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Abstract

We propose a finite-element local basis-based operator learning framework for solving par-
tial differential equations (PDEs). Operator learning aims to approximate mappings from
input functions to output functions, where the latter are typically represented using basis
functions. While non-learnable bases reduce training costs, learnable bases offer greater
flexibility but often require deep network architectures with a large number of trainable
parameters. Existing approaches typically rely on deep global bases; however, many PDE
solutions exhibit local behaviors such as shocks, sharp gradients, etc., and in parametrized
PDE settings, these localized features may appear in different regions of the domain across
different training and testing samples. Motivated by the use of local bases in finite element
methods (FEM) for function approximation, we develop a shallow neural network archi-
tecture that constructs adaptive FEM bases. By adopting suitable activation functions,
such as ReLU, the FEM bases can be assembled exactly within the network, introducing no
additional approximation error in the basis construction process. This design enables the
learning procedure to naturally mimic the adaptive refinement mechanism of FEM, allowing
the network to discover basis functions tailored to intrinsic solution features such as shocks.
The proposed learnable adaptive bases are then employed to represent the solution (output
function) of the PDE. This framework reduces the number of trainable parameters while
maintaining high approximation accuracy, effectively combining the adaptivity of FEM with
the expressive power of operator learning. To evaluate performance, we validate the proposed
method on seven families of PDEs with diverse characteristics, demonstrating its accuracy,
efficiency, and robustness.

1 Introduction

Deep neural operators (DNOs) are a class of operator learning (OL) approaches [16,20,22,25,29,
35,36,38–40,48,49,52,63,73,74] that aims to approximate an operator G, which maps an input
function u to an output function v = G(u), by utilizing deep neural networks architectures.
Since many problems in scientific computing can be formulated as operator approximations,
OL has emerged as a powerful alternative technique within scientific machine learning (SciML)
[9,48,50,56–58,58,70] for solving computational problems. One of their advantages over classical
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techniques is their faster inference time and their ability to adapt to problem-specific tasks. It
has been shown theoretically that deep neural network are adaptive to data structures and model
smoothness [11, 23, 41, 53, 61]. Recent advances in multi-operator learning (MOL) [10, 28, 45–
47,54,59,60,64–66,68,69], which employ a single network architecture to approximate multiple
operators simultaneously, have significantly expanded the scope of OL. This development enables
the application of OL to large-scale engineering problems [6,17,21,31,51,55,62,75], positioning
it as one of the few SciML frameworks already adopted in practical applications.

The study of operator learning started in the early 1990s with the works [12, 13], which estab-
lished a universal approximation theorem for operators and laid the theoretical foundation of
the field. In recent years, a variety of DNOs framework have been developed [20, 25, 30, 36–40,
48, 52, 63, 71, 73, 74]. For example, DeepONet is the first modern deep neural operator and was
able to show applicability to spatiotemporal systems. However, the vanilla version of DeepONet
is not invariant to the discretization of the input function; in particular, the input function
cannot be discretized on different meshes. This limitation was partially resolved in [74] under
suitable assumptions. Nevertheless, the discretization size was still required to remain the same
across different functions. This restriction was improved on both numerically and theoretically
in [71, 73], through the introduction of distributed learning strategies. Significant theoretical
progress [4, 29, 32–34, 34, 42–44, 72] has been made to analyze properties such as convergence,
generalization, and expressivity of neural operators, further solidifying OL as an important topic
in SciML.

A central mathematical motivation for the design of DNOs is to represent the output function v
as a linear combination of learnable basis functions (represent the basis functions using neural
networks) with corresponding learnable coefficients. This idea is commonly used in numerical
methods, such as the finite element method and spectral methods, which express functions as
expansions over basis functions. Within OL, this idea was first illustrated in the shallow neural
network universal approximation results of [12,13], and was later rigorously established in [44],
which provided complete neural scaling laws, including error convergence with respect to network
size and generalization error with respect to the number of training samples.

An example of such a structure is the DeepONet [40,48], which employs a trunk network to learn
basis functions and a branch network to learn the coefficients. Another widely used framework
is the FNO [36–38, 63] which adopts the iterative structure un+1 = F−1(Kn(F(un))) + Wun,
where F denotes the Fourier transform, W is a learnable weight matrix, and Kn is a learned
convolution. In this formulation, although part of the basis is fixed as Fourier and inverse Fourier
modes, the term Wu still represents a linear combination of learned column basis functions
weighted by coefficients determined by u. More recent architectures that leverage attention
mechanisms [18,46,47,59] to construct DNOs can also be interpreted within a similar framework,
as attention effectively implements a data-dependent basis expansion with learned coefficients.

Both numerical evidence [40, 48] and theoretical analysis [44] demonstrate that, in order to
achieve strong approximation performance, the networks used to learn the basis functions are
typically deep, which results in globally supported basis functions, i.e., their support spans the
entire domain of the input function u. Such approaches can be viewed as spectral methods [52],
but with the important distinction that the basis functions are learnable and non-polynomial
(depending on the choice of the neural network activation function). While global basis functions
offer advantages such as smoothness and high accuracy for problems with globally coherent
structures, they are less effective for problems involving localized phenomena, sharp gradients,
or discontinuities. This is common in many PDEs with shocks, interfaces, or boundary layers. In
such cases, locally supported basis functions, e.g., those used in the finite element or finite volume
methods, generally yield better performance by more accurately resolving localized features.
Moreover, OL aims to predict the solutions of a parametrized family of PDEs, implying that the
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localized features of different samples are often evenly distributed across the solution landscapes.
Consequently, local bases are sufficient to capture these features effectively, eliminating the need
for global bases.

By contrast, the finite element method (FEM), originally introduced in [15, 19, 26], provides a
rigorous framework for constructing locally supported basis functions [8,14,27] utilizing in solving
PDE. FEM is one of the main approach employed in numerical methods since it is capable
of handling a wide range of PDE with complex geometries through the use of unstructured
meshes [3, 76]. In the most common setting, the basis elements are piecewise linear Lagrange
basis functions, often referred to as hat functions, defined on elements of a triangulation of the
computational domain. These locally supported basis functions enable accurate resolution of
localized features.

The ReLU activation function [44,67] is capable of constructing piecewise linear functions, which
can be used for interpolation and for defining basis functions with local support. In particular,
with only two degrees of freedom (trainable parameters), one can construct a one-dimensional
hat function. Motivated by this observation, we propose to 2-parameter ReLU networks to
construct local FEM-type basis functions for operator learning. Since each basis is parameterized
by trainable variables, the approach can be regarded as an adaptive FEM method. We validate
the proposed framework on a broad family of PDEs that are traditionally solved by FEM, and
demonstrate that the newly designed neural operators achieve comparable or even improved
accuracy while requiring significantly lower computational cost. Since our approach is directly
inspired by the finite element representation of functions, we refer to it as the Finite Element
Representation Network (FERN).

We summarize our contributions as follows:

1. We propose a novel operator learning framework based on finite-element local bases, where
adaptive FEM bases are constructed directly through a shallow neural network. The use
of local bases is crucial, as PDE solutions may exhibit localized behaviors such as shocks,
sharp gradients, or fast decays. Moreover, in parametrized PDE problems, these local fea-
tures may appear at different spatial locations across samples, making local bases essential
for accurately capturing such variations while maintaining efficiency and interpretability.

2. By adopting suitable activation functions such as ReLU, the FEM bases can be assembled
exactly within the network, introducing no approximation error in the basis construction
process. The learning procedure naturally mimics the adaptive refinement mechanism of
adaptive FEM, enabling the network to discover basis functions tailored to the underlying
solution structures.

