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Abstract

While many problems in machine learning focus on learning mappings between finite-dimensional spaces,
scientific applications require approximating mappings between function spaces, i.e., operators. We study
the problem of learning collections of operators and provide both theoretical and empirical advances. We
distinguish between two regimes: (i) multiple operator learning, where a single network represents a contin-
uum of operators parameterized by a parametric function, and (ii) learning several distinct single operators,
where each operator is learned independently. For the multiple operator case, we introduce two new ar-
chitectures, MNO and MONet, and establish universal approximation results in three settings: continuous,
integrable, or Lipschitz operators. For the latter, we further derive explicit scaling laws that quantify how the
network size must grow to achieve a target approximation accuracy. For learning several single operators,
we develop a framework for balancing architectural complexity across subnetworks and show how approx-
imation order determines computational efficiency. Empirical experiments on parametric PDE benchmarks
confirm the strong expressive power and efficiency of the proposed architectures. Overall, this work es-
tablishes a unified theoretical and practical foundation for scalable neural operator learning across multiple
operators.

Keywords and phrases. Deep Neural Networks, Approximation Theory, Neural Scaling Laws, Operator
Learning, Multi-Operator Learning.
Mathematics Subject Classification. 41A99, 68T07

1 Introduction

Classical machine learning is primarily concerned with learning functions of the form

f : Rn → Rd

where finite-dimensional inputs are mapped to finite-dimensional outputs. In many scientific and engineering
applications, however, the goal is to approximate mappings between function spaces,

G : U → V
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where U and V are typically subsets of infinite-dimensional Banach or Hilbert spaces. Such problems arise,
for instance, in learning solution operators of ordinary and partial differential equations [4,12,39,45], and span
a wide range of scientific and engineering domains [10,24,37,51,53,65]. This framework is known as operator
learning, and it extends classical supervised learning from the setting of functions to that of operators acting on
functions. We refer to [32, 46] and references therein for a review and comparison of approaches in this topic.

Neural networks form a natural framework for operator learning, combining the flexibility to approximate
complex nonlinear mappings with a strong record of empirical success in scientific and engineering applica-
tions [18–20, 29, 64]. Modern operator-learning networks [11, 12] typically decompose the learned operator
into interacting subnetworks that process different aspects of the input, such as spatial variables, input func-
tions, or parameters, before combining them through summation or tensor-like contractions. For example, in
the terminology of DeepONet [45], the branch subnetwork encodes the input function, while the trunk sub-
network represents a basis for the output function space. This basis, constructed by neural networks, can also
be designed to mimic classical finite element bases. These architectures draw inspiration from low-rank ap-
proximations, where complex mappings are expressed as sums of separable, lower-dimensional functions [48].
Neural operator networks can thus be viewed as nonlinear analogues of such expansions, with each subnetwork
learning one component of a functional basis.

However, the neural network approach also introduces challenges that are inherent to its design: in par-
ticular, how to construct architectures that are both simple to implement and empirically effective, while also
supported by rigorous mathematical guarantees. These difficulties become especially pronounced in the multi-
operator setting, where the need to represent numerous complex operators often leads to rapidly increasing
architectural complexity.

In this work, we distinguish between two related but conceptually distinct settings in which numerous
operators are involved. The first is the multiple operator learning setting, G : W → {G[α] : U (α) 7→
V (α)}α∈W , where the parametric function α ∈ W serves as an explicit input to the network, allowing a
single model to represent a continuum of operators indexed by α. The second concerns learning several single
operators, {G(j) : U (j) → V (j)}j∈J , where each operator is learned independently and the dependence on
the index j remains external to the model. We summarize and contrast the main differences between these
two formulations in Table 4. This distinction clarifies the different modeling challenges posed by operator
learning in practice. Building on this, we investigate fundamental theoretical and practical aspects of designing
expressive and efficient neural architectures for learning collections of operators. Specifically, we address three
central questions:

Q.1 Can one construct architectures that are provably expressive, yielding (quantitative) universal approxi-
mation guarantees?

Q.2 How can network architectures be designed to exploit shared structure across related operators, balance
complexity among functional components, and attain optimal approximation and scaling performance?

Q.3 Are the proposed architectures empirically efficient and capable of strong performance on representative
learning tasks?

In addressing these questions, we provide both theoretical insights and empirical evidence that clarify the
principles underlying expressive and scalable operator-learning networks.

1.1 Key Contributions

Our main contributions in the multiple operator learning setting (summarized in Table 1) are as follows:

1. We introduce two new architectures for multiple operator learning, MNO and MONet, designed to
generalize existing operator learning models and provide flexible building blocks for theoretical and
practical analysis.

2. We establish universal approximation results for multi-operator learning, showing that both architec-
tures can approximate any continuous operator to arbitrary accuracy on compact sets.
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3. We establish a weak universal approximation property for multi-operator learning, proving that both
architectures can approximate measurable operators, thereby extending expressivity guarantees beyond
the continuous setting.

4. We establish a strong universal approximation property for Lipschitz operators when approximated
using our proposed MNO model for multi-operator learning. In this case we also derive scaling laws,
i.e., quantitative estimates of the required network size to achieve a prescribed accuracy. Specifically,
we show that the approximation error ε scales as follows for N# the total number of parameters in the
network:

ε ≍
(

log logN#

log log logN#

)−1/dW

,

where dW denotes the dimension of the domain of functions in W . This is done in the general multi-
operator setting without additional knowledge of the properties of the collection operators besides their
regularity.

5. We show that our scaling results apply not only to the proposed MNO, but also extend to a broad family
of architectures, including MIONet [25], thereby unifying several existing approaches under a common
framework.

6. We complement our theoretical contributions with empirical validation on a wide range of PDE prob-
lems, considering both discrete and continuum input parameters α, and demonstrate that the proposed
architectures achieve strong performance in practice.

MONet MNO

New architectures ✓ ✓

Standard UAP (continuous operators) ✓(Theorem 3.4) ✓(Theorem 3.4)

Weak UAP (measurable operators) ✓(Theorem 3.5) ✓(Theorem 3.5)

Strong UAP (Lipschitz operators) — ✓(Theorem 3.16)

Scaling laws (quantitative rates) — ✓(Theorem 3.16)

Empirical validation ✓ ✓

Table 1: Summary of contributions in the multiple operator learning setting: expressivity guarantees/universal approx-
imation property (UAP), scaling laws, and empirical validation for MNO and MONet which are two architectures for
multiple operator learning.

1.2 Additional Contributions

In addition to the main contributions above, our results contribute to the setting of learning several single
operators (summarized in Table 2) and are summarized as follows:

1. We establish a principled framework for selecting architectures when approximating several single
operators, showing that the index dependence j can, under suitable structural conditions on U (j) and
V (j), be absorbed into a single network component for improved efficiency. This generalizes to other
related works D2NO [63], MIONet [25], and MODNO [61].

2. We demonstrate that the theoretical approximation order determines how scaling complexity is dis-
tributed between subnetworks, and that the computational burden can be shifted between components
without affecting the expressive capacity of the model.
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3. We show that the theoretical approximation order directly impacts efficiency, emphasizing the key
role of architecture in determining computational complexity. Specifically, the attainable rate of approx-
imation with respect to the total number of parameters N# depends on the adopted approximation order,
yielding either (

logN#

log logN#

)− 1
(1+dV )dU

or

(
logN#

log logN#

)− 1
dU

,

where dU and dV denote the dimensions of the domain of functions in U and V , respectively.

Principled framework for architecture design ✓(Remarks 3.9, 3.11, 3.19)

Balancing of scaling complexity across subnetworks ✓(Theorem 3.8 and Remark 3.13)

Impact of approximation order on efficiency ✓(Remarks 3.14 and 3.15)

Table 2: Summary of contributions for the setting of learning several single operators.

Note that the approximation order refers to the choice of hierarchical approximation steps, e.g., approxi-
mating functions, then functionals (then operators—in the multiple operator case).

1.3 Related works

A wide range of research has contributed to the development of operator-learning theory and practice, spanning
multi-operator learning strategies, neural operator architectures, and the theoretical foundations of expressivity
and scaling. We briefly summarize these directions below.

Multi-Operator Learning The motivation for learning collections of operators arises in several contexts:
in some applications, it is inherent to the problem formulation itself, while in others, it serves as a means to
improve the generalization capability of operator-learning models. Recently, several multi-operator learning
approaches have been introduced [7,43,44,49,54,57–61,63]. In particular, the works of [44,54] demonstrated
that multi-operator learning can accurately address new tasks beyond those seen during training.

As previously discussed, one can either (1) learn several single operators independently, or (2) consider a
more general setting in which the family of operators is encoded through a (discrete or continuous) parametric
function α. In the former case, exemplified by [61], one exploits only the information contained in the input
functions of different operators, which typically limits the model’s ability to handle highly varying families
of operators and prevents generalization to unseen ones. By contrast, in the latter case, methods that employ
an operator-encoding strategy [42, 44, 52, 54, 58] incorporate an explicit representation of the operator, such as
its governing equation, symbolic form, text, or task label, alongside the corresponding input functions. This
additional encoding generally yields stronger generalization and represents a potential construction for PDE
foundation models. Notably, the inclusion of operator information enables zero-shot generalization to new
PDE tasks, as shown in [54], and such approaches have demonstrated promising capabilities for addressing
out-of-distribution tasks without costly retraining.

Despite these advances, a rigorous theoretical understanding of the expressivity and scaling behavior of
neural networks in multi-operator regimes remains limited. For learning several single operators, our work
provides guidance for architectural design to leverage common structure and achieve optimal scaling com-
plexity. For multiple operator learning, our work introduces new architectures and provides the analysis of
universal approximation as well as scaling behavior.

Neural Operator Architectures A variety of neural operator architectures have been developed to approx-
imate mappings between infinite-dimensional function spaces efficiently. Among the most widely used are
Deep Operator Networks (DeepONets) [45], which rely on low-rank functional decompositions; Fourier Neu-
ral Operators [39], motivated by Fourier spectral methods; and Deep Green Networks [6, 16], which learn
Green’s functions of PDEs directly. These models differ primarily in their structural assumptions which in
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turn govern their discretization strategy, scalability, and domain of applicability. Several variants, including
Graph Neural Operators and Multipole Graph Neural Operators [1, 38], further leverage sparsity or multiscale
interactions to reduce computational cost. We refer to [17, 32] and references therein for further models in
operator learning.

The proposed MNO and MONet architectures retain the separable structure characteristic of DeepONet,
while extending these models to the multiple operator learning regime.

Expressivity and Scaling Laws The foundation of operator-learning theory rests on universal approximation
results, which establish that a given architecture can approximate a broad class of operators to arbitrary accu-
racy. The development of an operator network and the study of universal approximation for mappings between
spaces of scalar-valued functions is due to [11, 12]. Extensions to DeepONet were provided by [34, 41], to the
Fourier Neural Operator by [30], and to PCA-Net by [4] etc. Further notable developments related to this work
include [8, 9, 22, 25, 31, 62, 64].

Beyond universal approximation, neural scaling laws provide a quantitative framework for characterizing
how network performance scales with data size, model capacity, and computational costs. Developing a the-
oretical foundation for these laws is essential, as it enables rigorous analysis of generalization error in deep
learning and offers predictive insight into how performance improves with increasing data, model complexity,
or training time [27]. Empirical studies such as [13] explored the cost–accuracy trade-off across neural oper-
ator architectures, quantifying how network size and data availability affect approximation error. In [41], the
scaling laws and complexity for deep ReLU networks and DeepONet were rigorously derived and analyzed.
Additionally, complexity analyses were carried out theoretically for DeepONet by [34] and extended to PCA-
Net in [33]. Related analyses can be found in [15, 21, 35, 47]. Sample complexity bounds for DeepONet and
related models are studied in [40, 41], and out-of-distribution generalization estimates in [36].

In the context of multiple-operator learning, empirical analyses have recently been reported in [26, 55].
In this work, we establish the universal approximation of MNO and MONet for multiple operators. We also
partly extend the work in [41] to the multiple operator setting and derive scaling laws for MNO and related
models.

The remainder of the paper is structured as follows: in Section 2, we review the mathematical background
relevant to our proposed methods; in Section 3, we present our main results; in Section 4, we provide detailed
proofs of our results; in Section 5, we show the strong empirical performance of our proposed models for
multiple operator learning; and in Section 6, we conclude with a summary of our contributions and a discussion
of potential directions for future work.

2 Background

2.1 Operator learning

In this section, we recall key results in operator learning, related to the framework introduced by [12], which
forms the basis for our subsequent universal approximation analysis. We start by defining the class of Tauber–Wiener
(TW) activation functions.

Definition 2.1 (Tauber–Wiener functions). A function σ : R → R is called a Tauber–Wiener function if for all
a < b, ε > 0, and f ∈ C0([a, b]), there exists a linear combination g(x) =

∑N
i=1 ci σ(λix+ θi) such that

∥f − g∥C0([a,b]) < ε,

where N = N(ε) depends on the desired accuracy.

The above definition requires that the activation function σ enable the construction of dense subsets of
C0([a, b]). Typical examples of activation functions satisfying this condition, i.e., belonging to the class of
Tauber–Wiener functions, include the hyperbolic tangent, bounded sigmoid functions, Gaussian functions, and
oscillatory functions such as the sine. In particular, the ReLU activation σ(x) = max(0, x) is also Tauber-
Wiener: indeed, the mapping

ϕ 7→
∫
R
max(0, x)ϕ(x) dx
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defines a continuous linear functional on the Schwartz space, and since ReLU is non-polynomial, [12, Theo-
rem 1] ensures that it belongs to the Tauber-Wiener class. ReLU is a popular choice in practice, and we adopt
it as our activation function in the experiments presented in Section 5.

Assuming a TW activation function, we introduce the following network, which we denote by Net.

Definition 2.2 (Net Network). For fixed positive integers m,n, p, constants cki, ζk, θki, ξkij ∈ R, points ωk ∈
Rn, xj ∈ ΩU (i = 1, . . . , n, k = 1, . . . , p, j = 1, . . . ,m), we define a Net network as:

(1) Net[u](x) =

p∑
k=1

n∑
i=1

cki σ

 m∑
j=1

ξkiju(xj) + θki

 · σ(ωk · x+ ζk)

for a continuous function u : ΩU 7→ R, x ∈ Rn and for some activation function σ ∈ TW .

Note that the Net network defined in Eq. (1) can also be re-written as

Net[u](x) =

p∑
k=1

bk(u)τk(x)

with bk(u) =
∑n

i=1 ckiσ
(∑m

j=1 ξkiju(xj) + θki

)
and τk(x) = σ(ωk · x + ζk) both being shallow networks.

If we extend the latter to deep networks, one recovers the popular DeepONet architecture [45]. In this way, the
network is a linear combination of the product of nonlinear (separated) sub-networks.

The Net network enjoys a universal approximation property for nonlinear continuous operators over com-
pact sets.

Theorem 2.3 (Universal Approximation Theorem for Single Operator [12]). Suppose that Assumptions A.1,
S.2 and S.3 hold. Let G be a nonlinear continuous operator mapping U 7→ V , then, for any ε > 0, there exists
a neural network defined in Eq. (1), such that

∥G[u](x)−Net[u](x)∥L∞(U×ΩV ) < ε.

In Section 3, we will introduce new neural network architectures and extend Theorem 2.3 to the multiple
operator setting. To prepare for this, it is helpful to outline the proof strategy of Theorem 2.3 and introduce the
technical tools it relies on, which will also be used in the proof of Theorem 3.4. The main idea is to sequentially
separate the input variables of the operator G, thereby reducing the operator approximation problem to the
task of approximating functions in finite-dimensional spaces. This reduction is supported by the following
result, which guarantees that continuous functions can be uniformly approximated by neural networks with
TW activations.

Theorem 2.4 (Universal Approximation for Functions [12]). Suppose that Assumption S.2 holds and let σ be
a TW function. Then, for any ε > 0, there exist N ∈ N, θi ∈ R, ωi ∈ Rn, and continuous linear functionals
ci : U 7→ R such that ∣∣∣∣∣f(x)−

N∑
i=1

ci(f)σ(ωi · x+ θi)

∣∣∣∣∣ < ε

holds for all x ∈ ΩU and f ∈ U .

Specifically, for a fixed u ∈ U , the mapping G[u] ∈ V is a function G[u] : ΩV 7→ R, and Theorem 2.4
stipulates the existence of functionals {ci : V → R}Ni=1 such that

∣∣G[u](x)−
N∑
i=1

ci(G[u])σ(ωi · x+ θi)
∣∣ < ε.

The next step is to approximate the continuous functionals ci : V → R. To this end, one constructs a
sequence of finite-dimensional subspaces Vηk ⊆ V that approximate V increasingly well: for every v ∈ V and
δ > 0, there exist k ∈ N and vk ∈ Vηk such that ∥v− vk∥ < δ. By continuity, it follows that |ci(v)− ci(vk)| <
ε. Moreover, on each finite-dimensional subspace Vηk , the functional ci can be identified with a function
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ĉi : Rdim(Vηk
) → R, which can itself be approximated by Theorem 2.4. Denoting this approximation by

N(vk), the triangle inequality yields

|ci(v)−N(vk)| ≤ |ci(v)− ci(vk)|+ |ĉi(vk)−N(vk)|,

which completes the argument. Below, we describe the construction and approximation properties of the
subsets Vk which we also use in the proof of Theorem 3.4.

