
Qualifying Exam, Fall 2025

Optimization / Numerical Linear Algebra (ONLA)

DO NOT FORGET TO WRITE YOUR SID NO. ON YOUR EXAM. PLEASE USE BLANK
PAGES AT END FOR ADDITIONAL SPACE.

1. (10 points) Let A = [aij ] ∈ Rn×n and use the standard splitting

A = D + L+ U,

where D = diag(a11, . . . , ann), L is strictly lower triangular with Lij = aij for i > j (and 0 otherwise), and U is
strictly upper triangular with Uij = aij for i < j (and 0 otherwise). Assume A is strictly diagonally dominant
(SDD) by rows:

|aii| >
∑
j ̸=i

|aij | (i = 1, . . . , n).

Consider the Jacobi iteration for Ax = b,

x(k+1) = −D−1(L+ U)x(k) + D−1b, GJ := I −D−1A.

Prove that for every initial guess x(0) ∈ Rn the iterates converge to the unique solution x⋆ of Ax = b.
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2. (10 points) Let A ∈ Rn×n and v ∈ Rn, v ̸= 0. For an integer k ≥ 1, define

Kk(A, v) := span{ v, Av, A2v, . . . , Ak−1v }.

Prove the following:

(3 points) (a) Scaling invariance. For any nonzero scalars α, β ∈ R,

Kk(A, v) = Kk(αA, βv).

(3 points) (b) Nestedness. For every k ≥ 1,

Kk(A, v) ⊆ Kk+1(A, v).

(4 points) (c) Stabilization. If there exists m ≥ 1 with dimKm+1(A, v) = dimKm(A, v), then

Kk(A, v) = Km(A, v) for all k ≥ m.
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3. (10 points) Let A ∈ Rn×n and b ∈ Rn, and define

Kk(A, b) := span{ b, Ab, . . . , Ak−1b } (k ≥ 1).

Assume exact arithmetic and that the linear system Ax = b is consistent (so b ∈ range(A)). Suppose furthermore
that dimKn(A, b) = n (i.e., Kn(A, b) = Rn). GMRES started from x0 = 0 selects xk ∈ Kk(A, b) that minimizes
∥rk∥2 = ∥b−Axk∥2. Prove that GMRES produces an exact solution in at most n steps; in particular rn = 0.
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4. (10 points) Consider the constrained optimization problem

minimize f(x1, x2) = x3
1 + 4x2

2

subject to
g(x1, x2) = x2

1 − x2 − 1 ≤ 0.

(a) First-order conditions (KKT):

• Write the Lagrangian for minimization and maximization.

• List all KKT candidates (for both minimization and maximization problems).

(b) Second-order conditions and classification:

• Check second-order conditions (necessary and sufficient) on the relevant tangent spaces.

• Identify which KKT points are strict local minima, strict local maxima, or saddle points.

(c) Global behavior:

• Prove or disprove that the problem attains the global minimum.

• Prove or disprove that the problem attains the global maximum.
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5. (10 points) Consider the optimization problem

minimize f(x1, x2) = x4
1 + 2x2

2 − 3x2

subject to c(x1, x2) = x2
1 + (x2 + 1)2 ≤ 2.

(a) Formulate the Lagrangian and derive the dual function. Include a description of the domain of the dual
function.

(b) Solve the dual problem maxλ≥0 g(λ).

(c) Use the dual solution to recover the primal minimizer (x⋆
1, x

⋆
2), and verify primal feasibility, complementary

slackness, and strong duality.

Hint: Show first that the dual separates into a minimization in x1 and in x2.
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6. (10 points) Consider the optimization problem

min
x∈Rn

F (x) := f(x) + g(x),

where: f : Rn → R is smooth and convex with L-Lipschitz continuous gradient, ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥,
and g : Rn → R ∪ {+∞} is proper, closed, convex, possibly nonsmooth.

The proximal gradient method with fixed step size α > 0 is defined as

xk+1 = proxαg
(
xk − α∇f(xk)

)
, k = 0, 1, 2, . . . ,

where the proximal operator is

proxαg(v) = arg min
x∈Rn

{
g(x) +

1

2α
∥x− v∥2

}
.

(a) Firm nonexpansiveness of the proximal operator: Show that for any u, v ∈ Rn and convex g, the
proximal operator satisfies the firm nonexpansiveness property :

∥ proxαg(u)− proxαg(v)∥2 ≤ ⟨u− v,proxαg(u)− proxαg(v)⟩.