3. The proposed framework achieves high prediction accuracy with a reduced number of
trainable parameters, owing to the low cost of constructing the bases. This provides
an effective approach to employing shallow network structures while maintaining strong
predictive performance. Extensive experiments on PDEs with distinct characteristics,
including solutions whose landscapes exhibit bumps, demonstrate the method’s accuracy,
efficiency, and robustness.

The rest of the manuscript is organized as follows. We introduce our methodology in Section 2,
and will verify our methods and present the numerical evidence in Section 3. We finally discuss
some future work in Section 4.
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2 Review and methodology

2.1 Operator learning

Let us denote the operator G : U → V as the target operator, where U and V are function
spaces defined on domains Ωu and Ωv with dimensions d1 and d2, respectively. The objective of
operator learning is to design a neural network structure Gθ, with θ representing all trainable
parameters, to approximate G. More precisely, we aim to achieve

G(u)(x) := v(x) ≈ Gθ(û)(x),

for u ∈ U and x ∈ Ωv, where v = G(u) and û is a discretization of u.

A useful construction of Gθ is inspired by the classical numerical analysis, which first approxi-
mates v ∈ V as

v(x) =
N∑
k=1

ck ϕk(x),

where ck are coefficients and ϕk are basis functions. In standard numerical methods, the basis
functions ϕk are chosen independently of the solution v(x) and are fixed a priori, for example, as
finite element basis functions. As a concrete example, in the low-order continuous finite element
method, the function space V is defined as the space of continuous, piecewise linear functions
over a fixed computational mesh. Each basis function ϕk is a hat function associated with node
k of the mesh, taking the value one at node k and zero at all other nodes. This construction
represents the function v as a linear combination of locally supported basis functions, yielding
a flexible yet structured approximation framework.

In operator learning, the coefficients ck must encode both u and G. Consequently, one can
approximate the operator as

G(u)(x) ≈
N∑
k=1

ck(u)ϕk(x), (1)

where ck : U → R are functionals on U encoding both u and G. To realize this approximation,
one designs network structures ĉk and ϕ̂k as surrogates for ck and ϕk, respectively. In the
remainder of this work, we adopt the terminology of [48], referring to the networks ĉk as branch
networks and ϕ̂k as trunk networks.

This framework was first studied mathematically in [13], whose authors analyzed shallow approx-
imations of ĉk and ϕ̂k, although the convergence rates and parameter estimates for encoding u,
encoding the operator, and constructing the basis ϕ̂k remained unclear. Subsequently, [48,49,52]
proposed deep computational extensions of this shallow structure, significantly improving its
empirical performance but without providing theoretical guarantees. Finally, the work of [44]
rigorously established convergence and generalization results for this operator learning frame-
work, which was the first explicit estimates of the parameter complexity required for u encoding,
operator encoding, and basis construction.

Notably, [44] shows that the depth of the network ϕ̂k required to achieve an error of at most
ε > 0 in the L∞ norm scales as − log(ε). This implies that a deep architecture is necessary,
which can be computationally expensive. This theoretical result is consistent with numerical
observations: shallow structures for ϕ̂k often fail to yield satisfactory computational performance
(see Section 3 for examples). A central challenge is to reduce the cost of constructing the basis
while maintaining high prediction accuracy.
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Additionally, the suggested total parameters count [44] for ĉk is of order (
√
cUε

−(d2+1)cU )(c2U log cU+
c2U log(ε−1)) with Cu = O(ε−d1). This estimate dominates the parameter count for trunk network

ϕ̂k, which is of order − log(ε). However, in numerical experiments, the parameter count of the
branch network typically dominates that of the trunk network to ensure accurate performance.
This raises an important question: how can we design a structure that achieves high predictive
accuracy while requiring fewer trainable parameters in ϕ̂k, so that the network structures ĉk and
ϕ̂k are consistent with theoretical expectations.

2.2 Finite element methods

The finite element method is a powerful numerical technique for solving partial differential
equations (PDEs). One of its key strengths lies in its ability to operate on unstructured meshes
that can accurately represent complex geometries. In this framework, the computational domain
Ω is discretized into a triangulation Th = {K}, where each K denotes an individual mesh
element. Based on the continuity requirements of the problem, local finite element spaces are
then constructed over this mesh. For example, the classical continuous piecewise linear Lagrange
finite element space on a simplicial mesh is defined as

Vh(Th) = {vh ∈ C0(Ω) : vh|K ∈ P1(K) for all K ∈ Th}, (2)

where P1(K) represents the space of linear polynomials over the simplicial element K.

In particular, adaptive finite element methods (AFEM) dynamically refine the mesh to better
resolve local features of the solution according to various adaptivity criteria [1,2,7]. For instance,
let Ω ⊂ R2 be a polygonal domain. If u ∈ Hs(Ω) with 0 < s < 2, then there exists an admissible
triangulation Th with O(N) vertices such that [5]

inf
vh∈Vh(Th)

∥u− vh∥L2(Ω) ≤ C N−s/2 |u|Hs(Ω), (3)

where Vh(Th) denotes the space of continuous, piecewise linear finite element functions defined
in (2). The constant C > 0 depends only on the domain Ω and on the shape-regularity of the
mesh family.

The remarkable performance of adaptive FEM motivates the idea of constructing finite element
partitions and basis functions directly through neural networks, where the adaptive process of
finding optimal basis functions is embedded and optimized within the network training. To this
end, we utilize the ReLU activation function, which serves as a fundamental building block in
designing such FEM-inspired neural architectures.

2.3 ReLU functions

The ReLU function, defined as σ(x) = max{x, 0}, is a widely used activation function for
introducing nonlinearity in neural networks. A notable feature of ReLU is its ability to generate
piecewise linear functions. Consider the interval [0, 1] partitioned by a mesh x0 = 0 < x1 <
· · · < xn = 1. Given prescribed slopes ki on each subinterval [xi−1, xi] for i = 1, . . . , n, the
corresponding piecewise linear function can be expressed as

f(x) = k1σ(x) +

n−1∑
j=1

(kj+1 − kj)σ(x− xj). (4)

This representation highlights the flexibility of ReLU in constructing piecewise linear functions
and serves as the motivation for employing ReLU to build finite element basis functions. In fact,
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this connection was rigorously studied in [24], showing that continuous piecewise linear (CPWL)
finite element functions can be represented exactly by deep ReLU neural networks. Moreover,
they establish lower bounds on the depth required (e.g. at least two hidden layers for d ≥ 2
with d denoting the spatial dimension) and discuss how this equivalence underlies the expressive
power of ReLU networks in approximating classical finite element spaces.

2.4 FEM basis construction

We construct the network following the structure in Equation (1). Instead of employing a deep
architecture (which typically requires a large number of trainable parameters) to build the basis
functions ϕk(x), we consider constructing the basis ϕk using FEM hat functions. Specifically, a
hat function (illustrated in Figure 1) is defined as

Figure 1: A hat function demonstration.

pa,h(x) =


x− (a− h), a− h < x ≤ a,

−x+ (a+ h), a < x < a+ h,

0, otherwise.

By Equation (4), this hat function pa,h can be represented exactly by the ReLU functions as

pa,h(x) = σ (x− (a− h))− 2σ(x− a) + σ(x− (a+ h)) .

Notably, to represent each hat function, only 2 parameters are used. We then formulate our
approximation as

Gθ(u)(x) =

N∑
k=1

ĉk,θk(û)pak,hk
(x) =

N∑
k=1

ĉk,θk (σ(x− (ak − hk))− 2σ(x− ak) + σ(x− (ak + hk))) ,

where ĉk,θk denotes the neural network architecture with parameters θk, θ denotes the collection
of all θk, and the trainable parameters ak, hk used to construct the hat function basis.