First, we recall that if V is a compact subset of C0(ΩV ) where ΩV is itself compact, then it is uniformly
bounded and equicontinuous by the Arzelà-Ascoli theorem. Therefore, there is a decreasing sequence η1 >
η2 > · · · > ηn → 0 and δ1 > δ2 > · · · > δn → 0 such that if ∥x− y∥ < ηk, then

(2) |v(x)− v(y)| < δk

for all v ∈ V . Then, by the compactness of ΩV and induction, we can find a sequence {xi}∞i=1 ⊆ ΩV and a
sequence of positive integers n(η1) < n(η2) < · · · < n(ηk) → ∞, such that the first n(ηk) elements

(3) N(ηk) = {x1, · · · , xnηk
}

is an ηk-net in ΩV .
For each ηk-net and index 1 ≤ j ≤ n(ηk), we define functions

T ∗
ηk,j

(x) =

{
1− ∥x−xj∥

ηk
if ∥x− xj∥ ≤ ηk

0 otherwise
and Tηk,j(x) =

T ∗
ηk,j

(x)

n(ηk)∑
j=1

T ∗
ηk,j

(x)

.

Note that {Tηk,j(x)}
n(ηk)
j=1 is a partition of unity, i.e., 0 ≤ Tηk,j(x) ≤ 1,

n(ηk)∑
j=1

Tηk,j(x) ≡ 1, and Tηk,j(x) =

0 if ∥x − xj∥ > ηk. Furthermore, the functions Tηk,j(x) act as basis elements of the finite-dimensional space
Vηk = {vηk : v ∈ V } where, for each v ∈ V , vηk is defined as

(4) vηk(x) :=

n(ηk)∑
j=1

v(xj)Tηk,j(x).

Finally, we let V ∗ = V ∪ (
⋃∞

k=1 Vηk). Equation (4) essentially maps a finite-dimensional encoding of v back
into a function vηk . The approximation properties of vηk are summarized in the next lemma.

Lemma 2.5 (Finite-dimensional Approximations of Function Spaces [12]). Assume that V is a compact subset
of C0(ΩV ) where ΩV is itself compact.

1. For each fixed k, Vηk is a compact set of dimension n(ηk) in C(ΩV ).

2. For every v ∈ V , there exists vηk ∈ Vηk with

∥v − vηk∥C(ΩV ) < δk.

3. V ∗ is a compact set in C(ΩV ).

2.2 Scaling laws for operator learning

In this section, we review the main ideas behind establishing scaling laws for (multiple) operator learning, i.e.
obtaining rates of convergence for the approximation of operators using neural networks. In particular, we
focus on the setting in [41] which underpins our analysis.

We start by defining the following class of neural networks. This class is both general and flexible, en-
compassing a wide family of architectures, and can be readily implemented using standard deep learning
frameworks.
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Definition 2.6 (Feedforward ReLU Network Class). Let q : Rd1 → R be a feedforward ReLU network defined
as

q(x) = WL · ReLU (WL−1 · · ·ReLU(W1x+ b1) + · · ·+ bL−1) + bL,

where Wℓ are weight matrices, bℓ are bias vectors, and ReLU(a) = max{a, 0} is applied element-wise.
We define the class of such feedforward networks with ReLU activations:

FNN(d1, d2, L, p,K, κ,R) =

[q1, q2, . . . , qd2 ]
⊤ ∈ Rd2

∣∣∣∣∣∣∣∣
each qk : Rd1 → R has the above form with
L layers, width bounded by p,
∥qk∥L∞ ≤ R, ∥Wℓ∥∞,∞ ≤ κ, ∥bℓ∥∞ ≤ κ,∑L

ℓ=1 (∥Wℓ∥0 + ∥bℓ∥0) ≤ K

 ,

where

• ∥q∥L∞ = supx∈Ω |q(x)|,

• ∥Wℓ∥∞,∞ = maxi,j |[Wℓ]ij |,

• ∥bℓ∥∞ = maxi |[bℓ]i|,

• ∥ · ∥0 denotes the number of nonzero elements.

This network class consists of vector-valued functions with input dimension d1, output dimension d2, depth L,
width at most p, at most K nonzero parameters, all bounded in magnitude by κ, and uniformly bounded output
norm by R.

In analogy with our discussion in Section 2.1, scaling laws are derived sequentially by fixing the inputs
of the operator G to be approximated. This requires quantitative approximation results for both functions and
functionals using the network class of Definition 2.6, which can then be combined to obtain operator-level
guarantees. Specifically, we will use the following result on function approximation in the proofs of Theorems
3.6, 3.8 and 3.16.

Theorem 2.7 (Function Approximation [41]). Let dU > 0 be an integer, γ1, βU , LU > 0 be constants and
assume that U(dU , γU , βU , LU ) satisfies Assumption S.4. There exists some constant C depending on γU and
LU such that the following holds. For any ε > 0,

• let N = C
√
dUε

−1 and let {ck}N
dU

k=1 be a uniform grid on ΩU with spacing 2γU/N along each dimen-
sion;

• consider the network architecture FNN(dU , 1, L, p,K, κ,R) with parameters scaling as

L = O
(
d2U log dU + d2U log(ε−1)

)
, p = O(1), K = O

(
d2U log dU + d2U log(ε−1)

)
,

κ = O(d
dU/2+1
U ε−dU−1), R = 1

where the constants hidden in O depend on γU and LU .

Then, there exists networks {qk}N
dU

k=1 ⊂ FNN(dU , 1, L, p,K, κ,R) such that∥∥∥∥∥∥u−
NdU∑
k=1

u(ck)qk

∥∥∥∥∥∥
L∞(ΩU )

≤ ε.

for any u ∈ U .

In Section 3, we present slightly modified versions of the functional and operator scaling laws from [41],
which make certain constants in the approximating network explicit and play a central role in the proof of the
multiple operator case, Theorem 3.16.
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3 Main results

3.1 Notation, Assumptions and Setting

We denote the Lebesgue measure on Rn by λ and write |Ω| for the Lebesgue measure of a set Ω. We denote the
set of continuous function over a set K as C0(K) and the set of continuous maps from U to V as C0(U, V ).
For a vector z and a matrix Z, we denote by [z]i and [Z]ij their i-th and ij-th element respectively. We denote
the ball of radius δ with center x by Bδ(x).

3.1.1 Assumptions

Assumptions 1. We make the following assumptions on the activation functions used in the operator networks.

A.1 The activation function σ is a Tauber-Wiener function.

A.2 The activation function σ is continuous and/or bounded.

Assumptions 2. We make the following assumption on our spaces.

S.1 The space of W ⊆ C0(ΩW ) is a compact subspace where ΩW is a compact subset of the Banach space
A.

S.2 The space U ⊆ C0(ΩU ) is a compact subspace where ΩU is a compact subset of the Banach space U .

S.3 The space V is C0(ΩV ) where ΩV is a compact subset of Rn.

S.4 The space U(dU , γU , LU , βU ) is a function set such that

(a) any function u ∈ U is defined on ΩU := [−γU , γU ]
dU ;

(b) for all functions u ∈ U and x, y ∈ ΩU , we have

|u(x)− u(y)| ≤ LU |x− y|;

(c) for all functions u ∈ U , we have ∥u∥L∞ ≤ βU .

Assumptions 3. We make the following assumption on the measures.

M.1 ν is a probability measure on W .

M.2 µ is a probability measure on U .

Assumptions 4. We make the following assumption on the operators.

O.1 For every α ∈ W , the operator G[α] : U 7→ V is nonlinear and continuous.

O.2 The map α ∈ W 7→ G[α] is continuous.

O.3 The map α ∈ W 7→ G[α] is Borel measurable and G[α][u](x) ∈ L2
ν×µ×λ(W × U × V )

3.1.2 Multiple Operator Network Architectures

We introduce two neural network architectures for approximating multi-operator mappings. First, we consider
the Multiple Operator Network (MONet) which is a direct extension of the neural network in Eq. (1) and we
will show that it enjoys universal approximation properties for continuous and measurable multiple operators
mappings in Theorems 3.4 and 3.5.
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Definition 3.1 (MONet Network). For fixed positive integers M,N,P,m, p, constants ckij , ζk, ξkil, φkijh,
ρkij , θki ∈ R, points ωk ∈ Rn, xl ∈ ΩU , zh ∈ ΩW (i = 1, . . . ,M ; k = 1, . . . , N ; j = 1, . . . , P ; h = 1, . . . , p;
l = 1, . . . ,m), we define a MONet network as:

MONet[α][u](x) =
N∑
k=1

M∑
i=1

τk(x)bki(u)Lki(α) =
N∑
k=1

τk(x)
M∑
i=1

bki(u)Lki(α)(5)

for continuous functions α ∈ W : ΩW 7→ R and u ∈ U : ΩU 7→ R, x ∈ Rn, activation function σ ∈ TW and
networks τk(x) = σ(ωk · x+ ζk), bki(u) = σ (

∑m
l=1 ξkilu(xl) + θki) and

Lki(α) =
P∑

j=1

ckijσ

(
p∑

h=1

φkijhα(zh) + ρkij

)
.

Note that the notation used in the operator networks assumes that the inputs are continuous functions;
however, the input functions are encoded as finite dimensional vectors by first being evaluated on some points.
In some sense, the resulting encoded vectors are the true inputs to the networks. In all the proofs describing
a specific architecture as in the ones of Theorem 3.4, Lemma 4.2, Theorem 3.8 and Theorem 3.16, precise
statements will be made.

Remark 3.2 (MONetvect Network). The network in Eq. (5) can be simplified in the case where the parameter
inputs are finite-dimensional, i.e., α ∈ Rp. For fixed positive integers M,N,P,m, p, constants ckij , ζk, ξkil,
φkijh, ρkij , θki ∈ R, points ωk ∈ Rn, xl ∈ ΩU (i = 1, . . . ,M ; k = 1, . . . , N ; j = 1, . . . , P ; h = 1, . . . , p;
l = 1, . . . ,m), we define a MONetvect network with vector parameter α ∈ Rp as
(6)

MONetvect[α][u](x) =

N∑
k=1

M∑
i=1

P∑
j=1

ckij σ

(
p∑

h=1

φkijh[α]h + ρkij

)
· σ

(
m∑
l=1

ξkilu(xl) + θki

)
· σ(ωk · x+ ζk)

for a continuous function u : ΩU 7→ R, point x ∈ Rn and some activation function σ ∈ TW . The proof of the
universal approximation for finite dimensional α is given in Corollary 4.1.

We introduce the Multiple Nonlinear Operator (MNO) Network, which is shown to provide strong empiri-
cal results in Section 5. We establish scaling laws in Theorem 3.16 for this architecture.

Definition 3.3 (MNO Network). For fixed positive integers P,H(p), 1 ≤ p ≤ P , we define a MNO network
as

MNO[α][u](x) =

P∑
p=1

lp(α)
H(p)∑
k=1

bpk(u)τpk(x) =
P∑

p=1

H(p)∑
k=1

lp(α)bpk(u)τpk(x)

for continuous functions α, u, and networks lp, bk, τpk in some classes FNN.

We summarize both network architectures and their associated expressivity guarantees in Table 3.

3.2 Main results

3.2.1 Universal Approximation

In this section, we show that both network architectures introduced in Section 3.1.2 can approximate families
of nonlinear operators. The first result is analogous to classical universal approximation results for neural
networks. In particular, it assumes that all our functions are continuous. In the theorems below, NN refers to
both MNO and MONet.

Theorem 3.4 (Universal Approximation Theorem for Multiple Operators in L∞). Assume that Assumptions
A.1, S.1, S.2, S.3, O.1 and O.2 hold. Then for any ε > 0, there exists a network NN, of the form given in
Definition 3.1 or Definition 3.3 (with lp, bpk, and τpk being defined as in Definition 3.1), such that

(7) ∥G[α][u](x)−NN[α][u](x)∥L∞(W×U×ΩV ) < ε

for all functions α ∈ W and u ∈ U and where α and u are discretizations of α and u that only depend on W
and U respectively.
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MONet MNO

Definition Definition 3.1 Definition 3.3

Expression
N∑

k=1

M∑
i=1

τk(x) bki(u)Lki(α)

P∑
p=1

H(p)∑
k=1

lp(α) bpk(u) τpk(x)

Components τk, bki, Lki are shallow networks lp, bpk, τpk are deep networks in FNN

UAP Approximates continuous and measurable
multiple operator mappings (Theorems 3.4
and 3.5)

Approximates continuous and measurable
multiple operator mappings (Theorems 3.4
and 3.5)

Scaling laws — Quantitative approximation for Lipschitz
multiple operator mappings (Theorem 3.16)

Table 3: Comparison of MNO and MONet architectures: definition, expression, component type, universal approxima-
tion properties (UAP), and scaling laws.

The proof is provided in Section 4.1. Next, we relax the continuity requirement on the map α 7→ G[α],
extending the result from continuous to measurable operator families. In this more general setting, the approx-
imation is obtained in the L2-norm rather than the L∞-norm.

Theorem 3.5 (Universal Approximation Theorem for Multiple Operators in L2). Assume that Assumptions
A.1, A.2, S.1, S.2, S.3, M.1, M.2, O.1 and O.3 hold. Then, for every ε > 0, there exists a network NN, of
the form given in Definition 3.1 (with Lki(α) = γki

(∑P
j=1 ckijσ

(∑p
h=1 φkijhα(zh) + ρkij

))
where γki are

ReLu neural networks) or Definition 3.3 (with lp, bpk, and τpk being defined as in Definition 3.1), such that

(8) ∥G[α][u](x)−NN[α][u](x)∥L2
ν×µ×λ(W×U×ΩV ) < ε

for any functions α ∈ W and u ∈ U and where α and u are discretizations of α and u that only depend on W
and U respectively.

The proof is given in Section 4.2.

3.2.2 Scaling Laws

In this section, we establish the scaling laws for the MNO architecture. Our strategy is indirect: we first carry
out the analysis for an equivalent, but more explicit, architecture in Theorem 3.16. The scaling laws for MNO
then follow as a corollary through suitable reformulations as detailed in Remark 3.19. Moreover, the results
derived for the setting of learning several single operators emerge naturally from this analysis. Our analysis
proceeds hierarchically, beginning at the functional level, extending to the approximation of (several) single
operators, and then yielding the final general multiple operator learning result.

As discussed in Section 2.2, we start by considering a revised version of [41, Theorem 6] for quantitative
functional approximation through neural networks. For the sake of completeness, in Section 4.3.1, we provide
a modified proof which explicitly determines the values of some of the constants in the approximating network
architecture.

Theorem 3.6 (Functional Approximation). Let dU > 0 be an integer, γU , βU , LU , Lf > 0 be constants and
assume that U(dU , γU , LU , βU ) satisfies Assumption S.4. Let f : {u : ΩU 7→ R | ∥u∥L∞ ≤ βU} 7→ R be a
functional such that

|f(u1)− f(u2)| ≤ Lf∥v1 − v2∥L∞

for all u1, u2 ∈ {u : ΩU | ∥u∥L∞(ΩU ) ≤ βU}.
There exists constants C and Cδ depending on βU , Lf and Lf , LU respectively such that the following

holds. For any ε > 0,
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• let δ = Cδε and let {cm}ncU
m=1 ⊂ ΩU be points so that {Bδ(cm)}ncU

m=1 is a cover of ΩU for some ncU ;

• let H = C
√
ncU ε

−1 and consider the network class FNN(ncU , 1, L, p,K, κ,R) with parameters scaling
as

L = O
(
n2
cU

log(ncU ) + n2
cU

log(ε−1)
)
, p = O(1), K = O

(
n2
cU

log ncU + n2
cU

log(ε−1)
)
,

κ = O(n
ncU

/2+1
cU ε−ncU

−1), R = 1

where the constants hidden in O depend on βU and Lf .

Then, there exists networks {bk}H
ncU

k=1 ⊂ FNN(ncU , 1, L, p,K, κ,R) and functions {uk}H
ncU

k=1 ⊂ {u : ΩU 7→
R | ∥u∥L∞ ≤ βU} such that

sup
u∈U

∣∣∣∣∣∣f(u)−
HncU∑
k=1

f(uk)bk(u)

∣∣∣∣∣∣ ≤ ε,(9)

where u = (u(c1), u(c2), . . . , u(cncU
))⊤.

Remark 3.7 (Uniform functional approximation). We can extend Theorem 3.6 to a set of functionals

{f (j) : {u : ΩU(j) 7→ R | ∥u∥L∞ ≤ β
(j)
U } 7→ R | |f (j)(u1)− f (j)(u2)| ≤ L(j)∥u1 − u2∥L∞}j∈J

where J is a (possibly uncountable) index set. For simplicity, we assume that dU(j) = dU for all j ∈ J and
define

H(j) = H
nc

U(j) .

Case I: U (j) are distinct In the case of distinct U (j), we apply Theorem 3.6 for every j separately and, for
every j, obtain (9). Then, we take the supremum over j and have

(10) sup
j∈J

sup
u∈U(j)

∣∣∣∣∣∣f (j)(u)−
H(j)∑
k=1

f (j)(u
(j)
k )b

(j)
k (u(j))

∣∣∣∣∣∣ ≤ ε

where {b(j)k }H(j)

k=1 are networks with b
(j)
k ∈ FNN(nc

U(j)
, 1, L(j), p(j),K(j), κ(j), R(j)) for any 1 ≤ k ≤ H(j),

{u(j)k }H(j)

k=1 are functions in {u : ΩU(j) 7→ R | ∥u∥L∞ ≤ β
(j)
U } and u(j) = (u(c

(j)
1 ), u(c

(j)
2 ), . . . , u(c

(j)
nc

U(j)
))T .