(b) Descent lemma for proximal gradient: Show that if 0 < α ≤ 1
L , the sequence {F (xk)} generated by

the proximal gradient method monotonically decreases:

F (xk+1) ≤ F (xk)− 1− αL

2α
∥xk+1 − xk∥2.

(c) Convergence to a minimizer: Suppose that F has at least one minimizer x⋆ and that the sub-level set
{x : F (x) ≤ F (x0)} is bounded. Fix α ∈ (0, 1/L]. Show that every limit point of the sequence {xk} is a
minimizer of F .

Hint: Use the optimality condition of the proximal operator: 1
α (v − proxαg(v)) ∈ ∂g(proxαg(v)).

Apply the descent lemma for L-smooth functions: f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L
2 ∥y − x∥2.
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7. (10 points) LetA ∈ Rn×n, and denote byA = UΣV T its SVD, where U, V are orthogonal and Σ = diag (σ1, . . . , σn),
with σ1 ⩾ σ2 ⩾ · · · ⩾ σn ⩾ 0. Let ∥A∥2 = σ1 denote the spectral norm.

(a) Let A ∈ Rn×n be a rank-1 matrix A = xyT for x, y ∈ Rn. Show that there exist Householder matrices
H1, H2 ∈ Rn×n (of the form H = I − 2vvT , where ∥v∥2 = 1 ) such that Ã = H1AH2 is nonzero only in the (1, 1)
element Ã1,1. What are the possible values of Ã1,1 in terms of x, y ?

(b) Alice wants to compute the SVD of the matrix A =

[
−1 −3
3 1

]
= UΣV T . Bob claims that V should be

equal to the matrix of eigenvectors of ATA, which he computes correctly as Ṽ = 1√
2

[
1 −1
1 1

]
; similarly, U is

the matrix of eigenvectors of AAT , which is Ũ = 1√
2

[
−1 1
1 1

]
. The singular values are the square roots of the

eigenvalues of ATA, so Σ should be Σ̃ =

[
4

2

]
. However, with these matrices Ũ Σ̃Ṽ T =

[
−3 −1
1 3

]
̸= A.

(i) Where is the error in the arguments above? Correct it and derive a valid SVD of A.

(ii) Let U0, V0 ∈ R2025×2 be orthonormal, that is, UT
0 U0 = V T

0 V0 = I2. What are the singular values of U0AV
T
0 ?

(c) Suppose A has the form A =

[
A11 A12

0 A22

]
where A11 ∈ Rr×r is nonsingular. Let X =

[
Ir
0

]
and consider

the thin QR factorisation AX = QR.

(i) Show that the matrix QQTA has rank at most r.

(ii) Give a formula for QQTA−A in terms of A11, A12 and A22.

(iii) Show that
∥∥QQTA−A

∥∥
F
⩽ ∥A∥F , where ∥A∥F =

√∑
i,j |Aij |2 denotes the Frobenius norm.

(iv) Now suppose that

A11 = A12 = Ir, A22 = ϵIr, that is, A =

[
Ir Ir
0 ϵIr

]
(20)

Denote by Ar the best rank- r approximation to A, and define c =
∥QQTA−A∥

2

∥A−Ar∥2
. Find c, and show that c →

√
2

as ϵ → 0.
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8. (10 points) Let A =

[
A11 A12

A21 0

]
∈ Rn×n where A11 ∈ Rk×k is a nonsingular matrix. Let σ1(A) ⩾ σ2(A) ⩾

· · · ⩾ σn(A) ⩾ 0 denote the singular values of A, and let ∥ · ∥2 denote the spectral norm, so ∥A∥2 = σ1(A).

(a) Show that σi(A) ⩾ σi (A11) for i = 1, 2, . . . , k. [Here and below, you may use the Courant-Fischer theorem
and Weyl’s theorem without proof.]

(b) Give a lower bound for rank(A) and an example where it is attained.

(c) Give an upper bound for rank(A) and an example where it is attained.

(d) By giving an example show that

∥∥∥∥[ A11 A12

A21 0

]∥∥∥∥
2

⩽

∥∥∥∥[ A11 A12

A21 A22

]∥∥∥∥
2

does not always hold.
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9. (10 points) (a) First, let A,B ∈ Rn×n be square matrices with det(B) ̸= 0. Prove that the eigenvalues of
AB and BA are the same.

(b) Next let A ∈ Rm×n, B ∈ Rn×m with m ≥ n. Prove that[
AB A
0 0n×n

]
and

[
0m×m A

0 BA

]
(55)

are similar. Hence show that the nonzero eigenvalues of AB and BA are again the same.

(c) Do you see a connection between this problem and the QR algorithm?


