. iteration. Lt starts small at t=1 (23.1) and
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Figure 4. Validation on the steady Navier–Stokes task. Iterating a simple operator
GΘ yields a complex fixed-point mapping: Lipschitz constant (a) increases, while error
(b) decreases.
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Figure 5. Visual results for NS equations. The top value (0.260 and 0.112) cor-
responds to the single visualized sample; the second line shows the average relative
error (± std) over all test samples.

Theorem 3.8. There is a subset Xsub ⊂ X that is dense in X, on which each LP admits a unique
solution y∗, and the solution map F3 : x 7→ y∗ is locally Lipschitz continuous on Xsub.

Corollary 3.9. There must be a regular implicit model G(y,x) that satisfies Fix(G(·,x)) = F3(x) on
any bounded subsets of Xsub.

Corollary 3.9 follows immediately from Theorems 2.4 and 3.8. It indicates the existence of implicit
models with desired properties that solves LP. As in the previous case studies, we now (i) choose a
problem-specific parameterization of G and (ii) verify the theory numerically on this architecture.

Implicit GNN parameterization. We model the implicit operator G for LP with a graph neural
network (GNN). First, express an LP instance x = (A, b, c, ◦, l,u) as a bipartite graph (Figure 6).
We create n variable nodes {Vj}nj=1 and m constraint nodes {Wi}mi=1. Node features collect the data
of the LP: each Vj stores (cj , lj , uj); each Wi stores (bi, ◦i). We connect Wi to Vj if Aij ̸= 0, and
place Aij on that edge as its feature. Given this representation, an (explicit) GNN can map the LP
to a solution, i.e., y∗ = GNN(x) where x denotes the graph-encoded LP. This approach was proposed
in [30] in the context of mixed-integer linear programs, and [17] subsequently showed that (explicit)
GNNs offer a universal framework for representing LPs. Built on this, we propose an implicit GNN:

(10) z∗ = GΘ(z∗,QΦ(x)), y∗ = QΨ(z∗)

where GΘ is the core GNN, QΦ encodes instance-specific (static) features from x, and QΨ decodes
per-variable states to the solution. Both QΦ and QΨ are small MLPs shared across all nodes. At
inference, we repeatedly call GΘ with initialization z0 = 0: zt = GΘ(zt−1,QΦ(x)) for t = 1, 2, · · · , T ,



10 JIALIN LIU, LISANG DING, WOTAO YIN, AND STANLEY OSHER

min c1 y1 + c2 y2 + c3 y3

s.t. l1 ≤ y1 ≤ u1, l2 ≤ y2 ≤ u2, l3 ≤ y3 ≤ u3

A11 y1 + A12 y2 = b1

A22 y2 + A23 y3 ≤ b2

b1 =
node W1

b2 ≤
node W2

c1 l1 u1

node V1

c2 l2 u2

node V2

c3 l3 u3

node V3

A11

A12

A22

A23

z
(0)
1

z
(0)
2

z
(0)
3

z0
static parts

⇒

z
(t)
1

z
(t)
2

z
(t)
3

zt
static parts

A linear program Graph representation Implicit GNN iteratively called

Figure 6. The graph representation of LP and implicit GNN applied on this graph

and finally output yt = QΨ(zt). Relative to prior work, our only modification is to attach to each

variable node an additional dynamic state z
(t)
j ∈ R. Details appear in Appendix H.

There is a rapidly growing literature on implicit GNNs with diverse applications and theories
[4,11,12,37,58,69,72,100,103]. Our LP case study is complementary to this line of work: rather than
adopting a particular implicit-GNN architecture, we start from a standard explicit GNN for LP and
convert it into a fixed-point formulation tailored to linear programs.

In addition, recent work on ML for LP has progressed quickly (e.g., [17, 26, 51, 54, 55, 62, 76, 84]);
for broader context, see overviews on Learning to Optimize [16] and AI for Operations Research [25].
Our goal here is not to outperform all state-of-the-arts; rather, we aim to establish a foundational
point: converting a standard LP-GNN into an implicit form yields the benefits predicted by our
theory—implicit models can be simple at the update level yet expressive at the fixed-point map, and
their performance improves predictably with test-time iteration.

Experiments. We sample LP instances x = (A, b, c, ◦, l,u), solve it to obtain an optimal solution
y∗, and form 2,500 training pairs and 1,000 test pairs like (x,y∗), denoted DLP,train and DLP,test. We

also create five perturbed test sets {D(j)
LP,test}5j=1 by altering exactly one block among (A, b, c, l, or

u). For each (xi,y
∗
i ) ∈ DLP,test and each perturbation type j, we form a perturbed instance xi,j ,

solve it to obtain y∗
i,j , and collect D(j)

LP,test = {(xi,j ,y
∗
i,j)}1000i=1 . Details in Appendix H. We report:

Lt(j) := max
1≤i≤1000

∥yt(xi)− yt(xi,j)∥
∥xi − xi,j∥

, and Et(i, j) :=
∥yt(xi,j)− y∗

i,j∥
∥y∗

i,j∥+ ϵ
,

for 1 ≤ i ≤ 1000, 0 ≤ j ≤ 5, where j = 0 denotes the unperturbed pair (xi,0,y
∗
i,0) := (xi,y

∗
i ).

Results support our theory. (i) Figure 7a plots the five curves Lt(j) (one for each perturbation
type). At t = 1, a single application of (10) yields relatively small empirical Lipschitz constants
for all perturbation modes. As iterations proceed toward the fixed point, Lipschitz constants grow
markedly. (ii) Figure 7b reports the mean±std of Et(i, j): Et decreases and stabilizes at 0.146,
indicating that the growth of Lt reflects the higher intrinsic complexity of the solution mapping y∗(x)
rather than divergence or instability. (iii) Table 1 contrasts implicit and explicit GNNs. At matched
embedding sizes, implicit GNNs match or beat explicit ones—most clearly at small/mid sizes (4/8/16).
In addition, a smaller implicit model can outperform a larger explicit model on training error. For
example, implicit–4 vs. explicit–8 (0.203 vs. 0.233) and implicit–8 vs. explicit–16 (0.162 vs. 0.183).
This supports our theory that iterating a simple implicit operator can yield strong expressivity.

Discussion on generalization. While generalization is not our main focus, a trend in Table 1
is informative: explicit GNNs improve as width increases from 4 to 8 but then overfit (test error
significantly rises at 16/32), whereas implicit GNNs improve from 4 to 8 to 16 and only tick up
slightly at 32. We attribute this to: (i) LP constraints Ay ◦ b in (9) are specified implicitly rather
than as an explicit set; implicit models align naturally with such a structure, and (ii) while fixed-
point maps y∗(x) can be sensitive to inputs x, the implicit formulation allows us realize them via a
simpler, smaller operator G, which “implicitly” regularizes training and support good generalization
in practice.



IMPLICIT MODELS: EXPRESSIVE POWER SCALES WITH TEST-TIME COMPUTE 11

1 2 3 4 5 6 7 8
Iteration t

101

103

105
Lip

sc
hi

tz
 L

t

Perturbing A
Perturbing b
Perturbing c
Perturbing l
Perturbing u
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Figure 7. Numerical validation on the linear-program task.

Table 1. Comparison between explicit GNNs and implicit GNNs on the LP task.

Exp-GNNs

Emb. size 4 8 16 32
# Params. 580 2,088 7,888 30,624
Err (Train) 0.387 ± 0.103 0.233 ± 0.084 0.183 ± 0.070 0.112 ± 0.049
Err (Test) 0.397 ± 0.107 0.273 ± 0.104 0.283 ± 0.111 0.318 ± 0.122

Imp-GNNs

Emb. size 4 8 16 32
# Params. 722 2,350 8,390 31,606
Err (Train) 0.203 ± 0.107 0.162 ± 0.094 0.131 ± 0.080 0.118 ± 0.073
Err (Test) 0.218 ± 0.117 0.177 ± 0.105 0.152 ± 0.098 0.156 ± 0.109

4. Conclusions

We establish a sharp expressivity boundary for regular implicit models: as iterations increase,
their expressive power grows, and the resulting fixed points can represent exactly the class of locally
Lipschitz maps. In three case studies, per-iteration Lipschitz estimates grew toward the target’s com-
plexity while accuracy improved and stabilized. Overall, both theory and evidence show that iterating
a simple operator is a principled route to powerful models, clarifying how fixed-point architectures
can match or surpass large explicit networks.
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Appendix A. Proofs of main results

Proof of Theorem 2.4. Given any F satisfying Assumption 2.2, the existence of G is proved by the
following construction:

(11) G(y,x) = F(x) + (1− ε(x))(y −F(x)).

The proof will be done by choosing a function ε : X → R such that

• Functions ε(x) and ε(x)F(x) are both globally Lipschitz continuous on X.
• 0 < ε(x) < 1 for any x ∈ X.

The existence of such a ε function is deferred to Theorem A.1. Now let’s suppose such a ε(x) is
given and finish the whole proof. First let’s check the contractivity of G in (11) as x fixed. For any
y, ŷ ∈ Rn, it holds that

G(y,x)− G(ŷ,x) = (1− ε(x))(y −F(x))− (1− ε(x))(ŷ −F(x)) = (1− ε(x))(y − ŷ).

Since 0 < ε(x) < 1 for x ∈ X, we conclude that G(·,x) is a contractor for x ∈ X. In addition, the
continuity of the contractive factor (1− ε(x)) is directly resulted from the continuity of ε(x). Finally,
we check the Lipschitz continuity as y fixed. For any x, x̂ ∈ X and any y ∈ Rn, it holds that

G(y,x)− G(y, x̂)

=
(
G(y,x)− y

)
−
(
G(y, x̂)− y

)
=
(
F(x)− y + (1− ε(x))(y −F(x))

)
−
(
F(x̂)− y + (1− ε(x̂))(y −F(x̂))

)
=− ε(x)(y −F(x)) + ε(x̂)(y −F(x̂))

=
(
− ε(x) + ε(x̂)

)
y +

(
ε(x)F(x)− ε(x̂)F(x̂)

)
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With a fixed y ∈ Rn, the Lipschitz continuity of G(y, ·) follows from the Lipschitz continuity of ε(x)
and ε(x)F(x). In particular, by denoting the Lipschitz constants of ε(x) and ε(x)F(x) as Lε and
LεF respectively, we have

∥G(y,x)− G(y, x̂)∥ ≤ Lε∥x− x̂∥ · ∥y∥+ LεF∥x− x̂∥ ≤
(
Lε∥y∥+ LεF

)
∥x− x̂∥

where the Lipschitz constant of G, L := Lε∥y∥ + LεF , grows linearly w.r.t. ∥y∥, which finishes the
whole proof. □

Below we provide the core theorem used in the proof of Theorem 2.4 and its proof.

Theorem A.1. For any F and X satisfying Assumption 2.2, there exists a function ε : X → R such
that 0 < ε(x) < 1 for x ∈ X, and ε(x) and ε(x)F(x) are both globally Lipschitz continuous on X.

Proof. Let X be the closure of set X. In this proof, we will first extend F to X, construct the ε function
on X, and finally prove the global Lipschitz continuity of ε(x) and ε(x)F(x) on X.

Step 1: Extension to X. First we extend F to x̄ ∈ X\X by the limit relative to X:

F(x̄) =

{
lim

X∋x→x̄
F(x), if lim

X∋x→x̄
F(x) exists,

0, otherwise.

Note that even if F is continuously extendable to x̄, it is still possible that F is not locally Lipschitz
continuous at the point x̄. A simple example is the function

√
x, which is continuous as x ≥ 0 and

locally Lipschitz continuous for all points x > 0 but NOT locally Lipschitz at x = 0. We collect all
these points (where F is not locally Lipschitz) into the set D(F):

D(F) :=
{
x ∈ X : F is not locally Lipschitz continuous at x

}
For brevity, we will use D to denote D(F). It holds that D is a closed set (ref. to Lemma A.2) and
D ⊂ X\X.