All the constants with superscript j are analogous to the ones defined in the statement of Theorem 3.6 using
the appropriated quantities related to U (j).

Case II: U (j) = U If we have U (j) = U for all j, the above simplifies. By inspecting the proof of Theorem
3.6, we note that our functional approximation relies on the function approximation Theorem 2.7. In particular,
the idea is to transform our functional f : {u : ΩU 7→ R | ∥u∥L∞ ≤ βU} 7→ R into a Lipschitz function
f̂ : [−βU , βU ]

ncU 7→ R contained in some class V (ncU , βU , Lf , Cf̂ ). Then, we obtain the approximation
result

sup
x∈[−βU ,βU ]

nCU

∣∣∣∣∣∣f̂(x)−
HncU∑
k=1

f̂(sk)bk(x)

∣∣∣∣∣∣ ≤ ε

2

where the same networks bk and points sk can be chosen for any function in the class V . In particular, the only
parameters in the class of functions V and in the second part of the approximation (Eq. (45)) that depend on f
are Lf and Cf̂ . Therefore, if we consider a set of functionals

{f (j) : {u : ΩU 7→ R | ∥u∥L∞ ≤ βU} 7→ R | |f (j)(u1)− f (j)(u2)| ≤ Lj∥u1 − u2∥L∞}j∈J ,
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the same argument can be repeated by replacing Lf by supj∈J Lj and Cf̂ by supj∈J Cf̂j
: in fact, f̂ (j) ∈

V (ncU , βU , supj∈J Lj , supj∈J Cf̂j
). We can conclude that

(11) sup
j∈J

sup
u∈U

∣∣∣∣∣∣f (j)(u)−
HncU∑
k=1

f (j)(uk)bk(u)

∣∣∣∣∣∣ ≤ ε.

This result will only affect the choice of the constants in the statement of the theorem, none of the scalings.
Obviously, this presupposes that supj∈J Lj < ∞ and supj∈J Cf̂j

< ∞. In particular, we note that we can set

supj∈J Cf̂j
= supj∈J sup

u∈{u:ΩU 7→R | ∥u∥L∞≤β
(j)
U } f

(j)(u).

We also note that the case where some U (j) are distinct and some coincide is dealt with similarly, as a
combination of Eqs. (10) and (11).

With the explicit functional approximation provided by Theorem 3.6, we now establish a version of the op-
erator scaling laws that includes explicit coefficients for the approximating network. The proof of the theorem
is analogous to [41, Theorem 1], just substituting Theorem 3.6 for [41, Theorem 6]. We recall the main steps
in Remark 3.9 and prove a very similar statement in Remark 3.13.

Theorem 3.8 (Single Operator Scaling Laws). Let dU , dV > 0 be integers, γU , γV , βU , βV , LU , LV , LG > 0,
and assume that U(dU , γU , LU , βU ) and V (dV , γV , LV , βV ) satisfy Assumption S.4. Let G be an operator
such that G : {u : ΩU 7→ R | ∥u∥L∞ ≤ βU} 7→ V . Furthermore, assume that G satisfies

(12) ∥G(u1)−G(u2)∥L∞(ΩV ) ≤ LG∥u1 − u2∥Lr(ΩU )

for some r ≥ 1 and for any u1, u2 ∈ {u : ΩU 7→ R | ∥u∥L∞ ≤ βU}.
There exists constants C depending on γV , LV , Cδ depending on LG, dU , γU , r, LU and C ′ depending on

βU , LG, dU , γU , r such that the following holds. For any ε > 0,

• let N = 2C
√
dV ε

−1 and consider the network class F1 = FNN(dV , 1, L1, p1,K1, κ1, R1) with param-
eters scaling as

L1 = O
(
d2V log dV + d2V log(ε−1)

)
, p1 = O(1), K1 = O

(
d2V log dV + d2V log(ε−1)

)
,

κ1 = O(d
dV /2+1
V ε−dV −1), R1 = 1.

where the constants hidden in O depend on γV and LV ;

• let {vℓ}N
dV

ℓ=1 ⊂ ΩV be a uniform grid with spacing 2γV /N along each dimension;

• let δ = Cδε
1+dV

2dV +1(C
√
dV )dV

and let {cm}ncU
m=1 ⊂ ΩU be points so that {Bδ(cm)}ncU

m=1 is a cover of ΩU for
some ncU ;

• let H = 2dV +1C ′√ncU (C
√
dV )

dV ε−(dV +1) and consider the network class
F2 = FNN(ncU , 1, L2, p2,K2, κ2, R2) with parameters scaling as

L2 = O
(
n2
cU

log ncU + n2
cU
(dV + 1) log(ε−1) + n2

cU
log(2dV +1(C

√
dV )

dV )
)
, p2 = O(1),

K2 = O
(
n2
cU

log ncU + n2
cU
(dV + 1) log(ε−1) + n2

cU
log(2dV +1(C

√
dV )

dV )
)
,

κ2 = O(n
ncU

/2+1
cU ε−(dV +1)(ncU

+1)[2dV +1(C
√
dV )

dV ]ncU
+1), R2 = 1

where the constants hidden in O depend on βU , LG, dU , γU , r.

Then, there exists networks {τℓ}N
dV

ℓ=1 ⊂ F1, networks {bk}H
ncU

k=1 ⊂ F2 and functions {uk}H
ncU

k=1 ⊂ {u : ΩU 7→
R | ∥u∥L∞ ≤ βU} such that

sup
u∈U

sup
x∈ΩV

∣∣∣∣∣∣G[u](x)−
NdV∑
ℓ=1

HncU∑
k=1

G[uk](vℓ)bk(u)τℓ(x)

∣∣∣∣∣∣ ≤ ε,(13)

where u = (u(c1), u(c2), ..., u(cncU
))⊤ is a discretization of u.
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Remark 3.9 (Uniform operator approximation). Similarly to Remark 3.7, we extend Theorem 3.8 to a set of
operators

{G(j) : {u : ΩU(j) 7→ R | ∥u∥L∞ ≤ βU(j)} 7→ V (j) | ∥G(j)(u1)−G(j)(u2)∥L∞ ≤ LG(j)∥u1 − u2∥Lr(j)}j∈J

where J is a (possibly uncountable) index set. For simplicity, we assume that dU(j) = dU and dV (j) = dV for
all j ∈ J and define

H(j) = H
nc

U(j) .

Case I: U (j) are distinct and V (j) are distinct If the U (j) and V (j) are distinct, we apply Theorem 3.8 first
for each j ∈ J separately and then take the supremum over all j to obtain:

sup
j∈J

sup
u∈U(j)

sup
x∈Ω

V (j)

∣∣∣∣∣∣G(j)[u](x)−
(N(j))dV∑

ℓ=1

H(j)∑
k=1

G(j)[u
(j)
k ](v

(ℓ)
ℓ )b

(j)
k (u(j))τ

(j)
ℓ (x)

∣∣∣∣∣∣ ≤ ε.

For the rest of the cases, we need to recall the proof of Theorem 3.8. Specifically, the idea is first to
consider, for u ∈ U , the functions G[u] : ΩV 7→ R. The latter are all contained in V and we can therefore
apply the function approximation Theorem 2.7 to deduce that for all u ∈ U ,

sup
x∈ΩV

∣∣∣∣∣∣G[u](x)−
NdV∑
ℓ=1

G[u](vℓ)τℓ(x)

∣∣∣∣∣∣ ≤ ε

2
.

Then, we define the functionals fℓ(u) = G[u](vℓ) and verify that they are L∞-Lipschitz on {u : ΩU 7→
R | ∥u∥L∞ ≤ βU} with Lipschitz constant LG|ΩV |1/r. As explained in Remark 3.7, the proof corresponds
to the setting where we have NdV functionals all defined for the same set of functions U , we can apply the
formula in Eq. (11) to obtain that, for all 1 ≤ ℓ ≤ NdV ,

sup
u∈U

∣∣∣∣∣∣fℓ(u)−
HncU∑
k=1

fℓ(uk)bk(u)

∣∣∣∣∣∣ = sup
u∈U

∣∣∣∣∣∣G[u](vℓ)−
HncU∑
k=1

G[uk](vℓ)bk(u)

∣∣∣∣∣∣ ≤ ε0.

Combining both estimates, we conclude with

sup
u∈U

sup
x∈ΩV

∣∣∣∣∣∣G[u](x)−
NdV∑
ℓ=1

HncU∑
k=1

G[uk](vℓ)bk(u
(j))τℓ(x)

∣∣∣∣∣∣
≤ sup

u∈U
sup
x∈ΩV

∣∣∣∣∣∣G[u](x)−
NdV∑
ℓ=1

G[u](vℓ)τℓ(x)

∣∣∣∣∣∣ + sup
u∈U

sup
x∈ΩV

NdV∑
ℓ=1

|τℓ(x)|

∣∣∣∣∣∣G[u](vℓ)−
HncU∑
k=1

G[uk](vℓ)bk(u
(j))

∣∣∣∣∣∣
≤ ε

2
+ ε0N

dV .

By picking ε0 = ε/(2NdV ) = O(εdV +1), we obtain the result.

Case II: U (j) = U and V (j) are distinct Let us now assume that U (j) = U . The first step of the proof can
be repeated for every j separately to obtain that for every u ∈ U ,

sup
j∈J

sup
x∈Ω

V (j)

∣∣∣∣∣∣G(j)[u](x)−
(N(j))dV∑

ℓ=1

G[u](v
(j)
ℓ )τ

(j)
ℓ (x)

∣∣∣∣∣∣ ≤ ε

2
.

Next, we can define the functionals
f
(j)
ℓ (u) = G(j)[u](v

(j)
ℓ )
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and the latter are L∞-Lipschitz in {u : ΩU 7→ R | ∥u∥L∞ ≤ βU} with Lipschitz constant supj∈J |ΩU |1/r
(j)
LG(j)

if we assume that the latter is finite. If we further assume that

sup
j∈J

sup
1≤ℓ≤N

d
V (j)

f
(j)
ℓ (u) = sup

j∈J
sup

1≤ℓ≤N
d
V (j)

G(j)[u](v
(j)
ℓ ) ≤ sup

j∈J
sup

v∈V (j)

∥v∥L∞(V (j)) ≤ sup
j∈J

βV (j) < ∞

then, the functionals satisfy all the assumptions in Eq. (11) and we obtain

sup
j∈J

sup
u∈U

sup
1≤ℓ≤(N(j))dV

∣∣∣∣∣∣f (j)
ℓ (u)−

HncU∑
k=1

f
(j)
ℓ (uk)bk(u)

∣∣∣∣∣∣ = sup
j∈J

sup
u∈U

∣∣∣∣∣∣G(j)[u](x)−
HncU∑
k=1

G(j)[uk](x)bk(u)

∣∣∣∣∣∣
≤ ε

2 supj∈J (N
(j))dV

=: ε0.

This also requires that supj∈J (N
(j))dV < ∞ and we note a subtle point: in this setting, bk, uk and u can be

chosen independently of j. The is possible since the latter are a function of ε0 which is set to ε
2 supj∈J (N(j))dV

,

i.e. independent of j, and not to ε
2(N(j))dV

, in which case they would both become dependent of j again. By
concluding as above, we obtain:

sup
j∈J

sup
u∈U

sup
x∈Ω

V (j)

∣∣∣∣∣∣G(j)[u](x)−
(N(j))dV∑

ℓ=1

HncU∑
k=1

G(j)[uk](v
(j)
ℓ )bk(u)τ

(j)
ℓ (x)

∣∣∣∣∣∣ ≤ ε.

Case III: U (j) are distinct and V (j) = V Next, we assume that Vj = V . Since for all j ∈ J and
u(j) ∈ U (j), we obtain that G(j)[u(j)] ∈ V , by repeating the first step of the proof, we can choose τℓ and vℓ to
be independent of j and obtain

sup
j∈J

sup
u(j)∈U(j)

sup
x∈ΩV

∣∣∣∣∣∣G(j)[u(j)](x)−
NdV∑
ℓ=1

G(j)[u(j)](vℓ)τℓ(x)

∣∣∣∣∣∣ ≤ ε

2
.

We then define the functionals f (j)
ℓ : {u(j) : ΩU(j) 7→ R | ∥u(j)∥L∞ ≤ βU(j)} as f (j)

ℓ (u(j)) = G(j)[u(j)](vℓ)

and verify that they are L∞-Lipschitz with Lipschitz constant |ΩU(j) |1/r
(j)
L
(j)
G . We then apply Eq. (10) and

obtain that

sup
j∈J

sup
u(j)∈U(j)

sup
1≤ℓ≤NdV

∣∣∣∣∣∣f (j)
ℓ (u(j))−

H(j)∑
k=1

f
(j)
ℓ (u

(j)
k )b

(j)
k (u(j))

∣∣∣∣∣∣
= sup

j∈J
sup

u(j)∈U(j)

sup
1≤ℓ≤NdV

∣∣∣∣∣∣G(j)[u(j)](vℓ)−
H(j)∑
k=1

G(j)[u
(j)
k ](vℓ)b

(j)
k (u(j))

∣∣∣∣∣∣
≤ ε

2NdV
.

Combining both estimates, we conclude that

sup
j∈J

sup
u(j)∈U(j)

sup
x∈ΩV

∣∣∣∣∣∣G(j)[u(j)](x)−
NdV∑
ℓ=1

H(j)∑
k=1

G(j)[u
(j)
k ](vℓ)b

(j)
k (u(j))τℓ(x)

∣∣∣∣∣∣ ≤ ε.

Case IV: U (j) = U and V (j) = V Finally, if Uj = U and Vj = V , by combining both of the above, we
obtain:

(14) sup
1≤j≤J

sup
u∈U

sup
x∈ΩV

∣∣∣∣∣∣G(j)[u](x)−
NdV∑
ℓ=1

HncU∑
k=1

G(j)[uk](vℓ)bk(u)τℓ(x)

∣∣∣∣∣∣ ≤ ε.

Similarly, we can deal with the case when some U (j) and V (j) are distinct, while some are equal.
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Remark 3.10 (Uncountable index set assumptions). Remarks 3.7 and 3.9 have been formulated for uncountably
many functionals and operators respectively. While these results are of interest on their own, they also require
several assumptions on the finiteness of various constants. In practice, we will apply Remark 3.9 for finitely
many operators: this significantly simplifies the necessary assumptions.

Remark 3.11 (Alternative network for the operator approximation). The network appearing in Eq. (13) can be
re-written in a slightly different manner. Specifically, we can define
(15)
NdV∑
ℓ=1

HncU∑
k=1

G[uk](vℓ)bk(u)τℓ(x) =:

HncU∑
k=1

bk(u)τ̂k(x) or
NdV∑
ℓ=1

HncU∑
k=1

G[uk](vℓ)bk(u)τℓ(x) =:

NdV∑
ℓ=1

b̂ℓ(u)τℓ(x)

The networks τ̂k and b̂ℓ are in the classes SNdV F1 and SHncU F2 where F1 and F2 are defined in Theorem
3.8 and SjF denotes functions that are linear combinations of j functions in the class F . We note that this
is the convention chosen in [41]. These formulations are particularly well-suited for practical applications, as
they replace the double summation in Eq. (13) with a single inner product, thereby significantly simplifying
implementation.

We also want to consider a set of operators

{G(j) : {u : ΩU(j) 7→ R | ∥u∥L∞ ≤ βU(j)} 7→ V (j) | ∥G(j)(u1)−G(j)(u2)∥L∞ ≤ L
(j)
G ∥u1 − u2∥Lr(j)}j∈J .

as in Remark 3.9. We distinguish the same following four cases for the alternative network formulations of Eq.
(15) which approximate all G(j). In particular, using the formulas derived in Remark 3.9, we obtain:

1. Case I: U (j) are distinct and V (j) are distinct

H(j)∑
k=1

b
(j)
k (u(j))τ̂

(j)
k (x) or

(N(j))dV∑
ℓ=1

b̂
(j)
ℓ (u(j))τ

(j)
ℓ (x);

2. Case II: U (j) = U and V (j) are distinct

HncU∑
k=1

bk(u)τ̂
(j)
k (x) or

(N(j))dV∑
ℓ=1

b̂
(j)
ℓ (u(j))τ

(j)
ℓ (x);

3. Case III: U (j) are distinct and V (j) = V

H(j)∑
k=1

b
(j)
k (u(j))τ̂

(j)
k (x) or

NdV∑
ℓ=1

b̂
(j)
ℓ (u(j))τℓ(x);

4. Case IV: U (j) = U and V (j) = V

HncU∑
k=1

bk(u)τ̂
(j)
k (x) or

NdV∑
ℓ=1

b̂
(j)
ℓ (u)τℓ(x).

The above formulas provide a principled basis for selecting architectures when approximating several single
operators simultaneously. In particular, depending on the structure of U (j) and V (j), certain architectures
allow the dependence on j to be absorbed into a single network component rather than appearing in multiple
components simultaneously. This result also provides a unified framework that encompasses recent approaches
such as D2NO [63] and MODNO [61].