As a result, the FEM basis can be constructed exactly as a combination of ReLU functions,
introducing no approximation error in the basis construction process. During network train-
ing, the centers ak and widths hk are treated as learnable parameters, effectively mimicking
the adaptive refinement process in FEM and enabling the network to accurately capture the
output functions (e.g., the PDE solutions). Examples illustrating this behavior can be found in
Sections 3.4, 3.5, 3.6, and 3.7, where the proposed method successfully captures bumps or sharp
peaks (singular features) in the solution landscapes, demonstrating its capability to represent
non-smooth behaviors effectively.
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3 Numerical examples

In this section, we present a series of numerical examples to demonstrate the performance of
the proposed method. We consider seven PDEs that exhibit a wide range of physical and
mathematical properties, including gradient-flow dynamics, dispersive behavior, and nonlin-
ear advection–diffusion. Specifically, the following PDEs are studied: the Allen–Cahn (AC)
equation, the Cahn–Hilliard (CH) equation, the Fokker–Planck (FP) equation, the Aggrega-
tion–Diffusion (AD) equation, the Keller–Segel (KS) equation, the Korteweg–de Vries (KdV)
equation, and the viscous Burgers equation. Among these, the Allen–Cahn, Cahn–Hilliard,
Fokker–Planck, Aggregation–Diffusion, and Keller–Segel equation are examples of gradient-flow
systems that evolve toward equilibrium under an energy-dissipation principle, whereas the KdV
equation represents a dispersive system, and the viscous Burgers equation is a dissipative nonlin-
ear advection–diffusion model. To show the adaptivity of the methods and later shows that our
methods mimic the adaptive FEM, in FK, AD, KS and KdV example, we created either bumps,
shocks, or fast decay in the solution landscape, which is capture by our method. Furthermore,
to demonstrate the adaptivity of the proposed method—and to show that it effectively mimics
the adaptive FEM, which explains its high numerical accuracy and efficiency—we design exper-
iments in the FK, AD, KS, and KdV examples where the solution landscapes exhibit bumps,
shocks, or rapid decays.

To fairly evaluate the proposed method, we compare our method against the standard Deep-
ONet, which can be viewed as using non-polynomial global bases [52]. For a fair comparison,
the coefficient branch network ĉk,θk(·) structure is kept identical between our method and the
standard DeepONet. However, the DeepONet employs a deep (and, for additional comparison
with our shallow FEM network, a shallow) fully connected architecture for its trunk network,
while our method uses the proposed shallow structures to construct the FEM local polynomial.
The number of basis functions N is also kept the same across all comparison tests. In addition,
we include comparisons with the POD-based approach, where the POD modes of the output
functions are used as the trunk network in examples where such a method is applicable.

3.1 Summary of Results

Accuracy and efficiency. Owing to the use of hat functions in constructing the basis, the
proposed FEM method FERN substantially reduces the number of training parameters. Despite
having significantly fewer parameters than DeepONet with an identical structure (i.e., the same
number of basis functions N and the same coefficient networks ck,θk), we observe comparable
accuracy across all examples, and in 10 out of the 13 comparison tests, the FERN achieves
improved accuracy with smaller prediction variance across all testing samples. In contrast, when
a two-layer fully connected network is used as the DeepONet trunk basis (the smaller DeepONet),
the error increases significantly, resulting in worse performance than the proposed method. This
highlights the influence of the trunk network’s depth and parameter count. However, our method
is able to reduce the number of parameters while simultaneously improving accuracy.

Adaptivity. For all examples, we observed that the learned FEM basis exhibits adaptiv-
ity. Particularly, (1) for the Fokker–Plank (Section 3.4), aggregation–diffusion (Section 3.5),
Keller–Segel (Section 3.6), and KdV (Section 3.7) equation, where we intentionally introduced
localized structures (bumps or peaks), the learned FEM basis functions adaptively concentrate
around these regions in order to accurately capture the local features. Meanwhile, (2) for the
Allen–Cahn problem (Section 3.2) and the Cahn–Hilliard equation (Section 3.3), the distinctive
features of the solution landscapes, such as shocks, rapid growth, and rapid decay, are more
evenly distributed across the domain among different training and testing samples. Conse-
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quently, although the hat basis functions h are initialized with relatively large (global) supports,
they shrink to smaller supports after training, exhibiting localized behavior; at the same time,
their centers remain approximately evenly distributed after learning, enabling the model to cap-
ture these features effectively throughout the domain. These results show that our method
effectively mimics the adaptive FEM and numerically justify its accuracy and efficiency.

3.2 Allen-Cahn Equation

In this section, we consider the Allen-Cahn equation,

ut − ϵ2uxx + F ′(u) = 0, x ∈ [0, 1], t ∈ [0, 10], (5)

where F (u) = (u2 − 1)2/4, and ϵ = 0.01. The target operator is the mapping from the initial
condition to the solution at the terminal time. We generate the initial condition as λ sin(2πx)+
(1 − λ) sin(6π(x − 0.5 + µ)), where λ and µ are free parameters. We will consider two sets of
experiments with different free parameters settings.

3.2.1 One degree of freedom

In this set of experiments, we fix µ = 0.5 and sample λ uniformly from [0, 1]. We plot two typical
solutions in Figure 2, and present the results in Table 1.

Figure 2: Demonstration of the predictions for the Allen Cahn example (one degree of freedom).
The relative prediction error for left and right examples are 3.70% and 4.00% respectively. The
average and variance of the relative error for 190 testing samples are 3.61%± 1.3%.
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DeepONet-S DeepONet-L FERN POD (same mesh)

Relative L2 error 55.76%± 25.77% 3.39%± 1.94% 3.61%± 1.3% 0.15%± 0.17%

# Coefficient Parameters 19,200 19,200 19,200 19,200

# Basis Parameters 4,200 54,700 80 0

# Total Parameters 23,400 73,900 19,280 19,200

Table 1: Comparison of different models for the Allen–Cahn example. All models use a shared
branch network architecture (ĉk) and employ 40 basis functions. For DeepONet, two configura-
tions are considered: (1) DeepONet-S, which uses 2 fully connected layers to construct the basis
functions, and (2) DeepONet-L, which uses 7 layers. The POD basis achieves the best accuracy
among all methods. However, its use requires that both training and testing be performed on the
same mesh, and that all training output functions be evaluated on this mesh. In contrast, the
other models are evaluated on a denser mesh than used during training, demonstrating greater
flexibility. Additionally, the performance of the POD method drops significantly in the following
examples, where more degrees of freedom are used in data generation, resulting in a higher-rank
dataset.

Setting details. We generate a total of 167 input functions (initial conditions, ICs) along with
their corresponding solutions for training purposes. For each output function, 100 evaluation
points are uniformly sampled from the spatial domain. Each input function is discretized using
22 uniformly spaced sensors, corresponding to a mesh size of 22. The model is trained using a
cosine annealing learning rate schedule. All neural network architecture are constructed using
40 basis functions (DeepONet global basis, FEM basis or POD basis). Each coefficient branch
network follows a fully connected architecture of size 22 × 20 → 20 × 1, with the hyperbolic
tangent (Tanh) function as the activation. The centers of the FEM basis functions are initialized
uniformly over the interval [0, 1], with a fixed support size h = 0.05. A histogram of the learned
FEM basis centers and h after training is presented in Figure 3.