Step 2: Constructing a function ε : X → R≥0.Now let’s define a set including all points that
are very “safe”, i.e., sufficiently far from the discontinuity set D. In particular, given a positive real
number r > 0, the set Dr is define by

Dr :=
{
x ∈ X : d(x,D) ≥ r

}
,

where d(x,D) means the distance of x and D, and the closedness of Dr can be derived from the
continuity of the distance function. Since Dr ⊂ X and X is compact, Dr must be compact. Note
that Dr and D are disjoint, hence F is locally Lipschitz continuous everywhere on Dr. Thanks to
the fact that local Lipschitz continuity on a compact set implies global Lipschitz continuity (ref to
Lemma A.3), we can conclude that F is bounded and globally Lipschitz continuous on Dr for all
r > 0. Therefore, the following two supremums exist, as long as the cardinality (number of elements)
of Dr is large enough:

h1(r) =

 sup
x1,x2∈Dr,x1 ̸=x2

∥F(x1)−F(x2)∥
∥x1 − x2∥

, card(Dr) ≥ 2,

0, otherwise.

h2(r) =

{
sup
x∈Dr

∥F(x)∥, card(Dr) ≥ 1,

0, otherwise.

Here, both h1 and h2 are non-negative and monotone non-increasing on (0,+∞). Then we define:

ĥ(r) =
1

h1(r) + h2(r) + 1
.

It has the following properties:

• Bounded: 0 < ĥ(r) ≤ 1 as r > 0.

• Monotone : ĥ(r1) ≤ ĥ(r2) as 0 < r1 ≤ r2. (Due to the monotonicity of h1 and h2)
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• Naturally extended to r = 0: limr→0+ ĥ(r) exists. (Due to the monotonicity of ĥ)

• ĥ(r)hi(r) < 1 for r ≥ 0 and i = 1, 2.

These properties implies that ĥ is Riemann integrable on [0,+∞). Then we can define the following
function:

ε̂(r) :=

∫ r

0

ĥ(s)ds

with the following properties:

• ε̂(0) = 0.

• Monotone increasing. This is a straightforward result of the fact that ĥ(s) > 0 for s > 0.

• Strictly positive as r > 0. This is also straightforward as ĥ(s) > 0 for s > 0.
• 1-Lipschitz continuous on [0,+∞). For any r1, r2 with 0 ≤ r1 ≤ r2 < +∞, we have

|ε̂(r1)− ε̂(r2)| = ε̂(r2)− ε̂(r1) =

∫ r2

r1

ĥ(s)ds ≤
(
sup
r≥0

ĥ(r)

)
|r1 − r2| = |r1 − r2|.

With such a ε̂(r), we can define ε(x) by

ε(x) =
ε̂
(
d(x,D)

)
1 + ε̂

(
d(x,D)

) .
It holds that ε(x) = 0 for x ∈ D and 0 < ε(x) < 1 for x ∈ X\D. As D ⊂ X\X, we have 0 < ε(x) < 1
for x ∈ X.

Step 3: Establishing the Lipscthiz continuity. Since the distance function d(x,D) is 1-
Lipschitz continuous [27, Theorem 4.8 (1)], the Lipschitz continuity of ε̂ implies the Lipschitz continuity
of ε. In particular, for all x1,x2 ∈ X, it holds that∣∣∣ε(x1)− ε(x2)

∣∣∣
=

∣∣∣∣∣∣
ε̂
(
d(x1,D)

)
1 + ε̂

(
d(x1,D)

) −
ε̂
(
d(x2,D)

)
1 + ε̂

(
d(x2,D)

)
∣∣∣∣∣∣

(
x

1 + x
is 1-Lipschitz as

(
x

1 + x

)′

=
1

(1 + x)2

)

≤
∣∣∣ε̂(d(x1,D)

)
− ε̂
(
d(x2,D)

)∣∣∣ (Lipschitz continuity of ε̂)

≤
∣∣∣d(x1,D)− d(x2,D)

∣∣∣ ≤ ∥x1 − x2∥ (Lipschitz continuity of d)

Therefore, to complete the whole proof, it’s enough to show the global Lipschitz continuity of εF on
X. As X is compact, and thanks to Lemma A.3, it’s enough to show εF is locally Lipschitz everywhere
on X.

First, we consider the local Lipschitz continuity of εF on X\D. Due to Lemma A.2, X\D must be
open relative to X. For any x ∈ X\D, there must be a small enough r > 0 such that U := B(x, r)∩X ⊂
X\D. Pick x1,x2 ∈ U. For any x1,x2, it holds that

(12)

∥ε(x1)F(x1)− ε(x2)F(x2)∥
=∥ε(x1)F(x1)− ε(x1)F(x2) + ε(x1)F(x2)− ε(x2)F(x2)∥
≤ε(x1)

∥∥F(x1)−F(x2)
∥∥+ |ε(x1)− ε(x2)| ·

∥∥F(x2)
∥∥.

Since both ε and F are locally Lipschitz and locally bounded everywhere on X\D, they must be
Lipschitz and bounded within U. Then the local Lipschitz continuity of εF at x immediately follows
from (12). Note that x is arbitrarily picked from X\D, hence εF is locally Lipschitz everywhere on
X\D.

Next, we consider the local Lipschitz continuity of εF on D. For any x ∈ D, we consider its
neighborhood U := B(x, 1) ∩ X and pick x1,x2 ∈ U. Then we need to consider three cases. The
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first case is both x1,x2 belong to the discontinuity set D: x1,x2 ∈ D. In this case, it holds that
ε(x1) = ε(x2) = 0 and hence∥∥∥ε(x1)F(x1)− ε(x2)F(x2)

∥∥∥ = 0 ≤ ∥x1 − x2∥.

The second case is that one of the point is in D while the other is not, we suppose x1 ∈ D,x2 ∈ X\D,
then ∥∥∥ε(x1)F(x1)− ε(x2)F(x2)

∥∥∥
=
∥∥∥ε(x2)F(x2)

∥∥∥ ≤ ε̂
(
d(x2,D)

)
∥F(x2)∥

=

(∫ d(x2,D)

0

ĥ(s)ds

)
∥F(x2)∥

≤ĥ(d(x2,D)) · d(x2,D) · ∥F(x2)∥ (Monontonicity of ĥ)

≤ĥ(d(x2,D)) · d(x2,D) · h2(d(x2,D)) (Definition of h2)

<d(x2,D) (ĥ(r) · h2(r) < 1 as r ≥ 0)

=d(x2,D)− d(x1,D) ≤ ∥x1 − x2∥

Finally, we consider the last case where x1,x2 ∈ X\D. Without loss of generality, we assume

0 < d(x1,D) ≤ d(x2,D).

Then the definition of h1 and h2 implies that

∥F(x1)−F(x2)∥

≤max
(
h1(d(x1,D)), h1(d(x2,D))

)
· ∥x1 − x2∥

=h1(d(x1,D)) · ∥x1 − x2∥,

and

∥F(x2)∥ ≤ h2(d(x2,D)).
Consequently, applying (12) and the above inequalities, we have

∥ε(x1)F(x1)− ε(x2)F(x2)∥
≤ε(x1)

∥∥F(x1)−F(x2)
∥∥+ |ε(x1)− ε(x2)| ·

∥∥F(x2)
∥∥

≤ε(x1) · h1(d(x1,D)) · ∥x1 − x2∥+ |ε(x1)− ε(x2)| · h2(d(x2,D))

≤ε̂
(
d(x1,D)

)
· h1(d(x1,D)) · ∥x1 − x2∥+

∣∣∣ε̂(d(x1,D)
)
− ε̂
(
d(x2,D)

)∣∣∣ · h2(d(x2,D))

=

(∫ d(x1,D)

0

ĥ(s)ds

)
· h1(d(x1,D)) · ∥x1 − x2∥+

(∫ d(x2,D)

d(x1,D)
ĥ(s)ds

)
· h2(d(x2,D))

≤d(x1,D) · ĥ(d(x1,D)) · h1(d(x1,D)) · ∥x1 − x2∥

+
∣∣∣d(x1,D)− d(x2,D)

∣∣∣ · ĥ(d(x2,D)) · h2(d(x2,D))

<d(x1,D) · ∥x1 − x2∥+
∣∣∣d(x1,D)− d(x2,D)

∣∣∣
≤d(x1,D) · ∥x1 − x2∥+ ∥x1 − x2∥

The last inequality results from ĥ(r) · (h1(r) + h2(r)) < 1 for all r > 0. And the above inequalities
imply

∥ε(x1)F(x1)− ε(x2)F(x2)∥ ≤ (diam(X) + 1) · ∥x1 − x2∥.
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Combining all the results together, we have εF is locally (diam(X) + 1)-Lipschitz at any x ∈ X.
Then the compactness of X concludes the global Lipschitz continuous of εF , which finishes the whole
proof. □

Follows are some lemmas (as well as their proofs) that we used in the proof of Theorem A.1.

Lemma A.2. Let T ⊂ Rd be closed and let F : T → Rn. Denote by D(F) ⊂ T the set of points at
which F is not locally Lipschitz. Then D(F) is closed (in T, hence in Rd).

Proof. Recall that F is locally Lipschitz (relative to T) at x ∈ T if there exist r > 0 and L > 0 such
that

∥F(u)−F(v)∥ ≤ L ∥u− v∥ for all u,v ∈ T ∩ B(x, r).
Let G := T\D(F) be the set of points where F is locally Lipschitz. We first show that G is relatively
open in T. Fix x ∈ G and choose r, L as above. If x′ ∈ T∩B(x, r/2), then B(x′, r/2) ⊂ B(x, r); hence
the same L works on T ∩ B(x′, r/2), so F is locally Lipschitz at x′. Therefore T ∩ B(x, r/2) ⊂ G,
proving that G is open in T. Consequently, D(F) = T\G is closed in T. Since T is closed in Rd, every
set closed in T is also closed in Rd. Hence D(F) is closed in Rd as well. □

Lemma A.3. Let T be a compact set. If F is locally Lipschitz everywhere on T, then it must be
globally Lipschitz on T.

Proof. Assume, to the contrary, that F is not globally Lipschitz on T. Then we can choose sequences
{xk}k≥1, {yk}k≥1 ⊂ T such that

(13)
∥F(xk)−F(yk)∥

∥xk − yk∥
k→∞−−−−→ ∞.

Local Lipschitzness implies continuity of F on T, so by compactness F is bounded: there exists C <∞
with ∥F(z)∥ ≤ C for all z ∈ T. Consequently,

∥F(xk)−F(yk)∥ ≤ 2C for all k,

and therefore (13) forces ∥xk − yk∥ → 0.
By sequential compactness of T, passing to a subsequence (not relabeled) we may assume xk →

x ∈ T; since ∥xk − yk∥ → 0, we also have yk → x. Since F is locally Lipschitz at x, for k large
enough we have

∥F(xk)−F(yk)∥
∥xk − yk∥

≤ L,

for some L > 0, which contradicts (13). Therefore F must be globally Lipschitz on T. □

Note that Lemmas A.2 and A.3 are standard in real analysis, we provide concise proofs of them
for the sake of completeness. Next we provide proof of Theorem 2.5.

Proof of Theorem 2.5. Let X be the closure of X. In this proof, we will first extend the operator G to
Rn × X, and then analyze its properties on this closed domain.

Step 1: Extension to X. For any y ∈ Rn, G(y,x) is globally Lipschitz continuous on X, hence
its extension is naturally define by

G(y, x̄) := lim
X∋x→x̄

G(y,x), for all x̄ ∈ X\X.

Different from the proof of Theorem A.1 where F might be not locally Lipschitz at x̄ even if it is
continuous at x̄, here the extended G must be Lipschitz at x̄ and hence Lipschitz on the overall set
X. This can be verified by examining the difference quotient for x1 ̸= x2 and y ∈ Rn:

∆G[y;x1,x2] :=
∥G(y,x1)− G(y,x2)∥

∥x1 − x2∥
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Let G(y, ·)’s Lipschitz constant on X be L(y) := supx1 ̸=x2∈X ∆G[y;x1,x2]. For any x1 ∈ X and

x̄2 ∈ X\X, it holds that
∆G[y;x1, x̄2] = lim

X∋x2→x̄2

∆G[y;x1,x2] ≤ sup
x2∈X:x2 ̸=x1

∆G[y;x1,x2] ≤ L(y)

For any x̄1 ̸= x̄2 ∈ X\X, we have

∆G[y; x̄1, x̄2] = lim
X∋x1→x̄1

lim
X∋x2→x̄2

∆G[y;x1,x2] ≤ sup
x1,x2∈X:x2 ̸=x1

∆G[y;x1,x2] = L(y)

Therefore, we obtain an upper bound for G(y, ·)’s Lipschitz constant on X:

sup
x1 ̸=x2∈X

∆G[y;x1,x2]

=max

(
sup

x1 ̸=x2∈X
∆G[y; x̄1, x̄2], sup

x1∈X,x2∈X\X
∆G[y;x1, x̄2], sup

x1 ̸=x2∈X\X
∆G[y; x̄1, x̄2]

)
≤max (L(y), L(y), L(y)) = L(y)

That is, for any y ∈ Rn, G(y, ·) is globally Lipschitz on X, and the Lipschitz constant is the same
with that of X.