Remark 3.12 (Learning several single operator versus multiple operator learning). In practice, one often en-
counters settings where several distinct operators must be learned (as in Remarks 3.9 and 3.11), either indepen-
dently or with partial weight sharing—for instance, learning solution maps corresponding to different physical
regimes or boundary conditions. At first glance, this may seem equivalent to learning a single parameterized
operator, i.e. multiple operator learning.
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While both settings involve learning mappings between function spaces, they differ fundamentally in how
the dependence on the index variable is treated. In the several single-operator setting, one considers an indexed
family of operators {G(j) : U (j) → V (j)}j∈J , where J may be finite or uncountable, but the index j does
not explicitly enter the learning process. Each operator is represented or trained separately, and any shared
structure across j is imposed manually: Remark 3.11 guides the architecture choice in this regard. In contrast,
multiple operator learning aims to approximate a single parameterized mapping G : W → {U (α) → V (α)},
where α ∈ W directly enters the model as an input. This formulation inherently captures how operators vary
with α, allowing a single network to interpolate across the entire parameter space rather than fitting a collection
of independent mappings. We summarize the main comparison points in Table 4.

Several Single Operators Multiple Operator Learning

Formulation {G(j) : U (j) → V (j)}j∈J G : W → {U (α) → V (α)}α∈W

Dependence on parameter/index Dependence on j is external to
the model

Parameter α is an explicit input
to the network

Coupling between operators Optional, via shared structure of
the architecture

Intrinsic, through a single net-
work

Generalization capability Limited to operators seen during
training

Enables interpolation and ex-
trapolation across α ∈ W

Practical interpretation Independent or weakly coupled
tasks

Unified model for a continuum
of related tasks

Table 4: Comparison between the settings of several single operators and multiple operator learning. The latter treats the
parameter (or index) as an explicit input, enabling a single network to represent a continuously parameterized family of
operators.

Remark 3.13 (Balancing functional and spatial scaling complexity in the approximating architecture). The-
orem 3.8 establishes specific scaling relations for the space-approximation networks τℓ and the function-
approximation networks bk. These scalings arise naturally from the order of approximation adopted in the
proof, namely, approximating functions first and functionals second as recalled in Remark 3.9. If the order is
reversed, the resulting derivation yields a different scaling behavior, illustrating that the overall approximation
complexity can be redistributed between the two components of the network. This observation highlights a fun-
damental flexibility in the design of operator-learning architectures: the computational burden can be shifted
from one subnetwork to another without altering the expressive power of the overall model.

More precisely, when the order of approximation is inverted, the proof follows the steps outlined below.
For x ∈ ΩV , we start by defining the functional fx : {u : ΩU 7→ R | ∥u∥L∞ ≤ βU} 7→ R as

fx(u) = G[u](x).

In particular, we have that

|fx(u1)− fx(u2)| = |G[u1](x)−G[u2](x)|
≤ LG∥u1 − u2∥Lr(ΩU )(16)

≤ LG|ΩU |1/r∥u1 − u2∥L∞(ΩU )

where we use (12) for (16). Therefore, we can apply Theorem 3.6. Specifically, for any ε0 > 0, there exists
constants C ′ and Cδ depending on βU , LG|ΩU |1/r and LG|ΩU |1/r, LU respectively such that the following
holds. There exists

• a constant δ := Cδε0 and points {cm}ncU
m=1 ⊂ ΩU so that {Bδ(cm)}ncU

m=1 is a cover of ΩU for some ncU ,

• a network class F2 = FNN(ncU , 1, L2, p2,K2, κ2, R2) whose parameters scale as

L2 = O
(
n2
cU

log(ncU ) + n2
cU

log(ε−1
0 )
)
, p2 = O(1), K2 = O

(
n2
cU

log ncU + n2
cU

log(ε−1
0 )
)
,
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κ2 = O(n
ncU

/2+1
cU ε

−ncU
−1

0 ), R2 = 1

where the constants hidden in O depend on βU and LG|ΩU |1/r,

• networks {bk}H
ncU

k=1 ⊂ F2 with H := C ′√ncU ε
−1
0 and

• functions {uk}H
ncU

k=1 ⊂ {u : ΩU 7→ R | ∥u∥L∞ ≤ βU}

such that

sup
u∈U

∣∣∣∣∣∣fx(u)−
HncU∑
k=1

fx(uk)bk (PCU (u)))

∣∣∣∣∣∣ = sup
u∈U

∣∣∣∣∣∣G[u](x)−
HncU∑
k=1

G[uk](x)bk (PCU (u)))

∣∣∣∣∣∣ ≤ ε0.(17)

where PCU (u) is defined in the proof of Theorem 3.6.
By assumption, G[uk] ∈ V for all 1 ≤ k ≤ HncU and we can apply Theorem 2.7 to approximate all these

functions simultaneously. Specifically, for any ε1 > 0, there exists a constant C depending on γV and LV such
that the following holds. There exists

• a constant N = C
√
dV ε

−1
1 and points {ck}N

dV

k=1 which form a uniform grid on ΩV with spacing 2γV /N
along each dimension,

• a network class F1 = FNN(dV , 1, L1, p1,K1, κ1, R1) whose parameters scale as

L1 = O
(
d2V log dV + d2V log(ε−1

1 )
)
, p1 = O(1), K1 = O

(
d2V log dV + d2V log(ε−1

1 )
)
,

κ1 = O(d
dV /2+1
V ε−dV −1

1 ), R1 = 1

where the constants hidden in O depend on γV , LV and

• networks {τℓ}N
dV

ℓ=1 ⊂ F2

such that, for every 1 ≤ k ≤ NdV :

(18) sup
x∈ΩV

∣∣∣∣∣∣G[uk](x)−
NdV∑
ℓ=1

G[uk](vℓ)τℓ(x)

∣∣∣∣∣∣ ≤ ε1.

Combining both of our bounds Eqs. (17) and (18), we obtain:

sup
x∈ΩV , u∈U

∣∣∣∣∣∣G[u](x)−
HncU∑
k=1

NdV∑
ℓ=1

G[uk](vℓ)bk(PCU (u))τℓ(x)

∣∣∣∣∣∣
≤ sup

x∈ΩV , u∈U

∣∣∣∣∣∣G[u](x)−
HncU∑
k=1

G[uk](x)bk(PCU (u))

∣∣∣∣∣∣
+ sup

x∈ΩV , u∈U

HncU∑
k=1

∣∣∣∣∣∣G[uk](x)−
NdV∑
ℓ=1

G[uk](vℓ)τℓ(x)

∣∣∣∣∣∣ |bk(PCU (u))|

≤ ε0 + sup
x∈ΩV , u∈U

HncU∑
k=1

∣∣∣∣∣∣G[uk](x)−
NdV∑
ℓ=1

G[uk](vℓ)τℓ(x)

∣∣∣∣∣∣(19)

≤ ε0 +HncU ε1.(20)

where we use (17) and the fact that |bk(PCU (u))| ≤ 1 in (19) and (18) for (20).
We conclude by picking ε0 = ε/2 and ε1 = ε/(2HncU ). Since ε1 = εncU

+1(C ′√ncU )
−ncU 2−(1+ncU

), the
final scalings for F1 are

L1 = O
(
d2V log dV + d2V log(ε−(ncU

+1)) + d2V log(2ncU
+1(C ′√ncU )

ncU )
)
, p1 = O(1),
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K1 = O
(
d2V log dV + d2V log(ε−(ncU

+1)) + d2V log(2ncU
+1(C ′√ncU )

ncU )
)
,

κ1 = O(d
dV /2+1
V ε−(dV +1)(ncU

+1)
[
2ncU

+1(C ′√ncU )
ncU
]−1

), R1 = 1,

N = 2ncU
+1C

√
dV (C

′√ncU )
ncU ε−(1+ncU

)).

We summarize the differences in scaling for the various networks in Table 5. Reversing the approxima-
tion order shifts the computational cost: in the original formulation, most complexity lies in the function-
approximation networks, whereas in the reversed case, it is transferred to the space-approximation networks.

Remark 3.14 (Total number of parameters for operator learning). We now express the approximation error of
the network in Eq. (13) as a function of the total number of parameters, N# := NdV K1 +HncU K2. We note
that ncU = O(ε−(1+dV )dU ), by [41, Lemma 2]. We compute as follows:

N# = NdV K1 +HncU K2

≍ ε−dV log(ε−1) +
[√

ncU ε
−(1+dV )

]ncU (
n2
cU

log ncU + n2
cU
(dV + 1) log(ε−1)

)
≍ ε−dV log(ε−1) + ε−[

(1+dV )dU
2

+(1+dV )]ε−(1+dV )dU ε−2dU (1+dV ) log(ε−1) [(1 + dV )dU + dV ]

≍ ε−[
(1+dV )dU

2
+(1+dV )]ε−(1+dV )dU−2dU (1+dV ) log(ε−1) [(1 + dV )dU + dV ] .

Taking logarithms on each side leads to:

log(N#) ≍
([

(1 + dV )dU
2

+ (1 + dV )

]
ε−(1+dV )dU + 2dU (1 + dV )

)
log(ε−1) + log(log(ε−1))

≍
([

(1 + dV )dU
2

+ (1 + dV )

]
ε−(1+dV )dU

)
log(ε−1)

=: θε−γ log(ε−1).

In fact, this is equivalent to
γ

θ
log(N#) ≍ log(ε−γ)ε−γ

and, with the change of variable t = log(ε−1), we obtain

γ

θ
log(N#) ≍ γteγt.

Using the Lambert W function [50] (defined by W (z) eW (z) = z), we obtain that

t ≍ 1

γ
W
(γ
θ
log (N#)

)
which leads to

ε ≍ exp

(
−1

γ
W
(γ
θ
log (N#)

))
.

For large arguments, W (z) = log(z)− log(log z) + o(1) (see [50, Section 4.1.4]), thus

W
(γ
θ
log (N#)

)
= log(log(N#))− log(log(log(N#))) + o(1),

and hence

ε ≍

(
logN#

log logN#

)−1/γ

=

(
logN#

log logN#

)− 1
(1+dV )dU

.

Remark 3.15 (Dependence of parameter complexity on approximation order). Similarly to Remark 3.14, we
now express the approximation error of the network in Eq. (13) as a function of the total number of parameters,
but using the alternative approximation order of Remark 3.13. We note that ncU = O(ε−dU ) by Lemma [41,
Lemma 2].
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In particular, we have

log(NdV ) = dV

[
(ncU + 1) log(2) + log(C

√
dV ) + ncU log(C ′) +

ncU

2
log(ncU ) + (1 + ncU ) log(ε

−1)
]

≍ dV

[
ε−dU

dU
2

log(ε−1) + ε−dU log(ε−1)

]
= ε−dU log(ε−1)

(
dU
2

+ 1

)
dV

which implies

NdV ≍ ε
−ε−dU dV

(
dU
2

+1
)
.

For K1, we have:

K1 ≍ d2V (ncU + 1) log(ε−1) + d2V (ncU + 1) log(2) + d2V ncU log(C ′) + d2V
ncU

2
log(ncU )

≍ d2V ε
−dU log(ε−1) + d2V ε

−dU
dU
2

log(ε−1)

= ε−dU log(ε−1)d2V

(
1 +

dU
2

)
from which we deduce that

NdV K1 ≍ ε
−ε−dU dV

(
dU
2

+1
)
−dU log(ε−1)d2V

(
1 +

dU
2

)
.

Similarly, we have

log(HncU ) ≍ ncU

[
log(

√
ncU ) + log(ε−1)

]
= ε−dU

[
dU
2

log(ε−1) + log(ε−1)

]
= ε−dU log(ε−1)

(
1 +

dU
2

)
hence,

HncU ≍ ε
−ε−dU

(
1+

dU
2

)
.

This implies

HncU K2 ≍ ε
−ε−dU

(
1+

dU
2

) [
ε−2dudU log(ε−1) + ε−2dU log(ε−1)

]
= ε

−ε−dU

(
1+

dU
2

)
−2dU log(ε−1) (1 + dU )

and consequently:

N# ≍

ε
−ε−dU dV

(
dU
2

+1
)
−dU log(ε−1)d2V

(
1 + dU

2

)
if dV > 1

ε
−ε−dU

(
1+

dU
2

)
−2dU log(ε−1) (1 + dU ) if dV = 1.

As our analysis in Remark 3.14 shows, the only parameter determining the leading order of the final rates
is the power of the ε-power term, i.e. dU . We conclude that

ε ≍

(
logN#

log logN#

)− 1
dU

.

We note that reversing the approximation order yields a more favorable parameter scaling, as reflected by the
improved rate, since 1/dU > 1/(dU (1+dV )). This observation underscores the importance of architectural de-
sign choices in determining the overall efficiency of operator approximation. We summarize these observations
in Table 5.
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Theorem 3.8 Remark 3.13

Approximation
goal

Establish scaling laws for a Lipschitz operator G : U 7→ V

Approximating
architecture NdV∑

ℓ=1

HncU∑
k=1

G(j)[uk](vℓ)bk(u)τℓ(x)

Approximation
order

Function, then Functional Functional, then Function

Value of ncU O(ε−(1+dV )dU ) O(ε−dU )

Value of N 2C
√
dV ε

−1 2ncU
+1C

√
dV (C

′√ncU )
ncU ε−(1+ncU

)

Network
class for τℓ

FNN(dV , 1, L, p,K, κ,R) with parameters
scaling as

L = O(d2V log dV + d2V log(ε−1)),

p = O(1),

K = O(d2V log dV + d2V log(ε−1)),

κ = O(d
dV /2+1
V ε−dV −1),

R = 1

FNN(dV , 1, L, p,K, κ,R) with parameters
scaling as

L = O(d2V log dV + d2V log(ε−(ncU
+1))

+ d2V log(2ncU
+1(C ′√ncU )

ncU )),

p = O(1),

K = O(d2V log dV + d2V log(ε−(ncU
+1))

+ d2V log(2ncU
+1(C ′√ncU )

ncU )),

κ = O(d
dV /2+1
V ε−(dV +1)(ncU

+1)

× [2ncU
+1(C ′√ncU )

ncU ]−1),

R = 1

Value of H 2dV +1C ′√ncU (C
√
dV )

dV ε−(dV +1) 2C ′√ncU ε
−1

Network
class for bk

FNN(ncU , 1, L, p,K, κ,R) with parameters
scaling as

L = O(n2
cU logncU + n2

cU (dV + 1) log(ε−1)

+ n2
cU log(2dV +1(C

√
dV )

dV )),

p = O(1),

K = O(n2
cU logncU + n2

cU (dV + 1) log(ε−1)

+ n2
cU log(2dV +1(C

√
dV )

dV )),

κ = O(n
ncU

/2+1
cU ε−(dV +1)(ncU

+1)

× [2dV +1(C
√
dV )

dV ]ncU
+1),

R = 1

FNN(ncU , 1, L, p,K, κ,R) with parameters
scaling as

L = O(n2
cU log(ncU ) + n2

cU log(ε−1)),

p = O(1),

K = O(n2
cU log(ncU ) + n2

cU log(ε−1)),

κ = O(n
ncU

/2+1
cU ε−(ncU

+1)),

R = 1

Total pa-
rameters N#

scaling

(
logN#

log logN#

)− 1
(1+dV )dU

(
logN#

log logN#

)− 1
dU

Table 5: Comparison of scaling behaviors for the space-approximation networks τℓ, function-approximation networks bk
and total number of parameters under different approximation orders for operator learning. We have ncU = O(δ−dU )
by [41, Lemma 2]. The results illustrate that (1) scaling complexity can be redistributed between the subnetworks without
affecting the expressive power of the overall architecture, and (2) the chosen approximation order directly impacts the
scaling of the total number of parameters.
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Combining previous results, we conclude with the scaling laws for the multiple operator approximation
problem. In particular, the proof reduces multiple operator learning to learning a finite amount of single
operators.

