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ABSTRACT. We consider sampling from a Gibbs distribution by evolving a finite number of particles
using a particular score estimator rather than Brownian motion. To accelerate the particles, we consider a
second-order score-based ODE, similar to Nesterov acceleration. In contrast to traditional kernel density
score estimation, we use the recently proposed regularized Wasserstein proximal method, yielding
the Accelerated Regularized Wasserstein Proximal method (ARWP). We provide a detailed analysis
of continuous- and discrete-time non-asymptotic and asymptotic mixing rates for Gaussian initial
and target distributions, using techniques from Euclidean acceleration and accelerated information
gradients. Compared with the kinetic Langevin sampling algorithm, the proposed algorithm exhibits a
higher contraction rate in the asymptotic time regime. Numerical experiments are conducted across
various low-dimensional experiments, including multi-modal Gaussian mixtures and ill-conditioned
Rosenbrock distributions. ARWP exhibits structured and convergent particles, accelerated discrete-time
mixing, and faster tail exploration than the non-accelerated regularized Wasserstein proximal method
and kinetic Langevin methods. Additionally, ARWP particles exhibit better generalization properties
for some non-log-concave Bayesian neural network tasks.

1. INTRODUCTION

Let V : Rd → R be a known C1 potential function that typically satisfies some growth condition
at infinity. The problem is to design an algorithm for sampling from target Gibbs distributions with
densities

π(x) ∝ exp(−βV (x)),

where β > 0 is some diffusion/temperature parameter. Such tasks occur frequently in data science,
such as uncertainty quantification and physical modeling [1], or more recently in generative modeling
using diffusion models [13].

Traditional methods, such as Markov chain Monte Carlo (MCMC) methods, apply Markov chains
with an invariant distribution π. MCMC methods usually arise from discretizations of stochastic
differential equations (SDEs), which evolves a density according to a Fokker–Planck equation

∂ρ

∂t
= ∇ · (∇V (x)ρ) + β−1∆ρ, ρ(x, 0) = ρ0(x). (1)

Standard examples include the unadjusted Langevin algorithm (ULA) and the Metropolis-adjusted
Langevin algorithm (MALA) [32, 14]. These algorithms arise from particular discretizations or
approximations of the (overdamped) Langevin equation

dXt = −∇V (X) dt+
√

2β−1 dW . (2)

It can be shown that the density of particles evolving under (2) satisfies the Fokker–Planck equation
(1). Traditionally, accelerating overdamped Langevin dynamics yields the underdamped Langevin
equation, sometimes known as kinetic Langevin dynamics. While the invariant distribution of the
overdamped Langevin equation is the target Gibbs distribution π, the invariant distribution of the
underdamped dynamics is a separable joint density in a position-momentum phase space. Some
methods arising from discretizing the underdamped Langevin dynamics include the variational
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acceleration flow [8], inertial Langevin algorithm [16], kinetic Langevin Monte Carlo [12, 10],
or some splitting methods, such as the OBA or BAOAB methods [21, 22]. Generalizations of
kinetic Langevin dynamics include the Hessian-free high resolution dynamics [23], and primal-dual
damping stochastic dynamics [42]. Convergence results for the kinetic Langevin equation are well
studied, including non-asymptotic Wasserstein-2 contraction in continuous time and under different
time discretizations [12, 22, 10, 27]. Recently, [5] demonstrates L2 convergence under a Poincaré
inequality, and provides an optimal friction coefficient. Related flows for sampling from phase-space
include Hamiltonian Monte Carlo methods [9].

As opposed to using a discretized SDE, another sampling paradigm approximates the Fokker–
Planck equation by evolving a finite collection of particles through the score-based ODE

dXt

dt
= −∇V (X)− β−1∇ log ρt(X), (3)

where ρt is the density of Xt at time t. From the continuity equation, the density of particles
evolving according to this ODE (3) also follows the Fokker–Planck equation (1). However, the score
function ∇ log ρt is often intractable and requires estimation from empirical distributions. To derive
algorithms that work with finitely many particles, (3) needs to be modified with kernel functions.
Examples of score-based sampling methods using kernels include Stein variational gradient descent
(SVGD) [25], which performs steepest descent with respect to the KL divergence with respect to a
Wasserstein-type metric structure on the space of distributions induced by the Stein operator with a
kernel function. Another example is the blob method [7, 11], which considers Wasserstein gradient
flows with particular kernel regularizations of the energy functional.

To accelerate the score-based flow (3), one may consider adding a momentum variable, similar to
Nesterov acceleration methods for classical optimization problems [29, 35]. One possible acceleration
to sample from a distribution comes from a particular Hamiltonian evolution [41, 36, 8, 6]. In the
particular case of the Wasserstein-2 metric, the accelerated flow to minimize the KL divergence can
be written as coupled ODEs in the density ρt and its momentum variable. By adding a damping term
into the momentum equation, [41, 36] derive the accelerated information gradient flow. The particle
evolutions take the following form, which can be viewed as a second-order dynamics of the original
score-based ODE (3):

d

dt

[
X
P

]
=

[
P

−aP −∇V (X)−∇ log ρt(X)

]
. (4)

We study an equation-level modification of equation (4). In particular, following [37], we approximate
the intractable score ∇ log ρt with a tractable approximation ∇ logWProx ρt, where WProx is the
regularized Wasserstein proximal operator (RWPO), defined in Definition 2 in the following section
as the solution of a mean field control problem. This allows us to compute the score approximation
without relying on selecting an appropriate kernel, such as the Gaussian kernel density estimator used
in [36, 41] to approximate log ρt. The algorithm takes the form of a particular discretization of the
particle evolution

d

dt

[
X
P

]
=

[
P

−aP −∇V (X)−∇ logWProx ρt(X)

]
. (5)

1.1. Contributions. Focusing on the accelerated flow (5), this work is organized as follows:
• Section 2 details the regularized Wasserstein proximal operator of [24], and its links to

regularizing the Fokker–Planck equation (1). Moreover, we recall the space-varying kernel
representation of this operator, which will be used in future computations.

• Section 3 introduces the accelerated regularized Wasserstein proximal (ARWP) method.
By performing a particular symplectic time discretization of the flow (5), we derive a
discrete-time interacting particle algorithm to evolve the positions and velocities using the
RWPO.

• Using the Gaussian closure property of the RWPO, Section 4 analyzes the convergence of
the ARWP method in the case of Gaussian initial and target distributions. Using closed-
form updates, we provide an asymptotic continuous and discrete-time mixing analysis
through linearization. Moreover, a detailed Lyapunov analysis demonstrates convergence
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in continuous time, where the damping parameter is sufficiently large to satisfy standard
assumptions (up to modification by the regularization parameter).

• Section 5 verifies the convergence analysis, and tests the ARWP method against various
baselines. This includes a Rosenbrock distribution to identify tail exploration, a multi-
modal Gaussian mixture to test mixing times, and a Bayesian neural network example for
simulations in higher dimensions.

Additional background on accelerated probability flows, proofs of Section 4, and additional qualita-
tive/quantitative results, including hyperparameter ablations and choices, are also provided in the
appendix.

2. REGULARIZED WASSERSTEIN PROXIMAL

We begin with the definition of the Wasserstein-2 distance and the Wasserstein proximal.

Definition 1 ([34, 2]). Let P2(Rd) be the set of probability densities with finite second moment. For
µ, ν ∈ P2(Rd), the Wasserstein-2 distance W2(µ, ν) is

W2(µ, ν) = inf
π∈Γ(µ,ν)

∫
∥x− y∥2dπ(x, y), (6)

where the infimum is taken over couplings π ∈ Γ(µ, ν), i.e. probability measures on Rd × Rd

satisfying ∫
Rd

π(x, y) dy = µ(x),

∫
Rd

π(x, y) dx = ν(y). (7)

Consider a probability density ρ0 ∈ P2(Rd) and V ∈ C1(Rd) be a lower-bounded potential
function. For a scalar T > 0, the Wasserstein proximal of ρ0 is defined as

WProxT,V (ρ0) := argmin
q∈P2(Rd)

∫
Rd

V (x)q(x) dx+
W(ρ0, q)

2

2T
. (8)

A recent line of work considers a principled score estimator called the backwards regularized
Wasserstein proximal (BRWP) method [37]. This method utilizes the fact that the time-discretized
score-based particle update (3) corresponds to a time evolution of a modified Fokker–Planck equation,
which can be computed using a kernel formula. This has been extended to utilize tensor train
score approximations [18] and splitting methods [17]. A recent followup work incorporates a
preconditioning matrix into the underlying Fokker–Planck approximation, resulting in a modified
mean-field control problem and different kernel [38]. In this section, we recall the definition of the
regularized Wasserstein proximal, which is used in the proposed scheme from discretizing (5).

The regularized Wasserstein proximal was first proposed as an approximation to a mean field
control problem, obtained from the Wasserstein proximal through the Benamou–Brenier formulation
[24, 4]. In particular, the variational form (8) has two equivalent formulations. One of them is the
mean field control (MFC) formulation, where the Wasserstein proximal is given by the terminal time
solution ρT to the following MFC:

inf
ρ,v,q

∫ T

0

∫
Rd

1

2
∥v(t, x)∥2ρ(t, x) dx dt+

∫
Rd

V (x)q(x) dx , (9a)

∂tρ(t, x) +∇ · (ρ(t, x)v(t, x)) = 0, ρ(0, x) = ρ0(x), ρ(T, x) = q(x). (9b)

The minimization (9a) is taken jointly with respect to a time-varying density function ρ, a velocity
field v, and the terminal density function q. The conditions in (9b) are a continuity equation and some
boundary conditions, coupling the density and the velocity field. The Benamou–Brenier formulation
then states that the solution to this minimization problem is equivalently given by the terminal time
solution ρ(T, x) of the following set of coupled PDEs,

∂tρ(t, x) +∇x · (ρ(t, x)∇xΦ(t, x)) = 0,

∂tΦ(t, x) +
1
2∥∇xΦ(t, x)∥2 = 0,

ρ(0, x) = ρ0(x), Φ(T, x) = −V (x).

(10)
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We can now define the regularized Wasserstein proximal by adding some appropriate diffusive terms
to the MFC, with an equivalent definition in terms of a terminal time solution to some coupled PDEs.