In the other hand, let’s consider the Lipschitz constant (contraction constant) w.r.t. y when fixing
x̄ ∈ X\X:

µ(x̄) = lim
X∋x→x̄

µ(x)

Since 0 < µ(x) < 1 for x ∈ X, by taking limit, we have 0 ≤ µ(x̄) ≤ 1. For those x̄ with µ(x̄) < 1, the
operator G(·, x̄) is still contractive. But if µ(x̄) = 1, the operator G(·, x̄) is not contractive.

Step 2: Defining D and Dr. We collect all points x ∈ X where the operator G(·,x) is not
contractive:

D :=
{
x ∈ X : µ(x) = 1

}
and define a “safe” set that is sufficiently far from D:

Dr :=
{
x ∈ X : d(x,D) ≥ r

}
.

Note that X\D =
⋃

r>0 Dr and X ⊂ X\D. We obtain

X ⊂
⋃
r>0

Dr.

For any Dr with r > 0, we can obtain a uniform contraction of the operator G(·,x): There is a
constant µr ∈ (0, 1) such that

(14) ∥G(y1,x)− G(y2,x)∥ ≤ µr∥y1 − y2∥
for all y1,y2 ∈ Rn and x ∈ Dr, which follows immediately from the continuity of µ(x) and the
compactness of Dr. By the Banach fixed-point theorem, the operator G(·,x) must have a unique fixed
point y∗ for each x ∈ Dr.

To complete the proof of Theorem 2.5, thanks to the fact that X ⊂
⋃

r>0 Dr, it’s enough to show
that: For any Dr with r > 0, there is a constant Cr such that

(15) ∥y∗(x1)− y∗(x2)∥ ≤ Cr∥x1 − x2∥
holds for all x1,x2 ∈ Dr. In the following steps, we will show (15).

Step 3: A controllable sequence. Fix x ∈ Dr. By defining a sequence {yk(x)}k≥0 ⊂ Rn:

yk+1(x) = G(yk(x),x), y0 is constant for all x,

we are able to estimate the upper bound of ∥y∗(x)∥. In particular, we decompose y0 −y∗ by a series:

y0 − y∗ = lim
k→∞

(y0 − yk) =

∞∑
k=0

(yk − yk+1)
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Thanks to (14), we have

∥yk(x)− yk+1(x)∥ ≤ µr∥yk−1(x)− yk(x)∥ · · · ≤ µk
r∥y0 − y1(x)∥ = µk

r∥y0 − G(y0,x)∥

for all x ∈ Dr. Therefore, it holds that

∥y0 − y∗(x)∥ ≤
∞∑
k=0

∥yk(x)− yk+1(x)∥

≤

( ∞∑
k=0

µk
r

)
∥y0 − G(y0,x)∥ =

1

1− µr
∥y0 − G(y0,x)∥

Now we can conclude the boundedness of ∥y∗(x)∥ for x ∈ Dr by the compactness of Dr:

∥y∗(x)∥ ≤ ∥y0∥+
1

1− µr
sup
x∈Dr

∥y0 − G(y0,x)∥︸ ︷︷ ︸
defined as Mr ≥ 0.

With the same argument, we have ∥yk(x)∥ ≤Mr for all k ≥ 0 and x ∈ Dr. It implies that

L(yk(x)) ≤ L1 + L2Mr

for some L1, L2 > 0 as L(y) grows linearly w.r.t. ∥y∥. Consequently, we can estimate an upper bound
for the Lipschitz constant of yk(x). In particular, for x1,x2 ∈ Dr, it holds that

∥yk+1(x1)− yk+1(x2)∥
=∥G(yk(x1),x1)− G(yk(x2),x2)∥
=∥G(yk(x1),x1)− G(yk(x2),x1) + G(yk(x2),x1)− G(yk(x2),x2)∥
≤∥G(yk(x1),x1)− G(yk(x2),x1)∥+ ∥G(yk(x2),x1)− G(yk(x2),x2)∥
≤µr∥yk(x1)− yk(x2)∥+ (L1 + L2Mr)∥x1 − x2∥

For simplicity, let Lr := L1 + L2Mr, ak := ∥yk(x1) − yk(x2)∥, and h := ∥x1 − x2∥. By recursively
applying ak+1 ≤ µrak + Lh and a0 = 0, we have

∥yk(x1)− yk(x2)∥ = ak ≤ (µr)
ka0 + (µk−1

r + · · ·+ µr + 1)Lrh ≤ 1

1− µr
Lrh =

Lr

1− µr
∥x1 − x2∥.

Step 4: Final proof. As G(·,x) is a contractor w.r.t. y for any x ∈ Dr, it holds that yk(x) →
y∗(x) for any x ∈ Dr. (Here, as for the “convergence,” we mean the pointwise convergence, which is
enough here. We don’t need stronger conditions like the uniform convergence.) For the above x1,x2,
there is a K such that

∥yk(x1)− y∗(x1)∥ ≤ Lr

1− µr
∥x1 − x2∥, ∥yk(x2)− y∗(x2)∥ ≤ Lr

1− µr
∥x1 − x2∥

for k ≥ K. Combining the above results, we obtain

∥y∗(x1)− y∗(x2)∥ ≤∥y∗(x1)− yk(x1)∥+ ∥yk(x1)− yk(x2)∥+ ∥yk(x2)− y∗(x2)∥

≤ 3Lr

1− µr
∥x1 − x2∥

By letting Cr = 3Lr/(1− µr), we get (15), which completes the proof. □

Remark: Our result relaxes two uniformity requirements in [23, Thm. 1A.4]: (i) the contraction
modulus µ(x) is allowed to vary with x (it only needs to be continuous in x), rather than being a
single global constant; and (ii) for each y, the mapping x 7→ G(y,x) is Lipschitz on X with a constant
that may grow linearly in ∥y∥, instead of being uniformly bounded in y. Because these bounds are
not uniform, we conclude only local (as opposed to global) Lipschitz continuity of the fixed-point map
x 7→ y∗(x) on X.
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Appendix B. A variant architecture

In practice, many works use a variant of the vanilla model y∗ = G(y∗,x):

(16) z∗ = G(z∗,Q1(x)), y∗ = Q2(z∗)

where G is the core implicit model, Q1 is a encoding network and Q2 is a decoding (readout).
At inference, one iterates zt = G(zt−1,Q1(x)) for 1 ≤ t ≤ T and finally yT = Q2(zT ). This often

improves empirical performance but does not alter the expressivity in Theorems 2.4–2.5.

Corollary B.1. Under Assumption 2.2, for any F there exists a regular implicit operator G and
globally Lipschitz maps Q1,Q2 such that Q2

(
Fix
(
G(·,Q1(x))

))
= F(x) for all x ∈ X. Conversely,

for any regular implicit operator G any globally Lipschitz Q1,Q2, the fixed point z∗ defined by (16)
exists uniquely and the induced map x 7→ y∗ must be locally Lipschitz on X.

Proof. The claim follows directly from Theorems 2.4–2.5.
Sufficiency. Given any locally Lipschitz target F on X, Theorem 2.4 ensures the existence of

a regular G whose fixed-point map equals F . Taking Q1,Q2 as both identity maps recovers the
sufficiency statement with globally Lipschitz Q1,Q2.

Necessity. Suppose G is regular and Q1,Q2 are globally Lipschitz. Then the composite update
G(z,Q1(x)) is still regular in z and x. By Theorem 2.5, for every x ∈ X, there is a unique fixed
point z∗(x) and the map x 7→ z∗(x) is locally Lipschitz on X. Finally, applying the globally Lipschitz
readout Q2 preserves local Lipschitz continuity, so x 7→ y∗ is locally Lipschitz as claimed. The proof
is finished. □

Appendix C. Proofs of Theorems for Inverse Problems

This section proves that the target solution mappings, F1a and F1b, are single-valued and locally
Lipschitz on their domain, as stated in Theorems 3.3 and 3.4. Before the proofs, we first provide some
definitions that used in Assumption 3.1.

Given a close subset M ⊂ Rn, its reach τ is defined in [27]:

τ := sup{r > 0 :∀y ∈ Rn with dist(y,M) < r,

there exists a unique z ∈ M such that ∥y − z∥ = dist(y,M)}.

A set with positive reach is also called a “prox-regular” set in the literature [74].
The Bi-Lipschitz condition refers to: for some 0 < µ ≤ L < +∞, it holds that

(17) µ∥y1 − y2∥ ≤ ∥Ay1 −Ay2∥ ≤ L∥y1 − y2∥ ∀y1,y2 ∈ M.

According to the definition, it holds that 0 < µ ≤ L ≤ σmax < +∞. This condition ensures A can be
viewed as an injective mapping when restricted to M, which is important for the recovery guarantee.

Remark for Assumption 3.1. The assumption that data (particularly images) lies on a smooth
manifold has a long and influential history [21, 82], and it is still widely used in recent literature.
The compactness of the data manifold can be achieved by standard techniques like normalization. In
addition, reach is an important concept for manifold to ensure the uniqueness of its projection [1,27].
The overall assumptions on manifolds, smoothness, compactness and postive reach, is typically used
in recent literature regarding image and signal processing [2, 75, 89]. The on-manifold bi-Lipschitz
condition does not require A to be globally invertible; it merely rules out ill-posedness restricted to M.
This is closely related to Johnson–Lindenstrauss (JL)–type embeddings in compressive sensing: e.g.,
[5] shows that random matrices are bi-Lipschitz on low-dimensional manifolds with high probability,
and JL-style conditions are widely analyzed and used [9, 18,41,44,93].

Proof of Theorem 3.3. For simplicity, we first denote the objective functions in (3) as F1a(y):

F1a(y) :=
1

2
∥x−Ay∥2 + α

2
dist2(y,M)
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Then we introduce some definitions that will be useful in our proof:

Ur(M) := {y ∈ Rn : dist(y,M) < r}, Ur(M) := {y ∈ Rn : dist(y,M) ≤ r}
Here, Ur(M) is an open tubular neighborhood of the manifold M and Ur(M) is its closure. As r = τ ,
the open set Ur(M) is named as the reach tube of M, denoted as Uτ (M). As introduced in [27], within
the reach tube, some nice properties of the distance function and projection mapping can be utilized.
For any y ∈ Uτ (M) or any y ∈ Ur(M) with r < τ , the projection mapping

p(y) := argmin
z∈M

∥z − y∥

is single valued and well defined, and dist(y,M) = ∥y − p(y)∥.
Step 1: Existence of minimizers of F1a. As x ∈ X, there must be an underlying y∗ ∈ M

(hence y∗ ∈ Ur(M)) and n such that ∥x−Ay∗∥ = ∥n∥. Therefore, it holds that

F1a(y∗) =
1

2
∥x−Ay∗∥2 +

α

2
dist2(y∗,M) =

1

2
∥n∥2 + 0 =

1

2
∥n∥2

In the other hand, for any point outside the tube: y ̸∈ Ur(M), the objective value is lower bounded
by:

F1a(y) ≥ 0 +
α

2
dist2(y,M) >

α

2
r2

As long as we have large enough α:

(18) α ≥ ∥n∥2

r2
,

we can ensure F1a(y) > F1a(y∗) for all y ̸∈ Ur(M), which implies infy∈Rn F1a(y) = infy∈Ur(M) F1a(y).

As M is compact, Ur(M) must be compact as well. Consequently, the infimum of F is attainable,
which concludes the existence of the minimizer of F1a, denoted by ŷ, and ŷ ∈ Ur(M). Finally, we have
the conclusion: It holds for all r > 0 that, condition (18) ensures the existence of ŷ and ŷ ∈ Ur(M).