Theorem 3.16 (Multiple Operator Scaling Laws). Let dW , dU , dV > 0 be integers,

γW , γU , γV , βW , βU , βV , LW , LU , LV , LG, LG > 0 and rG, rG ≥ 1

and assume that W (dW , γW , LW , βW ), U(dU , γU , LU , βU ) and V (dV , γV , LV , βV ) satisfy Assumption S.4.
Let G be a map such that

G : {α : ΩW 7→ R | ∥α∥L∞ ≤ βW } 7→ G where

G =
{
G[α] |G[α] : {u : ΩU 7→ R | ∥u∥L∞ ≤ βU} 7→ V and

∥G[α][u1]−G[α][u2]∥L∞(ΩV ) ≤ LG∥u1 − u2∥LrG (ΩU )

}
Furthermore, assume that G satisfies

(21) ∥G(α1)−G(α2)∥L∞({u:ΩU 7→R | ∥u∥L∞≤βU}×ΩV ) ≤ LG∥α1 − α2∥LrG (ΩU )

for α1, α2 ∈ {α : ΩW 7→ R | ∥α∥L∞ ≤ βW }.
There exists constants C depending on γV , LV , Cδ depending on LG , dU , γU , rG , LU , C ′ depending on

βU , LG , dU , γU , rG , Cζ depending on LG, dW , γW , rG, LW and C ′′ depending on βW , LG, dW , γW , rG such
that the following holds. For any ε > 0,

• let N = 2ncW
+2C

√
dV (C

′′√ncW )ncW ε−(ncW
+1) and consider the network class

F1 = FNN(dV , 1, L1, p1,K1, κ1, R1) with parameters scaling as

L1 = O
(
d2V log dV + d2V (ncW + 1) log(ε−1) + d2V log(2ncW

+1(C ′′√ncW )ncW )
)
, p1 = O(1),

K1 = O
(
d2V log dV + d2V (ncW + 1) log(ε−1) + d2V log(2ncW

+1(C ′′√ncW )ncW )
)

κ1 = O(d
dV /2+1
V ε−(dV +1)(ncW

+1)
[
2ncW

+1(C ′′√ncW )ncW
](dV +1)

), R1 = 1

where the constants hidden in O depend on γV and LV ;

• let {vℓ}N
dV

ℓ=1 ⊂ ΩV be a uniform grid with spacing 2γV /N along each dimension;

• let δ = Cδε
(1+dV )(1+ncW

)

2dV +ncW
+2(C

√
dV )dV (C′′√ncW

)ncW
and let {cm}ncU

m=1 ⊂ ΩU be points so that {Bδ(cm)}ncU
m=1 is a

cover of ΩU for some ncU ;

• let H = 2(dV +1)(ncW
+2)C ′√ncU (C

√
dV )

dV (C ′′√ncW )ncW
(dV +1)ε−(dV +1)(1+ncW

) and consider the
network class F2 = FNN(ncU , 1, L2, p2,K2, κ2, R2) with parameters scaling as

L2 = O
(
n2
cU

log ncU + n2
cU
(dV + 1)(ncW + 1) log(ε−1) + n2

cU
log(2dV +1(C

√
dV )

dV )

+ n2
cU
(dV + 1) log(2ncW

+1(C ′′√ncW )ncW )
)
, p2 = O(1),

K2 = O
(
n2
cU

logncU + n2
cU
(dV + 1)(ncW + 1) log(ε−1) + n2

cU
log(2dV +1(C

√
dV )

dV )

+ n2
cU
(dV + 1) log(2ncW

+1(C ′′√ncW )ncW )
)
,

κ2 = O(n
ncU

/2+1
cU ε−(dV +1)(ncU

+1)(ncW
+1)[2dV +1(C

√
dV )

dV ]ncU
+1
[
2dV +1(C

√
dV )

dV
](dV +1)(ncU

+1)
),

R2 = 1

where the constants hidden in O depend on βU , LG , dU , γU , rG;

• let ζ = Cζε and let {ym}ncW
m=1 ⊂ ΩW be points so that {Bζ(ym)}ncW

m=1 is a cover of ΩW for some ncW ;
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• let P = 2C ′′√ncW ε−1 and consider the network class F3 = FNN(ncW , 1, L3, p3,K3, κ3, R3) with
parameters scaling as

L3 = O
(
n2
cW

log(ncW ) + n2
cW

log(ε−1)
)
, p3 = O(1), K3 = O

(
n2
cW

log ncW + n2
cW

log(ε−1)
)
,

κ3 = O(n
ncW

/2+1
cW ε−ncW

−1), R3 = 1

where the constants hidden in O depend on βW , LG, dW , γW , rG.

Then, there exists networks {τℓ}N
dV

ℓ=1 ⊂ F1, networks {bk}H
ncU

k=1 ⊂ F2, networks {lp}Pp=1 ⊂ F3, functions
{uk}H

ncU

k=1 ⊂ {u : ΩU 7→ R | ∥u∥L∞ ≤ βU} and functions {αp}Pp=1 ⊂ {α : ΩW 7→ R | ∥α∥L∞ ≤ βW } such
that

sup
α∈W

sup
u∈U

sup
x∈ΩV

∣∣∣∣∣∣G[α][u](x)−
PncW∑
p=1

HncU∑
k=1

NdV∑
ℓ=1

G[αp][uk](vℓ)lp(α)bk(u)τℓ(x)

∣∣∣∣∣∣ ≤ ε,(22)

where α = (α(y1), α(y2), ..., α(yncW
))⊤ is a discretization of α and u = (u(c1), u(c2), ..., u(cncU

))⊤ is a
discretization of u.

The proof of the theorem is presented in Section 4.3.2. As in the operator learning setting of Theorem 3.8,
the argument follows an inherently sequential structure, proceeding through successive approximation stages:
first for the mapping α 7→ G[α], then for u 7→ G[α][u], and finally for x 7→ G[α][u](x). As a result, the
scaling behavior deteriorates progressively, since each stage of the approximation inherits and compounds the
error and complexity of the preceding one. This increasing scaling complexity is reflected in the growth of the
network classes F3, F1, and F2.

Remark 3.17 (Total number of parameter for multiple operator learning). Similarly to Remark 3.14, we now
express the approximation error of the network in Eq. (22) as a function of the total number of parameters
N# = PncW K3 +NdV K1 +HncU K2. We note that ncW = O(ε−dW ) and ncU = O(δ−dU ) by [41, Lemma
2]. For the latter, we compute

log(δ−dU ) = −dU log

(
Cδε

(1+dV )(1+ncW
)

2dV +ncW
+2(C

√
dV )dV (C ′′√ncW )ncW

)
= −du log(Cδ) + dU (1 + dV )(1 + ncW ) log(ε−1) + dU (dV + ncW + 2) log(2)

+ dUncW log(C ′′) + dU
ncW

2
log(ncW )

≍ dU (1 + dV )(1 + ε−dW ) log(ε−1) + dUε
−dW +

dUdW
2

ε−dW log(ε−1)

≍ log(ε−1)ε−dW dU

(
(1 + dV ) +

dW
2

)
which leads to

ncU ≍ ε
−ε−dW dU

(
(1+dV )+

dW
2

)
.

We now consider:

PncW K3 ≍ n
ncW /2
cW

ε−ncW
(
n2
cW

log ncW + n2
cW

log(ε−1)
)

= ε
−ε−dW

(
1+

dW
2

) (
dW ε−2dW log(ε−1) + ε−2dW log(ε−1)

)
≍ ε

−ε−dW

(
1+

dW
2

)
−2dW log(ε−1) (1 + dW ) .(23)

Next, we note that

log(NdV ) = dV log(2ncW
+2C

√
dV (C

′′√ncW )ncW ε−(ncW
+1))

= dV

[
(ncW+1) log(2) + log(C

√
dV ) + ncW log(C ′′) +

ncW

2
log(ncW ) + (ncW + 1) log(ε−1)

]
23



≍ dV

[
ε−dV (log(2) + C ′′) + ε−dW log(ε−1)

(
dW
2

+ 1

)
+ log(ε−1)

]
= dV ε

−dW log(ε−1)

(
dW
2

+ 1

)
which implies

NdV ≍ ε
−ε−dW dV

(
dW
2

+1
)
.

Using this, we have

NdV K1 ≍ ε
−ε−dW dV

(
dW
2

+1
) [

d2V log dV + d2V (ncW + 1) log(ε−1) + d2V log(2ncW
+1(C ′′√ncW )ncW )

]
≍ ε

−ε−dW dV

(
dW
2

+1
)[

d2V ε
−dW log(ε−1) + d2V log(ε−1) + d2V (ncW + 1) log(2)

+ d2V ncW log(C ′′) + d2V
ncW

2
log(ncW ))

]
≍ ε

−ε−dW dV

(
dW
2

+1
) [

d2V ε
−dW log(ε−1) + d2V

dW
2

ε−dW log(ε−1)

]
= ε

−ε−dW dV

(
dW
2

+1
)
−dW log(ε−1)d2V

(
1 +

dW
2

)
.(24)

Then, we consider

log(HncU ) = ncU log(2(dV +1)(ncW
+2)C ′√ncU (C

√
dV )

dV (C ′′√ncW )ncW
(dV +1)ε−(dV +1)(1+ncW

))

= ncU

[
(dV + 1)(ncW + 2) log(2) + log(C ′(C

√
dV )

dV ) +
1

2
log(ncu) + ncW (dV + 1) log(C ′′)

+ ncW

(dV + 1)

2
log(ncW ) + (dV + 1)(1 + ncW ) log(ε−1)

]
≍ ncU

[
(dV + 1)ε−dW log(2) + dU

(
(1 + dV ) +

dW
2

)
ε−dW log(ε−1) + ε−dW (dV + 1) log(C ′′)

+ dW
(dV + 1)

2
ε−dW log(ε−1) + (dV + 1)ε−dW log(ε−1)

]
≍ ncU

[
ε−dW log(ε−1)

(
dU

(
(1 + dV ) +

dW
2

)
+ dW

(dV + 1)

2
+ (dV + 1)

)]
≍ ε

−ε−dW dU

(
(1+dV )+

dW
2

)
−dW log(ε−1)

[
dU

(
(1 + dV ) +

dW
2

)
+ dW

(dV + 1)

2
+ (dV + 1)

]
which implies that

HncU ≍ ε
−ε

−ε−dW dU

(
(1+dV )+

dW
2

)
−dW

[(
dU

(
(1+dV )+

dW
2

)
+dW

(dV +1)

2
+(dV +1)

)]
.

We also note that

K2 ≍ n2
cU

log ncU + n2
cU
(dV + 1)(ncW + 1) log(ε−1) + n2

cU
log(2dV +1(C

√
dV )

dV )

+ n2
cU
(dV + 1) log(2ncW

+1(C ′′√ncW )ncW )

≍ n2
cU

log ncU + n2
cU
(dV + 1)ncW log(ε−1) + n2

cU
(dV + 1)(ncW + 1) log(2)

+ n2
cU
(dV + 1)ncW log(C ′′) + n2

cU
(dV + 1)

ncW

2
log(ncW )

≍ n2
cU

log ncU + n2
cU
(dV + 1)ε−dW log(ε−1) + n2

cU
(dV + 1)

dW
2

ε−dW log(ε−1)

= n2
cU

log ncU + n2
cU
ε−dW log(ε−1)(dV + 1)

(
1 +

dW
2

)
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≍ ε
−2ε−dW dU

(
(1+dV )+

dW
2

)
−dW log(ε−1)dU

(
(1 + dV ) +

dW
2

)
+ ε

−2ε−dW dU

(
(1+dV )+

dW
2

)
−dW log(ε−1)(dV + 1)

(
1 +

dW
2

)
= ε

−2ε−dW dU

(
(1+dV )+

dW
2

)
−dW log(ε−1)

[
dU

(
(1 + dV ) +

dW
2

)
+ (dV + 1)

(
1 +

dW
2

)]
which therefore yields:

HncU K2 ≍ ε
−ε

−ε−dW dU

(
(1+dV )+

dW
2

)
−dW

[(
dU

(
(1+dV )+

dW
2

)
+dW

(dV +1)

2
+(dV +1)

)]
−2ε−dW dU

(
(1+dV )+

dW
2

)
−dW

× log(ε−1)

[
dU

(
(1 + dV ) +

dW
2

)
+ (dV + 1)

(
1 +

dW
2

)]
.(25)

Combining Eqs. (23), (24) and (25), we conclude that

N# ≍ ε
−ε

−ε−dW dU

(
(1+dV )+

dW
2

)
−dW

[(
dU

(
(1+dV )+

dW
2

)
+dW

(dV +1)

2
+(dV +1)

)]
−2ε−dW dU

(
(1+dV )+

dW
2

)
−dW

× log(ε−1)

[
dU

(
(1 + dV ) +

dW
2

)
+ (dV + 1)

(
1 +

dW
2

)]
=: ε−γ2ε

−γ1ε
−dW −dW −γ3ε

−dW −dW log(ε−1)γ4.

We therefore have

log(N#) ≍
(
γ2ε

−γ1ε
−dW −dW + γ3ε

−dW − dW

)
+ log(log(ε−1)) + log(γ4) ≍ γ2ε

−γ1ε
−dW −dW .

Taking an additional logarithm, we obtain

log(log(N#)) ≍ log(γ2) +
(
γ1ε

−dW − dW

)
log(ε−d) ≍ γ1ε

−dW log(ε−d).

Proceeding as in Remark 3.14, with the Lambert function inversion, this yields the final scaling

ε ≍
(

log logN#

log log logN#

)−1/dW

.

As expected, moving from the single operator to the multiple operator setting incurs a less favorable scaling of
the total number of parameters (see Table 5), consistent with the higher representational complexity required.

Remark 3.18 (Improved rates with additional low-dimensional structure). If the input function spaces W and U
admit a finite orthonormal basis representations and the discretization grids satisfy stable linear reconstruction
properties as in [41, Assumption 4], one can expect substantially improved approximation rates. In particular,
under these additional structural assumptions, one should observe at least a transition from double–iterated to
single–iterated logarithmic convergence, potentially recovering the rates observed for single–operator learning
in the general setting (see Remarks 3.14 and 3.15, and Table 5).

Remark 3.19 (A review of different multiple operator network architectures). By combining the proof of Theo-
rem 3.16, Remark 3.9 and Remark 3.11, we can prove scaling laws for various network architectures depending
on the assumptions we make on the map G. In particular, we replicate the proof of Theorem 3.16 for G satis-
fying

G : {α : ΩW 7→ R | ∥α∥L∞ ≤ βW } 7→ G where

G =
{
G[α] |G[α] : {u : Ω

(α)
U 7→ R | ∥u∥L∞ ≤ βU(α)} 7→ V (α) and

∥G[α][u1]−G[α][u2]∥L∞(Ω
V (α) ) ≤ L(α)∥u1 − u2∥Lrα (ΩUα )

}
.
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We start by considering the set S :=
⋃

α∈W (Uα×ΩV (α)) where (Uα×V (α)) are such that G[α] : {u : Ω
(α)
U 7→

R | ∥u∥L∞ ≤ βU(α)} 7→ V (α) for α ∈ W . Furthermore, assume that G satisfies

∥G(α1)−G(α2)∥L∞(S) ≤ LG∥α1 − α2∥LrG (ΩU )

for α1, α2 ∈ {α : ΩW 7→ R | ∥α∥L∞ ≤ βW }. By the axiom of choice, we can select an element s ∈ S such
that s(α) = (u(α), x(α)) ∈ (Uα × ΩV (α)). Then, we define the functional f(α) = G[α][u(α)](xα) and, by the
above assumption on Lipschitz continuity of G, we deduce that f : {α : ΩW 7→ R | ∥α∥L∞ ≤ βW } 7→ R is
Lipschitz. We apply Theorem 3.6 to obtain that

sup
α∈W

∣∣∣∣∣∣f(α)−
PncW∑
p=1

f(αk)lp(PCW (α))

∣∣∣∣∣∣ = sup
α∈U

∣∣∣∣∣∣G[α][u(α)](x(α))−
PncW∑
p=1

G[αp][u
(αp)](x(αp))lp(PCW (α))

∣∣∣∣∣∣ ≤ ε

2
.

It now remains to approximate the p operators G[αp] by any of the architectures in Remark 3.9 or Remark
3.11. We summarize the final multiple operator architectures in Tables 6 and 7 (only for the first alternative
formulation). From the latter, we note that our scaling laws can be transferred, in particular, to the MNO and
MIONet [25] architectures.

Network type \
Assumptions

U (αp) and V (αp) distinct U (αp) = U

Exact
PncW∑
p=1

(N(p))
d
V (p)∑

ℓ=1

H(p)∑
k=1

G[αp][u
(p)
k ](v

(p)
ℓ ) lp(α) bpk(u

(p)) τpℓ(x)
PncW∑
p=1

(N(p))
d
V (p)∑

ℓ=1

HncU∑
k=1

G[αp][uk](v
(p)
ℓ ) lp(α) bk(u) τpℓ(x)

Alternative
PncW∑
p=1

H(p)∑
k=1

lp(α) bpk(u
(p)) τ̂pk(x)

PncW∑
p=1

HncU∑
k=1

lp(α) bk(u) τ̂pk(x)

Table 6: Multiple operator network architectures with distinct or partially fixed U (αp), V (αp). We write H(p) = H
nc

U
(αp)

and N (p) = N (αp).

Network type \
Assumptions

V (αp) = V U (αp) = U and V (αp) = V

Exact
PncW∑
p=1

H(p)∑
k=1

NdV∑
ℓ=1

G[αp][u
(p)
k ](vℓ) lp(α) bpk(u

(p)) τℓ(x)

PncW∑
p=1

HncU∑
k=1

NdV∑
ℓ=1

G[αp][uk](vℓ) lp(α) bk(u) τℓ(x)

Alternative
PncW∑
p=1

H(p)∑
k=1

lp(α) bpk(u
(p)) τ̂pk(x)

PncW∑
p=1

HncU∑
k=1

lp(α) bk(u) τ̂pk(x)

Table 7: Multiple operator network architectures with partially or fully fixed U (αp), V (αp). We write H(p) = H
nc

U
(αp)

and N (p) = N (αp).

4 Proofs

In this section, we present the proofs. We first establish two versions of the universal approximation theorem
for multiple nonlinear operators, then address scaling laws for functional and single operator approximation.
Finally, we conclude with the proof of the scaling laws in the multiple operator approximation setting.
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4.1 Proof of Theorem 3.4

In this section, we prove the universal approximation property for the MNO and MONet networks in L∞. The
intuition behind the proof of Theorem 3.4 parallels our earlier discussion in Section 2.1. The key step is to
sequentially separate the input variables of the operator G, thereby transforming the operator approximation
problem into a sequence of function and functional approximation problems.

Proof of Theorem 3.4. We first observe that any multiple operator network of the form

N∑
k=1

M∑
ℓ=1

τk(x) bkℓ(u)Lkℓ(α)

can be re-indexed into a MNO of the form

P∑
p=1

H(p)∑
k=1

lp(α) bpk(u) τpk(x),

where lp, bpk, and τpk retain the same structure as in Definition 3.1. Since the universal approximation state-
ment in (7) does not rely on explicit scalings for N and M , this re-indexing leaves the result unaffected.
Consequently, Theorem 3.4 may be established for one representation and inferred for the other. Without loss
of generality, we therefore present the proof using the MONet architecture.