Definition 2. For a probability distribution ρ0 ∈ P2(Rd) and a diffusion parameter β > 0, the
regularized Wasserstein proximal WProxT,V (ρ0) is given by the solution to the following MFC
problem:

inf
ρ,v,q

∫ T

0

∫
Rd

1

2
∥v(t, x)∥2ρ(t, x) dx dt+

∫
Rd

V (x)q(x) dx , (11a)

∂tρ(t, x) +∇ · (ρ(t, x)v(t, x)) = β−1∆ρ(t, x),

ρ(0, x) = ρ0(x), ρ(T, x) = q(x), (11b)

The RWPO is defined as follows:
WProxT,V ρ0 := ρT .

The above MFC problem (11a) is a modification of (9a), where the constraint (11b) is with a Laplacian
term in the continuity equation (9b).

Solving the optimality conditions yields that the regularized Wasserstein proximal satisfies a
similar regularized Benamou–Brenier formulation, given by Laplacian regularization in both the
forward-time Fokker–Planck and backward-time Hamilton–Jacobi equations,


∂tρ(t, x) +∇x · (ρ(t, x)∇xΦ(t, x)) = β−1∆xρ(t, x), (12a)

∂tΦ(t, x) +
1

2
∥∇xΦ(t, x)∥2 = −β−1∆xΦ(t, x), (12b)

ρ(0, x) = ρ0(x), Φ(T, x) = −V (x). (12c)

Using a particular Cole–Hopf formula connects these coupled PDEs with a set of forward-backward
coupled heat equations, which has an exact solution based on a kernel formula:

ρT (x) = ρ(T, x) =

∫
Rd

K(x, y)ρ0(y) dy , (13a)

K(x, y) =
exp
(
−β

2 (V (x) + ∥x−y∥2

2T )
)

∫
Rd exp

(
−β

2 (V (z) + ∥z−y∥2

2T )
)
dz
. (13b)

Motivated by the approximation of the Wasserstein proximal and the iterative component of the
JKO scheme [20], [37] propose the Backwards Regularized Wasserstein Proximal (BRWP) method.
This is a semi-implicit discretization of the regularized Fokker–Planck equation. In particular, by the
continuity equation, the Fokker–Planck equation (12a)

∂tρ(t, x) +∇ ·
(
ρ(t, x)∇Φ(t, x)− β−1ρ∇(log ρ)(t, x)

)
= 0, (14)

corresponds to particles evolving as

dX

dt
= ∇Φ(t,X)− β−1∇ log ρ(t,X). (15)

By discretizing the particle-based updates (15) using the backward Euler method, the dual function Φ
simply becomes an update in V due to the boundary conditions of the MFC (12c). Moreover, the
score term ∇ log ρ(T, x) is precisely given by the score of the regularized Wasserstein proximal,
which is computable for an empirical distribution given by a collection of particles. The BRWP
iterations can be written as

Xk+1 = Xk − η
(
∇V (Xk) + β−1∇ logWProxT,V ρk(Xk)

)
. (16)

This allows for an adaptive kernel-based modification of the score-based update (3), replacing an
arbitrary choice of kernel function (such as Gaussian or Matérn), with a choice of regularization
parameter T .
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3. ACCELERATED REGULARIZED WASSERSTEIN PROXIMAL METHOD

The BRWP method replaces the log density log ρ with the log density of the regularized Wasser-
stein proximal logWProxT,V ρ, and provides a discrete time update. We propose the accelerated
regularized Wasserstein proximal (ARWP) method in continuous and discrete time, which arises
from using the approximation log ρ ≈ logWProxT,V ρ within (4). For a particle with position X
and momentum P , we recall the iteration (5):

dX

dt
= P, (17a)

dP

dt
= −aP −∇V (X)− β−1∇ logWProxT,V ρ(t,X), (17b)

where ρ(t, ·) denotes the distribution of particles at time t. The discrete time update for a finite
set of particles is given as follows. In the finite particle setting with positions and momentums
{(x(k)

i ,p
(k)
i )}Ni=1, the semi-implicit scheme is given by setting ρ to be the empirical distribution

at each iteration. The discrete-time ARWP algorithm for a step-size η > 0 and possibly-varying
damping parameters ak > 0 is defined by updating the particle positions and momenta using the
symplectic (semi-implicit) Euler discretization:{

p
(k+1)
i = (1− ηak)p

(k)
i − η∇V (x

(k)
i )− ηβ−1∇ logWProxT,V ρk(x

(k)
i ),

x
(k+1)
i = x

(k)
i + ηp

(k+1)
i .

(18)

For each point, we can compute the score function of the RWPO of the empirical distribution
ρk = 1

N

∑N
i=1 δ(x

(k)
i ) using the kernel formula (13) [37], where δ(x) denotes the Dirac delta at the

point x. Temporarily dropping the iteration k subscripts and superscripts, the RWPO of the empirical
distribution can be computed at each point as follows:

WProxT,V ρ(xi) =
1

N

N∑
j=1

K(xi,xj) =
1

N

N∑
j=1

exp
[
−β

2

(
V (xi) +

∥xi−xj∥2

2T

)]
Z(xj)

,

∇WProxT,V ρ(xi) =
1

N

N∑
j=1

(
−β

2

(
∇V (xi) +

xi−xj

T

))
exp

[
−β

2

(
V (xi) +

∥xi−xj∥2

2T

)]
Z(xj)

,

Z(xj) :=

∫
Rd

e−
β
2 (V (z)+

∥z−xj∥
2

2T ) dz . (19)

Using these expressions, the score function of the RWPO of ρ = ρk can be computed with the simple
identity

∇ logWProxT,V ρ(xi) =
∇WProxT,V ρ

WProxT,V ρ
(xi).

3.1. Computational Considerations. A parallelization similar to [38] may be employed by concate-
nating the position and momentum variables into a matrix, and utilizing the structure of WProxT,V ρ
as a sum of exponentials. Recall that the softmax function of a vector v ∈ RN is defined as

softmax(v) =

(
exp(vi)∑N
j=1 exp(vj)

)
i=1,...,N

,

satisfying
∑

j softmax(v)j = 1. The score approximation ∇ logWProxT,V ρk may then be written
in terms of a softmax matrix:

∇ logWProxT,V ρk(xi) = −β∇V (xi)

2
− β

2T
xi +

β

2T

N∑
j=1

softmax(Wi,·)jxj , (20)

where Wi,j is an interaction matrix defined as

Wi,j := −β ∥xi − xj∥2

4T
− logZ(xj). (21)
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Notice that the reformulation (20) additionally contains a ∇V (xi) term within the score, which can
be combined with the ∇V term within the momentum update (17b). In particular, the discrete-time
momentum update (18) can be rewritten as

p
(k+1)
i = (1− akη)p

(k)
i + η

(
−∇V (x

(k)
i )− β−1∇ logWProxT,V ρk(x

(k)
i )
)

= (1− akη)p
(k)
i − η

2
∇V (x

(k)
i ) +

η

2T

 N∑
j=1

softmax(W
(k)
i,· )j(x

(k)
i − x

(k)
j )

 . (22)

To compute the normalization constant (19), we can use a Monte Carlo integral applied to

Z(xj) = (4πTβ−1)d/2Ez∼N (xj ,2Tβ−1)

[
exp

(
−βV (z)

2

)]
. (23)

We note that the constant (4πTβ−1)d/2 is canceled out by the logarithm and softmax operators, and
can be ignored during computation.

Remark 1. An alternative to Monte Carlo integration in high dimensions for small T is to use the
Laplace approximation [38, 39]. This reads

Z(xj) =

∫
Rd

e−
β
2 (V (z)+

∥z−xj∥
2

2T ) dz

≈ e−
β
2 V (xj)C(β, T ),

where C(β, T ) is a constant independent of xi which also cancels out under the logarithm and the
softmax operations.

To finish the parallelization, we combine the position and momentum vectors into matrices

X =
[
x1 ... xN

]
∈ Rd×N , P =

[
p1 ... pN

]
∈ Rd×N .

The ARWP update (18) can be combined with (22) to be written in matrix form:

P(k+1) = (1− akη)P(k) − η

2
∇V (X(k)) +

η

2T

(
X(k) − X(k) softmax(W (k))⊤

)
,

X(k+1) = X(k) + ηP(k+1),

where W (k) is the interaction matrix (21) at iteration k. This is summarized in Algorithm 1.

Algorithm 1: ARWP: Accelerated Regularized Wasserstein Proximal Method

Data: Initial points x(1)
1 , ...,x

(1)
N ∈ Rd, potential V : Rd → R, regularization parameter

T > 0, diffusion β > 0, step-size η > 0, iteration count K, damping parameters
ak > 0.

Result: X(K) =
[
x
(K)
1 ... x

(K)
N

]
sampling from exp(−βV ).

1 Initialize X(1) =
[
x
(1)
1 ... x

(1)
N

]
∈ Rd×N , initialize P(1) = 0d×N ;

2 for k = 1, ...,K do
3 Approximate normalizing constants Z(x

(k)
i ), i = 1, ..., N using Monte Carlo/Laplace

method;

4 Compute interaction matrix Wi,j = −β ∥xi−xj∥2

4T − logZ(xj);
5 Compute row-wise softmax interaction matrix softmax(W )i,j = softmax(Wi,·)j ;
6 Evolve momentum matrix

P(k+1) = (1− akη)P(k) − η
2∇V (X(k)) + η

2T

(
X(k) − X(k) softmax(W (k))⊤

)
;

7 Evolve particle positions X(k+1) = X(k) + ηP(k+1);
8 end



ACCELERATED REGULARIZED WASSERSTEIN PROXIMAL SAMPLING ALGORITHMS 7

Remark 2. This approximation is used in contrast to the kernel density estimation of [41] or
“diffusion map approximation” in [36]. From a computational perspective, one needs to approximate
the log-score from an empirical distribution. The regularized Wasserstein proximal allows for this,
interpretable as a potential-aware modified kernel method.

The proposed ARWP method differs from the unregularized accelerated information gradient
flow in its choice of score approximation. In particular, [36, 41] both consider using some variant of
Gaussian kernel density estimation, for which the interplay between the bias and convergence is not
characterized. In the following section, we use properties of the RWPO operator to characterize the
asymptotic and non-asymptotic convergence behavior for quadratic potentials.