Step 2: Bound of minimizers of F1a. For any y ∈ Uτ (M), the projection p(y) is uniquely
defined, hence we have∥∥∥Ay − x

∥∥∥ =
∥∥∥Ay −Ay∗ − n

∥∥∥ =
∥∥∥Ay −Ap(y) +Ap(y)−Ay∗ − n

∥∥∥
≥
∥∥∥Ap(y)−Ay∗

∥∥∥− ∥∥∥Ay −Ap(y)
∥∥∥− ∥n∥

≥µ∥p(y)− y∗∥ − σmax∥y − p(y)∥ − ∥n∥
According to the conclusion in Step 1, as long as

(19) α ≥ ∥n∥2

r2
>

∥n∥2

τ2
,

it holds that the minimizer ŷ exists and ŷ ∈ Ur(M) for some r < τ and hence ŷ ∈ Uτ (M), which
allows us to use the above inequalities at the beginning of Step 2. Now we aim to establish an upper
bound for ∥p(ŷ)− y∗∥ by contradiction. Suppose

µ∥p(ŷ)− y∗∥ > σmax∥ŷ − p(ŷ)∥+ 2∥n∥
we will obtain

∥Aŷ − x∥ ≥ µ∥p(ŷ)− y∗∥ − σmax∥ŷ − p(ŷ)∥ − ∥n∥ > ∥n∥,
which implies

F1a(ŷ) =
1

2
∥Aŷ − x∥2 + α

2
dist2(ŷ,M) >

1

2
∥n∥2 + 0 = F1a(y∗).

This contradicts with the definition of ŷ: the minimizer of function F1a. Therefore, we obtain:

µ∥p(ŷ)− y∗∥ ≤ σmax∥ŷ − p(ŷ)∥+ 2∥n∥ ≤ σmaxr + 2∥n∥
which is equivalent to

∥p(ŷ)− y∗∥ ≤ σmax

µ
r +

2

µ
∥n∥
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and implies that

(20) ∥ŷ − y∗∥ ≤ ∥ŷ − p(ŷ)∥+ ∥p(ŷ)− y∗∥ ≤
(
1 +

σmax

µ

)
r +

2

µ
∥n∥

holds for all ŷ that minimizes F1a(y).
Step 3: Positive definiteness of the Hessian of F1a. To prove the uniqueness of the solution,

we will establish the strict convexity of the objective function F1a(y) within a neighborhood around
any point of M. To achieve this, we establish the positive definiteness of the Hessian of F1a(y) in this
step.

For any y ∈ Uτ (M), the projection mapping is single valued and the objective function can be
written as

F1a(y) =
1

2
∥x−Ay∥2︸ ︷︷ ︸

f(y)

+
α

2
∥y − p(y)∥2︸ ︷︷ ︸

g(y)

The smoothness of M implies the smoothness of g and of the projection mapping, and hence we can
take first and second orders of derivatives on g [52, Theorem 2]. Thanks to [27, Theorem 4.8], the
gradient and Hessian of g are given by

∇g(y) = 2 (y − p(y)) , ∇2g(y) = 2 (I −Dp(y)) ,

where Dp denotes the Jacobian of the projection mapping. The overall Hessian of F1a is provided by

(21) ∇2F1a(y) = A⊤A+ α (I −Dp(y)) .

To further present the properties of the above Hessian, we introduce a space decomposition according
to p(y):

Rn = Tp(y)(M)⊕ Np(y)(M)

where Tp(y)(M) denotes the tangent space of M at the point p(y) ∈ M, and Np(y)(M) represents
the normal space. According to [52, Theorem C and Definition 7], the matrix Dp(y) is actually
restricted to the tangent space. In other words, for any decomposition h with h = hT + hN where
hT ∈ Tp(y)(M) and hN ∈ Np(y)(M), it holds that

(22) Dp(y)hN = 0, Dp(y)hT ∈ Tp(y)(M).

In addition, function g(y) is ( s
τ−s )-weakly convex where τ is the reach of M and s = dist(y,M)

[68, Section 5], and hence the spectrum of ∇2g can be lower bounded by

(23) ⟨hT,∇2g(y)hT⟩ ≥ − 2s

τ − s
∥hT∥2,

Now, let’s turn to the first term in the Hessian: A⊤A. It can be shown using the JL condition (17)
that, the spectrum of A⊤A restricted to the tangent space can also be lower bounded. In particular,
we pick an arbitrary tangent vector hT ∈ Tp(y)(M). According to the definition of tangent space,
there must be a curve γ : (−δ, δ) → M with δ > 0, γ(0) = p(y), and γ′(0) = hT. For any 0 ≤ t < δ,
γ(t) ∈ M. By applying condition (17) with the pair (γ(t), γ(0)) and divide by t2, we have

µ2 ∥γ(t)− γ(0)∥2

t2
≤ ∥Aγ(t)−Aγ(0)∥2

t2
≤ L2 ∥γ(t)− γ(0)∥2

t2

By differentiability and the continuity of the operator A, it holds that

lim
t→0

γ(t)− γ(0)

t
= hT, lim

t→0

Aγ(t)−Aγ(0)

t
= AhT

which implies

(24) µ2∥hT∥2 ≤ ∥AhT∥2 ≤ L2∥hT∥2.

Combining (21), (22), (23), and (24), we have

⟨h,∇2F1a(y)h⟩



IMPLICIT MODELS: EXPRESSIVE POWER SCALES WITH TEST-TIME COMPUTE 25

= ⟨hT,A
⊤AhT⟩︸ ︷︷ ︸

≥µ2∥hT∥2

+2⟨hT,A
⊤AhN⟩+ ⟨hN,A

⊤AhN⟩︸ ︷︷ ︸
≥0

+ α ⟨hT, (I −Dp(y))hT⟩︸ ︷︷ ︸
≥− s

τ−s∥hT∥2

+2α ⟨hT, (I −Dp(y))hN⟩︸ ︷︷ ︸
=⟨hT,hN⟩=0

+α ⟨hN, (I −Dp(y))hN⟩︸ ︷︷ ︸
=∥hN∥2

≥
(
µ2 − α

s

τ − s

)
∥hT∥2 + α∥hN∥2 − 2∥AhT∥ · ∥AhN∥

≥
(
µ2 − α

s

τ − s

)
∥hT∥2 + α∥hN∥2 − 2L∥hT∥ · σmax∥hN∥

=
[
∥hT∥ ∥hN∥

] [µ2 − α s
τ−s −σmaxL

−σmaxL α

] [
∥hT∥
∥hN∥

]
Therefore, to ensure ⟨h,∇2F1a(y)h⟩ > 0 for any h ̸= 0, it’s enough to ensure the 2× 2 matrix to be
positive definite:

(25) µ2 − α
s

τ − s
> 0 and α

(
µ2 − α

s

τ − s

)
− σ2

maxL
2 > 0.

In other words, (25) will guarantee the positive definiteness of ∇2F1a(y) for all y ∈ Us(M) and any
s < τ .

Step 4: Uniqueness of minimizers of F1a. In this step, we will combine the results from
Steps 2 and 3. Then we are able to prove that the objective function F1a(y) is strictly convex in a
neighborhood of its minimizers, which implies the uniqueness of the minimizer. To achieve this, it’s
enough to ensure

(26) ∥ŷ − y∗∥ ≤ s

for all ŷ ∈ argminy F1a(y), where s satisfies (25). With this condition (26), it holds that

ŷ ∈ B(y∗, s) ⊂ Us(M).

Along with the fact that B(y∗, s) is convex and that ∇2F1a(y) is positive definite for all y ∈ Us(M),
F1a is strictly convex within B(y∗, s) [7, Section 3.1.4]. As all minimizers of the strict convex function
belong to this convex set, B(y∗, s), the minimizer ŷ must be unique.

Now the question is: How to guarantee (26)? According to (20), Condition (19) along with

(27)

(
1 +

σmax

µ

)
r +

2

µ
∥n∥ ≤ s

can guarantee (26). Finally, it’s enough to choose α, s, and r such that (19), (25), and (27) are
satisfied together. In particular, we choose

s =
4

µ
∥n∥, r =

1

σmax
∥n∥, α =

2σ2
maxL

2

µ2

where α merely depends on A and M but is independent of x. Such a parameter choice implies (27):(
1 +

σmax

µ

)
r +

2

µ
∥n∥ ≤ 2

σmax

µ
r +

2

µ
∥n∥ =

2

µ
∥n∥+ 2

µ
∥n∥ = s.

As ∥n∥ < 1
20

µ5

σ2
maxL

2 τ , it holds that

s =
4

µ
∥n∥ < µ4

5σ2
maxL

2
τ =⇒ s

τ − s
<

µ4

5σ2
maxL

2 τ

τ − µ4

5σ2
maxL

2 τ
≤

µ4

5σ2
maxL

2 τ

τ − 1
5τ

=
µ4

4σ2
maxL

2

and therefore (25) is satisfied:

µ2 − α
s

τ − s
> µ2 − 2σ2

maxL
2

µ2

µ4

4σ2
maxL

2
=

1

2
µ2 > 0
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and

α

(
µ2 − α

s

τ − s

)
>

2σ2
maxL

2

µ2
· 1
2
µ2 = σ2

maxL
2.

Finally, by choosing α as before, condition (19) is satisfied:

α = 2σ2
max ·

L2

µ2
≥ 2σ2

max =
2∥n∥2

r2
, r =

1

σmax
∥n∥ < 1

σmax
· 1

20

µ5

σ2
maxL

2
τ < τ,

which finishes the proof of the uniqueness of minimizers of F1a.
Step 5: Local Lipschitz continuity of F1a. Previous results from Steps 1-4 indicate that, for

any x ∈ X, there is a unique ŷ(x) that minimizes F1a, but the continuity of ŷ w.r.t. x has not been
established. In this step, we will show this continuity via the implicit function theorem. Firstly, as ŷ
minimizes F1a, by first-order optimality conditions for smooth minimization, it holds that

∇F1a(ŷ) = A⊤(Aŷ − x) + α(ŷ − p(ŷ))︸ ︷︷ ︸
=:H(x,ŷ)

= 0

Now, let’s pick a point x0 from X. Previous results from Steps 1-4 indicate that, operator H(x,y) is
continuously differentiable within a neighborhood of (x0, ŷ(x0)), and its Jacobian matrix w.r.t. y

DyH(x,y) = ∇2F1a(y)

is positive definite within that neighborhood of (x0, ŷ(x0)). Therefore, we are able to apply the
implicit function theorem [28, Theorem 3.9] and conclude that ŷ(x) is Lipschitz continuous within a
neighborhood of x0. This argument applies for any points x0 in X. Therefore, ŷ = F1a(x) is locally
Lipschitz continuous on X. □

The proof line of Theorem 3.4 largely follows the proof of Theorem 3.3. Here we will highlight the
difference of proofs between the two theorems, so that Theorem 3.4 will be rigorously proved without
too much redundancy.

Proof of Theorem 3.4. For simplicity, we denote the objective function in (4) as F1b(y, z):

F1b(y, z) :=
1

2
∥x−Ay∥2 + α

2
dist2(z,M) +

β

2
∥z − y∥2,

and we will study its properties analogously to F1a.
Step 1: Existence of minimizers of F1b. For any r > 0, as

α ≥ ∥n∥2

r2
, β ≥ ∥n∥2

r2
,

it holds that

(28) inf
y,z

F1b(y, z) = inf
(y,z): dist(z,M)≤r and ∥z−y∥≤r

F1b(y, z).

This can be proved by contradiction: (I) Suppose F1b(ŷ, ẑ) is lower than the right-hand-side of (28)
and dist(ẑ,M) > r, we have

F1b(ŷ, ẑ) ≥ 0 +
∥n∥2

2r2
dist2(ẑ,M) + 0 >

1

2
∥n∥2 = F1b(y∗,y∗)

which contradicts with the hypothesis regarding (ŷ, ẑ). (II) Suppose F1b(ŷ, ẑ) is lower than the
right-hand-side of (28) and ∥ẑ − ŷ∥ > r, we have

F1b(ŷ, ẑ) ≥ 0 + 0 +
∥n∥2

2r2
∥ẑ − ŷ∥2 > 1

2
∥n∥2 = F1b(y∗,y∗)

which also derives a contradiction. Arguments in (I) and (II) together prove (28). Similar to the proof
of Theorem 3.3, (28) implies the existence of minimizers of F1b (i.e., minimizers are attainable.)

Step 2: Bound of minimizers of F1b. To extend the proof regarding F1a to F1b, we consider
the following inequality that holds for all y, z ∈ Uτ (M)

∥y − p(y)∥ ≤ ∥y − p(z)∥ ≤ ∥y − z∥+ ∥z − p(z)∥ = ∥y − z∥+ dist(z,M) ≤ 2r.



