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Abstract. Effective recognition of foreign antigens by the adaptive immune system relies on
T cells being activated by antigen-presenting cells (APCs) in lymph nodes. Here, diffusing T cells
may encounter cognate APCs that present matching antigen fragments or non-cognate ones that
do not; they are also subject to degradation. We develop a stochastic model in which T cell-APCs
interact via a sequence of recognition steps, represented as a multistage Markov chain. T cells are
successfully activated only if the terminal state associated with a cognate APC is reached. We
compute the probability of successful activation in the presence of interfering non-cognate APCs, T
cell degradation, and lymph node exit, and analyze the mean first-passage time to activation. We
also incorporate a kinetic proofreading mechanism that enables state resetting, and show how this
enhances specificity toward cognate APCs.

Relevance to Life Sciences We present a quantitative framework to study T cell activation
within the lymph node that integrates diffusion, the presence and abundance of cognate and non-
cognate APCs, and T cell death and exit from the lymph node. Relevant spatio-temporal parameters,
such as T cell diffusivity and residence time within the lymph node, are estimated from existing lit-
erature. Quantification of the activation probability and time to first activation provide fundamental
insights into the onset of the adaptive immune response.

Mathematical Content T cell recognition is modeled as a multistage Markov process, coupled
with spatial diffusion, exit, and death. All four processes are represented through a system of partial
differential equations that are analyzed under Robin and Neumann boundary conditions. Using first-
passage time theory, we calculate activation probabilities and mean activation times. We also show
how kinetic proofreading through stochastic resetting enhances specificity.

Key words. First-passage times, adaptive immune system, antigen recognition, T cells, kinetic
proofreading.

MSC codes. 35K57, 35Q92, 60J70, 92C17, 92C37

1. Introduction and Background. The adaptive immune system plays a cen-
tral role in defending an organism from disease. Key components are antigen-presenting
cells (APCs) and T cells that co-localize in lymph nodes where they interact to trig-
ger proliferation or B cell signaling [45]. APCs capture antigens, short amino-acid
sequences that are part of larger proteins, from foreign agents encountered through-
out the body. Enzymatic degradation turns these antigens into smaller peptides that
are presented to the major histocompatibility complexes (MHCs) on the APC surfaces
for T cells to recognize.

T cells constitute a highly diversified population. Each of them expresses a specific
surface receptor (TCR) that can only recognize a small subset of “cognate” antigens.
Successful recognition involves several biochemical interactions between TCRs and
the antigen-loaded MHCs that include conformational changes which in turn trigger
downstream signaling events. Upon recognition, näıve T cells become activated and
initiate an immune response by proliferating and differentiating into effector T cells
such as cytotoxic T cells that eliminate pathogens, and helper T cells that activate
other immune cells; most of them migrate from the lymph node to peripheral tissues
to kill the infected host cells. Some activated T cells become long-lived memory cells
that help trigger an effective and rapid immune response if the same pathogen is
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encountered again. Each T cell is associated to a small number of cognate APCs
(cAPCs), all the others are not recognized and are referred to as non-cognate APCs
(nAPCs). It is estimated that a given APC is cognate to one in 105–106 T cells
[5, 26, 30, 57]; the inverse of this quantity is known as the precursor frequency. Given
how rare it is for a T cell to encounter its cAPC, the problem is sometimes known as
that of “searching for a needle in a haystack” [38].

Most T cells are produced in the bone marrow, mature in the thymus, and are
transported via the bloodstream to the approximately 600 lymph nodes in the human
body. T cells are in continuous recirculation: from the blood they reach a lymph
node and search for their cAPC. If the search is not successful within 12 to 24 hours,
they return to the bloodstream, enter a different lymph node and repeat the cycle
[18, 27, 40, 53]. The lifespan of näıve, unactivated T cells ranges from weeks to years,
depending on age and health status [6, 54]. On the contrary, once a foreign antigen
has been acquired, an APC will migrate from the exposed tissue (such as the skin) to
the closest lymph node through lymphatic vessels and remain there [47]. The typical
lifespan of an APC within a lymph node is two to six days [29,51].

Recent advances in 3D imaging, flow cytometry and quantitative PCR have
been used to shed light on how T cells interact with APCs, particularly dendritic
cells [19, 44]. Most T cells and APCs co-localize in the “T cell zone,” a special-
ized sub-compartment that occupies a large portion of the lymph node [2]. T cells
within this compartment do not follow chemotactic gradients but instead encounter
antigen-presenting cells (APCs) through independent, random motion. Their move-
ment is guided by an underlying network of fibroblastic reticular cells, which pro-
vides structural support to the lymph node and helps organize cell trafficking within
it [1,28,33,38]. The speed, persistence times, and turning angles of T cells have been
quantified, revealing that within the T cell zone, T cells are much more motile than
dendritic and B cells [39,52]. In addition, dendrites emanating from the cellular core
of dendritic cells are highly dynamic, increasing their effective spatial extent. As a
result, the contact frequency between T cells and APCs is elevated, leading to an
efficient scanning process [56]. For example, a dendritic cell can engage with up to
80 T cells per minute with the typical contact between a T cell and a nAPC lasting
roughly 3 minutes before dissociation [37]. Upon encountering a cAPC, however, a T
cell will arrest its motion to allow for biochemical and conformational changes that
stabilize the low-affinity TCR-MHC contact to take place; this association can last
more than 15 hours before the immune response is triggered [50].

Mathematically, the movement of T cells in lymph nodes has been studied via
computational models based on two-photon microscopy imaging [3, 4, 12, 15, 41]. For
example, the residence time of a T cell interacting with a nAPCs has been fitted
to an exponential distribution whose mean depends on the specific T cell type [35].
Other theoretical studies propose different types of random walks, such as Brownian
motion [7, 11], Lévy walks [20], and velocity-jump models [46]. Typically, cAPCs are
modeled as a finite set of small, stationary, and well-separated target sites; encounters
are defined as a T cell reaching or coming within a given distance from these sites [7].
In these studies, the presence of nAPCs is often neglected [10,31,36]. The probability
of a T cell encountering its cAPC within a fixed time has also been used to estimate
the likelihood of initiating the adaptive immune response [7, 46].

2. Mathematical model and analysis. We develop a mathematical frame-
work to study antigen induced T cell activation where the presence of both cognate
and non-cognate APCs are explicitly included. Other features are T cell death and
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Fig. 1: Spatial representation of our model. A schematic of a lymph node is
shown on the left. The T cell zone, where T cells (red dots) diffuse and encounter
cognate (green stars) or noncognate (black stars) APCs, is approximated as a sphere
of radius a in the schematic on the right. The diffusion constant D is assumed to be
uniform. Removal of T cells occurs via two mechanisms: exit through the boundary of
the T cell zone, and death or egress from the interior. The latter process is facilitated
by specialized lymphatic channels not shown.

egress from lymphatic channels, the relative scarcity of cAPCs compared to nAPCs,
and non-trivial activation mechanisms such as multi-stage binding or kinetic proof-
reading. We quantify the statistics of the conditional cAPC-induced activation times
of T cells [11] in the dominating presence of nAPCs. T cells are assumed to be point
particles that diffuse in a three-dimensional, spherical lymph node compartment, uni-
formly populated by APCs. Quantities of interest include the probability that a T
cell is activated by its cAPC before exiting the T cell zone, and the conditional first
passage time to full activation [9, 14, 25, 48]. The overall geometry of our model is
shown in Fig. 1, where for simplicity the T cell zone is modeled as a sphere.

In section 3 we present a reversible, multi-stage, two-arm model, in which a T
cell diffusing within a sphere can bind to either a non-cognate APC (nAPC) or a
cognate APC (cAPC). The initial contact state is followed by a multi-state recogni-
tion process that terminates at state N . Transitions between states are reversible,
with the exception of the final state at the end of the cAPC arm; here the T cell
is immediately activated and can no longer transition back. We evaluate the over-
all activation probability and define the conditional moments of the activation time.
From the latter, we calculate the mean and variance of the first time for a T cell to
be activated by a cAPC under both Neumann and Robin boundary conditions at the
spherical boundary representing the T cell zone. In section 4 we consider an alter-
native scenario where a T cell can fully bind to both nAPCs and cAPCs once their
respective multi-stage chains have been traversed. However, intermediate states in
each chain can “reset”, returning the T cell to its initial state of engagement with the
nAPC or cAPC. This recycling represents a kinetic proofreading mechanism that can
increase sensitivity to kinetic parameters, allowing for higher specificity.