ARWP does not incur a significant computational increase over the non-accelerated BRWP (16).
The main computational cost requirement comes from the interaction term in Algorithm 1, which
requires constructing (rows of) an N ×N matrix, which is also required in BRWP. Since updating
each particle requires only one call of ∇V , having to track an additional momentum parameter per
particle incurs only a constant memory factor increase, which can range from double to negligible
depending on the level of parallelization employed.

4. CONVERGENCE FOR QUADRATIC POTENTIALS

This section analyzes the convergence of the ARWP method, in the case of Gaussian distributions.
[37] utilizes a closed-form update for the RWPO for Gaussian distributions, demonstrating that the
update in the BRWP method with quadratic potential stays in Gaussian distributions. A similar
argument shows that the ARWP method updates Gaussian distributions to Gaussian distributions. In
other words, if the target distribution is Gaussian and the initial distribution is Gaussian, then the
discrete-time particle updates (17)’s density function ρk also follows a Gaussian distribution.

Fix a covariance matrix Λ ∈ Sym++(Rd), and define the quadratic potential function V (x) =

x⊤Λ−1x/2. We additionally assume that all matrices commute so that we may work in a common
eigenbasis, and fix β = 1 without loss of generality.

We show the closure within Gaussian distributions by considering the particle-wise update.
Suppose that the distribution at iteration k is Gaussian. We have the following lemmas characterizing
the effect of the regularized Wasserstein proximal on a covariance matrix.

Lemma 1. [37, 38] For a covariance matrix Σ, if T < λmin(Λ), then the regularized Wasserstein
proximal of the Gaussian distribution N (0,Σ) is also a Gaussian distribution N (0, Σ̃), whose
covariance takes the form:

WProxT,V N (0,Σ) = N (0, Σ̃),

Σ̃ := 2β−1T
(
I + TΛ−1

)−1
+
(
I + TΛ−1

)−1
Σ
(
I + TΛ−1

)−1
.

Moreover, the inverse operator of the regularized Wasserstein proximal satisfies

WProx−1
T,V (N (0,Σ)) = N (0, (1 + TΛ−1)Σ(1− TΛ−1)). (24)

As a shorthand, we will use the tilde notation to denote the regularized Wasserstein proximal of
a covariance matrix throughout. It is shown in [37] that the terminal distribution under the BRWP
update is N (0,Σ∞), where Σ∞ is such that WProxT,V (N (0,Σ∞)) = N (0,Λ), i.e. Σ̃∞ = Λ.
Moreover, the bias of the stationary distribution under BRWP (and ARWP) depends only on T , in
particular, is independent of the step-size η.

We will also find it convenient to define the following two matrix expressions K±:

K+ := I + TΛ−1, K− := I − TΛ−1. (25)

In this section, we analyze the accelerated backward-regularized Wasserstein proximal method for
the special case of Gaussian distributions under different approximations of (17).

• Section 4.1 converts the ARWP update (17) into a pair of coupled ODEs in covariance and a
dual term.

• Section 4.2 treats the linearized continuous time case, showing the corresponding coupled

ODEs observe an asymptotic O
(
t exp

(
−
√
2λ−1 1−Tλ−1

1+Tλ−1 t
))

error convergence in each
eigendirection, where λ is the corresponding eigenvalue of the target covariance matrix Λ.
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• While the convergence rate of the corresponding ODE is slightly slower than the unregular-
ized case T = 0, Section 4.3 shows that the step-size can be taken to be larger, resulting in
a discrete-time iteration speedup by a constant factor of 1+

√
2

2 . This gives the asymptotic
mixing rate of the proposed ARWP method.

• We compare the discrete-time rates with the kinetic Langevin algorithm in Section 4.4,
demonstrating a faster rate arising from the regularization.

• In the non-asymptotic case, we show in Section 4.5 that the continuous-time coupled ODEs
converge linearly to the target distribution, and show that the damping condition a > λ−1/2

is sufficient for convergence. This is done using a particular Lyapunov analysis, splitting the
ODEs into underdamped and overdamped cases. This allows for the analysis in Section 4.2
to apply over a large time.

4.1. Continuous Time Covariance Update of ARWP. Since the regularized Wasserstein proximal
of a Gaussian distribution is a Gaussian distribution, the dP/dt in (17) is linear in X . Therefore, we
may use the ansatz Pt = GtXt, where G : R≥0 × Rd → Rd is a time varying linear map. Let Σt

denote the covariance of Xt. After a change of variables, the update (17b) satisifies

dP

dt
= −aP − Λ−1X + Σ̃−1

t X =
dG

dt
X +G

dX

dt
=

dG

dt
X +G2X.

Moreover, the update (17a) turns dX/dt = P = GX into Σ̇t = GtΣt +ΣtGt. Rearranging yields
the following coupled ODE system{

Σ̇t = GtΣt +ΣtGt,

Ġt = −aGt −G2
t − Λ−1 + Σ̃−1

t ,
(26)

where Σ̃t is the covariance of the regularized Wasserstein proximal applied to N (0,Σt). Observe
that (Σ, G) = (Σ̃∞,0d×d) is a stationary point of (26), where Σ∞ = (1 + TΛ−1)Λ(1− TΛ−1) is
such that Σ̃∞ = Λ. The following sections find convergence rates to this point.

4.2. Continuous Time Asymptotic Convergence Rate. To check the convergence behavior of (26)
near zero, we can linearize near the terminal state. As we assume that all covariances commute, let us
work in one dimension, where our expressions are written in lower case. Then, the continuous time
update in 1D is given by {

σ̇t = 2gtσt,

ġt = −agt − g2t − λ−1 + σ̃−1
t .

(27)

Linearizing about the stationary point (σ∞, 0), where σ̃∞ = λ, let us consider the ansatz σt =
σ∞ + εt. The first order approximation to the gt update becomes

λ−1 − σ̃−1
t = λ−2(1 + Tλ−1)−2εt +O(ε2t ).

The linearized system (in phase space) near the stationary point becomes{
ε̇t = 2gt(1 + Tλ−1)(1− Tλ−1)λ,

ġt = −agt − λ−2(1 + Tλ−1)−2ε.
(28)

The corresponding second order equation is

ε̈ = −aε̇− 2λ−1k−1
+ k−ε, (29)

where k± are defined as the one-dimensional counterparts of (25). Using the ansatz εt = e−rt, the
rate satisfies

r± =
a±

√
a2 − 8λ−1k−1

+ k−

2
. (30)

The convergence rate is then given by the smaller root in case both roots are real, or the real part in case

both roots are complex. In one dimension, the convergence rate is fastest when a =
√
8λ−1k−1

+ k−.
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In this case, the rate is given by

∥(σt, gt)− (σ∞, 0)∥2 = O
(
t exp

(
−
√
2λ−1k−1

+ k−t

))
.

The continuous time rate with regularization is thus slightly slower than the unregularized case

T = 0 by a factor of
√
k−1
+ k− =

√
(1− Tλ−1)/(1 + Tλ−1) < 1. This analysis can be extended

into multiple dimensions to find the asymptotic convergence rate of covariance in the trace norm.

Proposition 1. Let V (x) = x⊤Λ−1x/2, where the smallest and largest eigenvalues of Λ are
λmin, λmax respectively. Let a > 0 be some damping parameter, T ∈ [0, λmin) be the regularization
parameter, and suppose the initial distribution is N (0,Σ0). If Σt is the continuous-time evolution of
ARWP and Σt converges to its stationary distribution’s covariance Σ∞ = WProx−1

T,V (Λ), then the
asymptotic convergence rate is

Tr(Σt − Σ∞) = O(exp(−rt)), (31)

where

r =
1

2

[
a−

√
max

λ∈[λmin,λmax]

(
a2 − 8λ−1

1− Tλ−1

1 + Tλ−1
, 0

)]
. (32)

Proof. The overall convergence rate is given by the smallest rate over each component. The rate
corresponding to an eigenvalue λ ∈ [λmin, λmax] is given from (30) as

a
2 , if a2 ≤ 8λ−1 1−Tλ−1

1+Tλ−1 ;

a−
√

a2−8λ−1k−1
+ k−

2 , if a2 ≥ 8λ−1 1−Tλ−1

1+Tλ−1 .
(33)

This is equivalent to (32). □

Remark 3. Since the regularized Wasserstein proximal performs an affine transformation on the
covariance matrix of a Gaussian distribution, the asymptotic convergence rate of the covariance Σ
and the RWPO covariances Σ̃ are identical.

While this proposition appears to indicate that a smaller value of a leads to better convergence
rates, a necessary condition is that the evolution converges to the stationary point. In Section 4.5, we
show that this holds if a > λ−1/2, similar to existing convergence results for the kinetic Langevin
diffusion. This corresponds to requiring a sufficient amount of damping in order for the iterations to
converge.

In the next section, we consider the discrete-time analog of the linearized system (28). We show
the main advantage of regularizing: we can take a larger step-size if T is nonzero, which increases
the discrete-time asymptotic mixing rate. This arises since the condition number of the regularized
system is lower than that of the unregularized system.

4.3. Linearized Discrete-Time Convergence Rate. In this subsection, we consider the convergence
of the one-dimensional RWPO covariances σ̃t to their stationary distributions N (0, λ), similarly to
[37, 38]. Under the change of variables

σ̃t = 2Tk−1
+ + k−2

+ σt,

as well as the ansatz σ̃t = λ+ δt, the linearization of (27) becomes

d

dt

(
δt
gt

)
=

(
[2λ− 4Tk−1

+ ]gt
−agt − λ−2δt

)
=

[
0 2λ− 4Tk−1

+

−λ−2 −a

]
︸ ︷︷ ︸

=:A

(
δt
gt

)
. (34)

Denoting the matrix as A = A(λ, T, a), the eigenvalues χ± of A are given by

χ± =
1

2
[Tr±

√
Tr−4 det]

=
1

2

[
−a±

√
a2 − 4λ−2(2λ− 4TK−1

+ )

]
.
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In the continuous-time case, the stability condition near (δ, g) = (0, 0) is that all eigenvalues have
real component less than 0. This is the case for all a > 0.