Figure 3: Allen-Cahn equation with one degree of freedom. Left: Histogram of all learned
FEM basis centers ak, which are initially uniformly distributed over [0, 1]. Right: Histogram of
all learned support sizes hk, all of which are initialized to 0.05. Since the distinctive features
of the solution landscapes, such as shocks, bumps, rapid decay, and rapid growth, are evenly
distributed across the domain for different samples (see Figure 2), most learned hat functions
shrink to smaller supports after training (right panel), exhibiting localized behavior. Meanwhile,
their centers remain evenly distributed to effectively capture these features across various samples
(left panel). This behavior is consistently observed for other numbers of basis functions tested;
see Figure 7 for an illustration.
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Results analysis. As shown in Table 1, the proposed FERN method achieves results com-
parable to the standard DeepONet while using significantly fewer trainable parameters. This
demonstrates the effectiveness of the proposed approach: when a shallow network is designed
to construct the FEM basis, a limited number of parameters is sufficient to achieve low relative
prediction error.

To further verify this observation, we also decrease the number of layers used in the trunk
(basis) network. As shown in Table 1, when the number of fully connected layers is reduced to
two, the prediction error increases significantly. Although the POD method yields the smallest
error, it relies on stronger assumptions when performing POD on the output functions, for
instance, all outputs must be discretized on the same mesh. This restriction makes the POD-
based approach a fixed-grid-to-fixed-grid mapping, which effectively corresponds to learning a
function rather than an operator. Moreover, when the number of free parameters increases to
two, the discretized output functions exhibit higher rank, causing the POD method to produce
a larger error (7.76%), which exceeds the 4.44% error obtained using the proposed FEM basis.
See the next section and Table 2 for further details.

3.2.2 Two degrees of freedom

In this set of experiments, λ and µ are both sampled from [0, 1] uniformly; as a results, the
solutions present more variability and make the problem more challenging. We plot four typical
solutions in Figure 4, and the results in Table 2.

Figure 4: Predicted solutions for the Allen–Cahn equation with two degrees of freedom. The
relative prediction errors for the four cases (displayed from left to right, top to bottom) are
2.21%, 2.23%, 3.90%, and 4.76%, respectively.
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DeepONet FERN POD (same mesh)

Relative L2 error 8.65%± 4.08% 4.44%± 2.2% 7.76%± 5.52%

# Coefficient Parameters 38,400 38,400 38,400

# Basis Parameters 58,700 160 0

# Total Parameters 97,100 38,560 38,400

Table 2: Comparison of different models for the Allen–Cahn example with two degrees of free-
dom. All models employ the same branch networks architecture (ĉk) and approximate the
output functions using 80 basis functions. We additionally test DeepONet with a two-layer
trunk network; although this reduces the parameter count to 46, 600, the relative error stabilizes
at 63.25%, which is substantially larger than that obtained with FERN. Additionally, compared
to the previous examples where a single degree of freedom was used to generate the training
data, the accuracy of the POD method drops as the rank of the dataset increases.

Setting details. We generate a total of 250 input functions (initial conditions, ICs) along with
their corresponding solutions for training. Each output function is evaluated at 100 uniformly
sampled points from the spatial domain, while each input function is discretized using 22 uni-
formly spaced sensors, corresponding to a mesh size of 22. All models are trained for 2,000
epochs using a cosine annealing learning rate schedule. The neural network architectures across
all models employ 80 basis functions, either the proposed FEM basis, the POD basis, or the
standard DeepONet basis. Each coefficient branch network adopts a fully connected architecture
with layer sizes 22× 20 → 20× 1. For DeepONet, we report results using the ReLU activation
function, which yielded a better accuracy compared to Tanh activation. For the FEM and POD
models, the coefficient networks use the Tanh activation function for better accuracies. Notably,
FERN exhibits robustness to the choice of activation: using ReLU, it achieves a relative pre-
diction error of 4.45%± 2.0%. The centers of the FEM basis functions are initialized uniformly
over the interval [0, 1], with a fixed support size h = 0.05. A histogram of the learned FEM
basis centers and h after training is presented in Figure 5.

Figure 5: Allen-Cahn equation with two degrees of freedom. Left: Histogram of all learned
FEM basis centers a, which are initially uniformly distributed over [0, 1]. Right: Histogram of
all learned support sizes h, all of which are initialized to 0.05. Since the distinctive features
of the solution landscapes, such as shocks, bumps, rapid decay, and rapid growth, are evenly
distributed across the domain for different samples (see Figure 4), most learned functions shrink
to smaller supports after training (right picture), exhibiting localized behavior. However, their
centers remain evenly distributed to effectively capture these features across various samples
(left picture). This behavior is consistently observed across different numbers of basis functions
N tested (see Figure 7).
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Analysis of results. From Table 2, it can be observed that the proposed method achieves
the highest prediction accuracy with the smallest variance. Although the POD non-trainable
basis uses slightly fewer trainable parameters (38,400 vs. 38,560), it fails to handle output
discretizations on different meshes and yields a larger error due to the increased number of
degrees of freedom used to generate the input functions. These results further demonstrate the
accuracy and efficiency of the proposed method.

A study on the number of basis. We investigate the relationship between prediction error
and the number of basis networks (corresponding to the mesh size in the output space) for the
proposed FEM-based methods. Specifically, we vary the number of learned FEM basis functions
from 20 to 100 and train a separate model for each setting. All models are initialized with
uniformly distributed centers in the domain [0, 1], and each basis function is assigned a fixed
size of h = 0.05. The resulting error decay behavior is presented in Figure 6. Roughly, first
order convergence is observed with respect to the number of basis.

Figure 6: Allen-Cahn equation with two degrees of freedom and various number of basis. Left:
Error decay with respect to the number of learned hat function basis. Right: decay in the log
scale.

In addition, we present the learned mesh size distributions for models with 20, 40, 60, 80, and
100 basis functions in Figure 7. From the figure, it can be observed that the learned mesh sizes
gradually shift toward zero as the number of basis functions decreases. This indicates that, when
fewer basis functions are used, the model tends to learn basis functions with larger support.
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Figure 7: Allen-Cahn equation with two degrees of freedom and various number of basis. Dis-
tributions of the learned h for models with different numbers of basis functions (20, 40, 60, 80,
and 100). Each experiment is initialized with h = 0.05. As shown, the learned h values shift
across all cases, demonstrating the adaptivity of the proposed method.

3.3 Canh-Hilliard Equation

In this section, we study the Canh-Hilliad equation,

∂u

∂t
=

∂

∂x

(
M

∂

∂x

(
−ϵ2

∂2u

∂x2
+ F (u)

))
, x ∈ [0, 1], t ∈ [0, 10],

where F (u) = (u2 − 1)2/4, and M = 0.01. The target operator is the mapping from the initial
condition to the solution at the terminal time. We generate the initial condition by sampling
free parameter λ and µ for λ sin(2πx) + (1− λ) sin(6π(x− 0.5 + µ)). We will consider two sets
of experiments with different free parameters settings.

3.3.1 One degree of freedom

In this set of experiments, we set the µ = 0.5, and sample λ uniformly from [0, 1]. We display
two typical solutions in Figure 8 and the numerical results in Table 3.
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Figure 8: Demonstration of the predictions for the Cahn-Hilliard equation with one degree
of freedom. The relative prediction error for left and right examples are 2.62% and 2.19%
respectively. The average relative error for 190 testing samples is 2.62%± 0.41%.

DeepONet FERN POD

Relative L2 error 2.91%± 1.07% 2.62%± 0.41% 0.38%± 0.24%

# Coefficient Parameters 28,800 28,800 28,800

# Basis Parameters 56,700 120 0

# Total Parameters 85,500 28920 28,800

Table 3: Comparison of different models for the Cahn-Hilliard equation with one degree of
freedom. All models share the same branch network architecture and have 60 basis functions
(DeepONet global learnable basis, FEM learnable local basis, and POD basis). We also test a
smaller DeepONet structure with a two-layer trunk network while keeping the branch network
unchanged. Although this reduces the number of parameters to 35, 000, the relative error in-
creases to 28.44%± 11.07%.