3. Reversible multi-stage two-arm model. We assume recognition involves
T cells engaging with APCs through multiple interaction steps that lead to full acti-
vation only in the case of cAPCs. Similar models have been used to study viral entry
into cells [8, 17]. A schematic of the model with N intermediate states between a T
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cell and either APC is shown in (3.1). Here, the free T cell, denoted by T0, can bind
to a nAPC at rate Kn to form the first bound state N1, or with a cAPC at rate fKn

to form the first bound state C1. Microscopically, Kn = K0,1N and Kc = K0,1C,
where K0,1 is an intrinsic attachment prefactor, and N and C denote the concentra-
tions of available nAPCs and cAPCs, respectively. Rewriting Kc = (C/N )Kn ≡ fKn,
the parameter f can be interpreted as the ratio of the two concentrations; since the
concentration of nAPCs is much greater than that of cAPCs, f ≪ 1. The unbinding
rates are K1,0 in both arms.

(3.1) T0
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The nAPC interaction chain, shown in the upper arm of the scheme in (3.1)
contains a sequence of intermediate bound states, N2, . . .NN−1, and is fully reversible,
with the bidirectional forward and backward rates given by P and Q, respectively [23].
The reflecting boundary condition at the last NN state represents a “dead-end” of the
interaction between a T cell and the nAPC, where no further processing is triggered.
The cAPC interaction chain is modeled through a similar pathway with N steps as
shown in the lower arm of (3.1). Here, the absorbing state CN represents a T cell that
is activated by its cAPC. For simplicity, we assume uniform binding and unbinding
rates P,Q and compute the probability of activation and the activation time statistics.

3.1. Diffusion-kinetic equations and non-dimensionalization. We now
quantify the dynamics of the system, including motion in the T cell zone and the
kinetics depicted in (3.1). Since searcher T cells have no prior information on the
location of APCs within the lymph node [12,46], we model them as three-dimensional
Brownian walkers and assume their motion is arrested upon contact with an APC.
We introduce x and t as the spatial and temporal variables, and denote the proba-
bility density distribution of finding a T cell at location x at time t as ρ0(x, t). We
further denote the probability density distribution of a T cell bound to a nAPC or to
a cAPC, respectively, via the N -dimensional vectors n(x, t) and c(x, t). The corre-
sponding ni(x, t) and ci(x, t) components represent the probability of having a T cell
bound to the nAPC or cAPC at the i-th state of engagement, with 1 ≤ i ≤ N . T cell
activation is triggered at state cN.

Although the effective diffusion constant D(x) describing the motion of the T
cells may be spatially dependent, we impose it to be uniform D(x) = D. Similarly,
we assume K0,1,K1,0,N , C are spatially homogeneous so that Kn and f are uniform
as well. Finally, we assume T cells exit from, or degrade within the T cell zone at
rate µ0. The above assumptions yield the following diffusion-kinetic equations

∂tρ0(x, t) = D∆ρ0(x, t)− [µ0 + (1 + f)K0,1] ρ0 +K1,0(n1 + c1),(3.2a)

∂t n(x, t) = Mnn+K0,1ρ0 e1,(3.2b)

∂t c(x, t) = Mcc+ fK0,1ρ0, e1.(3.2c)
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where e1 = (1, 0, . . . , 0)T ∈ RN and Mn and Mc are N × N tridiagonal matrices
consistent with the reaction schemes shown in (3.1). For simplicity, we describe their
elements in mathematical detail after first non-dimensionalizing (3.2). We model the
T cell zone as a spherical domain Ω of radius a and impose Robin boundary conditions

(3.3) D n · ∇ρ0 +Kρ0 = 0 , on ∂Ω .

The quantity K > 0 in (3.3) represents the convective velocity at the boundary. The
limit K → 0 leads to the perfectly reflecting, Neumann boundary condition n ·∇ρ0 =
0, where all traversing T cells are reflected to the interior. The opposite limit K → ∞
leads to the perfectly absorbing, Dirichlet boundary condition ρ0 = 0 which represents
all T cells leaving the domain upon reaching its boundary. The partially absorbing,
Robin boundary condition corresponds to a finite K and interpolates between the two
limits. Finally, we utilize the initial condition

(3.4) ρ0(x, 0) = δ(x) , n(x, 0) = 0 , c(x, 0) = 0,

so that at t = 0 there are no bound APCs, and T cells are located at the center of
the lymph node.

To non-dimensionalize (3.2)–(3.4) we define distances in terms of the radius of
the T cell zone a and time in terms of the T cell – nAPC detachment time 1/K1,0.
The dimensionless variables are thus defined as

(3.5)

t̃ = K1,0 t , x̃ =
x

a
, µ̃0 =

µ0

K1,0
, p =

P

K1,0
, q =

Q

K1,0
,

D̃ =
D

a2K1,0
, k0,1 =

Kn

K1,0
, K̃ =

K

aK1,0
, κ =

aK

D
.

Using estimates available from the literature, we set a = 0.1 cm, K1,0 = 1/3min−1,
D = 60µm2min−1, and µ0 = 1/720min−1. These values correspond to µ̃0 = 1/240
and D̃ = 1.8× 10−4. Parameter estimates are discussed in detail in Appendix A. For
notational simplicity, we henceforth drop the tilde notation and find the dimensionless
entries of Mn

(3.6) [Mn]i,i =


−(p+ 1) i = 1

−(p+ q) 2 ≤ i ≤ N − 1

−q i = N

[Mn]i,i−1 = p 2 ≤ i ≤ N,

[Mn]i,i+1 = q 1 ≤ i ≤ N − 1,

while those for Mc are

(3.7) [Mc]i,i =


−(p+ 1) i = 1

−(p+ q) 2 ≤ i ≤ N − 1

0 i = N

[Mc]i,i−1 = p 2 ≤ i ≤ N

[Mc]i,i+1 =

{
q 1 ≤ i ≤ N − 2

0 i = N − 1.

Mn and Mc differ only in that the last, activated state at the end of the cAPC
chain is absorbing, while the end-state of the nAPC chain is reflecting. The full non-
dimensional model is defined in the three-dimensional ball of unit radius Ω = B3

1(0):

∂tρ0(x, t) = D∆ρ0(x, t)− [µ0 + (1 + f)k0,1] ρ0 + n1 + c1,(3.8a)

∂t n(x, t) = Mnn+ k0,1ρ0 e1,(3.8b)

∂t c(x, t) = Mcc+ fk0,1ρ0, e1,(3.8c)
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with boundary condition

(3.9) n · ∇ρ0 + κρ0 = 0 , on ∂Ω .

We now define the overall activation flux J∗(t)

(3.10) J∗(t) :=

∫
Ω

∂tcN (x, t)dx =

∫
Ω

p cN−1(x, t) dx ,

and the activation probability

(3.11) P∗ :=

∫ ∞

0

J∗(t) dt ,

from which the conditional activation flux J∗,c(t) = J∗(t)/P∗ is derived [9]. Finally,
the conditional moments E[(T∗)

h] of the activation time are

(3.12) E[(T∗)
h] :=

∫ ∞

0

th J∗,c(t) dt =

∫∞
0

th J∗(t) dt∫∞
0

J∗(t) dt
. h ≥ 0 .

The conditional mean activation time τ∗ and variance σ2
∗ are obtained by substituting

h = 1 and h = 2 into (3.12), respectively,

(3.13) τ∗ = E(T∗) , σ2
∗ = E[[(T∗)

2]− τ2∗ .

The time τnAPC that a T cell spends engaged with a nAPC before detaching and
resuming its search for a cAPC can be estimated by calculating the average time it
takes a T cell starting in state N1 to first reach the free state T0. As depicted in (3.1),
the T cell performs a random walk across the N nAPC bound states detaching once
T0 is reached. In Appendix C, we show the non-dimensional τnAPC is

(3.14) τnAPC =
1− (p/q)N

1− p/q
.

The interaction time in (3.14) is an increasing function of N , regardless of p/q, and an
increasing function of p/q, regardless of N . Thus, the more intermediate states there
are along the nAPC chain, the longer the T cell remains unproductively engaged.
Similarly, the larger the ratio of the forward to backward rates p/q, the longer it will
take for the T cell to return to the free state.

