OPTIMIZATION / NUMERICAL LINEAR ALGEBRA (ONLA)

DO NOT FORGET TO WRITE YOUR SID NO. ON YOUR EXAM. PLEASE USE BLANK PAGES AT END FOR ADDITIONAL SPACE.

1. (10 points) Let $A = [a_{ij}] \in \mathbb{R}^{n \times n}$ and use the standard splitting

$$A = D + L + U,$$

where $D = \text{diag}(a_{11}, \ldots, a_{nn})$, L is strictly lower triangular with $L_{ij} = a_{ij}$ for i > j (and 0 otherwise), and U is strictly upper triangular with $U_{ij} = a_{ij}$ for i < j (and 0 otherwise). Assume A is strictly diagonally dominant (SDD) by rows:

$$|a_{ii}| > \sum_{j \neq i} |a_{ij}| \quad (i = 1, \dots, n).$$

Consider the Jacobi iteration for Ax = b,

$$x^{(k+1)} = -D^{-1}(L+U)x^{(k)} + D^{-1}b, \qquad G_J := I - D^{-1}A.$$

Prove that for every initial guess $x^{(0)} \in \mathbb{R}^n$ the iterates converge to the unique solution x^* of Ax = b.

OPTIMIZATION / NUMERICAL LINEAR ALGEBRA (ONLA)

2. (10 points) Let $A \in \mathbb{R}^{n \times n}$ and $v \in \mathbb{R}^n$, $v \neq 0$. For an integer $k \geq 1$, define

$$\mathcal{K}_k(A, v) := \text{span}\{v, Av, A^2v, \dots, A^{k-1}v\}.$$

Prove the following:

(3 points) (a) Scaling invariance. For any nonzero scalars $\alpha, \beta \in \mathbb{R}$,

$$\mathcal{K}_k(A, v) = \mathcal{K}_k(\alpha A, \beta v).$$

(3 points) (b) Nestedness. For every $k \ge 1$,

$$\mathcal{K}_k(A,v) \subseteq \mathcal{K}_{k+1}(A,v).$$

(4 points) (c) Stabilization. If there exists $m \ge 1$ with $\dim \mathcal{K}_{m+1}(A,v) = \dim \mathcal{K}_m(A,v)$, then

$$\mathcal{K}_k(A, v) = \mathcal{K}_m(A, v)$$
 for all $k \ge m$.

OPTIMIZATION / NUMERICAL LINEAR ALGEBRA (ONLA)

3. (10 points) Let $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^n$, and define

$$\mathcal{K}_k(A, b) := \text{span}\{b, Ab, \dots, A^{k-1}b\} \qquad (k \ge 1).$$

Assume exact arithmetic and that the linear system Ax = b is consistent (so $b \in \text{range}(A)$). Suppose furthermore that dim $\mathcal{K}_n(A,b) = n$ (i.e., $\mathcal{K}_n(A,b) = \mathbb{R}^n$). GMRES started from $x_0 = 0$ selects $x_k \in \mathcal{K}_k(A,b)$ that minimizes $||r_k||_2 = ||b - Ax_k||_2$. Prove that GMRES produces an exact solution in at most n steps; in particular $r_n = 0$.

OPTIMIZATION / NUMERICAL LINEAR ALGEBRA (ONLA)

4. (10 points) Consider the constrained optimization problem

minimize
$$f(x_1, x_2) = x_1^3 + 4x_2^2$$

subject to

$$g(x_1, x_2) = x_1^2 - x_2 - 1 \le 0.$$

- (a) First-order conditions (KKT):
 - Write the Lagrangian for minimization and maximization.
 - List all KKT candidates (for both minimization and maximization problems).
- (b) Second-order conditions and classification:
 - Check second-order conditions (necessary and sufficient) on the relevant tangent spaces.
 - Identify which KKT points are strict local minima, strict local maxima, or saddle points.
- (c) Global behavior:
 - Prove or disprove that the problem attains the global minimum.
 - Prove or disprove that the problem attains the global maximum.