Let ε > 0. For an arbitrary, fixed α ∈ W and u ∈ V , consider the function f(x) = G[α][u](x). By
assumption, f ∈ F := G[W ][U ] which is a compact subset of V = C0(ΩV ) and thus by Theorem 2.4, we can
find N ∈ N, ηk ∈ R, ωk ∈ Rn such that:∣∣∣∣∣f(x)−

N∑
k=1

ck(f(·))σ(ωk · x+ ζk)

∣∣∣∣∣ < ε/3,

where ci(f) are continuous linear functions. The approximation results hold for all f ∈ F , and since f(·) =
G[α][u](·) the coefficients ck(f(·)) = ck(G[α][u](·)) are continuous functionals mapping W × U → R.

For each k and arbitrary fixed α, define F (k) : U → R by

F (k)(u) := ck(G[α][u])

which is a continuous functional with respect to u. Similarly to [12], by the Tietze Extension theorem the
functionals F (k) are extended to continuous functionals F (k)

∗ on all of U∗ from Lemma 2.5, so that F (k)
∗ (u) =

F (k)(u) for all u ∈ U . Since U∗ is a compact set, there exists δ > 0 such that∣∣∣F (k)
∗ (u1)− F

(k)
∗ (u2)

∣∣∣ < ε

6L1

for all u1, u2 ∈ U∗ with ∥u1 − u2∥C0(ΩU ) < δ, and L1 =
∑N

k=1 sup
x∈ΩV

|σ(ωk · x+ ζk)| . The extension is

needed since the construction of the functions on the ηk-net by Equation 4 may reside in U∗ \ U .
Let δk < δ, where δk is defined in (2). (Abusing notation, we select δk satisfying δk < δ, independently

of the kth element in the sequence of (2), while retaining the subscript for simplicity.) Then by Lemma 2.5(2),
there exists uηk ∈ Uηk ⊆ U∗ with ∥u− uηk∥C0(ΩU ) < δk < δ which implies∣∣∣F (k)

∗ (u)− F
(k)
∗ (uηk)

∣∣∣ < ε

6L1
.

By Lemma 2.5(1), F (k)
∗ (uηk) is a continuous functional defined on the compact set Uηk with dimension n(ηk)

and thus is equivalent to a continuous function (abusing notation) F (k)
∗ : Rn(ηk) → R. Therefore, by Theo-

rem 2.4, we can find M ∈ N, ξkil, θki and xl ∈ ηk− net as defined in (3) on ΩU , such that∣∣∣∣∣∣F (k)
∗ (uηk)−

M∑
i=1

cki(F
(k)
∗ (·))σ

n(ηk)∑
l=1

ξkiluηk(xl) + θki

∣∣∣∣∣∣ < ε

6L1
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which holds for all k. Setting the value m = n(ηk) and since uηk(xl) = u(xl) by (4), we have that∣∣∣∣∣F (k)(u)−
M∑
i=1

cki(F
(k)
∗ (·))g

(
m∑
l=1

ξkilu(xl) + θki

)∣∣∣∣∣
≤
∣∣∣F (k)(u)− F

(k)
∗ (uηk)

∣∣∣+ ∣∣∣∣∣F (k)
∗ (uηk)−

M∑
i=1

cki(F
(k)
∗ (·))σ

(
m∑
l=1

ξkilu(xl) + θki

)∣∣∣∣∣
<

ε

3L1
,

where we also use the fact that F (k)(u) = F
(k)
∗ (u) since u ∈ V .

The extension operator E, from the Tietze extension theorem, is a continuous operator [14], and thus the
coefficient of the expansions,

cki(F
k
∗ (·)) = cki(E(ck(F

k(·)))) = cki(E(ck(G[α][·]))),

are a continuous functionals depending on α. Hence, we can provide a similar argument for the approximation
for H(i,k) : W → R defined by

H(k,i)(α) := cki(E(ck(G[α, ·]))).

By the Tietze extension theorem, we extend H(i,k) to a continuous functional H(k,i)
∗ on all of W ∗ (defined in

Lemma 2.5) with H
(k,i)
∗ (α) = H(k,i)(α) for all α ∈ W . Since W ∗ is a compact set, there exists δ′ > 0 such

that ∣∣∣H(k,i)
∗ (α1)−H

(k,i)
∗ (α2)

∣∣∣ < ε

6L2

for all α1, α2 ∈ A∗ with ∥α1 − α2∥C(ΩW ) < δ′, and

L2 =

N∑
k=1

M∑
i=1

sup
u∈U,x∈ΩV

∣∣∣∣∣σ
(

m∑
l=1

ξkilu(xl) + θki

)
· σ(ωk · x+ ζk)

∣∣∣∣∣ ,
where L2 is finite since the terms in the absolute value are continuous functions and the sets are compact. We
can find an ηi-net defined on ΩW , with δ′i < δ′ and by Lemma 2.5 there exists αηi ∈ Wηi ⊆ W ∗ (where
Wηi = {αηi : α ∈ W}) with ∥α− αηi∥ < δi < δ, which implies∣∣∣H(k,i)

∗ (α)−H
(k,i)
∗ (αηi)

∣∣∣ < ε

6L2
.

The functionals H(k,i)
∗ (αηi) are equivalent to continuous functions defined on the compact set Wηi of dimen-

sion n(ηi), i.e., H(k,i)
∗ : Rn(ηi) → R. By Theorem 2.4, we can find P ∈ N, ckij , φkijh, ρkij and zh ∈ ηi- net

defined on ΩW , such that∣∣∣∣∣∣H(k,i)
∗ (αηi)−

P∑
j=1

ckij σ

n(ηi)∑
h=1

φkijhαηi(zh) + ρkij

∣∣∣∣∣∣ < ε

6L2
,

which holds for all (k, i). Taking p = n(ηi) and recalling that αηi(zh) = α(zh), we have∣∣∣∣∣∣H(k,i)
∗ (α)−

P∑
j=1

ckij σ

(
p∑

h=1

φkijhα(zh) + ρkij

)∣∣∣∣∣∣ < ε

3L2
,

for all α ∈ W .
Altogether, the following holds for all (α, u, y) ∈ W × U × ΩV :∣∣∣∣∣∣G[α][u](x)−

N∑
k=1

M∑
i=1

P∑
j=1

ckij σ

(
p∑

h=1

φkijhα(zh) + ρkij

)
· σ

(
m∑
l=1

ξkilu(xl) + θki

)
· σ(ωk · x+ ζk)

∣∣∣∣∣∣ < ε,

which concludes the proof.
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If α is finite dimensional, then the proof simplifies and the following corollary holds.

Corollary 4.1. Assume the same setting as in Theorem 3.4. Then, for any ε > 0, there exist a network as
defined in Equation 6, such that

|G[α][u](y)−MONetvect[α][u](x)| < ε

holds for all α ∈ ΩW , u ∈ U and x ∈ ΩV .

4.2 Proof of Theorem 3.5

In this section, we prove the universal approximation property for the MNO and MONet networks in L∞. We
start with the next lemma which allows us to reformulate MONet with orthonormal components.

Lemma 4.2 (MONet network with orthonormal trunk and branch networks). Assume that Assumptions A.2,
S.1, S.2, S.3, M.1 and M.2 hold. Then, we can re-write any MONet network defined in (5) as

MONet[α][u](x) =

N∑
k=1

N ·M∑
ℓ̄=1

τ̄k(x)b̄kℓ̄(u)L̄kℓ̄(α)

where {τ̄k}Nk=1 is a set of orthonormal neural networks with one hidden layer and a linear output layer with
respect to the inner product in L2

λ(ΩU ), for 1 ≤ k ≤ N , {b̄kℓ̄}N ·M
ℓ̄=1

is a set of orthonormal neural networks
with one hidden layer and a linear output layer with respect to the L2((U, µ),R) inner product and {L̄kℓ̄}N ·M

ℓ̄=1
is a set of neural networks with one hidden layer and a linear output layer.

Proof. We first recall that a MONet network may be written as

MONet[α][u](x) =
N∑
k=1

M∑
i=1

τk(x)bki(u)Lki(α)

for τk(x) = σ(ωk · x+ ζk), bki(u) = σ (
∑m

l=1 ξkilu(xl) + θki) and

Lki(α) =
P∑

j=1

ckijσ

(
p∑

h=1

φkijhα(zh) + ρkij

)
.

We introduce the following notation:

• τ(x) ∈ RN the vector {τk(x)}Nk=1;

• bk(u) ∈ RM the vector {bki(u)}i=M
i=1 for 1 ≤ k ≤ N ;

• Lk(α) ∈ RM the vector {Lki(α)}i=M
i=1 for 1 ≤ k ≤ N ;

• T (u, α) ∈ RN the vector {⟨bk(u), Lk(α)⟩ℓ2(RM )}Nk=1.

This allows us to re-write

N∑
k=1

M∑
i=1

τk(x)bki(u)Lki(α) =

N∑
k=1

τk(x)⟨bk(u), Lk(α)⟩ℓ2(RM ) = ⟨τ(x), T (u, α)⟩ℓ2(RN ).

The functions {τk(x)}Nk=1 are a finite set of L2
λ(ΩU ) functions by Assumptions A.2 and S.3. Hence, by

the Gram-Schmidt orthogonalization process, there exists an invertible matrix Z ∈ RN×N such that Zτ(y) is
a set of orthogonal function with respect to the L2

λ(K) inner product (otherwise, remove any terms from the
summation that are redundant and reindex the summation). Let Z = Z−T and we observe that

⟨τ(x), T (u, α)⟩ℓ2(RN ) = ⟨Zτ(y), ZT (u, α)⟩ℓ2(RN )
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=
N∑
k=1

[Zτ(x)]k [ZT (u, α)]k .

We first note that the vector Zτ(x) ∈ RN has entries

[Zτ(x)]k =
N∑
r=1

[Z]kr σ(ωr · x+ ζr)

which are neural networks with one hidden layer and a linear output layer. Second, we consider the vector
ZT (u, α) ∈ RN which has entries

[ZT (u, α)]k =
N∑
r=1

[Z]kr ⟨br(u), Lr(α)⟩ℓ2(RM )

=
N∑
r=1

M∑
s=1

[Z]kr brs(u)Lrs(u)

=
N∑
r=1

M∑
s=1

P∑
j=1

[Z]kr σ

(
m∑
l=1

ξrslu(xl) + θrs

)
σ

(
p∑

h=1

φrsjhα(zh) + ρrsj

)
.(26)

We proceed to the following change of variables: we consider the index variable 1 ≤ ℓ̄ ≤ N ·M and replace
every occurrence of r by ⌊(ℓ̄ − 1)/M⌋ + 1 and every occurrence of s by ((ℓ̄ − 1) mod M) + 1 where for
n,m ∈ N, n mod m denotes the remainder of the integer division of n by m. This allows us to define

•
[
Z̃
]
k,ℓ̄

= [Z]k,⌊(ℓ̄−1)/M⌋+1

• ξ̃ℓ̄,l = ξ⌊(ℓ̄−1)/M⌋+1, ((ℓ̄−1) mod M)+1, l

• θ̃ℓ̄ = θ⌊(ℓ̄−1)/M⌋+1, ((ℓ̄−1) mod M)+1

• φ̃ℓ̄,j,h = φ⌊(ℓ̄−1)/M⌋+1, ((ℓ̄−1) mod M)+1, j,h

• ρ̃ℓ̄,j = ρ⌊(ℓ̄−1)/M⌋+1, ((ℓ̄−1) mod M)+1, j

and we can continue from (26):

[ZT (u, α)]k =

N ·M∑
ℓ̄=1

σ

(
m∑
l=1

ξ̃ℓ̄,lu(xl) + θ̃ℓ̄

) P∑
j=1

[
Z̃
]
k,ℓ̄

σ

(
p∑

h=1

φ̃ℓ̄,j,hα(zh) + ρ̃ℓ̄,j

)
=: ⟨b̃k(u), L̃k(α)⟩ℓ2(RN·M )

where, for 1 ≤ k ≤ N , b̃k(u) =
{
b̃kℓ̄(u)

}N ·M

ℓ̄=1
=
{
σ
(∑m

l=1 ξ̃ℓ̄,lu(xl) + θ̃ℓ̄

)}N ·M

ℓ̄=1
and

L̃k(α) =
{
L̃kℓ̄(α)

}N ·M

ℓ̄=1
=


P∑

j=1

[
Z̃
]
k,ℓ̄

σ

(
p∑

h=1

φ̃ℓ̄,j,hα(zh) + ρ̃ℓ̄,j

)
N ·M

ℓ̄=1

.

We note that, for 1 ≤ k ≤ N , b̃k(u) is a set of neural network with one hidden layer while L̃k(α) is a set of
neural networks with one hidden layer and one linear output layer.

By defining the orthonormal set of functions τ̄(x) = Zτ(x), we obtain that

(27) MONet[α][u](x) = ⟨τ(x), T (u, α)⟩ℓ2(RN ) =

N∑
k=1

τ̄k(x)⟨b̃k(u), L̃k(α)⟩ℓ2(RN·M ).
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For 1 ≤ k ≤ N and 1 ≤ ℓ̄ ≤ N ·M , every functional b̃kℓ̄ can be considered as a random variable mapping
from the measure space (U, µ) into (R, λ). In particular, we have:∫

U
b̃kℓ̄(u)

2 dµ(u) =

∫
U
σ

(
m∑
l=1

ξ̃ℓ̄,lu(xl) + θ̃ℓ̄

)2

dµ(u) ≤ ∥σ∥2L∞(R)µ(U)

and the latter is finite by Assumptions A.2 and M.2. By [3, p.6], b̃kℓ̄(u) is therefore in the Hilbert space
L2((U, µ),R) endowed with the inner product

⟨f, g⟩L2((U,µ),R) =

∫
U
f(u)g(u) dµ(u)

for f, g ∈ L2((U, µ),R).

For 1 ≤ k ≤ N , the functionals
{
b̃kℓ̄(u)

}N ·M

ℓ̄=1
are a finite set of L2((U, µ),R) functionals. By the Gram-

Schmidt orthogonalization process, there therefore exists an invertible matrix Zk ∈ R(N ·M)×(N ·M) such that
Zk b̃k(u) is a set of orthogonal functionals with respect to the L2((U, µ),R) inner product. Continuing from
(27) and defining Zk = Z−T

k , we have:

MONet[α][u](y) =
N∑
k=1

τ̄k(x)⟨Zk b̃k(u), ZkL̃k(α)⟩ℓ2(RN·M ).(28)

Similarly to the above, for 1 ≤ k ≤ N , the vector Zk b̃k(u) has entries

[
Zk b̃k(u)

]
ℓ̄
=

N ·M∑
r=1

[Zk]ℓ̄r b̃kr(u) =
N ·M∑
r=1

[Zk]ℓ̄r σ

(
m∑
l=1

ξ̃r,lu(xl) + θ̃r

)

which implies that Zk b̃k(u) is a set of neural networks with one hidden layer and a linear output layer. Fur-
thermore, the vector ZkL̃k(α) has entries

(29)
[
ZkL̃k(α)

]
ℓ̄
=

N ·M∑
r=1

[Zk]ℓ̄,r L̃k,r(α) =

N ·M∑
r=1

P∑
j=1

[Zk]ℓ̄,r

[
Z̃
]
k,r

σ

(
p∑

h=1

φ̃rjhα(zh) + ρ̃rj

)
.

We proceed to the following change of variables: we consider the index variable 1 ≤ s̄ ≤ N · M · P and
replace every occurrence of r by

⌊
s̄−1
P

⌋
+1 and every occurrence of j by ((s̄− 1) mod P )+ 1. This leads us

to define the following variables

•
[
Z̄k

]
ℓ̄,s̄

= [Zk]ℓ̄,⌊ s̄−1
P ⌋+1

•
[
Z̄
]
k,s̄

=
[
Z̃
]
k,⌊ s̄−1

P ⌋+1

• φ̄s̄,h = φ̃⌊ s̄−1
P ⌋+1, ((s̄−1) mod P )+1, h

• ρ̄s̄ = ρ̃⌊ s̄−1
P ⌋+1, ((s̄−1) mod P )+1

and we can continue from (29):[
ZkL̃k(α)

]
ℓ̄
=

N ·M ·P∑
s̄=1

[
Z̄k

]
ℓ̄,s̄

[
Z̄
]
k,s̄

σ

(
p∑

h=1

φ̄s̄,hα(zh) + ρ̄s̄

)
.

We note that ZkL̃k(α) is therefore a set of neural networks with one hidden layer and a linear output layer. For
1 ≤ k ≤ N , by defining b̄k(u) = Zk b̃k(u) =: {b̄kℓ̄(u)}N ·M

ℓ̄=1
and L̄k(α) = ZkL̃k(α) =: {L̄kℓ̄(α)}N ·M

ℓ̄=1
, we

obtain from (28) that

MONet[α][u](x) =
N∑
k=1

τ̄(x)⟨b̄k(u), L̄k(α)⟩ℓ2(RN·M )
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=
N∑
k=1

N ·M∑
ℓ̄=1

τ̄k(x)b̄kℓ̄(u)L̄kℓ̄(α)

where {τ̄k}Nk=1 is a set of orthonormal neural networks with one hidden layer and a linear output layer with
respect to the inner product in L2

λ(ΩV ), for 1 ≤ k ≤ N , {b̄kℓ̄}N ·M
ℓ̄=1

is a set of orthonormal neural networks
with one hidden layer and a linear output layer with respect to the L2((U, µ),R) inner product and {L̄kℓ̄}N ·M

ℓ̄=1
is a set of neural networks with one hidden layer and a linear output layer.