3.2. Neumann (perfectly reflecting) boundary conditions. We begin our
analysis under perfectly reflecting, Neumann boundary conditions by setting κ = 0
in (3.9), and calculate the activation probability P∗ in (3.11), and the conditional
mean activation time τ∗ in (3.13). For an arbitrary function y(x, t), x ∈ Ω we denote
y(t) =

∫
Ω
y(x, t) dx. By the Divergence Theorem, we have

(3.15)

∫
Ω

∆ρ0 dx =

∫
∂Ω

∂nρ0 ds = 0 ,

where the left equality is due to the Neumann boundary condition for ρ0 in (3.9).
Using (3.15) and upon integrating each equation in (3.8) over the entire domain Ω,
we obtain the following ODE system

(3.16)

dy(t)

dt
= My(t) , y(t) = (ρ0(t), n(t), c(t))

T
,

y(0) = (1, 0, · · · , 0) ∈ R2N+1,
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where n(t) ≡ (n1(t), . . . , nN (t)) and c(t) ≡ (c1(t), . . . , cN (t)). The matrix M is given
by

(3.17) M =

− [µ0 + (1 + f)k0,1] eT1 eT1

k0,1 e1 Mn O

fk0,1 e1 O Mc


where O denotes the N × N zero matrix, and Mn and Mc are the N × N tridi-
agonal matrices defined in (3.6) and (3.7), respectively. In this construction, M is
a (2N + 1) × (2N + 1) matrix. Eq. (3.16) can be solved by applying the Laplace
transform to Eq. (3.16) with the nonabsorbed states excluded (omitting cN since
it can be determined from cN−1). Upon defining the N − 1 dimensional vector
c′(s) = (c̄1(s), . . . , c̄N−1(s))

T and taking the Laplace transform of the truncated linear
system (3.16) that excludes c̄N , we find

(3.18) sy′(s)− y′(t = 0) = M′ y′(s) , y′(s) = (ρ0(s), n(s), c′(s))
T
,

where M′ is the same as M without the last row and last column, and thus a 2N×2N
matrix. The formal solution to Eq. (3.18) is

(3.19) y′(s) =
(
sI−M′)−1

y′(t = 0).

Differentiating (3.18) with respect to s and then setting s = 0 gives

(3.20)
dy′(s)

ds

∣∣∣
s=0

= (M′)−1 y′(s = 0).

Eqs. (3.19) and (3.20) allow us to compute the activation probability P∗ and the
conditional mean activation time τ∗, both of which can be expressed in terms of the
Laplace variable through (3.10) to (3.13) as

P∗ = pcN−1(s = 0),(3.21)

τ∗ = − 1

cN−1(s = 0)

dcN−1(s)

ds

∣∣∣
s=0

.(3.22)

Upon setting s = 0 in (3.19) and inverting M′, we obtain y′(s = 0); its last entry,
c̄N−1(s = 0), can be inserted into (3.21) to obtain

(3.23) P∗ =
fk0,1(p− q)

fk0,1(p− q) + µ0

[
p− q + 1−

(
q

p

)N−1
] .

We similarly evaluate dy′(s)/ds for s = 0 from Eq. (3.20); its last entry and cN−1(s =
0) are then substituted into Eq. (3.22) to obtain τ∗.

Results are shown in Fig. 2 for various choices of q and N = 2, 4, 6. The activation
likelihood P∗ is a competition between degradation, expressed by µ0, and reaching
the final state of the cAPC arm. The schematic (3.1) reveals that for N = 2 the
detachment rate q affects the dynamics only as a T cell engages with a nAPC. However,
since the nAPC arm is characterized by reflecting boundary conditions at its end state
and no degradation is present, we expect P∗ to be independent of q for N = 2. This
is observed in Fig. 2, where P∗ is also seen to be increasing in p for N = 2.
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Higher values of p result in a higher likelihood that T cells remains partially
engaged to their cAPCs or to the other nAPCs, rather than detaching from the first
bound state, as can be seen by the form [Mn]ii = [Mc]ii = −(p + 1). In our model,
excursions along the nAPC arm do not increase the likelihood of degradation, rather
they shield T cells from the degradation that they would experience in the unbound
state T0. At the same time, higher p values allow for T cells to be fully activated by
their cAPC by reaching state CN in a more expedited manner, escaping degradation
while in the free state. The overall effect of increasing p is thus to increase P∗. Since
this picture remains valid for other choices N > 2, the finding that P∗ increases
with p should be robust with respect to changes in q and N . To understand how P∗
depends on q (for N > 2) and on N , we note that as q increases the likelihood of
returning from any intermediate state Ni or Cj with i, j < N to the unbound state
T0, and thus for T cells to be degraded, increases. Hence, P∗ should decrease with q
for fixed p and N > 2. Similarly, we expect P∗ to decrease with increasing N since the
presence of more intervening steps to reach the activation state CN is associated with
a greater likelihood for the T cell to return to the free state T0 , where it is subject
to degradation. The curves shown in Fig. 2 confirm that P∗ is an increasing function
of p and a decreasing function of q and N when all other quantities are kept fixed.
Finally, we verified that for all cases shown in Fig. 2, increasing the degradation µ0

decreases P∗ as expected.

Fig. 2: Multi-stage, Neumann boundary conditions. The activation probabil-
ity P∗ as a function of the forward binding rate p in the multi-stage model (3.8) for
N = 2 (blue-solid), 4, (orange-dashed), and 6 (green-dotted). We set f = 5 × 10−3,
k0,1 = 1, µ0 = 1/240 and q = 1 in panel (a), q = 4 in panel (b) and q = 10 in
panel (c). The values of P∗ are computed from (3.23) All curves are monotonically
increasing.

In Fig. 3 we plot τ∗ as a function of p for various values of N and q. We observe
that τ∗ exhibits non-monotonic behavior as a function of p. This is because, on one
hand, increasing p elongates the time a T cell remains on the nAPC arm, increasing
τ∗; on the other, it hastens the time for the T cell to be fully activated at the end of
the cAPC arm, decreasing τ∗. Which of these trends prevail depends on the interplay
between the magnitude of p, q and the length N of the nAPC and cAPC arms. This
is illustrated by setting N = 2, in which case P∗ and τ∗ can be evaluated explicitly



T CELL SEARCH: DIFFUSION, DEATH AND ACTIVATION 9

Fig. 3: Multi-stage, Neumann boundary conditions. The conditional mean
activation time τ∗ as a function of the forward binding rate p in the multi-stage
model (3.8) for N = 2 (blue-solid) , 4 (orange-dashed), and 6 (green-dotted). We set
f = 5 × 10−3, k0,1 = 1, µ0 = 1/240 and q = 1 in panel (a), q = 4 in panel (b) and
q = 10 in panel (c). The values of τ∗ are computed from (3.22) and (3.20). Depending
on parameter choices, τ∗ can exhibit non-monotonic behavior.

P∗ =
fk0,1p

fk0,1p+ µ0(p+ 1)
, for N = 2(3.24)

τ∗ =
(1 + µ0 + p)q + k0,1(p+ q)(p+ 1) + fk0,1q

q [fk0,1p+ µ0(p+ 1)]
, for N = 2.(3.25)

Eqs. (3.24) and (3.25) show that P∗ monotonically increases with p but that τ∗, can
be non-monotonic in p depending on the other parameters. One can evaluate the loci
of the minima in τ∗ as a function of q by taking the derivative of (3.25) with respect
to p. We find that, as a function of p, τ∗ displays a minimum only if q > q∗ where

q∗ =
fk20,1µ0

(fk0,1 + µ0) [fk0,1(1 + k0,1 + fk0,1) + 2fk0,1µ0 + µ2
0]

< 1.(3.26)

Non-monotonic behavior is observed in Fig. 3 for N > 2 as well. Here, τ∗ is seen to
increase with p, except for intermediate p values where a decreasing trend emerges.
The decreasing regimes correspond to optimal p ranges where the T cell can be acti-
vated by reaching the end of the cAPC arm while shortening excursion times along
the nAPC arm. Although general analytical estimates are not possible, we observe
that the values of p that minimize τ∗ tend to increase with N . The expression in
(3.25) also reveals that for fixed p, τ∗ is a decreasing function of q for N = 2. Fig. 3
shows that τ∗ decreases with q also for N > 2. Larger values of q diminish the time a
T cell spends engaged with a nAPC while having no effect on the time spent with its
cAPC, so that larger q should lead to lower τ∗, as observed. Fig. 3 also shows that τ∗
increases with N . In this case, increasing the length N of the cAPC arm, results in
the T cell requiring a longer time to reach the final activation stage.

Finally, we expect τ∗ to decrease as f or µ0 is increased. Increasing f increases the
likelihood that the T cell encounters its cAPC, shortening the time to full activation.
Since increasing µ0 hastens the degradation process, the conditional mean activation
time must be shorter to avoid degradation. Both of these trends in τ∗ are observed
for all p, q,N values surveyed.

3.3. Extreme first activation time statistics. The results in section 3.2 for
the activation flux J∗, activation probability P∗, and conditional mean activation
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time τ∗ hold for a single T cell released at x = 0 at t = 0. However, if the process is
initialized with a collection of m T cells at the origin, one may wish to evaluate the
probability and first activation time of any T cell. Provided m is not too large as to
significantly deplete the pool of free APCs, the T cells can be considered independent
particles. For any specific T cell, we compute the conditional survival probability
Sc(t), defined as the probability the T cell has not activated up to time t, given

that it will activate. We do so by explicitly solving
dSc(t)

dt
= −J∗,c(t) with the initial

condition Sc(0) = 1 so that Sc(t) = 1−
∫ t

0
J∗,c(t

′)dt′. From this quantity, we construct
moments of the first activation time of any T cell. First, we define the probability
that the minimum activation time Tmin among all m initial T cells occurs after time t

(3.27) P(Tmin > t) := Smin(t) =
[
(1− P∗(1− Sc(t))

]m
The term P∗(1−Sc(t)) represents the probability that a T cell has activated, and has
done so by time t. Smin(t) is the overall survival function, the probability that none
of the m available T cells has been activated up to time t, regardless of whether they
will eventually be degraded, exit the T cell zone, or activate.