In the discrete case with step-size η > 0, the (symplectic Euler) update becomes(
δn+1

gn+1

)
= [I + ηA]

(
δn
gn

)
. (35)

The stability condition for this update is that I + ηA has to have (both) eigenvalues lying in the open
disk {|z| < 1 | z ∈ C} [19]. Moreover, the convergence rate in this direction is given by O(max{|1+
ηχ+|, |1 + ηχ−|}n). In particular, we have the following two special cases, corresponding to two
different critical damping parameters. The step-size is controlled by the Lipschitz constant of
V , which is λ−1

min. We demonstrate that the maximal step-size can be taken to be larger than the
unregularized version, which corresponds to a faster discrete-time mixing rate, i.e., the rate at which
(Σ̃k, Gk) → (Λ, 0).

Proposition 2. Suppose the eigenvalues of the covariance matrix Λ are 0 < λmin ≤ ... ≤ λmax.
Let the update be given by the discrete time update (35) with step-size η > 0 and regularization
T ∈ [0, (1 +

√
2)−1λmin].

(a) If the momentum and step-size are chosen to be

a = 2
√
2λ−1/2

max

√
λmax − T

λmax + T
, η =

λ
−1/2
max

√
λmax−T
λmax+T√

2λ−1
min

λmin−T
λmin+T

, (36)

then the mixing rate of the linearized system is√
1− κ−1

λmax − T

λmax + T

λmin + T

λmin − T
. (37)

In particular, taking T = (1 +
√
2)−1λmin, the discrete time rate for κ ≫ 1 and the

linearized system is (up to first order)

1− 1 +
√
2

2
κ−1.

(b) If the momentum and step-size are chosen to be

a = 2
√
2λ

−1/2
min

√
λmin − T

λmin + T
, η = 2a−1 =

1√
2
λ
1/2
min

√
λmin + T

λmin − T
, (38)

then the mixing rate is √
1− κ−1

λmax − T

λmax + T

λmin + T

λmin − T
.

In particular, taking T = (1+
√
2)−1λmin, the discrete-time mixing rate for κ≫ 1 is (up to

first order)

1− 1 +
√
2

2
κ−1. (39)

Sketch. The momentum parameters are chosen to be optimal for the largest and smallest eigenvalues
of Λ, respectively, and the step-sizes are chosen to be maximal such that the method converges.
Moreover, the function x 7→ x−1 x−T

x+T is maximized at (1 +
√
2)T and is decreasing for x >

(1 +
√
2)T . The rates are obtained from a worst-case analysis over all possible eigenvalues for the

given momentum and step sizes. A full derivation is given in Section B.1. □

We note that the restriction on regularization T ∈ [0, (1 +
√
2)−1λmin] is used only to provide

a uniform worst-case bound, using the monotonicity of λ 7→ λ−1 λ−T
λ+T , which is increasing over

[T, (1 +
√
2)T ] and decreasing over [(1 +

√
2)T,+∞). This can be relaxed to T ∈ [0, λmin), by

replacing all instances of λ−1
min

λmin−T
λmin+T and λ−1

max
λmax−T
λmax+T with max{λ−1 λ−T

λ+T | λ ∈ Spec(Λ) ⊂
[λmin, λmax]} and min{λ−1 λ−T

λ+T | λ ∈ Spec(Λ) ⊂ [λmin, λmax]} respectively. The constant
acceleration factor arises as the condition number of eigenvalues decreases after applying the function
λ 7→ λ−1 λ−T

λ+T if T > 0.
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4.4. Comparison with Kinetic Langevin Diffusion. The kinetic/underdamped Langevin diffusion
is given as a second-order version of the stochastic dynamics (2). In Rd, if a particle position is
X with momentum P , the kinetic Langevin update proceeds by adding a Brownian motion on the
momentum parameter [12],[

dX
dP

]
=

[
P

−(aP + u∇V (X))

]
dt+

√
2au

[
0
I

]
dW , (40)

where W is a 2d-dimensional standard Brownian motion, a > 0 is a friction coefficient, and u > 0 is
an inverse mass, which can be taken to be u = 1 without loss of generality. This converges to the
phase-space stationary distribution ρ(x, p) ∝ exp

(
−V (x)− 1

2u∥p∥
2
)
. A more detailed treatment is

given in Section A. While more general convergence results are given in [10, 12], [42] specializes
into the Gaussian setting, and we can compare the asymptotic convergence rates with the proposed
ARWP method.

For now, consider the kinetic Langevin update in one dimension. For a target distribution N (0,Λ),
the particle position and momentums (Xt, Pt) ∈ R2 follow a joint normal distribution

(Xt, Pt) ∼ N
(
0,

(
Σ11(t) Σ12(t)
Σ12(t) Σ22(t)

))
,

with terminal values (Σ11,Σ12,Σ22) → (λ, 0, 1) From [42, Cor. 3.3], the covariance update satisfies
the following linear system1

d

dt

Σ11

Σ12

Σ22

 =

 0 2 0
−λ−1 −a 1
0 2λ−1 −2a

Σ11 − λ
Σ12

Σ22 − 1

 . (41)

In particular, the eigenvalues of the update matrix are given by

−a, −a±
√
a2 − 4λ−1.

In multiple dimensions, standard numerical analysis gives that the convergence rate is given by the
largest norm of 1 + ηχ, where χ runs over the three eigenvalues of the update matrix in (41), and
over the eigenvalues of Λ. It remains to compute the step-size that minimizes the maximum norm
over all possible eigenvalues of Λ.

In the small momentum critical damping case, the optimal momentum is taken to be a = 2λ
−1/2
max ,

which gives a continuous-time convergence rate of O(t2 exp(−at)) in covariance. To compute the
optimal step-size η > 0, one computes

|1 + η(−a±
√
a2 − 4λ−1

min)|
2 < 1

⇔ 1− 4ηλ−1/2
max + 4η2λ−1

min < 1.

The rate is minimized when the quadratic on the left is minimized, which occurs when η =

λminλ
−1/2
max /2. The discrete time per-iteration contraction rate is then given by

max
λ∈[λmin,λmax]

|1− η(−a±
√
a2 − 4λ−1)|

=

√
1− 4

λminλ
−1/2
max

2
λ−1
max + 4

λ2minλ
−1
max

4
λ−1
min =

√
1− κ−1.

This should be compared with Proposition 2(a). From (37), we have acceleration as the constant
in front of κ−1 is λmax−T

λmax+T
λmin+T
λmin−T > 1. The linearized system of the proposed ARWP method is

therefore more well-behaved than the one in kinetic Langevin method.
A similar analysis can be performed in the high critical damping case, where a = 2λ

−1/2
min . As in

Section B.1.2, the optimal step-size is given by η = 1/a. The rate is similarly given by
√
1− κ−1,

and we conclude the same conclusion as in the previous case.

1The result in the reference should be applied with a = 0 and C = I as denoted in their work.
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4.5. Non-Linearized Non-Asymptotic Continuous Time Convergence. In order to apply the
analysis of the previous three sections, we need to show that the system indeed converges to the
stationary distribution. In this section, we demonstrate convergence for the non-linearized continuous
time system (27), which converges for a > λ−1/2.

We first show convergence of the non-linearized system in continuous time. In one dimension, the
nonlinear coupled ODEs governing the covariance are given by{

σ̇t = 2gtσt

ġt = −agt − g2t − λ−1 + σ̃−1
t .

Nonlinearities arise from the introduction of the g2t term, as well as the inverse covariance term σ̃−1
t

in the gt update. We may change this into a pair of coupled ODEs in ˙̃σt using the change of variables

σ̃t = 2Tk−1
+ + k−2

+ σt.

The change of variables becomes a forcing term in σ̃t,{
˙̃σt = 2gtσ̃t − 4gtTk

−1
+

ġt = −agt − g2t − λ−1 + σ̃−1
t

(42)

By selecting a particular Lyapunov function, we may show that this coupled ODE system converges
to the stationary point (σ̃t, gt) → (λ, 0). This implies that for Gaussian distributions, the accelerated
regularized Wasserstein proximal method in continuous time converges to the stationary distribution.
We have three different results, corresponding to the underdamped case a ∈ (λ−1/2, 2λ−1/2], a
“critical” damping case a = 2λ−1/2, and an overdamped case a ≥ 2λ−1/2. The underdamped and
critical damping cases can use the same Lyapunov function, while the overdamped case requires a
modified Lyapunov function. The results are summarized in the following two propositions.

Proposition 3. Consider the quadratic potential in one dimension V (x) = λ−1x2/2 and diffusion
parameter β = 1, and further let T ∈ [0, λ) be a regularization parameter. Consider evolving a
Gaussian distribution N (0,Σt) through the continuous-time ARWP system (42). Define a Lyapunov
function as

Et := (σ̃t − 2Tk−1
+ )[(λ−1/2 − σ̃

−1/2
t ) + gt]

2 + 2DKL(σ̃t, λ), (43)
where we write the KL divergence between two variances to represent the KL divergence between
the corresponding zero-mean Gaussian distributions. Then, the regularized Wasserstein proximal of
the distributions WProxT,V (N (0, σt)) = N (0, σ̃t) converges to the terminal distribution N (0, λ).
Furthermore, the convergence rate can be characterized as follows:

(1) (Critically damped) In one dimension, let the momentum parameter be taken as a = 2λ−1/2.
Furthermore, assume that the covariance satisfies σ̃2 ≥ 2Tk−1

+ λ. Then, the Lyapunov
function satisfies the Lyapunov-like decay

Ėt ≤ −λ−1/2(1− 2Tk−1
+ σ̃−1

t )Et. (44)

In particular, close to the terminal distribution σ̃t ≈ λ, the decay is Et = O(exp(−rt)),
where the rate is

r =

(
λ− T

λ+ T

)
λ−1/2. (45)

(2) (Underdamped) For a ∈ (λ−1/2, 2λ−1/2], define

p = pt := λ−1/2 + 2Tk−1
+ σ̃−3/2, b+ := λ−1/2 + σ̃

−1/2
t .

Let r be the smallest positive root of the following (time-varying) quadratic equation:

p2 − 4

(
−p+ rb+

σ̃ − 2Tk−1
+

σ̃(2
√
λb+ − 1)

)
(−(1− r)b+) = 0.