IMPLICIT MODELS: EXPRESSIVE POWER SCALES WITH TEST-TIME COMPUTE 27

Therefore, we need 2r < τ and

(29) α ≥ ∥n∥2

r2
>

4∥n∥2

τ2
, β ≥ ∥n∥2

r2
>

4∥n∥2

τ2

to ensure ŷ, ẑ ∈ Uτ (M). Following the same argument as the proof of Theorem 3.3, the above
condition (29) implies

∥p(ŷ)− y∗∥ ≤ σmax

µ
(2r) +

2

µ
∥n∥

and hence

(30) ∥ŷ − y∗∥ ≤ ∥ŷ − p(ŷ)∥+ ∥p(ŷ)− y∗∥ ≤ 2

(
1 +

σmax

µ

)
r +

2

µ
∥n∥

and

(31) ∥ẑ − y∗∥ ≤ ∥ẑ − ŷ∥+ ∥ŷ − y∗∥ ≤
(
3 + 2

σmax

µ

)
r +

2

µ
∥n∥

holds for all (ŷ, ẑ) that minimizes F1b(y, z).
Step 3: Positive definiteness of the Hessian of F1b. Function F1b(y, z)’s Hessian matrix is

of size 2n× 2n and can be written as a 2× 2 block w.r.t. y and z:

∇2F1b(y, z) =

[
A⊤A 0
0 0

]
+ α

[
0 0
0 I −Dp(z)

]
+ β

[
I −I
−I I

]
For any h = [u⊤ v⊤]⊤ ∈ R2n, the quadratic form ⟨h,∇2F1b(y, z)h⟩ can be calculated through:

⟨h,∇2F1b(y, z)h⟩ = u⊤A⊤Au+ αv⊤(I −Dp(z))v + β∥u− v∥2

Decompose u = uT +uN and v = vT + vN in Tp(z)(M)⊕Np(z)(M). Using the same argument as the
proof of Theorem 3.3, we have

⟨h,∇2F1b(y, z)h⟩

≥
(
µ2∥uT∥2 − 2σmaxL∥uT∥∥uN∥

)
+ α

(
− s

τ − s
∥vT∥2 + ∥vN∥2

)
+ β∥u− v∥2

which implies

⟨h,∇2F1b(y, z)h⟩

≥
(
µ2∥uT∥2 − 2σmaxL∥uT∥∥uN∥

)
+ α

(
− s

τ − s
∥vT∥2 + ∥vN∥2

)
+ β

(
∥uT − vT∥2 + ∥uN − vN∥2

)
≥
(
µ2∥uT∥2 − 2σmaxL∥uT∥∥uN∥

)
+ α

(
− s

τ − s
∥vT∥2 + ∥vN∥2

)
+ β

(
(∥uT∥ − ∥vT∥)2 + (∥uN∥ − ∥vN∥)2

)

=
[
∥uT∥ ∥uN∥ ∥vT∥ ∥vN∥

] 
µ2 + β −σmaxL −β
−σmaxL β −β

−β β − α s
τ−s

−β α+ β


︸ ︷︷ ︸

=:B


∥uT∥
∥uN∥
∥vT∥
∥vN∥



To ensure the positive definiteness of ∇2F1b(y, z), it’s enough to ensure B ≻ 0. For simplicity, we
define

θ := α
s

τ − s
, B1 :=

[
µ2 + β −σmaxL
−σmaxL β

]
B2 :=

[
−β

−β

]
B3 :=

[
β − θ

α+ β

]
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Then B =

[
B1 B2

B⊤
2 B3

]
is positive definite if and only if B3 and its Schur complement S are both

positive definite:

B3 ≻ 0, S = B1 −B2B
−1
3 B⊤

2 ≻ 0

As B2 and B3 are both diagonal, so B2B
−1
3 B⊤

2 is straight forward to calculate: B2B
−1
3 B⊤

2 =

diag
(

β2

β−θ ,
β2

α+β

)
. Then the Schur complement can be calculated:

S =

[
µ2 + β − β2

β−θ −σmaxL

−σmaxL β − β2

α+β

]
=

[
µ2 − βθ

β−θ −σmaxL

−σmaxL
αβ
α+β

]
Note that B3 ≻ 0 if.f β > θ. Therefore, B ≻ 0 if.f.

(32) β > θ, µ2 >
βθ

β − θ
,

(
µ2 − βθ

β − θ

)
αβ

α+ β
> σ2

maxL
2,

where θ = α s
τ−s . Finally, we obtain that (32) ensures ∇2F1b(y, z) ≻ 0 for all y ∈ Rn and all

z ∈ Us(M) with s < τ .
Step 4: Uniqueness of minimizers of F1b. Comparable to the Step 4 in Theorem 3.3, we need

∥ẑ − y∗∥ ≤ s for all (ŷ, ẑ) ∈ argminF1b(y, z). Based on (31), it’s enough to guarantee

(33)

(
3 + 2

σmax

µ

)
r +

2

µ
∥n∥ ≤ s

Now we choose

s =
4

µ
∥n∥, r =

2

5σmax
∥n∥

which directly satisfies (33). As ∥n∥ < 1
76

µ5

σ2
maxL

2 τ , we have

s =
4

µ
∥n∥ < 1

19

µ4

σ2
maxL

2
τ,

s

τ − s
<

1
19

µ4

σ2
maxL

2 τ

τ − 1
19

µ4

σ2
maxL

2 τ
≤

1
19

µ4

σ2
maxL

2 τ

τ − 1
19τ

=
1

18

µ4

σ2
maxL

2

As long as we take

α =
9σ2

maxL
2

µ2
, β ≥ max

(
α,

3

2
µ2

)
it holds that

θ = α
s

τ − s
<

9σ2
maxL

2

µ2

1

18

µ4

σ2
maxL

2
=

1

2
µ2

which implies β > 3θ and hence β > θ. Moreover, we can verify the remaining part of (32):

βθ

β − θ
<

βθ

β − β/3
=

3

2
θ <

3

4
µ2 < µ2,(

µ2 − βθ

β − θ

)
αβ

α+ β
>

(
µ2 − 3

4
µ2

)
αβ

β + β
=

1

8
µ2α =

1

8
µ2 · 9σ

2
maxL

2

µ2
> σ2

maxL
2.

which finishes the proof of (32). Finally, it’s enough to verify (29):

2r ≤ ∥n∥
σmax

≤ 1

76

µ5

σ3
maxL

2
τ < τ,

∥n∥2

r2
=

25

4
σ2
max ≤ α ≤ β,

which finishes Step 4, and concludes the uniqueness of (ŷ, ẑ).
Step 5: Local Lipschitz continuity of F1b. By largely following Step 5 in the proof of Theorem

3.3 and changing ∇2F1a(y) to ∇2F1b(y, z), one can directly conclude that the mapping F1b is locally
Lipschitz continuous on X. □



IMPLICIT MODELS: EXPRESSIVE POWER SCALES WITH TEST-TIME COMPUTE 29

C.1. Proximal operator near a manifold. We collect here the definition and basic properties of
the proximal map used in the main text and relate them to the convergence condition proposed in
[83].

Theorem C.1 (Contractivity of the proximal residual near a C2 manifold). Let M ⊂ Rn be a compact
C2 embedded submanifold with reach τ > 0. For σ > 0 define, for each z ∈ Uτ (M),

ϕσ(y, z) :=
σ

2
dist2(y,M) +

1

2
∥y − z∥2.

Then ϕσ must yield a unique minimizer, and hence we are able to define

proxσ(z) := argmin
y

ϕσ(y, z), Sσ(z) := proxσ(z)− z.

Then Sσ is a contractive operator within a tubular neighborhood of M. In particular, it holds that

(34) ∥Sσ(z)− Sσ(z
′)∥ ≤ σ

1 + σ
∥z − z′∥

for all z,z′ ∈ Ur(M) where r ≤ τ/4 and ∥z − z′∥ ≤ τ/4.

Relation to plug-and-play (PnP): Condition (A) of [83] assumes a (nearly) contractive denoiser
residual—precisely the kind of property (34) guarantees for the proximal residual proxσ − I on a
neighborhood of M. In practice, M is unknown; one therefore learns a parameterized operator (e.g., a
neural network) whose residual is constrained to be (nearly) σ-contractive and plugs it into PGD/HQS
in place of the exact proximal map. Whereas [83] posits Condition (A) to ensure convergence, The-
orem C.1 shows this condition arises naturally when the prior corresponds to the manifold-penalty
σ
2 dist2(·,M).

Proof of Theorem C.1. We first note that, for any y, if ∥y − z∥ > ∥z − p(z)∥, then it holds that

ϕσ(p(z), z) = 0 +
1

2
∥z − p(z)∥2 < σ

2
dist2(y,M) +

1

2
∥y − z∥2 = ϕσ(y, z)

which implies

inf
y
ϕσ(y, z) = inf

y:∥y−z∥≤∥z−p(z)∥
ϕσ(y, z)

Let r = ∥z − p(z)∥. We further notice that, for any y with ∥y − z∥ = s ≤ r, we are able to define ỹ

ỹ :=
r − s

r
z +

s

r
p(z)

which satisfies p(ỹ) = p(z) and hence it holds that

dist(ỹ,M) = ∥ỹ − p(z)∥ =∥z − p(z)∥ − ∥ỹ − z∥
<∥z − p(y)∥ − ∥ỹ − z∥
≤∥z − y∥+ ∥y − p(y)∥ − ∥ỹ − z∥
=s+ ∥y − p(y)∥ − s = ∥y − p(y)∥ = dist(y,M)

which implies

ϕσ(ỹ, z) =
σ

2
dist2(ỹ,M) +

1

2
∥ỹ − z∥2 < σ

2
dist2(y,M) +

1

2
∥y − z∥2 = ϕσ(y, z)

Consequently, we conclude that minimizing ϕσ is equal to minimizing it over the line segment between
z and its projection p(z):

inf
y
ϕσ(y, z) = inf

ξ∈[0,1]
ϕσ(ξz + (1− ξ)p(z), z).
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Now define ψ(ξ) = ϕσ(ξz + (1− ξ)p(z), z). We have

ψ(ξ) =
σ

2

∥∥∥(ξz + (1− ξ)p(z)
)
− p(z)

∥∥∥2 + 1

2

∥∥∥(ξz + (1− ξ)p(z)
)
− z

∥∥∥2
=
σ

2
ξ2∥z − p(z)∥2 + 1

2
(1− ξ)2∥z − p(z)∥2

=
(
σξ2 + (1− ξ)2

)
· 1
2
∥z − p(z)∥2

Therefore, infξ∈[0,1] ψ(ξ) is attainable, and the minimizer is ξ∗ = 1
1+σ , which implies ϕσ must yield a

unique minimizer at

y∗ =
z + σp(z)

1 + σ
.

Consequently, we have

Sσ(z) = y∗ − z =
σ

1 + σ
(p(z)− z)

and hence

DSσ(z) =
σ

1 + σ
(Dp(z)− I).

According to [52, Theorem C], Dp(z) is actually restricted to the tangent space Tp(z)(M):

Dp(z) =
(
ITp(z)(M)

− rLp(z),v

)−1

PTp(z)(M)

where r = ∥p(z) − z∥, v = (p(z) − z)/r, and Lp(z),v is the shape operator in direction v at p(z).
The shape operator’s eigenvalues κ1, · · · , κd (In this context, d means the dimension of the tangent
space) are the principal curvatures of M [20], which implies the eigenvalues of Dp(z), when restricted
to the tangent space, are

1

1− rκ1
, · · · , 1

1− rκd
.

All the curvatures are bounded by the reciprocal of the reach: |κi| ≤ 1/τ [1]. Therefore, it holds that

τ

τ + r
I
∣∣∣
Tp(z)(M)

⪯ Dp(z)
∣∣∣
Tp(z)(M)

⪯ τ

τ − r
I
∣∣∣
Tp(z)(M)

.

Moreover, as Dp(z) is restricted to and acts only on the tangent space Tp(z)(M), we have 0 ⪯ Dp(z) ⪯
τ

τ−rI, which implies

−I ⪯ Dp(z)− I ⪯ r

τ − r
I.

For r ≤ τ/2, we have r
τ−r ≤ 1 and hence ∥DSσ(z)∥ ≤ σ

1+σ . As long as z,z′ ∈ Ur(M) where r ≤ τ/4

and ∥z−z′∥ ≤ τ/4, the two points z,z′ can be included in a convex subset (actually a ball) of Ur(M)
with r = τ/2. By the mean value theorem, we finish the proof of (34). □

C.2. Discussions regarding PnP.
Derivation of HQS.. Consider (4):

min
y,z∈Rn

1

2
∥x−Ay∥2 +

α

2
dist2(z,M) +

β

2
∥y − z∥2.