We now subtract the probability that none of the m T cells activate from (3.27)
the probability that none of the m T cells activate, due to degradation or egress from
the T cell zone, given by (1− P∗)

m.
The difference is the probability that Tmin > t and at least one T cell activates.

This difference is also the probability that Tmin > t conditioned on at least one T cell

activating, times the probability P
(m)
∗ that at least one T cell activates. Since T cells

are independent, P
(m)
∗ = 1− (1− P∗)

m and

(3.28)

P(Tmin < t |Tmin < ∞) := Smin(t|Tmin < ∞)

=

[
(1− P∗(1− Sc(t))

]m − (1− P∗)
m

1− (1− P∗)m
.

We now define the conditional first activation time distribution wmin(t|Tmin < ∞) =

−dSmin(t|Tmin<∞)
dt and use it to compute moments of the first activation time

(3.29) E
[
Th
min

]
=

∫ ∞

0

thwmin(t |Tmin < ∞) dt,

and the corresponding standard deviation

(3.30) σmin :=
√
E
[
(Tmin)2

]
− E

[
Tmin

]
.

In Fig. 4 we plot the conditional mean τmin := E
[
Tmin

]
and the standard deviation

σmin. As expected, E
[
Tmin

]
decreases with the number of searcher T cells m. The

corresponding standard deviation, σmin, also decreases with m and remains compara-
ble in magnitude to the mean. This relationship suggests that a Poisson distribution
can reasonably approximate the conditional first activation time distribution.

3.4. Robin (partially reflecting) boundary conditions. We now explore
how P∗, τ∗ vary under Robin boundary conditions, for finite κ in (3.9). Since in this
case it is not possible to reduce (3.8) to a series of coupled ODEs, we must retain the
inherent spatial dependence. Thus, we first write the formal time-dependent solution
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Fig. 4: Multi-stage, Neumann boundary conditions. The conditional mean
and standard deviation of the minimum activation time of m T cells in the multi-
stage model (3.8) for N = 2 (blue-circle), N = 4 (orange-square), and N = 6 (green-
diamond). We set f = 5× 10−3, k0,1 = 1, µ0 = 1/240, p = q = 1. The values of τmin

and σmin are computed from (3.29) for h = 1, and (3.30), respectively. All curves are
monotonically decreasing.

to (3.8b) and (3.8c). In Appendix D, we show that the kinetic matrices Mn and Mc

are diagonalizable and can be written as

(3.31) Mn = Vn Λn V
−1
n , Mc = Vc Λc V

−1
c ,

where Vn and Vc are N × N matrices whose columns consist of the eigenvectors
of Mn and Mc, respectively. The diagonal matrices Λn = diag(λ1

n, λ
2
n, . . . , λ

N
n ) and

Λc = diag(λ1
c , λ

2
c , . . . , λ

N
c ) consist of the corresponding eigenvalues of Mn and Mc

respectively. Using the decompositions in (3.31) the solution components of (3.8b)
and (3.8c) can be written as

(3.32)

ni(x, t) = k0,1

N∑
j=1

[Vn]i,j [V
−1
n ]j,1

∫ t

0

eλ
j
n(t−t′) ρ0(x, t

′) dt′ , 1 ≤ i ≤ N ,

ci(x, t) = fk0,1

N∑
j=1

[Vc]i,j [V
−1
c ]j,1

∫ t

0

eλ
j
c(t−t′) ρ0(x, t

′) dt′ , 1 ≤ i ≤ N .

By substituting the explicit expressions of n1 and c1 from (3.32) into (3.8a), we obtain
the integro-differential equation (IDE)

(3.33) ∂tρ0 = D∆ρ0 − [µ0 + (1 + f)k0,1] ρ0 +

∫ t

0

K(t− t′) ρ0(x, t
′) dt′ ,

where the memory kernel K(t) is defined by

(3.34) K(t) = k0,1

N∑
j=1

[Vn]1,j [V
−1
n ]j,1 e

λj
nt + fk0,1

N∑
j=1

[Vc]1,j [V
−1
c ]j,1 e

λj
ct .

We now use separation of variables as illustrated in Appendix B to derive ρ0(x, t)
under the Robin boundary condition in (3.9). This quantity can then be used to
determine ni(x, t) and ci(x, t) for i = 1, 2, . . . , N from (3.32), finally calculating P∗
and τ∗ via (3.10) to (3.13).
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Results are shown in Fig. 5 where the activation probability P∗ is plotted as a
function of p for various values of q,N, κ,D. Trends that were observed under the
perfectly reflecting, Neumann boundary conditions in Fig. 2 and that correspond to
κ = 0, are the same. For example, P∗ remains an increasing function of p and a
decreasing function of q and N when all other quantities are kept fixed, mirroring the
results in Fig. 2. The main difference is that under Robin boundary conditions there
is an extra dependence on κ and D. First, we note that increasing κ should decrease
the activation probability P∗ since a larger κ implies a higher likelihood that the T cell
leaves the T cell zone before activation by its cAPC. We expect that increasing the
diffusion constant D should also decrease P∗ since larger D is equivalent to favoring
transport over binding to any APC. This, in turn, would imply that the T cell is more
likely to be exposed to degradation, since the latter is only experienced in the free
form and not when the T cell is bound to any APC. That P∗ should decrease with D
can be also be easily verified from the explicit solution for P∗ in (B.15) of Appendix B.
Fig. 5 confirms that P∗ decreases as κ and D increase. As in Fig. 2, increasing the
degradation rate µ0 decreases P∗ under Robin boundary conditions as well.

Since increasing κ or D leads to faster escape, we expect the conditional mean
activation time τ∗ to decrease with κ and D. This dependence is shown in Fig. 6
which plots τ∗ as a function of p for various values of q,N, κ,D. As in Fig. 3, we
observe that τ∗ remains a non-monotonic function of p, a decreasing function of q,
and an increasing function of N when all other quantities are kept fixed.

4. Kinetic proofreading. In the previous section, we assumed that the cAPC
and nAPC multi-stage arms are similar in that reactions proceed forward (with rate
p) or backward (with rate q) within both. At the end of the N -state chain the T cell
either binds irreversibly to its cAPC (activates), or reaches an nAPC dead-end, as
shown in (3.1). Here, we modify the previous scheme in two ways. First, we allow for T
cells to completely disengage from any of the intermediate steps along any APC chain
to return to the free state. Thus, when modeling interactions between T cells and
cAPCs, we replace the incremental backward step from Ci to Ci−1 with a return step
from Ci to T0. A similar modification is applied for steps along nAPC arm. Second,
we assume that T cells can irreversibly bind to nAPCs at the end of the nAPC arm
as well, so that both end-states along the cAPC and nAPC arms are absorbing. This
is a canonical reaction scheme that supports “kinetic proofreading” and is illustrated
in (4.1) and (4.2). Kinetic proofreading (KPR) was first introduced in the 1970s
to offer a paradigm that could explain low error rates in DNA replication [22, 42].
Later, it was applied to study the high specificity of T cell receptors in recognizing
cAPCs [31, 32, 36]. Here, we invoke the KPR mechanism to evaluate how the T cell
enhances its selection of the cAPC over nAPCs.

(4.1) T0 N1 N2 · · · NN−1 NN
Kn

K1,0

P P

K1,0

P P

K1,0

(4.2) T0 C1 C2 · · · CN−1 CN
fKn

λK1,0

P P

λK1,0

P P

λK1,0
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Fig. 5: Multi-stage, Robin boundary conditions. The activation probability
P∗ as a function of the forward binding rate p in the multi-stage model (3.8) for
N = 2, 4, 6 (from lighter to darker shades) and Robin coefficient κ = 1 (solid) and
κ → ∞ (dotted). We set f = 5 × 10−3, k0,1 = 1, µ0 = 1/240, and D = 1.8 × 10−4

(top row, blue), 1.8×10−3 (middle row, green), 1.8×10−2 (bottom row, orange), and
q = 1, 4, 10 (from left to right). The values of P∗ are computed from (3.11), (3.10),
(3.32). All curves are monotonically increasing.