Then r exists, and the rate is given by

Ėt ≤ −
2rb+(σ̃ − 2Tk−1

+ )

σ̃(2
√
λb+ − 1)

Et.
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Sketch. Differentiating the Lyapunov function gives a quadratic equation in gt, which is upper-
bounded over all possible gt. The conditions arise from the requirement that the g2t coefficient in the
quadratic is negative. The full derivation is given in Section C; the first part is given in Section C.0.1
and the second part in Section C.0.2. □

Remark 4. As seen in part 2 of the proposition, the assumption that the covariance is larger than a
constant in part 1 is not strictly necessary. Moreover, the first case is a special case of the second.
This proposition quantifies the observation in [37], that the convergence rate is a bit slower if the
initial covariance is too small, but accelerates again close to the terminal distribution. This slowdown
does not occur if the initial covariance is larger than the terminal covariance.

This shows that in the underdamped and critically damped cases a ∈ (λ−1/2, 2λ−1/2], the ODE
system converges to the terminal solution (σ̃t, gt) → (λ, 0). We note that for a ≤ λ−1/2, the
Lyapunov function may not necessarily decrease, and may lead to oscillation behaviors, similarly to
[35]. A similar theoretical restriction arises in [12], which requires that the damping be greater than
m−1/2, where m is the strong convexity constant of V .

In the overdamped case, the Lyapunov function as defined in (43) does not necessarily decay.
To show the convergence, we need to consider a modified Lyapunov function. This is given in the
following proposition.

Proposition 4. (Overdamped) Let V (x) = λ−1x2/2 and T ∈ [0, λ) be as in the previous proposition.
Suppose that the momentum damping parameter is a ≥ 2λ−1/2, and define ζ := aλ1/2/2. Define a
modified Lyapunov function as

Ft = ζ−1(σ̃t − 2Tk−1
+ )[b− + ζgt]

2 + 2ζDKL(σ̃t, λ). (46)

Moreover, define the (time-varying) variables

p = pt := aζ − λ−1/2 + 2Tk−1
+ σ̃

−3/2
t , b+ := λ−1/2 + σ̃

−1/2
t . (47)

Let r be the smallest positive root of the (time-varying) quadratic equation

ζ−2p2 + 4

(
−p+ rb+

σ̃t − 2Tk−1
+

(2
√
λb+ − 1)σ̃t

)
(1− r)b+ = 0.

Then r exists, and the modified Lyapunov function (46) decays as

Ḟt ≤ −
2rb+(σ̃ − 2Tk−1

+ )

ζ(2
√
λb+ − 1)σ̃

Ft. (48)

Sketch. The form of the Lyapunov function comes from inspecting the previous Lyapunov function
(43), and transferring the modifications of [35] to the linear convergence case. The definition of the
rate being in terms of a quadratics’ root is sufficient in order to guarantee that the Lyapunov function
is decreasing. □

We remark that a more general sufficient condition is ζ ≥ aλ−1/2/2. However, due to the presence
of ζ−1 in the rate, it is not beneficial to take a larger ζ.

While the analysis presented so far is for the one-dimensional case, in the commuting case, we can
extend this to higher dimensions simply by taking the trace over each eigendirection. For a damping
parameter a to work for all eigenvalues, one should consider the overdamped case, i.e., extending
Proposition 4. This can be summarized in the following corollary, in which the Lyapunov function is
defined using a weighted KL divergence.

Corollary 1. (Overdamped) Let V (x) = x⊤Λx/2 and T ∈ [0, λmin), and assume Σ0 commutes
with Λ. Suppose that the momentum damping parameter is a ≥ 2λ

−1/2
min , and define Z := aΛ1/2/2.

Define a modified Lyapunov function as

Ft = Tr
(
Z−1(Σt − 2K−1

+ [B− + ZGt]
2)
)
+ 2

d∑
i=1

ζiDKL(σ̃t,i, λi). (49)
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Moreover, define the (time-varying) variables in each eigendirection

pi = pt,i := aζi − λ
−1/2
i + 2Tk−1

+,iσ̃
−3/2
t,i , b+,i := λ

−1/2
i + σ̃

−1/2
t,i , i = 1, ..., d. (50)

Let ri, i = 1, ..., d be the smallest positive roots of the (time-varying) quadratic equations

ζ−2p2i + 4

(
−pi + rb+,i

σ̃t,i − 2Tk−1
+,i

(2
√
λb+,i − 1)σ̃t,i

)
(1− r)b+,i = 0, i = 1, ..., d.

Then r exists, and the modified Lyapunov function (49) decays as

Ḟt ≤ − min
i=1,...,d

(
2rib+,i(σ̃t,i − 2Tk−1

+,i)

ζi(2
√
λb+,i − 1)σ̃t,i

)
Ft. (51)

Proof. By the assumption at the start of the section, the matrices Z, B−, Gt, Σt all commute.
Summing (46) over all eigendirections yields the multidimensional Lyapunov function (49). In each
direction, the decay is given by (46); taking the smallest decay coefficient yields the uniform decay
(49). □

This section shows that the forced ODE system (42) converges to the desired stationary distribution.
However, these decay rates are not sharp. Each result shows that if the covariance of the regularized
Wasserstein proximal is σ̃ ≈ 2Tk−1

+ , corresponding to σ ≈ 0, then the convergence rate is slow.

5. EXPERIMENTS

In the following numerical experiments, we compare the performance of the proposed ARWP
method with several classical sampling methods and the non-accelerated BRWP method. This
is first done on Gaussian target distributions, directly in covariance space, then using particle
evolutions. Some low-dimensional non-log-concave examples follow to demonstrate the sensitivity
and effectiveness in exploring away from local potential wells, as well as a high-dimensional Bayesian
neural network example. The compared parameters for each of the experiments are given in Section G.

5.1. One-Dimensional Gaussian. We first verify the analysis for convergence in distributions
presented in Section 4. In discrete time, the ARWP update (18) has a closed-form update in
covariances, given explicitly in Section D. We verify the results of the linearized discrete-time update
in Section 4.3.

We consider the simplest case where the target variance is N (0, 1), or equivalently V (x) =
∥x∥2/2, and continue to fix β = 1. To demonstrate the optimal choice of damping parameter a
and step-size η, we plot a contour plot of the (trace) norm |σk − σ∞|, where σ∞ = 1 − T 2 is
such that WProxT,V (N (0, σ∞)) = N (0, 1). This error is plotted against the damping parameter
a ∈ [100, 102] and step-size η ∈ [10−4, 10−0.5], equally log-spaced with 200 points.

Figure 1 plots this error in the covariance when updating using the ARWP method, with fixed
regularization parameter T = 0.2, and with the covariance starting either as σ0 = 10−3 or as σ0 = 4.
From Proposition 1 applied with λ = 1, we know that the optimal asymptotic rate is given when

a = 2
√
2λ−1/2

√
1−Tλ−1

1+Tλ−1 , which qualitatively manifests as a cusp in the contour and is marked by a
gray dashed line. Furthermore, the contour plot exhibits a “bouncing” phenomenon as the step-size
increases for a fixed damping parameter a. As the number of iterations is fixed, the x-axis can be
approximately interpreted as time, and this “bouncing” is the characteristic of Euclidean accelerated
methods.

5.2. Ill-Conditioned Gaussian. We now consider a 2D Gaussian with Σ = diag(0.1, 5), i.e. with
condition number 50, applied with a finite number of particles N = 100. We compare with the
standard Langevin algorithms ULA and MALA [15], and the non-accelerated regularized Wasserstein
proximal method BRWP [37]. We additionally compare with two accelerated algorithms arising
from discretizing the kinetic Langevin dynamics, namely the inertial Langevin algorithm (ILA) [16],
and the kinetic Langevin Monte Carlo (KLMC) method [12]. These two algorithms are recalled in
Section H.
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FIGURE 1. Contour plots of the covariance error of discrete-time ARWP (18), for
target distribution Λ = N (0, I1), with initialization N (0, 10−3) (top) and N (0, 4)
(bottom). Error is plotted against the damping parameter a ∈ [100, 102] and step-
size η ∈ [10−4, 10−0.5], and fixed T = 0.2. The gray line indicates the optimal
damping parameter in continuous time, given by (38). The black region in the top
right corner indicates (empirical) divergence, occurring when aη > 2.

We also consider another standard choice of acceleration, where the damping parameter is chosen
as

1− akη =
k − 1

k + 2
. (52)

The case where the damping a is constant is denoted in future figures as “ARWP-Heavy-ball”,
while the variable case (52) is denoted “ARWP-Nesterov”. This is in accordance with the classical
optimization algorithms. We note that ARWP-Heavy-ball requires an additional choice of damping
parameter a.

Figure 2 demonstrates the convergence in KL divergence of the proposed ARWP methods, as
computed using a Gaussian KDE with bandwidth 0.05 and numerically integrated over [−5, 5]2 with
mesh size ∆x = 0.01. It is compared with the unaccelerated BRWP method, classical Langevin
methods ULA and MALA, as well as the accelerated Langevin methods ILA and KLMC. We observe
acceleration of ILA and KLMC compared to ULA. In this simple case, MALA is able to perform
similarly to the accelerated methods.

The deterministic methods ARWP and BRWP are both able to reach significantly lower terminal
KL divergence, due to the structure of the final iterates. In particular, with this low number of
particles, unbiased methods such as MALA still have regions of mass that are not represented by
particles, leading to a higher KL divergence. This is demonstrated in Figure 3, where the particle
positions under the Langevin algorithms are less structured.

The acceleration in ARWP for this simple case is mild, manifesting as a slightly faster convergence
with the same T = 0.05. This is due to the slightly larger allowed step-size in ARWP. In particular,
ARWP is able to use a step-size of 0.3 instead of 0.2 for BRWP, which diverges for step-size 0.3.
From (38), the optimal step-size for ARWP for optimally chosen damping is given by

h∗ARWP =
1√
2
(0.1)1/2

√
0.1 + 0.05

0.1− 0.05
≈ 0.387.
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FIGURE 2. Convergence in KL divergence for the 2D Gaussian, run with 100
particles over 100 iterations. We observe that the deterministic methods ARWP
and BRWP enjoy particle-wise convergence, indicated by the smaller oscillations
between iterations. The accelerated Langevin methods ILA and KLMC continue to
evolve due to the Brownian motion in the velocity. We observe that while BRWP
has a faster initial convergence rate, both ARWP-Nesterov and ARWP-Heavy-ball
reach their steady states faster. This is consistent with classical optimization results.