A typically method to solve it is applying block coordinate descent on it, which is also named “Half-
quadratic-splitting (HQS)” in the literature [99]:

yt+1 =argmin
y∈Rn

1

2
∥Ay − x∥2 + β

2
∥y − zt∥2 =

(
A⊤A+ βI

)−1
(
A⊤x+ βzt

)
zt+1 =argmin

z∈Rn

α

2
dist2(z,M) +

β

2
∥z − yt+1∥2 = proxσ(yt+1) (let σ = α/β)
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Similarly, we can parameterize proxσ as a neural network Hθ,σ. Therefore, HQS suggests an implicit
model

GΘ(z,x) = Hθ,σ

((
A⊤A+ βI

)−1
(
A⊤x+ βz

))
where Θ = {θ, σ, β} includes all trainable parameters, which derives (6).

Bibliographical notes. Here we adopt the long-standing “plug-in denoiser” idea. It originated
with Plug-and-Play (PnP) ADMM, which replaces a proximal operator with an off-the-shelf denoiser
inside ADMM [92]. The framework has since been developed and analyzed extensively—see, e.g.,
[8, 10, 47, 87] and the recent survey [46]. In the PGD setting, one pretrains H for Gaussian denoising
and plugs it into (5) [31, 43, 61, 83]. The same plug-in idea applies to HQS via (6) [42, 79, 102].
In contrast to training a denoiser off-the-shelf and plugging it in, one can train the entire GΘ via
deep equilibrium methods for the target task (the approach closest to this paper) in both PGD-style
[19,35,86,95,101,104] and HQS-style [36].

Appendix D. Proofs regarding NS Equations

To rigorously state and prove the theorems, we present some definitions here. First, We denote
by Hm(Ω) the Sobolev space of functions which are in L2(Ω) together with all their derivatives of
order ≤ m. Then Hm

p (Ω) ⊂ Hm(Ω) is the collection of functions in Hm(Ω) that satisfies the periodic
boundary condition on Ω with zero mean (ref. to [91, Remark 1.1]). Then, we can define the spaces
considered in this paper:

H :=
{
u ∈

{
H0

p(Ω)
}2

: ∇ · u = 0
}
, V :=

{
u ∈

{
H1

p(Ω)
}2

: ∇ · u = 0
}

For the NS equation (7), we consider f ∈ H and u ∈ V. Moreover, we denote V′ as the dual space of
V and have

V ⊂ H ⊂ V′.

We then equip H with the standard L2 inner product and norm for vector fields:

⟨u, v⟩H :=

∫
Ω

⟨u(ξ), v(ξ)⟩dξ, ∥u∥H :=
√
⟨u, u⟩H =

(∫
Ω

∥u(ξ)∥2dξ
)1/2

= ∥u∥L2(Ω)

The space V is equipped with the L2 norm on the first-order derivatives of u. In particular,

⟨u, v⟩V :=

2∑
i=1

∫
Ω

〈
∂u

∂ξi
(ξ),

∂v

∂ξi
(ξ)

〉
dξ

∥u∥V :=
√

⟨u, u⟩V =

(
2∑

i=1

∫
Ω

∥∥∥∥ ∂u∂ξi (x)
∥∥∥∥2 dξ

)1/2

= ∥∇u∥L2(Ω)

and ∥ · ∥V′ is defined as the dual norm of ∥ · ∥V. By Poincare and Cauchy-Shwartz inequalities, we
have

∥v∥H ≤ c1∥v∥V, ∀v ∈ V
and

∥v∥V′ ≤ c2∥v∥H, ∀v ∈ H
where c1, c2 are constants depending on the domain Ω. The above definitions and results are standard
in the literature and we largely follow the notation in [91, Section 2].

Proof of Theorem 3.6. [91, Theorem 10.1] states that, for any f ∈ V′, if ∥f∥V′ ≤ c0ν
2 (with c0 > 0

depending only on Ω), then the steady NS problem (7) has a unique solution u∗. Since H ⊂ V′ and
∥f∥V′ ≤ c2∥f∥H, this yields uniqueness on

H(1)
ν :=

{
f ∈ H : ∥f∥H ≤ c0

c2
ν2
}
.
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Moreover, by [91, Theorem 10.4], there exists an open dense set H(2)
ν ⊂ H such that, on each connected

component of H(2)
ν , the solution u∗ depends C∞ on f ; in particular, f 7→ u∗ is locally Lipschitz there.

Define Hν := H(1)
ν ∩H(2)

ν . Since H(2)
ν is open and dense in H, the set Hν is dense in H(1)

ν . On Hν the
solution is unique and the map f 7→ u∗ is locally Lipschitz. This completes the proof. □

Before moving to Corollary 3.7, let’s reclarify lifting and projection operators: Let the lifting

(or extension) operator Eh : RNh×2 →
{
L2(Ω)

}2
be the piecewise–constant reconstruction Eh(x) :=∑

C∈Ωh
xC1C , and let P :

{
L2(Ω)

}2 → H be the orthogonal projection onto divergence–free, zero–mean
fields. Then we move on to Corollary 3.7.

Proof of Corollary 3.7. The mapping F2 : x 7→ y∗ can be viewed as a composition of multiple map-
pings: We first map x ∈ RNh×2 to a continuous version f ∈ H by P ◦Eh, then f can be mapped to its
corresponding solution u∗ by a Locally Lipschitz operator as stated in Theorem 3.6. Here we denote
this mapping by S : f 7→ u∗. Then u∗ is mapped to ω∗ by vorticity: ∇ × u∗, and finally ω∗ can be
mapped to y∗ by a restriction operator Rh:

F2 = Rh ◦ (∇×) ◦ S ◦ P ◦ Eh.
Then let’s analyze the norm of the above operators one by one. Firstly, the restriction operator Rh

has a norm no greater than 1 as:

∥Rh(ω)∥2ℓ2h =
∑

C∈Ωh

|C|
∣∣∣∣ 1

|C|

∫
C

ω(ξ)dξ

∣∣∣∣2
≤
∑

C∈Ωh

1

|C|

(∫
C

|ω(ξ)|dξ
)2

≤
∑

C∈Ωh

∫
C

|ω(ξ)|2dξ = ∥ω∥2L2(Ω)

Note that Rh is a linear operator, hence its bounded norm immediately leads to its bounded Lipschitz
constant:

∥Rh(ω)−Rh(ω
′)∥2ℓ2h = ∥Rh(ω − ω′)∥2ℓ2h ≤ ∥ω − ω′∥2L2(Ω).

Second, the curl operator ∇× must be a bounded linear operator because the solution u∗ ∈ V, where
first-order derivatives must be L2. Third, the solution mapping S has been discussed in Theorem 3.6,
it is a nonlinear operator, but it is locally Lipschitz continuous. Fourth, the projection operator P
must be linear and have a norm no greater than 1. Finally, the lifting operator is linear and has a
bounded norm as:

∥Eh(x)∥2L2(Ω) =
∑

C∈Ωh

|C| |xC |2 = ∥x∥2ℓ2h

Therefore, except for the nonlinear operator S, the other four operators are all linear and bounded
and hence are globally Lipschitz continuous. As long as we can show that the input of S must be taken
from the unique solution regime Hν , we will complete the proof that F2 is locally Lipschitz everywhere
on Xν,h. This can be proved because x ∈ Xν,h implies P(Eh(x)) ∈ Hν . Finally, by applying Theorem
2.4, we conclude the existence of G described in Corollary 3.7, which finishes the entire proof. □

Appendix E. Proofs regarding linear programming

Although Lipschitz continuity of LP solution maps has been studied (e.g., [23, 65]), we are not
aware of a reference that states Theorem 3.8 in the precise form needed here—particularly allowing
perturbations of A (rather than treating A as fixed). For completeness, we therefore include a self-
contained discussion and proof.

To work with a standard form, we rewrite the general-form problem (9) in standard form. Suppose
there are p equality constraints and q inequality constraints. Without loss of generality, we assume ◦i
equals to “=” for 1 ≤ i ≤ p and ◦i equals to “≤” for p+ 1 ≤ i ≤ m. Then we denote Ap as the first
p rows of matrix A and Aq as the remaining part:

Ap := A[1 : p, :], Aq := A[p+ 1 : m, :]
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And therefore the general form LP (9) can be written as

min
y∈Rn

c⊤y, s.t. Apy = bp, Aqy ≤ bq, l ≤ y ≤ u.

Let ŷ := y − l, s := bq −Aqy, and t := u− y, the above problem can be transformed to

min
y∈Rn

c⊤ŷ, s.t.

Ap

Aq I
I I

ŷs
t

 =

bp −Apl
bq −Aql
u− l

 , ŷ ≥ 0, s ≥ 0, t ≥ 0

By letting

c̃ :=

c0
0

 , Ã :=

bp −Apl
bq −Aql
u− l

 , b̃ :=

bp −Apl
bq −Aql
u− l

 , ỹ :=

ŷs
t


The problem is equivalently expressed in standard form as

min
ỹ

c̃⊤ỹ, s.t. Ãỹ = b̃, ỹ ≥ 0.

In fact, every LP can be rewritten in an equivalent standard form. While concepts such as basic
feasible solutions, degeneracy, and complementary slackness are most naturally and cleanly stated in
standard form, each admits a closely related analogue (with minor adjustments) for the general form.
Accordingly—without loss of generality and to keep the focus on core ideas—we carry out the proof
in the standard-form setting:

min
y

c⊤y, s.t. Ay = b, y ≥ 0,

with dual

min
z

b⊤z, s.t. A⊤z ≤ c.

Here, we follow the standard settings in the literature: y, c ∈ Rn, z, b ∈ Rm, A ∈ Rm×n, rank(A) = m
(ensured by preprocessing with removing redundant equalities), and m ≤ n. In this context, we define
the domain of LP that we work on:

X := {(A, b, c) : The resulting standard LP is feasible and bounded}

Note that, to match the rest of the paper, we reserve x for machine learning model inputs (in this
context, it is x = (A, b, c)) and hence write the primal LP variable as y and the dual LP variable as
z. This departs from the common (x,y) convention. Note also that in the main text the symbol z
denotes a latent variable; here, in the appendix regarding LP’s technical details, it denotes the dual
variable. These meanings are unrelated and should be clear from context.

Now let’s present some definitions used in this appendix. Fix a basis by selecting an index set
B ⊂ {1, 2, · · · , n} with |B| = m such that the m × m submatrix B := A[:, B] is nonsingular. Let
N = {1, 2, · · · , n}\B be the complement of the basis and let N := A[:, N ]. Then the equality
constraints read

ByB +NyN = b

Setting yN = 0 yields yB = B−1b. Such a y = [yB ,0] is called a basic solution. If additionally
yB ≥ 0, this basic solution is feasible, then it is called a basic feasible solution (BFS). On the dual
side, we define the slack variable s and its sub-vector restricted to B and N :

s := c−A⊤z, sB := cB −B⊤z, sN := cN −N⊤z.

A pair (y,z) is primal–dual optimal (i.e., satisfies KKT for LP) iff

(35) Ay = b, c = A⊤z + s, y ⊙ s = 0, y ≥ 0, s ≥ 0

for some s ∈ Rn. If, in addition, there exists a basis B such that

(36) yB ≥ 0, yN = 0, sB = 0, sN ≥ 0,
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then the tuple (y, z, s) is called an optimal BFS with a complementary dual. By the fundamental
theorem of linear programming, any feasible instance with finite optimal value (A, b, c) ∈ X admits
an optimal BFS with a complementary dual satisfying (35) and (36) together [6].

While conditions (35) and (36) are enough to ensure the existence of the optimal basic solutions,
they are not enough to ensure that the optimal solution is unique and local Lipschitz continuous w.r.t.
the inputs (A, b, c). To ensure these points, we present two additional conditions based on (35) and
(36):

yB > 0 (Non-degeneracy)(37)

sN > 0 (Strict complementary slackness)(38)

All the conditions together are enough to the uniquenss and local Lischitz continuity. Let’s introduce
a set consisting of all “good” LP instances:

Xsub := {(A, b, c) ∈ X : The LP yields a tuple (y,z, s) satisfying (35), (36), (37) and (38).}

With all the preparations, we can prove Theorem 3.8 now. Actually, proving Theorem 3.8 in the
context of standard-form LP is equivalent to proving the following two theorems.