In dimensional units, the rate at which the T cell in any state Ni disassembles and
“resets” to the free state is denoted K1,0, along the nAPC arm. The corresponding
disassembly or reseting rates are λK1,0 along the cAPC arm. We assume that cAPC
complexes are modestly more stable than nAPC complexes so that their disassembly
rates are slower, λ < 1. Because nAPCs are more abundant than cAPCs (f ≪ 1), T
cells are kinetically more likely to bind to nAPCs. We utilize (3.5) to nondimension-
alize the return rates K0,1 and λK0,1 to 1 and λ, respectively. The non-dimensional
kinetics of the two-arm resetting model depicted in (4.1) and (4.2) are described by

∂tρ0(x, t) = D∆ρ0(x, t)− [µ0 + (1 + f)k0,1] ρ0 +

N−1∑
i=1

ni + λ

N−1∑
i=1

ci ,(4.3a)

∂t n(x, t) = Bnn+ k0,1ρ0 e1 ,(4.3b)

∂t c(x, t) = Bc c+ fk0,1ρ0 e1 .(4.3c)

The N ×N bidiagonal matrices Bn and Bc describe interactions between T cells and
APCs and incorporate disassembly and adsorption at the last stage of the N -state
chains. The non-dimensional entries of Bn are
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Fig. 6: Multi-stage, Robin boundary conditions. The conditional mean activa-
tion time τ∗ as a function of the forward binding rate p in the multi-stage model (3.8)
for N = 2, 4, 6 (from lighter to darker shades) and Robin coefficient κ = 1 (solid) and
κ → ∞ (dotted). We set f = 5 × 10−3, k0,1 = 1, µ0 = 1/240, and D = 1.8 × 10−4

(top row, blue), 1.8 × 10−3 (middle row, green), 1.8 × 10−2 (bottom row, orange),
and q = 1, 4, 10 (from left to right). The values of τ∗ are computed from (3.12) for
h = 1, (3.10), (3.32). Depending on parameter choices, τ∗ can exhibit non-monotonic
behavior.

(4.4) [Bn]i,i =

−(1 + p) 1 ≤ i ≤ N − 1,

0 i = N,
[Bn]i,i−1 = p 2 ≤ i ≤ N − 1,

whereas those pertaining to Bc are

(4.5) [Bc]i,i =

−(λ+ p) 1 ≤ i ≤ N − 1,

0 i = N ,
[Bc]i,i−1 = p 2 ≤ i ≤ N − 1.

Finally, we employ the previous initial and boundary conditions, Eqs. (3.4) and (3.9),
respectively. We now define P∗,n and P∗,c as the probabilities that a T cell is “im-
properly” activated by an nAPC and “properly” activated by its cAPC, respectively.
To evaluate these quantities, we first introduce the two fluxes into nAPC- and cAPC-
induced activation states
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Jn(t) :=

∫
Ω

∂tnN (x, t)dx =

∫
Ω

p nN−1(x, t)dx ,(4.6a)

Jc(t) :=

∫
Ω

∂tcN (x, t)dx =

∫
Ω

p cN−1(x, t)dx .(4.6b)

The probabilities P∗,n and P∗,c are given by

(4.7) P∗,n :=

∫ ∞

0

Jn(t)dt, P∗,c :=

∫ ∞

0

Jc(t)dt .

leading to the two conditional fluxes into the activation states

(4.8)

J∗,n(t) :=
Jn(t)

P∗,n
=

1

P∗,n

∫
Ω

p nN−1(x, t)dx,

J∗,c(t) :=
Jc(t)

P∗,c
=

1

P∗,c

∫
Ω

p cN−1(x, t)dx.

The associated moments of the conditional first activation time to a nAPC, E
[
Th
∗,n

]
,

and to a cAPC, E
[
Th
∗,c

]
, respectively, are

(4.9) E
[
Th
∗,n

]
=

∫ ∞

0

thJ∗,n(t) dt, E
[
Th
∗,c

]
=

∫ ∞

0

thJ∗,c(t) dt,

and the conditional mean activation times are obtained by setting h = 1 in (4.9),

(4.10) τ∗,n := E
[
T∗,n

]
, τ∗,c := E

[
T∗,c

]
.

Finally, we introduce the cAPC activation specificity Fc, defined as the activation
likelihood of a T cell to a cAPC relative to the total activation likelihood

(4.11) Fc =
P∗,c

P∗,n + P∗,c
.

Note that Fc = P∗,c if Neumann boundary conditions are applied and µ0 = 0 since
in this case P∗,n + P∗,c = 1. As Fc is the probability of activation by a cAPC, given
activation, we expect it to be independent of the degradation rate µ0.

4.1. Neumann (perfectly reflecting) boundary conditions. Predictions of
the KPR mechanism under perfectly reflecting, Neumann boundary conditions can
be derived by setting κ = 0 in (3.3). The T cell can either be activated by its cAPC,
by an nAPC, or be degraded within the T cell zone. Upon integrating (4.3) over
Ω = B3

1(0), akin to the procedure used to derive (3.16), we obtain

(4.12)
dy(t)

dt
= By(t), y(t) = (ρ0(t), n(t), c(t))

T
,

where ρ0,n, c, and their initial conditions are defined in (3.16). The matrix B in
(4.12) is given by

(4.13) B =

− [µ0 + (1 + f)k0,1] (1− eN )T λ(1− eN )T

k0,1 e1 Bn O

fk0,1 e1 O Bc


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where O is the N ×N zero matrix, and Bn and Bc are the N ×N matrices defined
in (4.4) and (4.5), respectively. The N -dimensional vectors 1, e1 and eN are defined
as 1 = (1, 1, · · · , 1)T , e1 = (1, 0, · · · , 0)T and eN = (0, · · · , 0, 1)T ∈ RN , respectively.
We now eliminate the equations for n̄N and c̄N in the ODE system (4.12); upon taking
the Laplace transform of the truncated set of equations, we find

(4.14) sy′(s)− y′(t = 0) = B′y′(s), y′(s) = (ρ0(s), n
′(s), c′(s))

T
,

where B′ is the (2N − 1)× (2N − 1) matrix constructed by eliminating the rows and
columns of B corresponding to n̄N and c̄N , respectively. These are the (N + 1)th

and (2N + 1)th rows and columns of B. Similarly, n′(s) and c′(s) are the Laplace
transforms of n(t) and c(t) without the n̄N , c̄N entries. Note, that since states cN and
nN are absorbing, the subsystem in (4.14) is complete. By evaluating the Laplace
transforms we find

P∗,n =
k0,1

(
p

1+p

)N−1

µ0 + k0,1

(
p

1+p

)N−1

+ fk0,1

(
p

λ+p

)N−1
,(4.15a)

P∗,c =
fk0,1

(
p

λ+p

)N−1

µ0 + k0,1

(
p

1+p

)N−1

+ fk0,1

(
p

λ+p

)N−1
,(4.15b)

and

(4.16) τ∗,n =
N − 1

1 + p
+ T∗, τ∗,c =

N − 1

λ+ p
+ T∗,

where

T∗ =

1 + k0,1

[
1−

(
p

1+p

)N−1 (
1 + N−1

1+p

)]
+ fk0,1

[
1
λ −

(
p

λ+p

)N−1 (
1
λ + N−1

λ+p

)]
µ0 + k0,1

(
p

1+p

)N−1

+ fk0,1

(
p

λ+p

)N−1
.

The likelihood for a T cell to be degraded is 1− P∗,c − P∗,n and, as can be seen from
(4.15a) and (4.15b), is zero if µ0 = 0. Upon substituting (4.15) into (4.11), it can be
verified that the activation specificity is

(4.17) Fc =
f

f +
(

λ+p
1+p

)N−1
.

As expected, Fc does not depend on the degradation rate µ0. After the initial binding,
in the limit λ → 1, the dynamics along the two APC chains are equivalent and
Fc → f/(f + 1) ≪ 1 is the ratio of the initial binding rate of the T cell on the cAPC
arm, compared to the total initial binding rate on either APC. Fc is a decreasing
function of λ, which can be expected since decreasing λ hinders the ability of T cells
to detach from the cAPC chain, increasing the likelihood of activation by the cAPC.
Interestingly, for fixed λ < 1, Fc is a decreasing function of p; lower values of p increase
the time that a T cell is bound to both APC chains, however, since λ < 1, detachment
is more likely along the nAPC chain than along the cAPC chain, resulting in a higher
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likelihood of activation by the cAPC. Note that under the assumption λ > 1, the
opposite would hold, and Fc would be an increasing function of p. Finally, as expected
Fc is an increasing function of f and an increasing function of N (if λ < 1). These
trends are shown in Figs. 7 to 10. To achieve high specificity, i.e. to obtain Fc → 1,
one must utilize small values of λ, p and/or high values of f ,N .