(A) ULA (B) MALA (C) BRWP

(D) ILA (E) KLMC (F) Proposed ARWP

FIGURE 3. Particle positions after 100 iterations for the 2D Gaussian with condi-
tion number κ = 50, run with 100 particles. We observe that both the accelerated
and non-accelerated Langevin algorithms look more randomly sampled, as the
particles do not interact. Moreover, the proposed ARWP method has a similarly
structured but slightly messier terminal position compared to BRWP. Both ARWP
and BRWP particle positions converge and do not move.
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However, the theoretical optimal step-size for BRWP is given by [37, Cor. 1]

h∗BRWP =
1

2
(0.1)

0.1 + 0.05

0.1− 0.05
= 0.15,

which is smaller than that of ARWP.

Remark 5. By taking a slightly larger step size, we sacrifice some speed in the fast directions for
small covariance, while accelerating the slow directions for large covariance. Taking a slightly larger
than optimal step-size usually results in acceleration.

5.3. 2D Rosenbrock. We consider the (scaled) Rosenbrock function [30]

V (x, y) =
1

20

[
(1− x)2 + 100(y − x2)2

]
,

with the gradient operator[
∂xV
∂yV

]
(x, y) =

1

20

[
2(1− x)− 400x(y − x2)

200(y − x2)

]
.

This is a difficult non-log-concave distribution to sample. The high Lipschitz constants away from
the valley require a small step size, leading to slow exploration along the valley. In particular, the
mass of the distribution is distributed away from the valley near the minimizer2; only about 30% of
the mass is distributed within the square region indicated within the figure [30, Fig. 1]. Therefore, it
is desirable for a method to be able to sample from the tails of this distribution. We run the methods
with 100 particles initialized with distribution N (0, I2) up to 500 iterations.

Figure 4 plots the evolution of ARWP-Nesterov, ILA with a low damping parameter, KLMC,
and ULA. We observe that ARWP-Nesterov is able to properly diffuse along the parabolic potential
well, while keeping an appropriate number of particles near the origin. Section F contains some
additional comparisons with other baselines ILA and BRWP, as well as a hyperparameter ablation for
ARWP-Heavy-ball.

5.4. Multi-Modal Gaussian Mixture. We now consider a four-mode weighted Gaussian mixture in
two dimensions. In this case, the potential is given by

V (x) = − log

[
−

4∑
i=1

wi exp

(
−2πσ2

i

∥∥∥∥x− ci
σ2
i

∥∥∥∥2
)]

,

where the centers are given by {ci} = {(0, 0), (3, 0), (−3,−1), (−3, 1)}, weights {wi} =
{1, 0.5, 0.5, 0.5}, and bandwidths {σ2

i } = {0.5, 0.25, 0.25, 0.25}. This potential is a large well
at the origin, with a smaller well on one side, and two smaller wells on the other side. This is run
with 100 particles, with initial distribution N ((3, 0), I2) in a suboptimal well. The methods are run
for 400 iterations to allow for sufficient mixing.

Figure 5 gives the evolution of the KL divergence of the various methods, run with optimal
parameters as found using a grid search to minimize divergence at iteration 400. The KL divergence
is approximated using a Gaussian KDE with bandwidth 0.1, and integrated over the grid [−5, 5]2

with mesh size ∆x = 0.01. We observe that the KL divergence of the ARWP methods are able to
decrease faster than the compared Langevin methods as well as BRWP. Moreover, the combination
of the acceleration and modified kernel allows for the particles to diffuse into all the potential wells
in a structured manner, leading to a lower terminal divergence.

Figure 6 plots the particles at iterations 10, 50, and 200 for ARWP-Heavy-ball, ILA, KLMC and
MALA. Each of the methods are able to diffuse to the opposite wells by iteration 200. We observe
again a structured phenomenon for ARWP across all of the different wells.

2This also means that approximating the KL divergence using numerical integration is expensive.
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Iter. 50 200 500

FIGURE 4. Particle evolution for Rosenbrock distribution at iterations 50, 200,
500. Top to bottom: (1) ARWP-Nesterov (T = η = 0.02), (2) “underdamped ILA”
(η = 0.05, damping parameter = 2), (3) KLMC (η = 0.01, damping parameter
= 5), and (4) ULA (η = 0.01). We observe that ARWP and ILA are better
at exploring the tails than KLMC. However, ILA and ULA both have particles
straying away from the main parabola due to time-discretization bias.

5.5. Bayesian Neural Networks. For a high-dimensional non-log-concave target distribution, we
consider the Bayesian neural network experiment as done in [41, 37, 38]. This consists of training
some neural networks over five UCI3 datasets. We compare against existing baselines given by
various gradient flows.

3https://archive.ics.uci.edu/datasets

https://archive.ics.uci.edu/datasets
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FIGURE 5. KL divergence between the particles and the underlying distribution for
the Gaussian mixture. We observe that ARWP method converges faster than BRWP,
and the particle cloud stabilizes with lower KL divergence than the corresponding
Langevin methods. KLMC experiences mode collapse, which persists through
hyperparameter changes.

Each particle is represented by a two-hidden-layer ReLU neural network, each with 50 neurons
and default Gaussian initialization. The epoch and batch-size hyperparameters are taken as in [41],
and the methods are run with N = 10 “particles”. The step-size and T hyperparameters are chosen
by a grid search ranging from η ∈ [2× 10−2, 3× 10−1] and T ∈ [10−3, 10−2]. Values reported are
averaged over 20 independent runs.

Table 1 reports the test root-mean-square error for training with BRWP, accelerated information
gradient (AIG), Wasserstein gradient flow [41], and Stein variational gradient descent [40]. We
observe that ARWP(-Nesterov) is able to consistently outperform BRWP on this task. Compared
with Adam, the particle-based methods are also able to find networks with better generalization.

TABLE 1. Test root-mean-square-error (RMSE) on test datasets on various
Bayesian neural network tasks, averaged over 20 runs. Bold indicates small-
est in row, underlined denotes second smallest. ARWP(-Nesterov) consistently
performs better than BRWP on this task, with a higher variance. This indicates that
the particles are able to find better test-generalization, at the cost of also finding
some poorer particles.

Dataset Adam ARWP BRWP AIG WGF SVGD

Boston 3.350±8.33e−1 2.902±7.25e−1 3.309±5.31e−1 2.871±3.41e−3 3.077±5.52e−3 2.775±3.78e−32.775±3.78e−32.775±3.78e−3

Combined 3.971±1.79e−1 3.939±1.89e−13.939±1.89e−13.939±1.89e−1 3.975±3.94e−2 4.067±9.27e−1 4.077±3.85e−4 4.070±2.02e−4

Concrete 4.698±4.85e−1 4.257±8.46e−14.257±8.46e−14.257±8.46e−1 4.478±2.05e−1 4.440±1.34e−1 4.883±1.93e−1 4.888±1.39e−1

Kin8nm 0.089±2.72e−3 0.089±2.47e−3 0.089±6.06e−6 0.094±5.56e−6 0.096±3.36e−5 0.095±1.32e−5

Wine 0.629±4.01e−2 0.608±3.43e−2 0.623±1.35e−3 0.606±1.40e−5 0.614±3.48e−4 0.604±9.89e−50.604±9.89e−50.604±9.89e−5

6. DISCUSSION

This work introduces the accelerated regularized Wasserstein proximal (ARWP) method for
sampling from a target distribution. There are several accelerated schemes in probability density
space. One is from overdamped Langevin to kinetic Langevin dynamics. The other is to add a
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Iter. 10 50 200

FIGURE 6. Top to bottom: particles for (1) ARWP-Heavy-ball (η = 0.6, T =
0.1, a = 1), (2) ILA (η = 0.3, damping = 1), (3) KLMC (η = 1, a = 1), and (4)
MALA (η = 0.3), observed at iterations 10, 50, and 200. We observe reasonable
mixing aside from KLMC, and a typical structured phenomenon at iteration 200
for ARWP. KLMC appears to exhibit larger bias around the rightmost well. Note
that the particles have not stabilized at this point, and continue to flow from the
right potential wells to the left wells.

momentum variable to the score-based ODE. The ARWP method then arises by replacing the score in
the latter accelerated information gradient flow with a computationally tractable kernel approximation,
given by the regularized Wasserstein proximal operator. For quadratic target potentials, we provide a
detailed Lyapunov analysis in terms of the damping parameter in continuous time and an asymptotic
discrete-time mixing rate via linearization. Moreover, we achieve a faster asymptotic contraction
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rate than that of kinetic Langevin dynamics. Experiments demonstrate better tail exploration than
accelerated Langevin methods and the characteristic structured-particle phenomenon.

In a similar vein to the fast iterative shrinkage thresholding algorithm [3], one may ponder
whether or not a similar acceleration can hold using the (unregularized) Wasserstein proximal in
order to accelerate the Wasserstein proximal gradient method [33]. While a Wasserstein proximal
gradient method can be written down using some appropriate exponential maps, and acceleration for
geodesically convex functions on manifolds can exist [26], acceleration on Wasserstein manifolds
has not been explored in the literature. One possible direction would be to consider applying RWPO
within the Wasserstein proximal gradient algorithm [33], relating the RWPO-based methods with
classical proximal descent algorithms. The relationship between FISTA with an added score term,
with the corresponding dynamics in density space, is also an open question.
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APPENDIX A. UNDERDAMPED LANGEVIN EQUATION

One possible accelerated counterpart to the Langevin equation is the so-called kinetic equation
[12]. This corresponds to the underdamped Langevin diffusion [10]. This is the equivalent of Nesterov
acceleration in the gradient space [41]. We can write down the the standard (overdamped) Langevin
diffusion, given by

dXt = −∇V (X) dt+
√
2 dW .

The underdamped Langevin dynamics is then given by the following, where X and P are spatial
and momentum parameters respectively,

d

[
X
P

]
=

[
P

−(aP + u∇V (X))

]
dt+

√
2au

[
0
I

]
dW , (53)

where a > 0 is a friction coefficient, and u > 0 is an inverse mass. In this case, the Brownian motion
can be seen to only act on the momentum variable P . In the case u = 1, if we scale a to infinity, the
limit of the kinetic Langevin dynamics yields the standard overdamped Langevin diffusion [28]. The
distribution of this diffusion converges to its invariant distribution in R2d,

f∗(x, p) ∝ exp

(
−V (x)− 1

2u
∥p∥2

)
.