OPTIMIZATION / NUMERICAL LINEAR ALGEBRA (ONLA)

5. (10 points) Consider the optimization problem

minimize
$$f(x_1, x_2) = x_1^4 + 2x_2^2 - 3x_2$$

subject to $c(x_1, x_2) = x_1^2 + (x_2 + 1)^2 \le 2$.

- (a) Formulate the Lagrangian and derive the dual function. Include a description of the domain of the dual function.
- (b) Solve the dual problem $\max_{\lambda \geq 0} g(\lambda)$.
- (c) Use the dual solution to recover the primal minimizer $(x_1^{\star}, x_2^{\star})$, and verify primal feasibility, complementary slackness, and strong duality.

Hint: Show first that the dual separates into a minimization in x_1 and in x_2 .

OPTIMIZATION / NUMERICAL LINEAR ALGEBRA (ONLA)

6. (10 points) Consider the optimization problem

$$\min_{x \in \mathbb{R}^n} F(x) := f(x) + g(x),$$

where: $f: \mathbb{R}^n \to \mathbb{R}$ is smooth and convex with L-Lipschitz continuous gradient, $\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|$, and $g: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is proper, closed, convex, possibly nonsmooth.

The proximal gradient method with fixed step size $\alpha > 0$ is defined as

$$x^{k+1} = \text{prox}_{\alpha g} (x^k - \alpha \nabla f(x^k)), \quad k = 0, 1, 2, \dots,$$

where the proximal operator is

$$\operatorname{prox}_{\alpha g}(v) = \arg\min_{x \in \mathbb{R}^n} \left\{ g(x) + \frac{1}{2\alpha} ||x - v||^2 \right\}.$$

(a) Firm nonexpansiveness of the proximal operator: Show that for any $u, v \in \mathbb{R}^n$ and convex g, the proximal operator satisfies the firm nonexpansiveness property:

$$\|\operatorname{prox}_{\alpha g}(u) - \operatorname{prox}_{\alpha g}(v)\|^2 \le \langle u - v, \operatorname{prox}_{\alpha g}(u) - \operatorname{prox}_{\alpha g}(v) \rangle.$$

(b) Descent lemma for proximal gradient: Show that if $0 < \alpha \le \frac{1}{L}$, the sequence $\{F(x^k)\}$ generated by the proximal gradient method monotonically decreases:

$$F(x^{k+1}) \le F(x^k) - \frac{1 - \alpha L}{2\alpha} ||x^{k+1} - x^k||^2.$$

(c) Convergence to a minimizer: Suppose that F has at least one minimizer x^* and that the sub-level set $\{x: F(x) \leq F(x^0)\}$ is bounded. Fix $\alpha \in (0, 1/L]$. Show that every *limit point* of the sequence $\{x^k\}$ is a minimizer of F.

Hint: Use the optimality condition of the proximal operator: $\frac{1}{\alpha}(v - \operatorname{prox}_{\alpha q}(v)) \in \partial g(\operatorname{prox}_{\alpha q}(v))$.

Apply the descent lemma for L-smooth functions: $f(y) \leq f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||y - x||^2$.

Qualifying Exam, Spring 2025

OPTIMIZATION / NUMERICAL LINEAR ALGEBRA (ONLA)