Fig. 7: Kinetic proofreading, Neumann boundary conditions. The activation
specificity Fc, activation probability P∗,c, conditional mean activation time τ∗,c, as
functions of λ for N = 6 (blue-solid), 9 (orange-dashed) and 12 (green-dotted) in the
KPR model (4.3). We set f = 10−2, k0,1 = 1, p = 0.1, µ0 = 1/240. While Fc and P∗,c
are decreasing functions of λ, τ∗,c shows non-monotonic behavior. The largest value
of Fc is at λ = 0 and, for the given parameters, is Fc = f/[f + ( p

1+p )
N−1] ≈ 1. The

values of Fc, P∗,c, τ∗,c are computed from (4.17), (4.15b), (4.16), respectively.

Although µ0 does not affect Fc, it does reduce P∗,c, as shown in (4.15b). Upon
differentiating the latter with respect to p (or N) and keeping all other quantities
fixed, we find that P∗,c displays maxima at p = pmax and N = Nmax as follows

pmax =
1[

k0,1
µ0

(
1

λ
− 1

)]1/N
− 1

, if λ <
k0,1

k0,1 + µ0
,(4.18)

Nmax = 1 +

 ln

(
k0,1
µ0

· ln(1 + p)− ln(λ+ p)

ln(λ+ p)− ln p

)
ln(1 + p)− ln p

 ,(4.19)

if λ < −p+ p
µ0

k0,1+µ0 (1 + p)
k0,1

k0,1+µ0 .

Here, ⌊x⌋ represents the floor function of x. Similarly, it can be verified that P∗,c
decreases with λ, µ0/k0,1 and increases with f . The activation probability P∗,c is
plotted as a function of λ, f, p,N in Figs. 7 to 10. Fig. 7 reveals that the conditional
mean activation time τ∗,c has a maximum in λ. While it is not feasible to determine
analytical expressions for the value of λ that maximizes τ∗,c from (4.16), we note that
for small λ, increasing λ is equivalent to a higher likelihood of T cells detaching from
the cAPC chain, extending the time required for activation. However, as λ continues
to increase, competition from the nAPC chain grows and T cells must bind to the
cAPC more rapidly, leading to decreasing values of τ∗,c. Finally, Figs. 8 to 10 show
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Fig. 8: Kinetic proofreading, Neumann boundary conditions. The activation
specificity Fc, activation probability P∗,c, and conditional mean activation time τ∗,c,
as functions of f for λ = 0.2 (blue-solid), λ = 0.4 (orange-dashed) and λ = 0.6 (green-
dotted) in the KPR model (4.3). We set N = 6, k0,1 = 1, p = 0.1, µ0 = 1/240. The
values of Fc, P∗,c, τ∗,c are computed from (4.17), (4.15b), (4.16), respectively. All
curves are monotonically increasing.

Fig. 9: Kinetic proofreading, Neumann boundary conditions. The activation
specificity Fc, activation probability P∗,c, and conditional mean activation time τ∗,c
as functions of p for λ = 0.2 (blue-solid), 0.4 (orange-dashed) and 0.6 (green-dotted)
in the KPR model (4.3). We set N = 6, f = 10−2, k0,1 = 1, µ0 = 1/240. In panel
(a), Fc decreases with p; its largest value is at p = 0 and is Fc = f/[f + λN−1]. The
maximum of P∗,c in panel (b) is at p = pmax (4.18) and is represented by filled circles.
In panel (c), τ∗,c exhibits similar trends as a function of p for all three λ values,
leading to nearly indistinguishable curves. The values of Fc, P∗,c, τ∗,c are computed
from (4.17), (4.15b), (4.16), respectively.

that τ∗,c is a monotonic function of f , N (increasing) and of p (decreasing). We can
also compare τ∗,c and τ∗,n using (4.16) to write

τ∗,c − τ∗,n =
(1− λ)(N − 1)

(λ+ p)(1 + p)
.(4.20)

For λ < 1, τ∗,c is larger than τ∗,n and vice-versa for λ < 1. Interestingly, τ∗,c = τ∗,n
for λ = 1 regardless of the value of f . Although the likelihood that a T cell initially
binds to a cAPC is lower than that of initially binding to a nAPC, once it has bound,
if the return rates along both arms are equal (λ = 1), then, on average, the time
it takes for a T cell to reach the final state of either the cAPC or nAPC arm, will
be the same. The difference in (4.20) varies linearly with N and is appreciable only
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Fig. 10: Kinetic proofreading, Neumann boundary condition. The activation
specificity Fc, activation probability P∗,c, and conditional mean activation time τ∗,c as
functions of N ≥ 2 for λ = 0.2 (blue-diamond markers), 0.4 (orange-square markers)
and 0.6 (green-circular markers) in the KPR model (4.3). We set f = 10−2, k0,1 = 1,
p = 0.1, µ0 = 1/240. In panel (a), Fc increases with N and approaches its limiting
value of one as N → ∞. In panel (b), P∗,c attains its maximum at Nmax = 3 as per
(4.19) for all three values of λ. In panel (c), τ∗,c exhibits similar trends as a function
of p for all three λ values, leading to nearly indistinguishable curves. The values of
Fc, P∗,c, τ∗,c are computed from (4.17), (4.15b), (4.16), respectively.

λ p µ0 k0,1 f N

Fc (4.17) decrease decrease − − increase increase

P∗,c (4.15b) decrease max at p = pmax decrease increase increase max at N = Nmax

P∗,n (4.15a) increase increase decrease increase decrease decrease

τ∗,c (4.16) decrease decrease increase

τ∗,n (4.16) decrease decrease increase

Table 1: Trends of Fc, P∗,c, P∗,n τ∗,c and τ∗,n as functions of λ, p, µ0, k0,1, f , and N .
Note that Fc is independent of µ0, k0,1 and that P∗,c and P∗,n depend only on the ratio
µ0/k0,1. Universal trends for τ∗,c and τ∗,n can only be determined for p, µ0, N . Both
quantities are decreasing functions of p, µ0 and increasing functions of N if all other
parameters are kept fixed. Whether τ∗,c and τ∗,n increase or decrease as functions of
λ, k0,1, f depends on parameter choices.

for large enough N . How Fc, P∗,n, P∗,c depend on relevant parameters while the
others are kept fixed is summarized in Table 1. The corresponding trends for τ∗,n and
τ∗,c will depend on specific parameter choices when these quantities are considered
as functions of λ, k0,1 or f ; both τ∗,n and τ∗,c will instead decrease with µ0, p and
increase with N , regardless of other parameters.

4.2. Robin (partially reflecting) boundary conditions. We now analyze
the KPR model under partially reflecting boundary conditions, following the same
approach used in section 3.4. Specifically, we transform the PDE system (4.3) into an
IDE for ρ0(x, t) which, we will show, has the same form as (3.33) and where the details
of the KPR-dynamics are embedded in a new kernel KKP(t). We begin by noting that
contrary to the kinetic matrices Mc and Mn used in section 3.4, the kinetic matrices
Bc and Bn in (4.4) are not diagonalizable. We thus apply the Laplace transform to
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each equation in (4.3b) and (4.3c) to obtain

ni(x, s) =
k0,1 p

i−1

(s+ 1 + p)i
ρ0(x, s) , for 1 ≤ i ≤ N − 1 ,(4.21a)

ci(x, s) =
fk0,1 p

i−1

(s+ λ+ p)i
ρ0(x, s) , for 1 ≤ i ≤ N − 1.(4.21b)

Upon adding all expressions for ni(x, s) in (4.21a) and ci(x, s) in (4.21b) we find

(4.22)

N−1∑
i=1

ni(x, s) =
k0,1
s+ 1

[
1−

(
p

s+ 1 + p

)N−1
]
ρ0(x, s) ,

N−1∑
i=1

ci(x, s) =
fk0,1
s+ λ

[
1−

(
p

s+ λ+ p

)N−1
]
ρ0(x, s) .

The inverse Laplace transform (4.22) can be written as

(4.23)

N−1∑
i=1

ni(x, t) =

∫ t

0

Kn(t− t′) ρ0(x, t
′) dt′,

N−1∑
i=1

ci(x, t) =

∫ t

0

Kc(t− t′) ρ0(x, t
′) dt′,

where the kernels Kn(t) and Kc(t) are the inverse Laplace transforms of
(4.24)

Kn(s) =
k0,1
s+ 1

[
1−

(
p

s+ 1 + p

)N−1
]
, Kc(s) =

λfk0,1
s+ λ

[
1−

(
p

s+ λ+ p

)N−1
]
,

respectively. Eqs. 4.24 define the KPR memory kernel KKPR(t)

(4.25) KKPR(t) = Kn(t) +Kc(t) .