The corresponding accelerated Fokker–Planck equation is known as the Klein–Kramers equation,
which is an evolution of the joint density in phase space f(x, p). The update is given by the
second-order update [31]

∂tf + p · ∇xf − u−1∇pf · ∇V (x) = a∇p · (pf) + u−1a∆2
pf. (54)

Various convergence results can be found in [22]. This can also be seen as Hamilton’s equations
corresponding to the Hamiltonian

H(x, p) = V (x) +
1

2u
∥p∥2.

An alternative is given by considering a different accelerated Fokker–Planck equation, with the same
stationary distribution. In the continuous-time optimization setting, an accelerated gradient flow is
given by

ẋ = p, ṗ = −ap−∇V (x).

The analogous dynamics in the probability space are given by [8], referred to by the authors as
heavy-ball flow,

∂tf + p · ∇xf −∇p ·
((

ap+∇x
δE

δρ

[∫
Rd

f(x, p) dp

])
f

)
= 0. (55)

Here, E is some divergence or metric to the stationary distribution, such as the relative entropy/KL
divergence, and δE/δρ represents the first variation. The main difference with the Klein–Kramers
equation is the second order term: instead of having a Laplacian in momentum space ∆pft(x, p) over
the joint density f(x, p), one has a mixed gradient ∇p · (f∇x) over the marginal

∫
f(x, p) dp. In the

case E(ρ) = DKL(ρ∥π), writing ρt for the marginal over p, the heavy-ball flow is specialized as

∂tf + p · ∇xf −∇p · [(ap+∇V (x) +∇ log ρt(x)) f ] = 0. (56)
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This equation describes the phase-space measure corresponding the following particle evolution [8,
Eq. 94]

d

dt

[
X
P

]
=

[
P

−aP −∇V (X)−∇ log ρt(X)

]
. (57)

Other than considering this as an analogue of Nesterov acceleration in measure space, another
method of deriving this equation Eq. (55) is by damping an appropriate Hamiltonian flow in the
Wasserstein-2 space. This is interpreted by [41] as arising from a measure-valued analog of Nesterov
acceleration using the Wasserstein metric. See more details in [41].

APPENDIX B. PROOFS

B.1. Convergence rate of linearized discrete time update. This section shows the convergence
rate given in Section 4.3. Recall the update matrix (in each dimension) is given by(

δn+1

gn+1

)
= [I + ηA]

(
δn
gn

)
, A =

[
0 2λ− 4Tk−1

+

−λ−2 −a

]
. (58)

The eigenvalues of A are

χ± =
1

2
[Tr±

√
Tr−4 det]

=
1

2

[
−a±

√
a2 − 4λ−2(2λ− 4TK−1

+ )

]
.

and the step-size has to be chosen such that for every eigenvalue, |1 + ηχ±| < 1. The contrac-
tion/convergence rate is the largest of the values |1+ ηχ±| over all eigenvalues. We recall a technical
assumption that T ≤ (1 +

√
2)−1λmin. This ensures that the function λ 7→ λ−1 λ−T

λ+T is (strictly)
decreasing over [λmin, λmax].

B.1.1. All complex eigenvalues, low critical damping. This happens if for each eigenvalue λ of Λ,

a2 ≤ 8λ−1(1− 2Tk−1
+ λ−1). (59)

The step-size condition on η is∣∣∣∣1 + η

2

[
−a±

√
a2 − 4λ−2(2λ− 4TK−1

+ )

]∣∣∣∣ < 1.

The absolute value is less than 1 if and only if

(1− aη

2
)2 +

η2

4
(−a2 + 4λ−2(2λ− 4Tk−1

+ )) < 1

⇔ 1− aη + η2λ−2(2λ− 4Tk−1
+ ) < 1.

Rearranging, the step-size condition that yields convergence is

η <
a

2λ−1(1− 2Tk−1
+ λ−1)

.

The rate is fastest when the norm of 1 + ηχ± is minimized, which occurs at

η =
a

4λ−1(1− 2Tk−1
+ λ−1)

. (60)

Since this has to be true for every eigenvalue, it is sufficient (and necessary) for (59) to be true for
λmax. The maximal step-size is also given by the smallest value of (60), i.e. for λmin. This yields the
parameters

a = 2
√
2λ−1/2

max

√
1− 2Tk−1

+,maxλ
−1
max, η =

1√
2
λ−1/2
max λmin

√
1− 2Tk−1

+,maxλ
−1
max

1− 2Tk−1
+,minλ

−1
min

.

To obtain the form in Proposition 2, one may observe that

1− 2Tk−1
+ λ−1 =

λ− T

λ+ T
.
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Then, the damping and optimal step-size are given by

a = 2
√
2λ−1/2

max

√
λmax − T

λmax + T
, η =

1√
2
λ−1/2
max λmin

√
λmax − T

λmax + T

λmin + T

λmin − T
.

The rate is given when the complex part is largest, i.e. when λ is minimized. It is given by

max
λ∈[λmin,λmax]

∣∣∣∣1 + η

2

[
−a±

√
a2 − 4λ−2(2λ− 4TK−1

+ )

]∣∣∣∣
=
√
1− aη + 2η2λ−1

min(1− 2Tk−1
+,minλ

−1
min)

=

√
1− κ−1

λmax − T

λmax + T

λmin + T

λmin − T
.

B.1.2. All real eigenvalues, high critical damping. This happens if for each eigenvalue λ,

a2 > 8λ−1(1− 2Tk−1
+ λ−1). (61)

Since both eigenvalues are less than 0 and χ− < χ+ < 0, we need only check that 1 + ηχ− > −1.
The step-size condition on η such that the iteration is stable/convergent, thus becomes

1 +
η

2
[−a−

√
a2 − 4λ−2(2λ− 4TK−1

+ )] > −1

The condition for stability satisfies

η ≤ 4

a+
√
a2 − 4λ−2(2λ− 4TK−1

+ )

We can now consider the largest possible optimal a, which corresponds to λmin,

a = 2
√
2λ

−1/2
min

√
λmin − T

λmin + T
. (62)

Using this damping parameter, we have that

a ≥ 2
√
2λ−1/2

√
λ− T

λ+ T
, (63)

for all λ ∈ [λmin, λmax], and all the eigenvalues of the update matrix I + ηA are real. Moreover, if
the step-size satisfies

η ≤ 2

a
,

then we have that |1 + ηχ+| ≥ |1 + ηχ−|. This can be seen by solving the equality 1 + ηχ+ =
−(1 + ηχ−). Therefore, the rate for a given eigenvalue is given by

1 + ηχ+ = 1− η

2

[
a−

√
a2 − 8λ−1

λ− T

λ+ T

]
. (64)

Up to the first order, this rate is controlled by the following lemma.

Lemma 2. For a constant c > 0, the function

q : [
√
c,∞) → R, q(x) = x−

√
x2 − c, (65)

can be rewritten as
q(x) =

c

x+
√
x2 − c

>
c

2x
. (66)

If we take η = 2/a, the eigenvalues for convergence are all real, and the rate corresponding to an
eigenvalue λ ∈ [λmin, λmax] is given by,

1− η

2

[
a−

√
a2 − 8λ−1

λ− T

λ+ T

]
.
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This rate is slowest (i.e. largest) when λ is maximized. To summarize, the choice of damping a and
step-size is

a = 2
√
2λ

−1/2
min

√
λmin − T

λmin + T
, η =

2

a
.

This choice of parameters yields the rate

1− η

2

[
a−

√
a2 − 8λ−1

max
λmax − T

λmax + T

]
= 1− a−1

[
a−

√
a2 − 8λ−1

max
λmax − T

λmax + T

]

=

√
1− κ−1

λmax − T

λmax + T

λmin + T

λmin − T
.

APPENDIX C. CONVERGENCE OF ACCELERATED REGULARIZED CONTINUOUS-TIME UPDATE

Recall the continuous-time covariance update, given by the coupled ODEs Equation (42),{
˙̃σt = 2gtσ̃t − 4gtTk

−1
+ ,

ġt = −agt − g2t − λ−1 + σ̃−1
t .

(67)

This differs from the linearized case due to the introduction of the g2t term, which changes the
dynamics away from gt ≈ 0. Moreover, we have a forcing term within ˙̃σt.

Let us additionally define the time-dependent variable

b± = λ−1/2 ± σ̃
−1/2
t . (68)

For ease of notation, we denote the KL divergence between two zero-mean Gaussians directly
using their covariances, DKL(Σ1,Σ2) = DKL(N (0,Σ1),N (0,Σ2)). We define a Lyapunov function
by

Et = (σ̃t − 2Tk−1
+ )[b− + gt]

2 + 2DKL(σ̃t, λ). (69)

From [41, Prop. 8], we have a specialized bound, stronger than the traditional log-Sobolev
inequality using the Bakry–Emery criterion. In the case where E is the relative entropy, so that the
first variation satisfies δE(ρt, ρ∗)/δρt = log(ρt/ρ∗) + 1. One has the stronger bound

DKL(σ̃, λ) ≤ σ̃
√
λb2−b+ − 1

2
σ̃b2−. (70)

The proof by specializing this result to Gaussians is delayed until Section C.1, given in Corollary 2.
It remains to compute the time derivative of Et, which we wish to show is negative. We have the

following expressions for the time derivative of Et:

d

dt
2DKL(σ̃t, λ) =

d

dt
(σ̃tλ

−1 − log
(
σ̃tλ

−1
)
− 1)

= ˙̃σt(λ
−1 − σ̃−1

t )

= (2gtσ̃t − 4gtTk
−1
+ )(λ−1 − σ̃−1

t ),

In addition,

d

dt
(b− + gt) =

d

dt
(λ−1/2 − σ̃

−1/2
t + gt)

= −agt − g2t − λ−1 + σ̃−1
t +

1

2
˙̃σtσ̃

−3/2
t

= −agt − g2t − λ−1 + σ̃−1
t + gtσ̃

−1/2
t − 2Tk−1

+ gtσ̃
−3/2
t .
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We can therefore compute the time derivative Ėt as follows:

Ėt = 2g(σ̃ − 2Tk−1
+ )[b− + g]2

+ 2(σ̃ − 2Tk−1
+ )(b− + g)(−ag − g2 − λ−1 + σ̃−1 + gσ̃−1/2 − 2Tk−1

+ gσ̃−3/2)

+ 2g(σ̃ − 2Tk−1
+ )(λ−1 − σ̃−1)

= 2(σ̃ − 2Tk−1
+ )(b− + g)(−ag − g2 + g(b− + g) + gσ̃−1/2 − 2Tk−1

+ gσ̃−3/2)

+ 2(σ̃ − 2Tk−1
+ )(b−)(−λ−1 + σ̃−1)

= −2(σ̃ − 2Tk−1
+ )b2−b+

+ 2g(σ̃ − 2Tk−1
+ )(b− + g)(−a+ λ−1/2 − 2Tk−1

+ σ̃−3/2). (71)

From the bound (70) on DKL(σ̃t, λ),

Et ≤ (σ̃ − 2Tk−1
+ )[b− + g]2 + 2σ̃

√
λb2−b+ − σ̃b2−.