Theorem E.1. For any LP (A, b, c) ∈ Xsub, it must yield a unique optimal solution y∗, and the
solution mapping (A, b, c) 7→ y∗ is locally Lipschitz continuous everywhere on Xsub.

Theorem E.2. Xsub is a dense subset of X.

Theorem E.1 follows from [22], which develops Robinson’s notion of strong regularity [81] for
nonlinear programs. For completeness—and to keep notation consistent with linear programming—we
restate the relevant lemma in an LP-adapted form and then verify its hypotheses for LP. We begin
by quoting the result from [22].

Lemma E.3 ([22]). Consider a parameteric nonlinear program:

min
y∈Rn

c⊤y + g0(w,y)

s.t. gi(w,y) = ui, 1 ≤ i ≤ r

gi(w,y) ≤ ui, r + 1 ≤ i ≤ d

where gi(0 ≤ i ≤ d) are all C2 functions, and c,w and u = [u1, · · · , ud]⊤ are parameters to describe
the program, and consider its Lagrangian with multipliers λ = [λ1, · · · , λd] ∈ Rd given by

L(w,y, λ) = g0(w,y) +

d∑
i=1

λigi(w,y).

Let (ȳ, λ̄) be a KKT point at (c̄, w̄, ū), and define the index sets at (ȳ, λ̄)

I1 =
{
r + 1 ≤ i ≤ d : gi(w̄, ȳ) = ui, λ̄i > 0

}
∪
{
1, · · · , r

}
,

I2 =
{
r + 1 ≤ i ≤ d : gi(w̄, ȳ) = ui, λ̄i = 0

}
,

I3 =
{
r + 1 ≤ i ≤ d : gi(w̄, ȳ) < ui, λ̄i = 0

}
.

If the following conditions hold:

• The constraint gradients ∇ygi(w̄, ȳ) for i ∈ I1 ∪ I2 are linearly independent; and
• It holds that

⟨y′,∇2
yyL(w̄, ȳ, λ̄)y

′⟩ > 0

for all y′ ̸= 0 in the subspace M =
{
y′ : y′ ⊥ ∇ygi(w̄, ȳ) for all i ∈ I1

}
,

then the KKT solution map (c,w,u) 7→ (y, λ) is locally single-valued and Lipschitz around (c̄, w̄, ū, ȳ, λ̄).
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Proof of Theorem E.1. Taking r = m and d = m + n. Let a⊤
i be the i-th row of A in standard LP,

and let

gi(w,y) =

{
a⊤
i y, i = 1, . . . ,m,

− yi−m, i = m+ 1, . . . ,m+ n,
ui =

{
bi, i = 1, . . . ,m,

0, i = m+ 1, . . . ,m+ n,

with w collecting the coefficients of A. The Lagrangian in Lemma E.3 becomes

L(w,y, λ) = c⊤y +

m∑
i=1

λi a
⊤
i y +

n∑
j=1

λm+j(−yj).

Introduce the usual dual/primal–slack variables

z := −λ1:m ∈ Rm, s := λm+1:m+n ∈ Rn
≥0,

to rewrite stationarity as ∇yL = c − A⊤z − s = 0, i.e., s = c − A⊤z. Primal feasibility is Ay =
b, y ≥ 0; dual feasibility is s ≥ 0; and complementarity is y ⊙ s = 0. Thus the KKT system in
Lemma E.3 coincides with the standard LP KKT conditions.

Assume (A, b, c) ∈ Xsub, i.e., the LP admits a tuple (ȳ, z̄, s̄) satisfying (35), (36), (37) and (38)
(A nondegenerate and strict complementary basic point). In this context, the index sets I1, I2, I3 at
(ȳ, z̄, s̄) become:

I1 = {1, . . . ,m} ∪ {m+ j : ȳj = 0, s̄j > 0 },
I2 = {m+ j : ȳj = 0, s̄j = 0 },
I3 = {m+ j : ȳj > 0, s̄j = 0 }.

which implies:

• For each j, either ȳj > 0 or s̄j > 0, which implies I2 = ∅.
• I3 is substantially the basis set: I3 = {m+ j : j ∈ B}
• I1 includes all the indices in the complement of basis: I1 = {1, . . . ,m} ∪ {m+ j : j ∈ N}

To verify the hypotheses of Lemma E.3, we examine the gradients:

{∇ygi}i∈I1 = {ai}mi=1 ∪ {−ej}j∈N

In the context of standard LP, |N | = n−m. Hence, {∇ygi}i∈I1 consists of n vectors in Rn. Now we
create a matrix G by stacking these vectors as rows:

G :=



a⊤
1

· · ·
a⊤
m

e⊤j1
· · ·

e⊤jn−m


By properly permuting the columns of G, it becomes

G̃ =

[
B N
0 I

]
where I represents the identity matrix in Rn−m. Since B (the basis matrix) and I are both nonsin-

gular, G̃ (and hence G) must be nonsingular. Therefore, the rows of G are linearly independent, i.e.,
{∇ygi}i∈I1 is linearly independent. With I2 = ∅, the first hypothesis of Lemma E.3 holds. Moreover,
because these gradients {∇ygi}i∈I1 span Rn, the M subspace must be trivial: M = {0}. Therefore,
the second hypothesis of Lemma E.3 is automatically satisfied.

By Lemma E.3, the KKT solution map is locally single-valued and Lipschitz around the given
point, which yields the desired local uniqueness and Lipschitz dependence of y∗ on (A, b, c) for every
(A, b, c) ∈ Xsub. □

Theorem E.2 can be proved by fundamental concepts in real analysis.
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Proof of Theorem E.2. To prove Xsub is dense in X, it’s enough to show that: For any (A, b, c) ∈ X,
one can always create a sequence of LP {(Ak, bk, ck)}k≥1 ⊂ Xsub such that

Ak → A, bk → b, ck → c.

Now let’s fix (A, b, c) ∈ X. As we previously discussed, there must be a tuple (y, z, s) satisfying (35)
and (36). Define:

yk := y +
1

k
eB , sk := s+

1

k
eN , zk := z

so that (yk, zk, sk) must satisfy the nondegeneracy and strict complementary slackness: (36), (37),
and (38). Accordingly, define

Ak := A, bk := Akyk, ck := A⊤
k zk + sk

Then one can verify that the tuple (y,z, s) satisfies (35), (36), (37) and (38) for the LP instance
(Ak, bk, ck), hence (Ak, bk, ck) ∈ Xsub for all k ≥ 1. Finally, such a perturbed LP instance can be
arbitrarily close to (A, b, c) as k → ∞:

∥Ak −A∥ =0

∥bk − b∥ =

∥∥∥∥A(1

k
eB

)∥∥∥∥ ≤ 1

k
∥A∥∥eB∥ =

√
m

k
∥A∥ → 0

∥ck − c∥ =

∥∥∥∥1keN
∥∥∥∥ =

√
n−m

k
→ 0

which finishes the proof. □

Appendix F. Experiment Details regarding Image Reconstruction

This section complements the main text with additional implementation and dataset details for the
inverse-problem experiments.

Experiment settings. We consider an image deblurring task, x = A(y∗) + n, where A is the
blur operator and n is the Gaussian noise (σ = 0.03). We use a motion-blur operator, and the blur
kernel is the first of the eight kernels from [53]. Ground-truth images y∗ come from BSDS500 [66].
We follow the official splits (200 train / 100 validation / 200 test) and apply a random 128× 128 crop
to each image. For each y∗, we generate the corresponding x by applying A and adding noise. The
resulting pairs (x,y∗) form three datasets Dinv,train, Dinv,val, and Dinv,test for training, validation, and
testing, respectively. In both PGD and HQS style parameterizations ((5) and (6)), the operator H is
implemented with DRUNet [102].

Training. We initialize H using pretrained weights from the Deepinv library [88] and then fine-
tune the full implicit models on the BSDS500 training set for this deblurring task. Training follows
the vanilla Jacobian-based implicit differentiation and is implemented on top of the official Deepinv
framework. All models were trained with Adam (learning rate 10−4, batch size 3). Explicit baselines
were trained for 20 epochs, and the implicit models for 10 epochs. After each epoch we evaluated on
the validation set and saved the checkpoint; the final model used for testing is the one with the lowest
validation loss. These epoch budgets were sufficient for validation-loss convergence.

PSNR. PSNR (Peak Signal-to-Noise Ratio) is defined between a reference y∗ and reconstructed
image y as

PSNR(y,y∗) := 10 log10

(
n ·MAX2

∥y − y∗∥2

)
where n is the dimension of y and y∗, and MAX means the max possible pixel value (e.g., 255 for
8-bit, or 1 if images are in [0, 1]. In our context, it is 1. Higher PSNR means better (more accurate)
reconstruction.

Standard test set. Evaluation uses the 200 images from the official BSDS500 test split, randomly
cropped to 128× 128. Let Dinv,test = {(xi,y

∗
i )}200i=1, where

xi = A(y∗
i ) + ni, ni ∼ N (0, σ2I), σ = 0.03.
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frequency=0.1 frequency=0.3 frequency=0.5 frequency=0.7 frequency=0.9

Figure 8. Visualized perturbations for inverse problems.

Here y∗
i denotes the clean (ground-truth) image and xi its corresponding blurred–noisy observation

under the forward model A.
Perturbed test set. To empirically validate our theory, we created a perturbed version of the

test set. To create a diverse and representative set of perturbations, we generate perturbations that
correspond to different frequency levels. Image frequencies represent different levels of detail, where
low frequencies capture smooth, large-scale areas, and high frequencies capture sharp edges and fine
textures. By probing the model with perturbations across this spectrum, we can comprehensively
evaluate its behavior.

Specifically, we construct each perturbation by targeting a singular vector of the forward operator
A. Because A is (circular) convolution, its singular vectors are Fourier modes. For each image y∗

i

and each frequency magnitude f ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, we first identify the 2D discrete Fourier
frequencies and sort them by their geometric distance from the origin. We then select the frequency
coordinate (u, v) at the f -th percentile of this sorted list. A one-hot tensor is created in the Fourier
domain with a value of 1.0 at the chosen (u, v) position and zeros elsewhere. This sparse frequency
representation is transformed back into the image domain by applying the adjoint of the blur operator,
A⊤. These perturbations are visualized in Figure 8. Adding them to y∗

i respectively yields perturbed
clean images y∗

i,j (j = 1, . . . , 5); we then form the corresponding observation

xi,j = A(y∗
i,j) + ni, ni ∼ N (0, σ2I).

The perturbed evaluation set is

D′
inv,test =

{
(xi,j ,y

∗
i,j) : 1 ≤ i ≤ 200, 1 ≤ j ≤ 5

}
.

For convenience we also define the unperturbed index j = 0 by xi,0 := xi and y∗
i,0 := y∗

i .
Platform. All experiments were run on a workstation with eight Quadro RTX 6000 GPUs.
Additional Experiments. Implicit models often excel on imaging tasks, but a natural question

is whether simply stacking more explicit layers (i.e., deepening the model) can close the gap. To
probe this, we construct explicit counterparts to implicit models by untying the parameters across
iterations:

min
Θ

Exℓ(yT ,y∗), s.t. yt = GΘ(t)(yt−1,x), t = 1, · · · , T

where each block GΘ(t) has the same architecture as in the implicit case (PGD or HQS), but Θ(t)

are separate for each t. This is equivalent to stacking T blocks to form a deeper explicit model with
more learnable parameters. Unlike implicit models (which can use different iteration counts at train
vs. test), these explicit models must use the same T for both. We evaluate T ∈ {1, 2, 3} to compare
against the corresponding implicit models.

Table 2 reports results on image deblurring. Across both PGD and HQS, deepening explicit mod-
els roughly triples parameters but yields only small PSNR gains; the implicit models, at the same
parameter count as the shallow explicit baseline, outperform even the deepest explicit versions.
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Table 2. Deeper explicit models vs implicit models for image deblurring. Here
(×1), (×1), (×1) represents T = 1, 2, 3, respectively. Results are obtained on all 200
test samples.