Setting details. We generate a total of 250 input functions (initial conditions, ICs) along with
their corresponding solutions for training. Each output function is evaluated at 100 uniformly
sampled points from the spatial domain, while each input function is discretized using 22 uni-
formly spaced sensors, corresponding to a mesh size of 22. All models are trained for 2,000
epochs using a cosine annealing learning rate schedule. The neural network architectures across
all models employ 60 basis functions—either the proposed FEM basis, the POD basis, or the
standard DeepONet basis. Each coefficient branch network adopts a fully connected architec-
ture with layer sizes 22× 20 → 20× 1 and are activated by ReLU. For the DeepONet and FEM
models, the basis networks use the Tanh activation function. The centers of the FEM basis
functions are initialized uniformly over the interval [0, 1], with a fixed support size h = 0.05. A
histogram of the learned FEM basis centers and h after training is presented in Figure 9.
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Figure 9: Cahn-Hilliard equation with one degree of freedom. Left: Histogram of all learned
FEM basis centers, which are initially uniformly distributed over [0, 1]. Right: Histogram of
all learned support sizes h, all of which are initialized to 0.05. Since the distinctive features
of the solution landscapes, such as shocks, bumps, rapid decay, and rapid growth, are evenly
distributed across the domain for different samples (see Figure 8), most learned functions shrink
to smaller supports (0.025) after training (left picture), exhibiting localized behavior. However,
their centers remain almost evenly distributed to effectively capture these features across various
samples (right picture).

Analysis of the results. From Table 3, the proposed method achieves a lower error (2.62% <
2.91%) compared to the standard DeepONet with a deep network-constructed basis. At the
same time, the number of trainable parameters is significantly smaller, as we use only 2 × 60
parameters (two parameters per basis function) to construct a shallow network for building
the FEM basis. Although the POD method outperforms the proposed method in terms of
accuracy, it relies on non-trainable POD bases, requiring strong assumptions before application.
For instance, all output functions must be discretized on the same mesh, which greatly limits
the flexibility of the training data and restricts the POD-based operator learning to mappings
from fixed grids to fixed grids, essentially resembling standard function learning rather than
general operator learning. Additionally, when we increase the number of degrees of freedom
used to generate the training input functions, the output functions exhibit greater variability
(i.e., higher rank). Consequently, the accuracy of the POD method drops significantly, becoming
worse than that of the proposed method. See the results of the next experiment in Table 4 for
details.

Lastly, we observe the basis localization during network training. As shown in Figure 9, all FEM
hat functions are initialized with a uniform width of hk = 0.05. However, after training, most
functions shrink to narrower supports, exhibiting localized behavior. Since the special features
of the output functions—such as sharp decays or mild shocks (see Figure 8 for illustration)—are
relatively evenly distributed across the domain, the centers ak of the learned functions do not
shift significantly. In contrast, for examples where shocks are concentrated in specific regions of
the domain, we observe clear localization of the functions around those regions. See FK, KS,
AD, KdV sections for examples.

3.3.2 Two degrees of freedom

In this set of experiments, we set λ and µ both are sample uniformly from [0, 1]. We plot four
typical solutions in Figure 10 and present the numerical results in Table 4.
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Figure 10: Predicted solutions for the Cahn-Hilliard equation with two degrees of freedom. The
relative prediction errors for the four cases (displayed from left to right, top to bottom) are
4.09%, 4.29%, 2.59%, and 6.89%, respectively.

DeepONet FERN POD

Relative L2 error 14.68%± 4.19% 5.59%± 2.2% 7.22%± 3.41%

# Coefficient Parameters 120,000 120,000 61,440

# Basis Parameters 75,700 500 0

# Total Parameters 195,700 120,500 61,440

Table 4: Comparison of different models for the Cahn-Hilliard equation with two degrees of
freedom. All models share the coefficient networks; the DeepONet and FERN network have 250
learnable basis, while the POD network has 128 basis the largest number of basis due to the
discretization size.

Setting details. We generate a total of 1,000 input functions (initial conditions, ICs) along
with their corresponding solutions for training. Each output function is evaluated at 100 uni-
formly sampled points from the spatial domain, while each input function is discretized using
22 uniformly spaced sensors, corresponding to a mesh size of 22. All models are trained for
2,000 epochs using a cosine annealing learning rate schedule. The neural network architectures
across all models employ 250 basis functions, either the proposed FEM basis, the POD basis,
or the standard DeepONet basis. Each coefficient branch network adopts a fully connected
architecture with layer sizes 22 × 20 → 20 × 1 and are activated by ReLU. For the DeepONet
and FEM models, the basis trunk networks use the Tanh activation function. The centers of
the FEM basis functions are initialized uniformly over the interval [0, 1], with a fixed support
size h = 0.05. A histogram of the learned FEM basis centers and h after training is presented
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in Figure 11.

Analysis of the results. Similar to our observations for the Allen-Cahn equation, the proposed
method achieves the ghighest prediction accuracy with the smallest variance.

Figure 11: Cahn-Hilliard equation with two degrees of freedom. Left: Histogram of all learned
FEM basis centers, which are initially uniformly distributed over [0, 1]. Right: Histogram of all
learned support sizes h, all of which are initialized to 0.05. Most learned FEM hat functions
shrink to smaller supports after training (left picture), exhibiting localized behavior. However,
their centers remain evenly distributed to effectively capture these features across various samples
(right picture).

3.4 Fokker-Plank Equation

In this section, we consider the Fokker-Planck (FK) equation,

ut − (u(log(u) + cos(2πx))x)x = 0, x ∈ [0, 1], t ∈ [0, 0.1]. (6)

The target operator is the mapping from the initial condition to the solution at the terminal
time. We generate the initial condition by sampling free parameters c0 and c1. Specifically, the
initial condition has the form u0(x) = c1 exp(−100(x−c0)

2)+10−3, where c0 is uniformly drawn
from [0.3, 0.7] and c1 is from [1, 10]. We plot two typical solutions in Figure 12. Notably, the
terminal solutions exhibit a bell-shaped profile with a peak centered around 0.5 across different
initial conditions. This consistent behavior provides an opportunity to evaluate the adaptivity
of the learning process, that is, the model allocates more basis functions to the central region of
the domain, where the solution is most concentrated, rather than to the flat tails.
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Figure 12: Fokker-Plank equation solution illustrations. The predictions are obtained using the
proposed method with 30 basis functions, yielding errors of 0.28% and 0.59% respectively.

We present the numerical results in Table 5 and Table 6. Two sampling scenarios are considered:
(1) In the first case, the terminal solutions corresponding to each initial condition are uniformly
sampled over the entire domain with a mesh size of 64. This setting permits the use of the
POD method to construct basis functions for prediction. (2) In the second case, one-third of
the terminal solutions are sampled uniformly only over the interval [0, 0.5], another third over
[0.5, 1], and the remaining third uniformly over the full interval [0, 1]. Under this non-uniform
sampling scheme (different meshes for different output functions), POD cannot be applied di-
rectly, necessitating the use of learnable basis functions. In both cases, our method achieves
comparable or superior prediction accuracy while using significantly fewer trainable parameters.
For example, with 30 basis functions, FERN requires only 14,460 trainable parameters, whereas
the standard DeepONet uses 68,100.