Finally, by substituting (4.23) into (4.3), we re-obtain the IDE (3.33) with the KPR
memory kernel (4.25), K(t) → KKPR(t). Using the methods described in Appendix B
we derive the corresponding ρ0(x, t), and obtain cN−1(x, t) using (4.21b). Expres-
sions (4.6)–(4.10) allow us to compute P∗,c and τ∗,c. Notably, the resulting Fc is
independent of κ and still given by (4.17). To show this, we integrate (4.21a) and
(4.21b) spatially over Ω for i = N − 1, and evaluate the resulting expressions at s = 0
to find

(4.26) nN−1(s = 0) =
k0,1 p

N−2 ρ0(s = 0)

(1 + p)N−1
, cN−1(s = 0) =

fk0,1 p
N−2 ρ0(s = 0)

(λ+ p)N−1
.

Substituting these expressions into (4.7) leads to

(4.27) P∗,n = k0,1 ρ0(s = 0)

(
p

1 + p

)N−1

, P∗,c = fk0,1 ρ0(s = 0)

(
p

λ+ p

)N−1

.

From the definition of Fc given in (4.11) it follows that (4.17) still holds and that
Fc is independent of ρ0(s = 0) and of κ. Similar to the results for the multi-stage
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Fig. 11: Kinetic proofreading, Robin boundary conditions. The activation
probability P∗,c and the conditional mean activation time τ∗,c as functions of the
Robin coefficient κ in the KPR model (4.3) with λ = 0.2 (blue-solid), 0.4 (orange-
dashed), and 0.6 (green-dotted). We set N = 6, µ0 = 1/240, f = 10−2, k0,1 = 1, D =
1.8 × 10−3. The values of P∗,c, τ∗,c are computed from (4.15b), (4.16), respectively.
The activation specificity Fc in (4.17) is independent of κ. All curves are monotonically
decreasing.

two-arm model in section 3, P∗,n, P∗,c, and τ∗,c decrease as the Robin coefficient κ
increases. Larger values of κ imply a higher likelihood that the T cell exits the T
cell zone, resulting in decreases in both P∗,n and P∗,c. Furthermore, larger values of
κ require a T cell to reach its cAPC in a shorter time, decreasing τ∗,c. These trends
are confirmed in Fig. 11 where P∗,c and τ∗,c are observed to both decrease with κ, for
various values of λ. Although P∗,c varies by about an order of magnitude across the
different choices of λ in Fig. 11, the corresponding τ∗,c are of similar scale.

5. Discussion and Conclusions. We constructed and analyzed a diffusion-
reaction model to describe T cells diffusing while seeking for their cognate APC target
among a sea of noncognate APCs. The search process is delayed by interactions with
nAPCs, and hindered by T cell death and escape from the T cell zone compartment.
Our results show that when T cells and APCs bind through a sequence of N steps, the
activation probability P∗ increases with the forward-to-backward ratio p/q. The bias
toward forward transitions along the APC chains decreases the likelihood of degra-
dation while in the free state, and increases the likelihood that the final, activation
state N is reached.

How various parameters affect the conditional mean activation time τ∗ is more
subtle. Within certain parameter regimes, increasing p may prolong interactions be-
tween T cells and nAPCs, thereby increasing τ∗. While P∗ consistently decreases with
the number of states N , τ∗ always increases with N . As can be expected, a larger
N reduces the likelihood of activation but extends the time required for it to occur.
Diffusion does not directly promote activation but facilitates transport towards the
boundary, increasing the likelihood of escape if the boundary is not fully reflecting.
As a result, both P∗ and τ∗ decrease with increasing D.

We also considered a variant T cell activation scheme in which reaching the end
of either the cAPC or nAPC interaction chain can activate the T cell, but only in the
first case in a successful manner. In this scheme, at each intermediate state along both
the nAPC and cAPC arms the T cell can reset back to the free state. This kinetic
proofreading scheme biases the system toward successful cAPC activation, even when
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the cAPC resetting rate is only modestly lower than that of the nAPCs.
Mathematically, we studied an integro-differential equation with a memory kernel

derived from the multi-stage or KPR kinetics. This IDE reduces to an ODE under
Neumann boundary conditions. More general kernels could be incorporated, using
simplified or alternative kinetics that account for differential lengths of the cAPC and
nAPC arms, heterogeneous forward and backward rates, and distinct nAPCs. We also
assumed that APC are uniformly distributed within the T cell zone; this assumption
could be modified to allow for heterogeneity in the spatial distribution of APCs within
the T cell zone. Couplings between lymph nodes and the vascular network could also
be included, to study T cells circulating through the lymphatic system.
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Appendix A. Parameter estimation and physical considerations. The
size of a lymph node gland depends on where in the body it is located; typically it
is oval shaped. Under healthy conditions, the long axis ranges between 0.2 to 2.5 cm
with an estimated average of 1.5 cm, whereas the typical short axis extends up to 1
cm [13, 24, 34, 43, 49, 55]. The size of the T cell zone, where most of the interactions
between T cells and APCs occur, depends on the lymph node anatomy, and whether
it is activated or not, but in general the it occupies a significant portion of the interior
of a lymph node. In this paper, we use the two terms interchangeably and a spherical
domain for the T cell zone. We set its radius to a = 0.1 cm. This estimate is taken by
assuming a typical short axis length of 0.4 cm (corresponding to a radius of 0.2cm)
and by assuming that the radius of the T cell zone is roughly half that of short radius.

Näıve T cells measure between 5-10 µm in diameter, whereas the size of APCs
varies: B cells are in the same range as T cells, mature dendritic cells have a diameter
of 10-15 µm and for macrophages the range is 20-50 µm. A single lymph node contains
between 106 to 107 T cells; the abundance increases upon activation when the size of
the T cells can also expand. The number of APCs residing in a lymph node depends

https://github.com/kawahtony/t_cell_activation
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on several factors, including the specific type of antigen, the lymph node type, and
whether an infection is under way.

To estimate the dimensional parameters that appear in our model we refer to
experimental findings from previous literature. Several imaging studies estimated
the diffusivity of T cells to be about D = 60µm2min−1 [12, 39]. On average it is
estimated that T cells remain in contact with nAPCs for about 3 minutes before
dissociating [4, 39] so we set K1,0 = 1/3min−1. The mean residence time in the
lymph node for a T cell is between 12 and 24 hours [18, 27, 40, 53]; thus, we set the
exit rate from a lymph node M0 = 1/720min−1. Finally, it is estimated that during
a 12 hour residence time in a lymph node, a T cell makes about 160 interactions
with nAPCs [18]. Hence, the average time separation between each T cell – nAPC
interaction is about 4 and a half minutes. Since we assume that the time a T cell
spends bound to a nAPC is 3 minutes, the time spent in the free searching state is
roughly one and a half minutes.

Appendix B. Series solution for integro-differential equations. We solve
the IDE (3.33) for a general kernel K(t). Due to spherical symmetry, we can omit the
angular variables and write ρ0(x, t) = ρ0(r, t) so that (3.33), the boundary condition
(3.9), and the initial condition (3.4) become

∂tρ0 =
D

r2
∂r

(
r2∂rρ0

)
− [µ0 + (1 + f)k0,1] ρ0 +

∫ t

0

K(t− t′) ρ0(r, t
′) dt′ ,(B.1a)

∂rρ0 + κρ0 = 0 at r = 1 , ρ0(r, 0) =
δ(r)

4πr2
.(B.1b)

To solve (B.1a) we separate variables by setting ρ0(r, t) = ϕ(r)T (t) resulting in two
decoupled problems

d2ϕ

dr2
+

2

r

dϕ

dr
= −ν2

D
ϕ ,(B.2a)

dT

dt
+
(
µ0 + (1 + f)k0,1 + ν2

)
T =

∫ T

0

K(t− s)T (s) ds ,(B.2b)

where ν is arbitrary. The solution to the spatial equation (B.2a) is

(B.3) ϕ(r) =
1

r
sin

(
νr√
D

)
,

Applying this form to the boundary condition in (B.1b) constrains ν to be any of the
roots of the transcendental equation

(B.4) (κ− 1) sin

(
ν√
D

)
+

ν√
D

cos

(
ν√
D

)
= 0, ν > 0.

Eq. (B.4) can be rewritten as

(B.5) (κ− 1) sinα+ α cosα = 0, where α =:
ν√
D
, α > 0.