- 7. (10 points) Let $A \in \mathbb{R}^{n \times n}$, and denote by $A = U \Sigma V^T$ its SVD, where U, V are orthogonal and $\Sigma = \text{diag}(\sigma_1, \ldots, \sigma_n)$, with $\sigma_1 \geqslant \sigma_2 \geqslant \cdots \geqslant \sigma_n \geqslant 0$. Let $||A||_2 = \sigma_1$ denote the spectral norm.
 - (a) Let $A \in \mathbb{R}^{n \times n}$ be a rank-1 matrix $A = xy^T$ for $x, y \in \mathbb{R}^n$. Show that there exist Householder matrices $H_1, H_2 \in \mathbb{R}^{n \times n}$ (of the form $H = I 2vv^T$, where $||v||_2 = 1$) such that $\tilde{A} = H_1AH_2$ is nonzero only in the (1,1) element $\tilde{A}_{1,1}$. What are the possible values of $\tilde{A}_{1,1}$ in terms of x, y?
 - (b) Alice wants to compute the SVD of the matrix $A = \begin{bmatrix} -1 & -3 \\ 3 & 1 \end{bmatrix} = U\Sigma V^T$. Bob claims that V should be equal to the matrix of eigenvectors of A^TA , which he computes correctly as $\tilde{V} = \frac{1}{\sqrt{2}}\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$; similarly, U is the matrix of eigenvectors of AA^T , which is $\tilde{U} = \frac{1}{\sqrt{2}}\begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$. The singular values are the square roots of the eigenvalues of A^TA , so Σ should be $\tilde{\Sigma} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$. However, with these matrices $\tilde{U}\tilde{\Sigma}\tilde{V}^T = \begin{bmatrix} -3 & -1 \\ 1 & 3 \end{bmatrix} \neq A$.
 - (i) Where is the error in the arguments above? Correct it and derive a valid SVD of A.
 - (ii) Let $U_0, V_0 \in \mathbb{R}^{2025 \times 2}$ be orthonormal, that is, $U_0^T U_0 = V_0^T V_0 = I_2$. What are the singular values of $U_0 A V_0^T$?
 - (c) Suppose A has the form $A = \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix}$ where $A_{11} \in \mathbb{R}^{r \times r}$ is nonsingular. Let $X = \begin{bmatrix} I_r \\ 0 \end{bmatrix}$ and consider the thin QR factorisation AX = QR.
 - (i) Show that the matrix QQ^TA has rank at most r.
 - (ii) Give a formula for $QQ^TA A$ in terms of A_{11}, A_{12} and A_{22} .
 - (iii) Show that $\|QQ^TA A\|_F \leq \|A\|_F$, where $\|A\|_F = \sqrt{\sum_{i,j} |A_{ij}|^2}$ denotes the Frobenius norm.
 - (iv) Now suppose that

$$A_{11} = A_{12} = I_r, \quad A_{22} = \epsilon I_r, \quad \text{that is,} \quad A = \begin{bmatrix} I_r & I_r \\ 0 & \epsilon I_r \end{bmatrix}$$
 (20)

Denote by A_r the best rank- r approximation to A, and define $c = \frac{\|QQ^TA - A\|_2}{\|A - A_r\|_2}$. Find c, and show that $c \to \sqrt{2}$ as $\epsilon \to 0$.

Qualifying Exam, Spring 2025

OPTIMIZATION / NUMERICAL LINEAR ALGEBRA (ONLA)

- 8. (10 points) Let $A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & 0 \end{bmatrix} \in \mathbb{R}^{n \times n}$ where $A_{11} \in \mathbb{R}^{k \times k}$ is a nonsingular matrix. Let $\sigma_1(A) \geqslant \sigma_2(A) \geqslant \cdots \geqslant \sigma_n(A) \geqslant 0$ denote the singular values of A, and let $\|\cdot\|_2$ denote the spectral norm, so $\|A\|_2 = \sigma_1(A)$.
 - (a) Show that $\sigma_i(A) \ge \sigma_i(A_{11})$ for i = 1, 2, ..., k. [Here and below, you may use the Courant-Fischer theorem and Weyl's theorem without proof.]
 - (b) Give a lower bound for rank(A) and an example where it is attained.
 - (c) Give an upper bound for rank(A) and an example where it is attained.
 - (d) By giving an example show that $\left\| \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & 0 \end{bmatrix} \right\|_2 \le \left\| \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \right\|_2$ does not always hold.

Qualifying Exam, Spring 2025

OPTIMIZATION / NUMERICAL LINEAR ALGEBRA (ONLA)

- 9. (10 points) (a) First, let $A, B \in \mathbb{R}^{n \times n}$ be square matrices with $\det(B) \neq 0$. Prove that the eigenvalues of AB and BA are the same.
 - (b) Next let $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times m}$ with $m \geq n$. Prove that

$$\begin{bmatrix} AB & A \\ 0 & 0_{n \times n} \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 0_{m \times m} & A \\ 0 & BA \end{bmatrix}$$
 (55)

are similar. Hence show that the nonzero eigenvalues of AB and BA are again the same.

(c) Do you see a connection between this problem and the QR algorithm?