DeepONet
(30)

2-layer Deep-
ONet (30)

FERN (30) DeepONet (10) FERN (10)

Relative L2

error
1.16%± 1.36% 4.23%± 3.49% 1.10%± 0.58% 1.28%± 1.59% 1.15%± 0.63%

# Coefficient
Parameters

14,400 14,400 14,400 4,800 4,800

# Basis Pa-
rameters

53,700 3,200 60 51,700 20

# Total Pa-
rameters

68,100 17,600 14,460 56,500 4,820

Table 5: Comparison of different models for the Fokker-Plank equation (the numbers 30 and
10 denote the number of basis N used) on uniform grids. The terminal solutions are uniformly
sampled over the interval [0, 1] for all samples. Notably, all DeepONet models achieve accurate
predictions when using a deep basis network; however, their performance deteriorates when the
basis network is reduced to only two layers, see the third column. In contrast, FERN maintain
high accuracy while requiring substantially fewer trainable parameters.
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DeepONet (30) 2-layer
DeepONet
(30)

FERN (30) DeepONet (10) FERN (10)

Relative L2 er-
ror

1.08%± 0.94% 6.93% ±
4.34%

1.48%± 0.9% 1.26%± 1.27% 1.35%± 0.83%

# Coefficient
Parameters

14,400 14,400 14,400 4,800 4,800

# Basis Pa-
rameters

53,700 3,200 60 51,700 20

# Total Pa-
rameters

68,100 17,600 14,460 56,500 4,820

Table 6: Comparison of different models for the Fokker-Plank equation (the numbers 30 and
10 denote the number of basis N used) on non-uniform grids. In this setting, the terminal
solutions are not uniformly sampled from the full domain [0, 1] across all samples. Specifically,
one-third of the samples are drawn from the interval [0, 0.5], another one-third from [0.5, 1], and
the remaining one-third from the full interval [0, 1]. This non-uniform sampling pattern prevents
the direct application of POD-based basis functions. Similar to the uniform sampling results
shown in Table 5, the performance of the standard DeepONet deteriorates when the number
of layers in the basis network is reduced to two, whereas FERN maintains accurate predictions
while using significantly fewer trainable parameters.

Detailed settings. We generate a total of 42 input functions (initial conditions, ICs) along with
their corresponding solutions for training. Each input function is discretized using 22 uniformly
spaced sensors, corresponding to a mesh of size 22. The corresponding output functions are
evaluated at 64 spatial points, yielding a total of 42×64 training samples. Two different samples
are tested, refer to Table 5 and Table 6 for details. All FEM-based models are trained for 2,000
epochs using a cosine annealing learning rate scheduler, while DeepONet models are trained
with more epochs to ensure convergence to a stable error level. For the standard DeepONet, the
basis network follows a fully connected feedforward architecture with the structure 1 × 100 →
100× 100 → 100× 100 → 100× 100 → 100× 100 → 100× 100 → 100×K, where each hidden
layer is followed by a tanh activation, and the final layer is linear. All layers include bias terms
except for the output layer. We also evaluate a variant of DeepONet with only two layers in the
basis network, where the architecture is 1× 100 → 100× 100, and the activation function used
is ReLU.

Accuracy. On uniform grids, the performance of FERN is similar to that of DeepONet, but
with a smaler variance, see Table 5. From Table 6, on nonuniform grids, when 30 basis functions
are used, FERN achieves a prediction error of 1.48%, while the standard DeepONet with a deep
trunk basis attains an error of 1.08%. Although the proposed method does not yield a smaller
average error in this example, it exhibits a smaller prediction variance (0.9% vs 0.94%) and
requires significantly fewer trainable parameters (14,460 vs. 68,100), as it employs a two-layer
shallow structure to construct the adaptive FEM basis.

To further demonstrate that not all shallow-structured basis networks are effective, we also re-
duce the number of fully connected layers in the standard DeepONet to two, which decreases the
number of trainable parameters to 17,600. However, despite having more parameters than the
proposed method (17,600 vs. 14,460), the resulting error is considerably larger (6.93% vs. 1.48%).
This highlights the effectiveness of the learned adaptive FEM basis.

Adaptivity. As shown in Figure 12, all terminal solutions,represented in terms of the FEM
basis, exhibit a bell-shaped profile with their peaks centered near the middle of the domain.
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Consequently, we expect the learned basis functions to reflect this spatial concentration pattern.
This behavior is indeed observed in our results. To further validate this hypothesis, we conduct
experiments using a larger number of basis functions. In the left panel of Figure 13, we display
the distribution of the learned FEM basis centers. The results indicate that a greater number of
basis functions are concentrated near the center of the domain. At the same time, the right panel
shows the average support width h of the learned hat functions, revealing that basis functions
centered near the middle region of the domain tend to have wider supports compared to those
located elsewhere. Since hat functions are composed of two linear segments with slopes 1 and −1,
a larger support (width h) corresponds to a basis function of greater magnitude. This property
may enhance the network’s ability to represent the bell-shaped terminal solutions effectively.

Figure 13: Fokker-Plank equation. The left panel shows the distribution of the learned basis
function centers (40) across the domain. The right panel presents the average support width h
of the learned hat functions within each subinterval (bin), where the average is computed over
all basis functions whose centers fall within the respective bin. We observe that, after training,
more basis functions are concentrated near x = 0.5, where a bump appears in the solution
landscape (see Figure 12), demonstrating the adaptivity of the learning.

We also present the basis functions before and after training for the case with 10 basis functions
in Figure 14. The initial centers are uniformly distributed across the domain with a fixed width
h = 0.05.

Figure 14: Fokker-Plank equation. Demonstration of the basis functions (10 in total). Left:
distribution of basis centers after training. Middle: all basis functions before training. Right:
all basis functions after training. We observe that, after training, more basis functions are
concentrated near x = 0.5, where a bump appears in the solution landscape (see Figure 12),
demonstrating the adaptivity of the learned FEM functions.
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3.5 Aggregation-diffusion equation

In this section, we study the aggregation-diffusion equation,

ut − (u(Dum−1 +W (x) ∗ u)x)x = 0, x ∈ [−6, 6], t ∈ [0, 200],

where D = 0.4,m = 2, W (x) = − 1√
2πσ

exp
(
− x2

2σ2

)
with σ = 1, and ∗ is the convolution. The

target operator is the mapping from the initial condition to the solution at the terminal time.
We generate the initial condition by sampling the free parameter c0 uniformly in [1, 5] from

u0(x) =
c0

2
√
2π

(exp(−(x− x0)
2/2) + exp(−(x+ x0)

2/2)).

We present two representative solutions of the system in Figure 15. Notably, despite differing
initial conditions, the terminal states consistently exhibit a bell-shaped profile centered within
the domain, with the solution remaining nearly flat near the boundaries. This example serves
as a test of the adaptability of the learned basis functions. The coefficient networks (used in
both the standard DeepONet and the FEM-based network) adopt a fully connected architecture
with layer dimensions 22× 20 → 20× 1, and all layers are activated by the hyperbolic tangent
(tanh) function.

Figure 15: Demonstration of two solutions of the aggregation-diffusion equation. Notably, the
terminal solutions corresponding to different initial conditions remain close to zero outside the
central region of the domain, indicating strong spatial localization.

We present the numerical results in Table 7. The proposed methods can achieve similar accuracy
while using fewer trainable parameters, given the same training and network settings. We give
the numerical training details below.