Explicit (×1) Explicit (×2) Explicit (×3) Implicit

PGD
# Params. 32.641 M 65.282 M 97.923 M 32.641 M
Avg. PSNR 27.14 dB 27.64 dB 27.87 dB 28.21 dB

HQS
# Params. 32.641 M 65.282 M 97.923 M 32.641 M
Avg. PSNR 26.94 dB 28.02 dB 28.26 dB 29.18 dB

Appendix G. Experiment Details regarding Scientific Computing

Model structure and training. Given cell-averaged forces x ∈ RH×W×2 and vorticities y ∈
RH×W×1, where H means the height and W means the width, we learn

z∗ = GΘ

(
z∗, QΦ(x)

)
, y∗ = QΨ(z∗),

where z∗∈RH×W×C is a latent field with C channels. At inference, we iterate

zt = GΘ

(
zt−1, QΦ(x)

)
,

for 1 ≤ t ≤ T and finally call yT = QΦ(zT ).
The projection QΦ is a pointwise linear encoder applied at each grid cell to lift into C channels. In

particular, g = QΦ(x) reads

g = W1x+ b1 ∈ RH×W×C

where Φ = (W1, b1) are learnable parameters.
The core map GΘ(z, g) stacks L identical FNO layers with input injection:

z(0) = z

z(l) = σ
(
g +W

(l)
2 z(l−1) + b

(l)
2 + IFFT(R(l) · FFT(z(l−1)))

)
, l = 1, 2, · · · , L,

GΘ(z, g) = z(L)

where Θ = {W (l)
2 , b

(l)
2 ,R(l)}Ll=1 are learnable parameters. Each layer: (i) performs a global spectral

convolution on z: take an FFT of the C-channel tensor, keep only a small set of low Fourier modes.
Suppose the number of retained Fourier modes is K ×K (2D FFT), FFT(z) ∈ CK×K×C . For each

retained mode (k1, k2) multiply the C-dimensional channel vector by a learnable dense matrixR
(l)
k1,k2

∈
CC×C (mixing channels) and hence the overall matrix is of size R(l) ∈ CK×K×C×C , then apply an
inverse FFT; (ii) adds a local pointwise transform, adds the injected encoder features QΦ(x), and
applies a nonlinearity. This realizes a resolution-invariant, globally receptive operator that naturally
respects periodic boundary conditions.

Finally, we decode with the pointwise readout QΨ (a small per-cell two-layer MLP) to produce
y ∈ RH×W×1 where Ψ are learnable parameters.

All samples use H = W = 128. Unless stated otherwise, we set the latent width C = 32, retain
K = 12 Fourier modes per dimension in the FNO blocks, and use L = 3 FNO layers inside GΘ.
Training differentiates implicitly through the fixed point, and the fixed-point solver uses Anderson
acceleration. We optimize with Adam (learning rate 5× 10−3, batch size 16). For explicit baselines,
we train for 500 epochs, which suffices for the training loss to converge.

Perturbed data generation. In this paragraph, we describe how we generate perturbed samples
in D′

pde,test. We take the dataset of [67] as the unperturbed set Dpde,test and create perturbations

by linearizing the steady NS equation (7). Each sample (f, ω) comprises a forcing term f and its
vorticity solution ω. Directly prescribing f and solving for ω is computationally costly; following
[67], we instead prescribe ω and obtain the corresponding f by evaluating the PDE operator (not
by solving the PDE). In our setting, the base samples are given; thus we first construct a solution
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Table 3. Explicit FNO vs Implicit FNO. The average is taken over all 500 test
samples.

Explicit (L=3) Explicit (L=6) Explicit (L=12) Implicit (L=3)

Num of params 2.376 M 4.155 M 7.713 M 2.376 M
Avg. Relative Error 0.1787 0.1585 0.1547 0.0785

perturbation δω and then compute the induced forcing perturbation δf via the linearization, yielding
the perturbed pair (f + δf, ω + δω).

Note that, while the dataset is discrete, we use the continuous notation f, ω, u in this section to
ease reading and to remain consistent with the PDE literature. In addition, we use ξ = (ξ1, ξ2) as the
special domain variable to keep consistent with our main text, and use k = (k1, k2) as the frequency
domain variable.

(Generate δω). Fix a target wavenumber k∗ ∈ N and a desired L2–magnitude η > 0. We construct
δω by

δω(ξ1, ξ2) = A sin
(
k∗ξ1 + k∗ξ2

)
, A chosen so that ∥δω∥L2(Ω) = η.

The wavenumber is selected from a user–specified frequency percentile pfreq relative to the maximum
resolvable frequency kmax = H/2 =W/2, namely

k∗ = pfreq × kmax (rounded to the nearest integer mode).

In our code we set the grid size H =W = 128, the perturbation strength η = 0.01, and choose

pfreq ∈ {0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95, 0.96, 0.97, 0.98, 0.99}.
Accordingly, each original sample yields 15 perturbed samples.

(Generate velocity from vorticity). Given a scalar vorticity field ω (and its perturbation δω), we
recover the corresponding velocities u via a streamfunction ψ given by

u = (∂2ψ, −∂1ψ), ω = −∆ψ.

Hence ψ is obtained by solving the Poisson equation ∆ψ = −ω, after which we obtain u. On a
periodic grid, these operators are implemented efficiently in the Fourier domain.

(Linearization and the perturbed vorticity forcing δg). Applying the (scalar) curl “∇×” to both
sides of (7) yields the steady vorticity form

(u·∇)ω − ν∆ω = g, g = ∇× f = ∂1f2 − ∂2f1,

where f = (f1, f2) is the body force and g is its curl. Introducing perturbations (δu, δω, δg) and
expanding

(u+ δu)·∇ (ω + δω) − ν∆(ω + δω) = g + δg,

then subtracting the base equation and discarding higher–order terms gives the first–order relation

δg = (u·∇) δω + (δu·∇)ω − ν∆ δω.

Again, for numerical implementation on a periodic grid, the differential operators are applied efficiently
in the Fourier domain.

(Recover the vector force δf from its curl δg). We recover a periodic δf = (δf1, δf2) satisfying
∇× δf = δg by solving a Poisson equation for an auxiliary streamfunction ψ and obtain δf exactly
as in “Generate velocity from vorticity.”

Additional Experiments. A natural question is how stacking more explicit layers compares
with an implicit model. We therefore increased the depth of the FNO (explicit) and contrasted it
with an implicit FNO of comparable size. Table 3 shows that (i) making FNO deeper—hence adding
parameters—only yield modest accuracy gains, and (ii) the implicit model achieves markedly better
performance (lowest relative error) across all settings.

Note: These findings are broadly consistent with [67]. We follow their setup with two minor
deviations: we use a smaller training batch size (16) due to hardware limits, and while we keep
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T = 24 training iterations for the implicit model, at inference we run T = 50, because we observe that
the trained implicit models remain stable and often benefit from additional fixed-point iterations at
test time.

Appendix H. Experiment Details regarding LP

GNN model details. We implement (10):

z∗ = GΘ(z∗,QΦ(x)), y∗ = QΨ(z∗)

with an L-layer message-passing GNN [85, 98] on the bipartite graph. Let N (i) (resp. N (j)) be the
neighbors of constraint node Wi (resp. variable node Vj). With shared MLPs across all nodes and
edges, the GNN structure is given by:

Input-embedding: W
(0)
i = MLPϕ1

(bi, ◦i),

V
(0)
j = MLPϕ2(cj , lj , uj , zin,j)

Message-passing (1 ≤ l ≤ L− 1) : W
(l)
i = MLP

θ
(l)
1

W (l)
i ,

∑
j∈N (i)

Aij ·MLP
θ
(l)
2

(
V

(l−1)
j

) ,

V
(l)
j = MLP

θ
(l)
3

V (l)
j ,

∑
i∈N (j)

Aij ·MLP
θ
(l)
4

(
W

(l−1)
i

)
Output-embedding: zout,j = MLPθ5

(
V

(L)
j

)
We write this compactly as follows.

zout = GΘ(zin,QΦ(x))

where Θ =
{
{θ(l)1 }L−1

l=1 , {θ
(l)
2 }L−1

l=1 , {θ
(l)
3 }L−1

l=1 , {θ
(l)
4 }L−1

l=1 , θ5

}
are trainable parameters in the GNN, Φ =

{ϕ1, ϕ2} includes the trainable parameters of the input embedding. The input x includes all static
information x := (A, b, c, ◦, l,u). Finally, the output embedding y = QΨ(z) is given by

yj = MLPΨ(zj)

for every variable node j. All MLPs in GΘ, QΦ, and QΨ use two layers with ReLU activations. We
sweep widths (or embedding sizes) in {4, 8, 16, 32} and report results in the main text.

Note that l is the layer index within the GNN structure, not the iteration number t. All parameters
in Θ are independent of the iteration number, so this GNN can be applied iteratively. x is the static
features and z is the dynamic feature. In addition, removing the dynamic input zin and decoding
directly to y recovers the standard (explicit) GNN baseline.

Dataset generation. We largely follow [17] to construct the training set DLP,train and test set
DLP,test, drawing (A, b, c, ◦, l,u) i.i.d. from the same distribution. Each LP has 50 variables and 10
constraints. The matrixA is sparse with 100 nonzeros whose locations are chosen uniformly at random
and whose values are sampled from a standard normal distribution. Entries of b and c are sampled
i.i.d. from Unif[−1, 1], after which c is scaled by 0.01. Variable bounds l,u are sampled coordinatewise
from N (0, 10); whenever lj > uj we swap them. Constraint types are sampled independently with
Pr(◦i = “ ≤ ”) = 0.7 and Pr(◦i = “ = ”) = 0.3. Under this generator, the feasibility probability is
approximately 0.53; we retain only feasible instances, yielding 2,500 LPs for training and 1,000 for
testing. Solutions are computed with scipy.optimize.

To build the perturbed datasets D(j)
LP,test, we perturb one component at a time while holding the

others fixed. For c, draw δc with i.i.d. standard normal entries, normalize, and scale to magnitude
10−4:

c′ = c+ 10−4 × δc

∥δc∥
.
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We apply the same procedure to b, l, and u. For A, we perturb only existing nonzeros to preserve the

sparsity pattern: let S = {(ik, jk)}nnz(A)
k=1 be the nonzero locations and draw δa ∈ R|S| i.i.d. standard

normal; normalize and scale so ∥δa∥ = 10−4, then set

A′
ik,jk

= Aik,jk + (δa)k for (ik, jk) ∈ S, A′
i,j = Ai,j otherwise.

This yields five perturbed versions (perturbing A, b, c, l, or u separately). We evaluate the estimated
Lipschitz constants Lt and relative errors Et on each version and report the results in the main text.

Training method. To train our implicit GNNs, we employ a two-stage curriculum strategy. The
model is trained by unrolling its iterative updates for a fixed number of steps, T, and minimizing the
loss on the final output:

min
Θ,Φ,Ψ

∑
(x,y∗)∈DLP,train

ℓ(yT ,y∗)

s.t. z0 = 0

zt = GΘ(zt−1,QΦ(x)), t = 1, 2, · · · , T
yT = QΨ(zT )

We set the final unroll horizon to T = 6, as we observed no significant improvements with longer
sequences. Training directly with T = 6 is inefficient, so we adopt a two-stage curriculum. This
approach is a standard practice in the Learning to Optimize field for training implicit or unrolled
models that solve optimization problems [13]. This approach begins with a shorter unroll horizon
and a larger learning rate, using the trained model to warm-start the subsequent stage with a longer
horizon and a reduced learning rate. This strategy is often described as “layerwise training” [15, 59]
or “curriculum learning” [14, 40, 60]. In our settings: Stage 1 uses T = 3 with a learning rate 0.01;
Stage 2 uses T = 6 with a learning rate 10−4. Both stages use Adam optimizer.

For a fair comparison, the non-iterative explicit GNNs are trained using the same two-stage learning
rate schedule. This regimen proved effective, as the training errors for our explicit baselines surpassed
those reported in prior work [17].

At the inference time, T can be chosen as the unroll length in the training stage, or moderately
longer. In our experiments, we use T = 8 at the inference time, as we do not observe significant
improvement with a larger number of iterations.

Remark. We train with unrolling rather than classic deep equilibrium/implicit–differentiation, but
we still refer to the model as “implicit.” The architecture is identical in both cases—a weight–tied
update zt = GΘ(zt−1,QΦ(x)) with a readout yT = QΨ(zT ); only the training procedure differs
(backprop through T steps vs. implicit differentiation). Since our focus is expressivity rather than
training mechanics, we treat both weight–tied unrolled models and DEQs as the same class of implicit
models.
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