We enumerate the αn roots of (B.5) in increasing order for n ≥ 1. Once a specific
root αn is selected, the related time dependent solution can be determined by setting
ν =

√
Dαn in the temporal equation (B.2b). This leads to a series of solutions
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ϕn(r)Tn(t) associated to the specific root α = αn. To proceed, and for simplicity, we
set N = 1 so that n1 and c1 can be expressed in terms of ρ0 through (3.8b) and (3.8c)
as

n1(r, t) =

∫ t

0

k0,1 e
−(t−t′) ρ0(r, t

′) dt′,(B.6a)

c1(r, t) =

∫ t

0

fk0,1 ρ0(r, t
′) dt′.(B.6b)

By substituting (B.6a) into (3.8a) the memory kernel K(t) can be explicitly written
for N = 1 as K(t) ≡ k0,1 e

−t. To find Tn(t), we now take the Laplace transform L of
(B.2b) for N = 1 to find

(B.7) L[Tn](s) =
s+ 1

(s+ µ0 + (1 + f)k0,1 +Dα2
n)(s+ 1)− k0,1

Where we used the fact that the Laplace transform of a convolution of two functions is
the product of the their Laplace transforms. The RHS of (B.7) is a rational function
of the Laplace frequency variable s. Evaluating its inverse Laplace transform yields

(B.8) Tn(t) =
1

s+n − s−n

[
(1 + s+n )e

s+n t − (1 + s−n )e
s−n t

]
where s±n are the (negative) roots of

(B.9) s2 + (µ0 + (1 + f)k0,1 +Dα2
n + 1)s+ (µ0 + fk0,1 +Dα2

n) = 0.

Upon rearranging terms we can write

(B.10) Tn(t) = e−hnt

[
1− hn

Hn
sinh(Hnt) + cosh(Hnt)

]
where hn =

1

2
(µ0 + (1+ f)k0,1 +Dα2

n +1) and Hn =
1

2

[
µ0 + (1+ f)k0,1 +Dα2

n +1)2

−4(µ0+ fk0,1+Dα2
n)
]1/2

. The solution in (B.10) satisfies Tn(t = 0) = 1. The overall
solution can thus be written as a linear combination of products ϕn(r)Tn(t) where
the amplitudes An are determined by the spatial initial condition. We thus have

(B.11) ρ0(r, t) =

∞∑
n=1

Anϕn(r)Tn(t), where

∞∑
n=1

Anϕn(r) =
δ(r)

4πr2
.

The ϕn(r) functions represent an orthogonal basis for r ∈ [0, 1] since, given n ̸= m∫ 1

0

ϕn(r)ϕm(r) 4πr2 dr = 4π

∫ 1

0

sin (αnr) sin (αmr) dr ,(B.12a)

= 4π
αm cosαm sinαn − αn cosαn sinαm

α2
n − α2

m

= 0(B.12b)

where the last equality in (B.12b) follows from both αn, αm satisfying the boundary
condition in (B.5). For n ̸= 0

(B.13) g2n =:

∫ 1

0

ϕ2
n(r)4πr

2dr = 4π

∫ 1

0

sin(αnr)
2dr =

π [2αn − sin(2αn)]

αn
.
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Since limr→0 ϕn(r) = αn we can write

(B.14) An =
αn

g2n
=

1

π

α2
n

[2αn − sin(2αn)]
for n ̸= 0

so that

(B.15) ρ0(r, t) =
1

π

∞∑
n=1

α2
n sin(αnr) e

−hnt

(2αn − sin(2αn)) r

[
1− hn

Hn
sinh(Hnt) + cosh(Hnt)

]
.

It is straightforward to verify that limt→∞ ρ0(r, t) = 0 for all r values. The expres-
sion in (B.15) can be inserted into Eqs. (B.6a), (B.6b) to find n1(r, t) and c1(r, t)
respectively, leading to the asymptotic limits limt→∞ ρ0(r, t) = limt→∞ n1(r, t) = 0
and

(B.16) lim
t→∞

c1(r, t) =
1

π

∞∑
n=1

α2
n sin(αnr)[

2αn − sin(2αn)
]
r

[
fk0,1

µ0 + fk0,1 +Dα2
n

]
We can calculate the activation probability P∗ under the Robin boundary condition
by evaluating the spatial integral in (B.16)

P∗ = lim
t→∞

∫ 1

0

c1(r, t) 4πr
2dr.(B.17)

Upon inserting (B.16) into (B.17) and evaluating the integral we find

P∗ = 4κ

∞∑
n=1

sinαn

2αn − sin(2αn)

[
fk0,1

µ0 + fk0,1 +Dα2
n

]
.(B.18)

As κ → 0 one can show that α1 → 0 as well and that limκ→0 κ sin(α1)/(2α1 −
sin(2α1)) = 1/4. All other terms in (B.18) converge to zero as κ → 0 so that (B.18)
reduces to

lim
κ→0

P∗ = lim
t→∞

∫ 1

0

c1(r, t) 4πr
2dr =

fk0,1
µ0 + fk0,1

.(B.19)

Thus, under perfectly reflecting, Neumann boundary conditions, the single-stage (N =
1) activation probability is simply the ratio of the binding rate between a T cell and its
cAPC, to the total rate at which the T cell reaches any of its absorbing states, either
degradation or binding to its cAPC. The methods presented here are also applicable
to the general multi-stage case with N > 1, where the memory kernel K(t) is given by
(3.34), and to the KPR model, where the memory kernel KKPR(t) is given by (4.25).

Appendix C. Mean time of engagement between T cells and nAPCs.
Here, we estimate the interaction time between a T cell and a nAPC by determining
the mean first time τnAPC for a T cell at the first stage of engagement N1 to return
to the free state T0. For concreteness, we focus on the nAPC arm, as extracted from
(3.1)

(C.1) T0
Kn

K1,0
N1

P

Q
N2

P

Q
· · · P

Q
NN−1

P

Q
NN
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To determine τnAPC we first write the equations for the probability P = (P1, . . . , PN )T

for a T cell and a nAPC to be bound at state (1, . . . , N), respectively, and the prob-
ability P0 for the T cell to remain free, respectively. Since we are not interested in
transport phenomena [21], the dynamics follow (3.2b) without the spatial components.
The forward equation is written as

(C.2) ∂t P0 = P1 − (µ0 + k0,1)P0, ∂t P = MnP+ k0,1P0 e1 .

We assume that at t = 0 the T cell is at state n = 1 so that P1(t = 0) = 1 and P0(t =
0) = Pi ̸=1(t = 0) = 0. We also define the survival probability S = (S1, . . . , SN )T

as the likelihood that having started at state (1, . . . , N) at t = 0 the T cell is still
engaged to any nAPC state at time t. Thus, the likelihood of the free T cell being
bound to the nAPC at any time t is S0(t) = 0. Furthermore if we assume the T cell
is initially at its first binding state then S1(t = 0) = 1 and Si ̸=1(t = 0) = 0. It is well
known that the survival probability follows the backward equation stemming from
M†

n, the adjoint of Mn so that

(C.3) ∂t S0 = 0, ∂t S = M†
nS.

The survival time distribution is given by −∂t S. As a result, the mean first passage
time T = (T1, . . . , TN )T of a partially bound T cell starting from stage (1, . . . , N) to
the free state can derived as

T = −
∫ ∞

0

t ∂tSdt =

∫ ∞

0

S dt.(C.4)

Upon integrating the right-hand expression in (C.3) with respect to time, from t = 0
to t → ∞, and by imposing S(t = 0) = 1 and S(t → ∞) = 0 we find −I = M†

nT,

where I is the identity matrix. The inverse T = −
(
M†

n

)−1 I defines the mean first
passage time T1 ≡ τnAPC for the T cell to be in the free, unbound state starting from
the first bound stage. Using standard matrix inversion methods we find

(C.5) τnAPC = T1 =
1− (p/q)N

1− p/q
.

Note that limp/q→1 T1 = N . As evaluated in (C.5), T1 is an increasing function of
p/q, so that the higher the bias away from the free state and towards higher binding
stages, the larger T1.

Appendix D. Spectral analysis of the kinetic matrices. Here, we show
that the kinetic matrices Mn and Mc are diagonalizable and that they can be ex-
pressed according to the eigendecomposition in (3.31). One of the conditions for any
n × n matrix to be diagonalizable is that it must have n distinct eigenvalues. For
convenience, we denote the (N − 1)× (N − 1) submatrix of Mc as

∼
Mc and denote its

characteristic polynomial as p̃c(λ). When p, q > 0, Mn and
∼
Mc are non-singular Ja-

cobi matrices, whose characteristic polynomials have distinct, real and non-zero roots
(see Chapter 2 of Ref. [16]). Particularly, Mn is diagonalizable. A direct calculation
shows that the characteristic polynomial of Mc, pc(λ) = λ p̃c(λ), has distinct, real and
non-zero roots, implying that it also has distinct, real eigenvalues, one of them being
zero. The matrix Mc is therefore diagonalizable. In conclusion, the kinetic matrices
Mn and Mc are diagonalizable provided that the forward and backward binding rates
p, q are positive.
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Appendix E. Further reading. Background on T cell activation can be found
in [5, 18, 26, 30, 45]. Experimental imaging studies of T cell–APC interactions are
reported in [37–39, 50]. Mathematical and computational models of T cell migration
are presented in [12, 20, 46]. First-passage time theory is introduced in [9, 25, 48].
Kinetic proofreading was proposed in [22,42] and applied to antigen recognition in [36].
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