DeepONet (40) FERN (40) DeepONet (20) FERN (20)

Relative L2 error 1.44%± 2.69% 1.08%± 0.54% 1.41%± 2.74% 1.51%± 2.39%

# Coefficient Parameters 19,200 19,200 9,600 9,600

# Basis Parameters 54,700 80 52,700 40

# Total Parameters 73,900 19,280 62,300 9,640

Table 7: Comparison of different models for the aggregation-diffusion equation (the numbers 40
and 20 denote the number of basis N used). We also test a smaller DeepONet with a two-layer
trunk network while keeping the branch network the same as in all other models. Although this
reduces the total number of parameters to 23, 400 (still more than the proposed method with
19, 280 parameters), the relative error increases significantly to 61.63%± 2.74%.
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Setting details. We generate a total of 42 input functions (initial conditions, ICs) along with
their corresponding solutions for training. Each input function is discretized using 22 uniformly
spaced sensors, corresponding to a mesh of size 22. The corresponding output functions are
evaluated at 64 uniformly sampled spatial points, yielding a total of 42 × 64 training samples.
All models are trained for 2,000 epochs using a cosine annealing learning rate schedule. We
test two different settings for the number of basis functions, as summarized in Table 7. In both
settings, the coefficient network architecture (used in both the standard DeepONet and FERN)
adopts a fully connected architecture with layer dimensions 22× 20 → 20× 1, and all layers are
activated by the hyperbolic tangent (tanh) function.

The centers of the FEM basis functions are initialized uniformly over the input interval, with a
fixed support width of h = 0.05. For the standard DeepONet, the basis network follows a fully
connected feedforward architecture with the structure 1 × 100 → 100 × 100 → 100 × 100 →
100× 100 → 100× 100 → 100× 100 → 100×K, where each hidden layer is followed by a tanh
activation, and the final layer is linear. All layers include bias terms except the output layer.

Accuracy. As shown in Table 7, the proposed FEM-basis method requires significantly fewer
trainable parameters across both basis settings. When 20 basis functions are used, FERN
attains a slightly higher average error than the standard DeepONet (1.51% vs. 1.41%). However,
when the number of basis functions increases to 40, FERN achieves a smaller error (1.08%
vs. 1.44%), a trend that is consistently observed in most of our experiments. Furthermore,
even in cases where the average prediction error is higher, FERN consistently exhibits smaller
variance in prediction errors, demonstrating its robustness and suggesting superior generalization
performance in extrapolation scenarios.

Adaptivity. As shown in Figure 15, the terminal solutions exhibit a bell-shaped profile and
decay rapidly outside the center of the domain. Since each hat basis function consists of two
linear segments with slopes 1 and -1, a larger support width h corresponds to a basis function
with greater spatial extent. Therefore, we expect the learned hat functions to have larger
support when their centers are located near the center of the domain, and smaller support
as their centers move toward the boundaries. This behavior is confirmed in our numerical
experiments. To validate this hypothesis, we vary the number of basis functions from 10 to 40
and plot the distribution of the learned support widths h across uniformly divided subintervals
of the domain. See Figure 16 for the results.
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Figure 16: Aggregation-diffusion equation. Distribution of learned FEM basis support across
the domain for different numbers of basis functions, ranging from 10 to 40 (ordered from left
to right, top to bottom). The PDE domain is partitioned into uniform bins (subintervals), and
for each bin, we compute the average support size h of the learned FEM basis functions whose
centers ak fall within that bin. The x-axis represents the bins from the left to the right boundary,
while the y-axis indicates the corresponding average support. Note that larger support values
result in wider hat functions, since the slopes of the underlying piecewise linear components are
fixed at 1 and -1.

3.6 Keller-Segel Equation

In this section, we study the Keller-Segel (KS) equation,{
ut − (u(D log(u)− χv)x)x = 0,

−vxx + v = u,
x ∈ [0, 1], t ∈ [0, 1.0]

where D = 0.01, χ = 5.0. The target operator is the mapping from the initial condition to the
solution at the terminal time. We generate the initial condition by sampling the free parameter
c0 uniformly in [0.2, 0.8] from

u0(x) = 1 + c0 sin(2π(x− 0.25)).

We present two typical solutions of the system in Figure 17. Notably, despite differing initial
conditions, the terminal states consistently exhibit a bump profile centered within the domain,
with the solution remaining nearly flat near the boundaries. This example serves as a test of the
adaptability of the learned basis functions to capture a sharp gradient in the solution landscape.
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Figure 17: Demonstration of two solutions of the Keller-Segel equation. Notably, the terminal
solutions corresponding to different initial conditions exhibit a bump close to x = 0.5.

We present the numerical results in Table 8. The proposed methods can achieve similar accuracy
while using fewer trainable parameters, given the same training and network settings. We give
the numerical training details below.

DeepONet(40) 2-layer DeepONet FERN (40) FERN (60)

Relative L2 error 0.73%± 0.05% 5.97%± 0.23% 1.08%± 0.67% 0.78%± 0.29%

# Coefficient Parameters 19,200 19,200 19,200 28,800

# Basis Parameters 54,700 4,200 80 120

# Total Parameters 73,900 23,400 19,280 28,920

Table 8: Comparison of different models for the Keller-Segel equation (the numbers 40 and 60
denote the number of basis N used). All proposed FEM-based models employ only a single layer
to construct the FEM basis. Notably, when the number of basis layers in the standard DeepONet
is reduced to two, its performance degrades. In contrast, FERN maintains high accuracy with
a substantially smaller number of trainable parameters.

Setting details. We generate a total of 42 input functions (ICs) and their corresponding
solutions for training, where each input function is discretized using 22 uniformly spaced sensors
(i.e., a mesh of size 22). Different output functions are evaluated on different non-uniform meshes
to introduce challenges for using POD bases: specifically, one-third of the output functions are
sampled only on a fine mesh (size 49) in the first third of the domain [0, 1], another third only in
the middle third, and the final third only in the last third of the domain. All FEM-based models
are trained for 2,000 epochs using a cosine annealing learning rate schedule, while DeepONet
models are trained with significantly more epochs to reach stable performance. We explore
different configurations for the number of basis functions and the depth of the basis network in
DeepONet, as summarized in Table 8.

In all settings, the coefficient network architecture (used in both DeepONet and FERN) follows
a fully connected architecture with dimensions 22×20 → 20×1, and use the hyperbolic tangent
(tanh) activation for all layers. The centers of the FEM basis functions are uniformly initialized
across the domain with a fixed support width of h = 0.05. For the standard DeepONet, the basis
network adopts a deep fully connected architecture with the structure 1 × 100 → 100 × 100 →
100× 100 → 100× 100 → 100× 100 → 100× 100 → 100×N , where N is the number of basis,
with tanh activations following each hidden layer and a linear output layer; all layers include
bias terms except the final one. For the two-layer DeepONet variant, the basis network consists
of two layers with dimensions 1× 100 → 100× 1.
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Accuracy. Firstly, due to the use of a non-uniform mesh, as detailed in the previous section,
the POD method cannot be applied. As shown in Table 8, consistent with the results observed
in other examples, the proposed method achieves comparable or even superior average relative
prediction error while using substantially fewer trainable parameters. In particular, when a
standard DeepONet is constructed with a two-layer fully connected trunk network, the average
error is 5.97%, whereas the proposed method with the learnable FEM basis achieves a signifi-
cantly lower error of 1.08%. By increasing the depth of the basis network of DeepONet or the
number of basis for the propose method, both accuracies can be improved. While the proposed
method uses fewer number of parameters.

Adaptivity. As shown in Figure 15, the terminal solutions exhibit a bump profile and decay
rapidly outside the center of the domain. Therefore, we expect the learned hat functions may
focus more closely to the bump. This behavior is confirmed in our numerical experiments. To
validate this hypothesis, we vary the number of basis functions from 40 to 80 and plot the
distribution of the learned FEM basis centers. See Figure 18 for the results.