The proof of Theorem 3.5 follows a classical idea in approximation theory. The key step is to approximate
measurable mappings by continuous ones, which is possible on a arbitrarily large subset by Lusin’s theorem [5,
Theorem 7.1.13]. On this subset we apply Theorem 3.4, while on the remaining small complement the error is
controlled via a clipping argument.

Proof of Theorem 3.5. Using the same argument as in the proof of Theorem 3.4, without loss of generality, we
present the proof using the MONet architecture.

In the proof C > 0 will denote a constant that can be arbitrarily large, independent of all our parameters
that may change from line to line.

For M > 0, let us define the truncated operator

GM [α] =

G[α] if ∥G[α]∥L2(µ×λ)(U×ΩV ) ≤ M

M G[α]
∥G[α]∥L2(µ×λ)(U×ΩV )

else,

from which we deduce that ∥GM [α]∥L2(µ×λ)(U×ΩV ) ≤ M . We also note that for any function N [α][u](x), we
can upper bound the left-hand side of (8) as follows:

∥G[α][u](x)−N [α][u](x)∥L2
ν×µ×λ(W×U×ΩV )

≤ ∥G[α][u](x)−GM [α][u](x)∥L2
ν×µ×λ(W×U×ΩV ) + ∥GM [α][u](x)−N [α][u](x)∥L2

ν×µ×λ(W×U×ΩV )

=: T1 + T2.(30)

We first show that limM→∞ T1 = 0. In particular,

T 2
1 =

∫
W

∥G[α][u](x)−GM [α][u](x)∥2L2
µ×λ(U×ΩV ) dν(α)

and, for α ∈ W , we note that:

∥G[α][u](x)−GM [α][u](x)∥2L2
µ×λ(U×ΩV ) ≤ C

(
∥G[α][u](x)∥2L2

µ×λ(U×ΩV ) + ∥GM [α][u](x)∥2L2
µ×λ(U×ΩV )

)
≤ C∥G[α][u](x)∥2L2

µ×λ(U×ΩV ) +M2(31)

where we used the fact that ∥GM [α][u](x)∥L2
µ×λ(U×ΩV ) ≤ M in (31). Since

C∥G[α][u](x)∥2L2
µ×λ(U×ΩV ) +M2 ∈ L1(ν)

by Assumptions M.1 and O.3, we can apply the dominated convergence to obtain:

lim
M→∞

T 2
1 =

∫
W

lim
M→∞

∥G[α][u](x)−GM [α][u](x)∥2L2
µ×λ(U×ΩV ) dν(α).

Now, for α ∈ W ,

∥G[α][u](x)−GM [α][u](x)∥L2
µ×λ(U×ΩV ) ≤ ∥G[α][u](x)∥L2

µ×λ(U×ΩV )1{∥G[α][u](x)∥
L2
µ×λ

(U×ΩV )
≥M}
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where 1 is the indicator function. By Assumption O.3, we have that G[α][u](x) ∈ L2
ν×µ×λ(W × U × ΩV )

which implies that, ν-a.e., ∥G[α][u](x)∥L2
µ×λ(U×ΩV ) < ∞. Hence, ν-a.e.,

lim
M→∞

∥G[α][u](x)−GM [α][u](x)∥L2
µ×λ(U×ΩV ) ≤ lim

M→∞
∥G[α][u](x)∥L2

µ×λ(U×ΩV )1{∥G[α][u](x)∥
L2
µ×λ

(U×ΩV )
≥M}

= 0

from which we deduce that limM→∞ T1 = 0: we can therefore pick M = M(ε/3) > 2ε
9ν(W )1/2

large enough
so that

(32) T1 ≤
ε

3
.

We now tackle the T2 term. We first note that the set C0(U, V ) is a Polish space by [28, Theorem 4.19]
since U is a compact subset of the metric space C0(ΩU ) and V is Polish. By Assumptions O.1 and O.3, this
implies that GM : W 7→ C0(U, V ) is a Borel measurable map from a Polish space into another one. Define
δ1 = 4ε

(3M)2
: by [5, Theorem 7.1.13], we can therefore find a compact set WK ⊆ W with ν(W \WK) < δ1ε

such that GM : WK 7→ C0(U, V ) is continuous. Define δ2 = 2(81ν(W )µ(U)λ(ΩV ))
−1/2: for the latter map,

we can apply Theorem 3.4 to obtain a MONet network such that

sup
α∈WK

∥GM [α][u](x)−MONet[α][u](x)∥L2
µ×λ(U×ΩV )

≤ ∥GM [α][u](x)−MONet[α][u](x)∥L∞
ν×µ×λ(WK×U×ΩV ) (µ(U)λ(ΩU ))

1/2

≤ δ2ε(µ(U)λ(ΩU ))
1/2 =

2ε

9ν(W )1/2
(33)

By Lemma 4.2, the MONet network may be re-written as

MONet[α][u](x) =
N∑
k=1

M∑
i=1

τk(x)bki(u)Lki(α)

where {τk}Nk=1 is a set of orthonormal neural networks with one hidden layer and a linear output layer with
respect to the inner product in L2

λ(ΩV ), for 1 ≤ k ≤ N , {bki}Mi=1 is a set of orthonormal neural networks with
one hidden layer and a linear output layer with respect to the L2((U, µ),R) inner product and {Lki}Mi=1 is a set
of neural networks with one hidden layer and a linear output layer.

In particular, this implies that for all α ∈ W ,

∥MONet[α][u](x)∥2L2
µ×λ(U×ΩV ) =

N∑
k=1

M∑
i=1

N∑
l=1

M∑
j=1

Lki(α)Llj(α)

∫
U
bki(u)blj(u) dµ(u)

∫
ΩV

τk(x)τl(x) dλ(x)

=

N∑
k=1

M∑
i=1

M∑
j=1

Lki(α)Lkj(α)

∫
U
bki(u)bkj(u) dµ(u)(34)

=
N∑
k=1

M∑
i=1

Lki(α)
2(35)

=: ∥L(α)∥2ℓ2(RN·M )

where we used the orthonomality of {τk}Nk=1 for (34) and the fact that, for 1 ≤ k ≤ N , {bkℓ̄}Mℓ̄=1
is a set of

orthonormal functionals for (35).
Define δ3 =

2
9ν(W )1/2

and the network

MONet[a][u](y) =

N∑
k=1

M∑
i=1

τk(x)bki(u)γki(Lki(α))
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where γ(x) : RN ·M 7→ RN ·M is a ReLU neural network with coordinates {γki}k=N,i=M
k=1,i=1 such that{

∥γ(x)− x∥ℓ2(RN·M ) < εδ3 if ∥x∥ℓ2(RN·M ) ≤ M + 2ε
9ν(W )1/2

∥γ(x)∥ℓ2(RN·M ) ≤ 2M for all x ∈ RN ·M

which exists due to [34, Lemma C.2] and the fact that M > 2ε
9ν(W )1/2

. We now estimate as follows, starting

from the T2 term in (30) where N [α][u](x) = MONet[a][u](x):

T2 =
∥∥GM [α][u](x)−MONet[a][u](x)

∥∥
L2
ν×µ×λ(W×U×ΩV )

≤
∥∥GM [α][u](x)−MONet[a][u](x)

∥∥
L2
ν×µ×λ(WK×U×ΩV )

+
∥∥GM [α][u](x)−MONet[a][u](x)

∥∥
L2
ν×µ×λ((W\WK)×U×ΩV )

≤ ∥GM [α][u](x)−MONet[a][u](x)∥L2
ν×µ×λ(WK×U×ΩV )

+
∥∥MONet[a][u](x)−MONet[a][u](x)

∥∥
L2
ν×µ×λ(WK×U×ΩV )

+
∥∥GM [α][u](x)−MONet[a][u](x)

∥∥
L2
ν×µ×λ((W\WK)×U×ΩV )

=: T3 + T4 + T5.(36)

By (33), we have that

(37) T3 ≤ sup
α∈WK

∥GM [α][u](x)−MONet[α][u](x)∥L2
µ×λ(U×ΩV ) ν(W )1/2 ≤ 2ε

9
.

For T4, we start by computing the following: for α ∈ WK ,

∥MONet[α][u](x)∥L2
µ×λ(U×ΩV ) =

(
N∑
k=1

M∑
i=1

Lki(α)
2

)1/2

≤ ∥GM [α][u](x)−MONet[α][u](x)∥L2
µ×λ(U×ΩV ) + ∥GM [α][u](x)∥L2

µ×λ(U×ΩV )

≤ 2ε

9ν(W )1/2
+M(38)

where we used (33) for (38). Then, we estimate:

T4 ≤ sup
α∈Wk

∥∥MONet[a][u](x)−MONet[a][u](x)
∥∥
L2
µ×λ(U×ΩV )

ν(WK)1/2

≤ ν(W )1/2 sup
α∈WK

∥L(α)− γ(L(α))∥ℓ2(RN·M )(39)

≤ ν(W )1/2 sup
∥x∥

ℓ2(RN·M )
≤M+ 2ε

9ν(W )1/2

∥x− γ(x)∥ℓ2(RN·M )(40)

≤ ν(W )1/2εδ3 =
2ε

9
(41)

where we used the same computation to obtain (35) for (39), (38) for (40) and the definition of γ for (41).
For T5, we estimate as follows:

T5 ≤ ν(W \WK)1/2

(
sup

α∈W\WK

∥MONet[α][u](x)∥L2
µ×λ(U×ΩV ) + sup

α∈W\WK

∥G[α][u](x)∥L2
µ×λ(U×ΩV )

)
≤ ν(W \WK)1/2

(
∥γ(L(α))∥ℓ2(RN·M ) +M

)
(42)

≤ 3Mν(W \WK)1/2(43)

≤ 3M (εδ1)
1/2 =

2ε

9
(44)

where we proceeded analogously to (35) for (42) and used the definition of γ for (43).
Combining our estimates (37), (41) and (44), by (36), we deduce that T2 ≤ 2

3ε. Using (32) and (30) allows
us to conclude that ∥∥G[α][u](x)−MONet[α][u](x)

∥∥
L2
ν×µ×λ(W×U×ΩV )

≤ ε.

34



4.3 Scaling laws proofs

4.3.1 Proof of Theorem 3.6

We first prove the functional approximation rate in L∞. The intuition behind the proof parallels our discussion
in Section 2.2.

Proof of Theorem 3.6. Let δ > 0 and CU = {Bδ(cm)}ncU
m=1 be a finite cover of ΩU by cU Euclidean balls where

cU can be further estimated by [41, Corollary 2]. By [41, Lemma 1], there exists a C∞(ΩU ) ⊆ C∞(CU )
partition of unity {ωm(x) : ΩU 7→ R}ncU

m=1 subordinate to the cover CU . This allows us to consider a discrete-
to-continuum lifting from [−βU , βU ]

ncU to C∞(ΩU ): we define the mapping ICU : [−βU , βU ]
ncU 7→ C∞(ΩU )

by

ICU [z](x) =

ncU∑
m=1

[z]mωm(x)

for all z ∈ [−βU , βU ]
ncU and x ∈ ΩU . Conversely, we can define a continuum-to-discrete projection PCU :

C0(ΩU ) 7→ [−βU , βU ]
ncU by PCU (z) = (z(c1), . . . , z(cnCU

))⊤ for z ∈ C0(ΩU ).
We note the following point-wise error approximation for any u ∈ U and x ∈ ΩU :

|u(x)− ICU [PCU (u)](x)| ≤
ncU∑
m=1

|u(x)− u(cm)||ωm(x)|

=
∑

m:∥x−cm∥2≤δ

|u(x)− u(cm)||ωm(x)| ≤ LUδ

implying that ∥u − ICU [PCU (u)]∥L∞ ≤ δLU . Setting δ = ε
2LfLU

and using the Lipschitz property of f ,
continuing from the above, we obtain

|f(u)− f(ICU [PCU (u)])| ≤ Lf∥u− ICU [PCU (u)]∥L∞(ΩU ) ≤ LfLUδ =
ε

2
(45)

Next, we define f̂ : [−βU , βU ]
ncU → R such that f̂(z) = f(ICU [z]) = f

(∑ncU
m=1[z]mωm(x)

)
. We claim

that f̂ is a Lipschitz function on [−βU , βU ]
ncU . Indeed, let z1, z2 ∈ [−βU , βU ]

ncU and estimate as follows:

|f̂(z1)− f̂(z2)| =|f(ICU [z1])− f(ICU [z2])|
≤Lf∥ICU [z1]− ICU [z2]∥L∞(ΩU )

≤Lf sup
x∈ΩU

ncU∑
m=1

|([z1]m − [z2]m)ωm(x)|

≤ Lf sup
x∈ΩU

√√√√ ncU∑
m=1

([z1]m − [z2]m)2

√√√√ ncU∑
m=1

(ωm(x))2

≤ Lf∥z1 − z2∥ℓ2(RncU ) sup
x∈ΩU

√√√√ ncU∑
m=1

ωm(x)dx

= Lf∥z1 − z2∥ℓ2(RncU ).

Since f̂ is Lipschitz continuous on the compact set [−βU , βU ]
ncU , it is bounded by some constant Cf̂ and we

can deduce that f̂ ∈ V (ncU , βU , Lf , Cf̂ ) for some set of functions V (see Assumption S.4).
Consequently, we apply the function approximation Theorem 2.7. Specifically, for any ε0 > 0, there exists

a constant C depending on βU and Lf such that the following holds. There exists

• a network class FNN(ncU , 1, L, p,K, κ,R) whose parameters scale as

L = O
(
n2
cU

log(ncU ) + n2
cU

log(ε−1
0 )
)
, p = O(1), K = O

(
n2
cU

log ncU + n2
cU

log(ε−1
0 )
)
,

κ = O(n
ncU

/2+1
cU ε

−ncU
−1

0 ), R = 1

where the constants hidden in O depend on βU and Lf ,
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• networks {bk}H
ncU

k=1 ⊂ FNN(ncU , 1, L, p,K, κ,R) with H := C
√
ncU ε

−1
0 and

• points {sk}H
ncU

k=1 ⊂ [−βU , βU ]
ncU

such that

sup
z∈[−βU ,βU ]ncU

∣∣∣∣∣∣f̂(z)−
HncU∑
k=1

f̂(sk)bk(z)

∣∣∣∣∣∣ ≤ ε0.

We note that PCU (U) ⊂ [−βU , βU ]
ncU by the fact that U satisfies U(dU , γU , LU , βU ) and hence, setting

ε0 = ε/2, this does not change the network class scalings,

sup
u∈U

∣∣∣∣∣∣f̂(PCU [u])−
HncU∑
k=1

f̂(sk)bk(PCU [u])

∣∣∣∣∣∣ ≤ ε

2
.(46)

We conclude as follows: using (45) and (46), for any u ∈ U , we have

sup
u∈U

∣∣∣∣∣∣f(u)−
HncU∑
k=1

f̂(sk)bk(PCU (u))

∣∣∣∣∣∣ ≤ sup
u∈U

∣∣∣f(u)− f̂(PCU (u))
∣∣∣

+ sup
u∈U

∣∣∣∣∣∣f̂(PCU (u))−
HncU∑
k=1

f̂(sk)bk(PCU (u))

∣∣∣∣∣∣
= sup

u∈U
|f(u)− f(ICU [PCU (u)])|+ sup

u∈U

∣∣∣∣∣∣f̂(PCU [u])−
HncU∑
k=1

f̂(sk)bk(PCU [u])

∣∣∣∣∣∣
≤ ε

2
+

ε

2
= ε.

Recalling that f̂(sk) = f(ICU [sk]), we set uk = ICU [sk] and obtain the claim of the theorem.

4.3.2 Proof of Theorem 3.16

In this section, we derive the convergence rate in the multiple operator setting. In particular, the proof is an
application of Theorems 3.6 and 3.8.

Proof of Theorem 3.16. For u ∈ U and x ∈ ΩV , define the functional fu,x : {α : ΩW 7→ R | ∥α∥L∞ ≤
βW } 7→ R as

fu,x(α) = G[α][u](x).

In particular, we have that

|fu,x(α1)− fu,x(α2)| = |G[α1][u](x)−G[α2][u](x)|
≤ LG∥α1 − α2∥LrG (ΩW )(47)

≤ LG|ΩW |1/(rG)∥α1 − α2∥L∞(ΩU ).

where we use (21) for (47). Therefore, we can apply Theorem 3.6. Specifically, for any ε0 > 0, there
exists constants C ′′ and Cζ depending on βW , LG|ΩW |1/rG and LG|ΩW |1/rG , LW respectively such that the
following holds. There exists

• a constant ζ := Cζε and points {ym}ncW
m=1 ⊂ ΩW so that {Bζ(ym)}ncW

m=1 is a cover of ΩW for some ncW ,

• a network class F3 = FNN(ncW , 1, L3, p3,K3, κ3, R3) whose parameters scale as

L = O
(
n2
cW

+ ncW log(ε−1
0 )
)
, p = O(1), K = O

(
n2
cW

log ncW + n2
cW

log(ε−1
0 )
)
,

κ = O(n
ncW

/2+1
cW ε

−ncW
−1

0 ), R = 1

where the constants hidden in O depend on βW and LG|ΩW |1/rG ,
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Figure 1: MONet architecture: The α function is the input for the parameter-approximation network. The u function is
the input for the function-approximation network. The spatial values x ∈ ΩV are the input for the space-approximation
network.