Figure 18: Demonstration of the distributions of the learned basis centers for the Keller-Segel
equation. From left to right, top to bottom, we consider models with 20, 40, 60, and 80 basis
functions, respectively. The output function exhibits a prominent bump near x = 0.5 (see Figure
17), and we observe that more basis functions are concentrated around this region, indicating
that the learned basis adapts to the underlying solution structure.

To better illustrate the concept, Figure 19 displays the basis functions (20 in total) both before
and after training. Initially, all basis centers are uniformly distributed with a fixed width
h = 0.05. After training, more basis functions are concentrated near the bump of the terminal
solution. The corresponding distribution of basis centers is shown in Figure 18.
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Figure 19: Keller-Segel equation. Demonstration of the FEM basis functions before and after
training with 20 basis functions. There is a bump close to x = 0.5 (see Figure 17). We observe
from this figure that more localized bases with smaller supports are concentrated around x = 0.5
to capture the bump, while fewer bases with larger supports are distributed in other regions to
represent the flatter tails (left and right) of the solution.

3.7 KdV equation

In this example, we consider the KdV equation,

ut − ϵuxxx + (u2/2)x = 0, x ∈ [0, 2], t ∈ [0, 2].

The target operator maps the initial condition to the solution at the terminal time, with the
initial conditions generated using

u0(x) = 3c1sech(k1(x− x1))2 + 3c2sech(k2(x− x2))2,

with the one free parameter uniformly sampled from [0, 1]. We plot two typical initial conditions
and solution pairs in Figure 20. Notably, all solutions exhibit a bump within the domain [0, 1],
and we use this example to further examine the adaptivity of the proposed method.
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Figure 20: Demonstration of KdV solutions and the prediction using the FEM method with 80
basis functions. The relative errors are 3.86% for the solution shown on the left and 4.23% for
the solution on the right.

Setting details. We generate a total of 250 input functions (ICs) and their corresponding
solutions for training, where each input function is discretized using 100 sensors (i.e., a mesh
of size 100). The output functions are evaluated on a mesh with 64 points for all samples. All
FEM-based models are trained for 2,000 epochs using a cosine annealing learning rate schedule,
while DeepONet models are trained with significantly more epochs to reach stable performance.
We summarize the results in Table 9, and present the distribution of the learned centers in
Figure 21.

In all settings, the coefficient network architecture (used in both DeepONet and FERN) follows
a fully connected architecture with dimensions 22×20 → 20×1, and use the hyperbolic tangent
(tanh) activation for all layers. The centers of the FEM basis functions are uniformly initialized
across the domain with a fixed support width of h = 0.05. For the standard DeepONet, the basis
network adopts a deep fully connected architecture with the structure 1 × 100 → 100 × 100 →
100 × 100 → 100 × 100 → 100 × 100 → 100 × 100 → 100 ×N with ReLU activations following
each hidden layer and a linear output layer, where N is the number of basis; all layers include
bias terms except the final one.

Accuracy. As shown in Table 9, with the same number of basis functions, compared to Deep-
ONet, FERN gives a smaller error with lower variance and fewer parameters. We also test a
smaller DeepONet with a two-layer trunk network while keeping the branch network the same
as in all other models. Although this reduces the total number of parameters to 113, 800, the
relative error increases significantly to 13.25%± 4.75%.

Adaptivity. As shown in Figure 20, the terminal solutions exhibit a bump in the left half of
the domain. We present in Figure 21 the distribution of learned centers. We observe that most
centers concentrate on the left half of the domain, demonstrating the adaptivity of the proposed
method.

27



DeepONet(80) FERN (80)

Relative L2 error 6.0%± 2.81% 3.93%± 1.10%

# Coefficient Parameters 105,600 105,600

# Basis Parameters 58,700 160

# Total Parameters 164,300 105,760

Table 9: KdV results with 80 basis. We also test a smaller DeepONet with a two-layer trunk
network while keeping the branch network the same as in all other models. Although this
reduces the total number of parameters to 113, 800, the relative error increases significantly to
13.25%± 4.75%.

Figure 21: Learned basis center distributions. We create a bump in the solution landscape
within the region [0, 1] (see Figure 20 for examples). As shown in this figure, a greater number
of basis functions are relocated to this region (though initialized uniformly distributed in the
domain), demonstrating the adaptivity of the proposed method.

3.8 Viscous Burgers’ equation

Lastly, as a widely tested example in operator learning, we consider the Viscous Burgers’ equa-
tion,

ut − 0.01uxx + (u2/2)x = 0, x ∈ [0, 1], t ∈ [0, 1].

The target operator maps the initial condition to the solution at the terminal time, with the
initial conditions generated using

u0(x) = c1 sin(2π(x− c0)) + 0.5,

with c0 uniformly sampled from [0, 0.5] and c1 uniformly sampled from [0.5, 1.0]. We plot two
typical initial conditions and solutions pairs in Figure 22.
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Figure 22: Demonstration of viscous Burgers’ equation solutions and the prediction using the
FEM method with 40 basis functions. The relative errors are 0.71% for the solution shown on
the left and 1.01% for the solution on the right.

Setting details. We generate a total of 84 input functions (ICs) and their corresponding
solutions for training, where each input function is discretized using 22 sensors (i.e., a mesh
of size 22). The output functions are evaluated on a mesh with 64 points for all samples. All
FEM-based models are trained for 2,000 epochs using a cosine annealing learning rate schedule,
while DeepONet models are trained with significantly more epochs to reach stable performance.
We summarize the results in Table 10.

In all settings, the coefficient network architecture (used in both DeepONet and FERN) follows
a fully connected architecture with dimensions 22×20 → 20×1, and use the hyperbolic tangent
(tanh) activation for all layers. The centers of the FEM basis functions are uniformly initialized
across the domain with a fixed support width of h = 0.05. For the standard DeepONet, the basis
network adopts a deep fully connected architecture with the structure 1 × 100 → 100 × 100 →
100× 100 → 100× 100 → 100× 100 → 100× 100 → 100×K, with ReLU activations following
each hidden layer and a linear output layer; all layers include bias terms except the final one.

Results analysis. As shown in Table 10, the propsoed method gives an accuracy comparable
to DeepONet but with fewer parameters.

DeepONet(40) FERN (40)

Relative L2 error 0.95%± 0.41% 0.93%± 0.31%

# Coefficient Parameters 19,200 19,200

# Basis Parameters 54,700 80

# Total Parameters 73,900 19,280

Table 10: Viscous Burgers example results with 40 basis.

4 Discussion

In this paper, we developed a finite-element polynomial basis–based operator learning framework
that efficiently solves families of PDEs with a substantially reduced number of trainable param-
eters. By constructing adaptive FEM bases through a shallow neural architecture, the proposed
method retains the flexibility of learnable representations while inheriting the local adaptivity
and interpretability of traditional finite element methods. Numerical experiments across seven
distinct PDE families confirm that the method achieves competitive or superior accuracy com-
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pared to standard DeepONet models, often with orders of magnitude fewer parameters and
smaller variance in prediction errors. The proposed framework opens several promising direc-
tions for future research. One avenue is to construct higher-order FEM bases by incorporating
different polynomial families (e.g., Legendre, Chebyshev, or hierarchical bases) and exploring
alternative activation functions to enhance expressiveness. Another important direction is to
analyze and improve extrapolation capabilities, as the adaptive nature of the learned FEM bases
suggests potential for stronger generalization beyond the training regime. Overall, this study
bridges classical finite element analysis and modern operator learning, offering a pathway to-
ward efficient, interpretable, and adaptive neural operator frameworks for solving complex PDE
systems.
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