• networks {lp}P
ncW

p=1 ⊂ F3 with P := C ′′√ncW ε−1
0 and

• functions {αp}P
ncW

p=1 ⊂ {α : ΩW 7→ R | ∥α∥L∞ ≤ βW }

such that

sup
α∈W

∣∣∣∣∣∣fu,x(α)−
PncW∑
p=1

fu,x(αk)lp(PCW (α))

∣∣∣∣∣∣ = sup
α∈U

∣∣∣∣∣∣G[α][u](x)−
PncW∑
p=1

G[αp][u](x)lp(PCW (α))

∣∣∣∣∣∣ ≤ ε0

where PCW (α) is defined in the proof of Theorem 3.6.
By assumption, G[αp] ∈ G for all 1 ≤ p ≤ PncW . This corresponds to the situation in (14) where

G(p) = G[αp], i.e. to the problem of approximating PncW single operators. For 1 ≤ p ≤ PncW , we therefore
apply Theorem 3.8 and the rest of the argument to obtain (22) is analogous to the proof of Theorem 3.8 in
Remarks 3.9 and 3.13 (with ε0 = ε/2 and ε1 = ε/(2PncW )).

5 Numerical Experiments

In this section, we refer to τ as the space-approximation network, b as the function-approximation network,
and L or l as the parameter-approximation network. To evaluate the versatility and effectiveness of MNO and
MONet, we test both architectures (see Figures 2 and 1) on five representative parametric PDEs, spanning
settings in which the parameter α is modeled either as a function or as a finite-dimensional vector in Rp. In all
experiments, the objective is to predict the PDE solution at points x = (t, xspatial) ∈ (0, 2] × [0, 2], given the
parametric function α and the initial condition u0.

We construct 50 initial conditions for each PDE following the sinusoidal formulation proposed in [56]:

(48) u0(x) =

4∑
i=1

Ai sin(kix+ ϕi),

where ki = πni and ni are uniformly sampled integers in [1, 4]. The amplitudes Ai are sampled uniformly from
[0, 1], and ϕi are random phases drawn from (0, 2π). Following the setup in [54,56], after computing (48), each
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Figure 2: MNO architecture: The α function is the input for the parameter-approximation network. The u function is
the input for the function-approximation network. The spatial values x ∈ ΩV are the input for the space-approximation
network.

initial condition undergoes random post-processing: with 10% probability, the absolute value of u0 is taken,
with 50% probability, its sign is flipped (i.e., multiplied by −1), and with 10% probability, it is multiplied by
the indicator function of a randomly chosen smooth subdomain of [0, 2].

The resulting initial conditions are then sampled at points {ci}
ncU
i=1 over the domain [0, 2] and provided as

inputs to the function-approximation networks. In particular, we use: ncU = 64 and cell-center points (i.e.
midpoints of uniform grid cells) {ci}64i=1 . The space-approximation networks take as input the spatiotemporal
coordinates (t, x) ∈ R2.

All models are trained with mean squared loss (MSE). We evaluate them on a 32× 64 spacetime grid over
[0, 2]× [0, 2], and report the average relative L2 error across all test cases:

1

Ntest

Ntest∑
i=1

∥u(i)pred − u
(i)
target∥2

∥u(i)target∥2 + ε
,

where (u
(i)
pred, u

(i)
target) corresponds to the i-th pair of predicted and reference solution functions, each evaluated

at all points of the discretized spacetime grid, ε = 10−5 and Ntest = 80× 50, corresponding to 80 distinct pa-
rameter samples α (i.e., 80 distinct parametrized PDEs), each evaluated with 50 different initial conditions u0.

We compare our models MNO and MONet, with DeepONet and MIONet with different configurations,
as detailed in Table 8. We employ two network configurations for MNO: MNO-S (small) which uses 1.19M
parameters and MNO-L (large) which uses 16.7M. This is computational feasible since MNO’s tensor structure
is more amenable to larger model complexity. In “DeepONet-C", we simply concatenate the α and u inputs
together and put them into a single function-approximation layer. This is also a theoretically valid approach
to training multiple operators; however, as shown in the experiments, does not preform as well as MNO and
MONet. Note that in the experiments, the training time for MNO-S, MONet, and DeepONet are comparable,
while the training times for MNO-L and MIONet are larger as expected. Additional details on the experimental
setup, including network hyperparameters and training times, are provided in Appendix A.
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DeepONet DeepONet-C MIONet MONet MNO-S MNO-L

Number of pa-
rameters

1.47M 1.47M 1.50M 1.15M 1.19M 16.7M

# of L or l (P) N/A 1 10 40

Depth of L or l N/A 4 4 4

# of b (M/H) 100 100 75 100 20 100

Depth of b 4 4 4 4 4 4

# of τ (N) 20 20 75 20 20 20

Depth of τ 6 6 6 6 6 6

Table 8: Model configurations and architectural details for all tested variants. Abbreviations: S refers to the small
version; L to the large version; and the symbol # denotes the number of corresponding elements. For reference,
the number of parameter-approximation networks (L or l) corresponds to P in Equations (5) and (22); the number of
function-approximation networks (b) corresponds to M in Equation (5) and H in Equation (22); and the number of space-
approximation networks (τ ) corresponds to N in both Equation (5) and (22). For simplicity, all powers of P , M , H , and
N are omitted.

5.1 Conservation Laws

We consider the following one-dimensional conservation law with periodic boundary conditions:

ut + (α1u+ α2u
2 + α3u

3)x = α4uxx, (t, x) ∈ [0, 2]× [0, 2],

u(0, x) = u0(x),

u(t, 0) = u(t, 2),

where the parameter vector α = [α1, α2, α3, α4]
⊤ is encoded within the parameter-approximation layers of

both MNO and MONet. The components of α are sampled from the ranges αi ∈ [0.9αc
i , 1.1α

c
i ], with the

reference values given by αc = [1, 1, 1, 0.1]⊤.

Table 9: Performance comparison on conservation laws. In in-distribution (IN) experiments, we set αi ∈ [0.9αc
i , 1.1α

c
i ],

and in out-of-distribution (OOD) experiments, we set αi ∈ [0.8αc
i , 1.2α

c
i ]

Model Relative L2 Error
IN OOD

DeepONet 6.59% 9.00%
DeepONet-C 5.36% 6.59%

MIONet 5.65% 8.48%
MONet 5.67% 7.20%
MNO-S 4.49% 6.64%
MNO-L 3.84% 5.92%

In this experiment, the family of operators emit solutions with similar (viscous) shock or rarefraction
profiles, mainly differing in speeds. The space of potential solutions likely lie on a lower dimensional structure
which shares commonalities between each randomly sampled PDE (i.e. each randomized flux). Thus we
expect that the empirical rates and scalings are faster than the general rates proven in the previous sections. We
observe that MNO and MONet outperform DeepONet-type architectures with comparable parameter counts,
demonstrating the efficacy of its α-encoding strategy over simple concatenation in the function-approximation
networks. Our smaller networks produce in-distribution and out-of-distribution errors which are lower than the
standard and concatenated DeepONet (see Table 9). Figure 3 shows that the (local) errors for DeepONet and
MIONet are more concentrated in the shock formation and dynamics, while MNO and MONet demonstrate a
more even error distribution with relatively less error around regions of large gradients.
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Figure 3: Representative solution for conservation laws: The target solution (left) and error maps for DeepONet,
DeepONet-C, MIONet, MONet, MNO-S and MNO-L. The instance-specific relative errors are 5.49%, 4.82%, 2.92%,
5.11%, 2.52% and 1.81%, respectively, aligning with the trends observed in Table 9.

5.2 Diffusion-Reaction-Advection Equation

We consider the following one-dimensional diffusion–reaction–advection equation:

ut = α1uxx + α2ux + α3u
α4(1− uα5), (t, x) ∈ [0, 2]× [0, 2],

u(0, x) = u0(x),

u(t, 0) = u(t, 2),

where the parameter vector α = [α1, α2, α3, α4, α5]
⊤ is encoded within the parameter-approximation layers

of both MNO and MONet. The first three components are sampled from the ranges αi ∈ [0.9αc
i , 1.1α

c
i ] for

1 ≤ i ≤ 3, with reference values αc = [0.01, 1, 1]⊤, while α4 and α5 are drawn uniformly from [1, 3].
In this experiment, the parameters change the governing equation in a nonlinear fashion. This may be

the cause for the larger error observed in the DeepONet models. From Table 10, we observe that MNO and
MONet variants produce more accurate solutions even with comparable parameter counts. The MNO and
MONet produce better in- and out-of-distribution predictions. The structured encoding in MNO ensures more
effective parameter sharing, which could be contributing to the lower error rates. Figure 4 illustrates this
performance difference: notably, MNO is able to substantially reduce errors in regions that consistently show
elevated error across all other methods. This shows an intrinsic difference between the underlying features
learned by the family of models.

5.3 Nonlinear Klein-Gordon Equation

We consider the following nonlinear Klein–Gordon equation:

utt = α2
1uxx − α2

2α
4
1u− α3u

3, (t, x) ∈ [0, 2]× [0, 2],

Table 10: Performance comparison on diffusion-reaction-advection equation. For 1 ≤ i ≤ 3, in in-distribution (IN)
experiments, αi ∈ [0.9αc

i , 1.1α
c
i ] whereas in out-of-distribution (OOD) experiments, we set αi ∈ [0.8αc

i , 1.2α
c
i ].

Model Relative L2 Error
IN OOD

DeepONet 13.63% 15.10%
DeepONet-C 4.91% 7.07%

MIONet 3.95% 7.06%
MONet 3.80% 6.21%
MNO-S 3.39% 5.47%
MNO-L 2.51% 4.27%

40



Target

MONet MNO-S

DeepONet DeepONet-C MIONet

MNO-L

x

t

x

t

x

t

x

t

x

t

x

t

x

t

Figure 4: Representative solution for diffusion-reaction-advection equation: The target solution (left) and error maps
for DeepONet, DeepONet-C, MIONet, MONet, MNO, and MNO-L. The instance-specific relative errors are 15.02%,
5.26% , 6.27% , 5.26%, 3.08% and 2.38%, respectively, aligning with the trends observed in Table 10.

u(0, x) = u0(x),

ut(0, x) = 0,

u(t, 0) = u(t, 2).

The parameter vector α = [α1, α2, α3]
⊤ is encoded within the parameter-approximation layers of both MNO

and MONet. The components of α are sampled from the ranges αi ∈ [0.9, αc
i , , 1.1, α

c
i ] with reference values

αc = [1, 1, 1]⊤.

Table 11: Performance comparison on the nonlinear Klein-Gordon equation. In in-distribution (IN) experiments, αi ∈
[0.9αc

i , 1.1α
c
i ] whereas in out-of-distribution (OOD) experiments, we set αi ∈ [0.85αc

i , 1.15α
c
i ] for i ∈ [1, 2, 3]

Model Relative L2 Error
IN OOD

DeepONet 24.03% 33.82%
DeepONet-C 5.67% 7.90%

MIONet 7.73% 13.78%
MONet 4.53% 7.87%
MNO-S 3.56% 7.30%
MNO-L 2.50% 5.90%

In this experiment, the governing equation is a second-order hyperbolic PDE and thus produces wave-like
solutions. Notably, Table 11 shows that DeepONet-C achieves lower relative errors than MIONet on this task,
while MNO further improves performance, yielding substantially smaller errors overall. Figure 5 shows that
most models’ errors have coarse and low-frequency patterns appear while MNO does not. Additionally, as the
parameter counts increase, the error associated with MNO decreases locally as well.

5.4 Parametric Diffusion-Reaction Equation

We consider the following parametric diffusion–reaction equation:

ut = (α(x)ux)x + u(1− u), (t, x) ∈ [0, 2]× [0, 2],

u(0, x) = u0(x),

u(t, 0) = u(t, 2),

where the spatially varying diffusivity α(x) is sampled from a Gaussian random process with variance 0.012.
The parametric function α(x) is evaluated at 129 sensor locations corresponding to the boundaries of uniformly

41



Target

MONet MNO-S

DeepONet DeepONet-C MIONet

MNO-L

x

t

x

t

x

t

x

t

x

t

x

t

x

t

Figure 5: Representative solution for the nonlinear Klein-Gordon equation: The target solution (left) and error maps
for DeepONet, DeepONet-C, MIONet, MONet, MNO-S, and MNO-L. The instance-specific relative errors are 19.84%,
7.99%, 14.26%, 6.06%, 3.76% and 2.34%, respectively, aligning with the trends observed in Table 11.

spaced cells, {xbi}129i=1, and the resulting values α(xbi) are encoded within the parameter-approximation networks
of MNO and MONet.

This problem is more challenging since the parametric inputs are spatial dependent and are differenti-
ated within the diffusion term. As shown in Table 12, MNO-L achieves the highest accuracy among all
tested models. This improvement stems from the structured parameter encoding introduced by the parameter-
approximation layers, yielding substantially better performance than simply concatenating α with the function-
approximation inputs. Figure 6 further illustrates that, although all models exhibit localized error regions near
the bottom right of the domain, MNO markedly reduces this region and yields significantly lower local errors.

5.5 Parametric wave Equation

We consider the following parametric wave equation:

utt = α2(t)uxx, (t, x) ∈ [0, 2]× [0, 2],

u(0, x) = u0(x),

ut(0, x) = 0,

u(t, 0) = u(t, 2),

where the time-dependent parameter function α(t) is drawn from a Gaussian random process with variance 1.
The parametric function α(t) is evaluated at 64 sensor locations corresponding to the boundaries of uniformly
spaced cells, {tbi}64i=1, and the resulting values α(tbi) are encoded within the parameter-approximation networks
of MNO and MONet.

Since the parametric function is the time-dependent wave speed, an error in capturing the dependence
can lead to incorrect dynamics for all time. From Figure 7 we see that MNO and MONet demonstrate a
more balanced and overall lower local error distribution (see also Table 13), whereas the remaining models

Table 12: Performance comparison on the parametric diffusion-reaction equation (in-distribution).

Model Relative L2 Error
DeepONet 9.68%
DeepONet-C 6.59%
MIONet 5.65%
MONet 5.77%
MNO-S 4.62%
MNO-L 3.34%
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Figure 6: Representative solution for the parametric diffusion-reaction equation: The target solution (left) and error
maps for DeepONet, DeepONet-C, MIONet, MONet,MNO-S and MNO-L. The instance-specific relative errors are
9.66%, 7.52%, 4.60%, 6.84%, 3.48% and 2.83%, respectively, aligning with the trends observed in Table 12.

Table 13: Performance comparison on the parametric diffusion-reaction equation (in-distribution).

Model Relative L2 Error
DeepONet 56.37%
DeepONet-C 9.31%
MIONet 13.66%
MONet 6.95%
MNO-S 5.72%
MNO-L 4.41%

show pronounced error concentrations and patterned error. The patterns likely indicate that larger features are
missing in the model. In particular, in regions with higher contrast, the comparable models emit coarse scale
errors that degrade their predictive capabilities.

6 Conclusion

In this work, we provided theoretical insights into the problem of learning a collection of operators using neural
networks. For the multiple operator learning setting, we introduced two new architectures, MNO and MONet,
and established their universal approximation properties across different classes of operators. Our analysis
covered continuous, integrable, and Lipschitz operators. In the latter case, we derived explicit scaling laws for
MNO, quantifying how the network size must grow to achieve a prescribed approximation accuracy. We further
empirically validated the effectiveness of both architectures on a range of parametric PDE problems, confirming
their strong performance in practice. For the case of learning several single operators, we showed that the
theoretical approximation order yields new insights into how computational complexity can be balanced among
subnetworks and how overall scaling efficiency can be improved. This provides a principled framework for
architectural design.

Future research directions in the multiple operator learning context include establishing lower bounds on
approximation and sample complexity similarly to [35], developing a rigorous theory of generalization error
as in [41], extending the current analysis of approximation order, and exploring possible extensions to kernel-
based operator learning frameworks [2, 23].
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Figure 7: Representative solution for the parametric wave equation: The target solution (left) and error maps for
DeepONet, DeepONet-C, MIONet, MONet, MNO-S and MNO-L, The instance-specific relative errors are 79.45%,
6.99%, 17.33% , 4.83%, 3.70% and 2.47%, respectively, aligning with the trends observed in Table 12.
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A Experiment Setup

A.1 Training

The models are trained using the AdamW optimizer for 50 epochs where each epoch is 2K steps. On 2 NVIDIA
GeForce RTX 4090 GPUs with 24 GB memory, Table 14 indicates the training time for different models and
configurations.

Table 14: Training time for different models and configurations.

MONet 30 min
MNO-S 30 min
MNO-L 1 h 9 min

DeepONet 29 min
DeepONet-C 29 min

MIONet 47 min

A.2 Hyperparameters

The optimizer hyperparameters are summarized in Table 15.

Table 15: Optimizer hyperparameters.

Learning rate 10−4 Gradient norm clip 1.0

Scheduler Cosine Weight decay 10−4

Batch data size 150 Warmup steps 10% of total steps

Batch task size 5
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