Rearranging,

−2σ̃
√
λb2−b+ ≤ −Et + (σ̃ − 2Tk−1

+ )[b− + g]2 − σ̃b2−. (72)

Substituting into (71), and noting that σ̃ − 2Tk−1
+ and b+ are positive,

Ėt = −2(σ̃ − 2Tk−1
+ )b2−b+

+ 2g(σ̃ − 2Tk−1
+ )(b− + g)[−a+ λ−1/2 − 2Tk−1

+ σ̃−3/2]

≤

(
2σ̃ − 4Tk−1

+

2σ̃
√
λ

)[
−Et + (σ̃ − 2Tk−1

+ )[B− + g]2 − σ̃b2−
]

+ 2g(σ̃ − 2Tk−1
+ )(b− + g)[−a+ λ−1/2 − 2Tk−1

+ σ̃−3/2]

= (λ−1/2 − 2σ̃−1Tk−1
+ λ−1/2)

[
−Et + (σ̃ − 2Tk−1

+ )[b− + g]2 − σ̃b2−
]

+ 2g(σ̃ − 2Tk−1
+ )(b− + g)[−a+ λ−1/2 − 2Tk−1

+ σ̃−3/2]

= −(λ−1/2 − 2σ̃−1Tk−1
+ λ−1/2)Et (73a)

+ λ−1/2σ̃−1(σ̃ − 2Tk−1
+ )[(σ̃ − 2Tk−1

+ )[b− + g]2 − σ̃b2−] (73b)

+ 2g(σ̃ − 2Tk−1
+ )(b− + g)[−a+ λ−1/2 − 2Tk−1

+ σ̃−3/2]. (73c)

C.0.1. One-dimensional case: critical momentum. We now control the latter two terms (73b)
and (73c), by showing their sum is negative. Then, we can use Grönwall’s inequality to conclude.

λ−1/2σ̃−1(σ̃ − 2Tk−1
+ )[(σ̃ − 2Tk−1

+ )[b− + g]2 − σ̃b2−]

+ 2g(σ̃ − 2Tk−1
+ )(b− + g)[−a+ λ−1/2 − 2Tk−1

+ σ̃−3/2]

= (σ̃ − 2Tk−1
+ )

[
λ−1/2σ̃−1[2σ̃b−g + σ̃g2 − 2Tk−1

+ (b− + g)2]
+2g(b− + g)[−a+ λ−1/2 − 2Tk−1

+ σ̃−3/2]

]
= (σ̃ − 2Tk−1

+ )

[
(2λ−1/2 − 2a+ 2λ−1/2)b−g + (λ−1/2 − 2a+ 2λ−1/2)g2

−2Tk−1
+ λ−1/2σ̃−1(b− + g)2 − 4Tk−1

+ g(b− + g)σ̃−3/2

]
= (σ̃ − 2Tk−1

+ )

[
−λ−1/2g2

−2Tk−1
+ λ−1/2σ̃−1(b− + g)2 − 4Tk−1

+ g(b− + g)σ̃−3/2

]
,

where the last equality holds if we take the momentum parameter

a = 2λ−1/2. (74)



28 TAN, OSHER, AND LI

It remains to use the control on g2 and (b− + g)2 to bound the final g(b− + g) term. The component
inside the bracket is a quadratic in g:

− λ−1/2g2 − 2Tk−1
+ λ−1/2σ̃−1(b− + g)2 − 4Tk−1

+ g(b− + g)σ̃−3/2

= g2(−λ−1/2 − 2Tk−1
+ λ−1/2σ̃−1 − 4Tk−1

+ σ̃−3/2)

+ gb−(−4Tk−1
+ λ−1/2σ̃−1 − 4Tk−1

+ σ̃−3/2)− 2Tk−1
+ λ−1/2σ̃−1b2−.

The coefficient of g2 is negative. Maximizing over all possible g, the above expression is upper
bounded by

− 2Tk−1
+ λ−1/2σ̃−1b2− −

b2−(−4Tk−1
+ λ−1/2σ̃−1 − 4Tk−1

+ σ̃−3/2)2

4(−λ−1/2 − 2Tk−1
+ λ−1/2σ̃−1 − 4Tk−1

+ σ̃−3/2)

=
1

4(−λ−1/2 − 2Tk−1
+ λ−1/2σ̃−1 − 4Tk−1

+ σ̃−3/2)

·
[
− 8Tk−1

+ λ−1/2σ̃−1b2−(−λ−1/2 − 2Tk−1
+ λ−1/2σ̃−1 − 4Tk−1

+ σ̃−3/2)

− b2−(−4Tk−1
+ λ−1/2σ̃−1 − 4Tk−1

+ σ̃−3/2)2
]

=
b2−
4ct

·
[
8Tk−1

+ λ−1σ̃−1 + 16T 2k−2
+ λ−1σ̃−2 + 32T 2k−2

+ λ−1/2σ̃−5/2)

− 16
(
T 2k−2

+ λ−1σ̃−2 + 2T 2k−2
+ λ−1/2σ̃−5/2 + T 2k−2

+ σ̃−3
) ]

=
b2−
4ct

[
8Tk−1

+ λ−1σ̃−1 − 16T 2k−2
+ σ̃−3

]
. (75)

where ct indicates the negative denominator ct = (−λ−1/2 − 2Tk−1
+ λ−1/2σ̃−1 − 4Tk−1

+ σ̃−3/2).
This quantity is negative if the term in (75) is positive. This is the case if the following relationship
on σ̃ and T holds:

8TK−1
+ λ−1σ̃−1 − 16T 2K−2

+ σ̃−3 ≥ 0

⇔ λ−1 − 2TK−1
+ σ̃−2 ≥ 0

⇔ σ̃2 ≥ 2TK−1
+ λ. (76)

This states that the variance of the regularized Wasserstein proximal can not be too small, or that the
regularization has to be chosen to be sufficiently small.

As a sanity check, we may verify that for the choice T < λ, this inequality holds near the terminal
variance σ̃ ≈ λ. The necessary condition becomes

λ2 ≥ 2TK−1
+ λ

⇔ λ ≥ 2TK−1
+ =

2T

1 + Tλ−1
= λ+

T − λ

1 + Tλ−1
,

which is equivalent to T ≤ λ, as initially assumed.
Returning to Equation (73a), we have shown that under the assumption (76) on the variance and

regularization, and using the momentum parameter choice a = 2λ−1/2 in (74), the Grönwall-type
inequality holds:

Ėt ≤ −(λ−1/2 − 2Tk−1
+ λ−1/2σ̃−1)Et

+ (σ̃ − 2Tk−1
+ )b2−

8Tk−1
+ λ−1σ̃−1 − 16T 2k−2

+ σ̃−3

4(−λ−1/2 − 2Tk−1
+ λ−1/2σ̃−1 − 4Tk−1

+ σ̃−3/2)

≤ −(λ−1/2 − 2Tk−1
+ λ−1/2σ̃−1)Et.

In particular, close to the terminal distribution σ̃ ≈ λ, one has the asymptotic rate

Et = O(e−rt), (77)
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where the rate is

r = λ−1/2 − 2Tk−1
+ λ−1/2λ−1

=
(
1− 2Tk−1

+ λ−1
)
λ−1/2

=

(
λ− T

λ+ T

)
λ−1/2.

C.0.2. Subcritical damping, removing the step-size condition. Consider a ∈ (λ−1/2, 2λ−1/2]. We
wish to drop the condition that σ̃ is bounded below when deriving our rate, in order to get a global
convergence.

Ft = (σ̃t − 2Tk−1
+ )[b− + gt]

2 + 2χDKL(σ̃t, λ),

and χ = χ(a, λ, T ) > 0 is to be determined. Taking the time derivative of Ft, one gets

Ḟt

2(σ̃ − 2Tk−1
+ )

= g[b− + g]2

+ (b− + g)(−ag − g2 − λ−1 + σ̃−1 + gσ̃−1/2 − 2Tk−1
+ gσ̃−3/2)

+ χg(λ−1 − σ̃−1)

= (b− + g)
(
gb− + g2 − ag − g2 − b−b+ + gσ̃−1/2(1− 2Tk−1

+ σ̃−1)
)

+ χgb−b+

= (b− + g)(g(b− − a)− b−b+ + gσ̃−1/2(1− 2Tk−1
+ σ̃−1)) + χgb−b+

= (b− + g)(g(b− − a) + gσ̃−1/2(1− 2Tk−1
+ σ̃−1)) + (χ− 1)gb−b+

− b2−b+.

Note since a ≥ λ−1/2, that b− − a < 0. Moreover, since

DKL(σ̃, λ) ≤ σ̃
√
λb2−b+ − 1

2
σ̃b2−, (78)

we have

− 2χσ̃
√
λb2−b+ ≤ −Ft + (σ̃ − 2Tk−1

+ )[b− + g]2 − σ̃χb2−

⇔ σ̃χ(1− 2
√
λb+)b

2
− ≤ −Ft + (σ̃ − 2Tk−1

+ )[b− + g]2

⇔ −b2− ≤
−Ft + (σ̃ − 2Tk−1

+ )[b− + g]2

χσ̃(2
√
λb+ − 1)

,

where the equivalence is since 1− 2
√
λb+ = −1− 2σ̃−1/2λ1/2 < 0. It remains to use the term b2−b+

to determine the rate. Let r > 0 be some rate parameter. Then,

Ḟt

2(σ̃ − 2Tk−1
+ )

≤ (b− + g)(g(b− − a) + gσ̃−1/2(1− 2Tk−1
+ σ̃−1)) + (χ− 1)gb−b+

+ rb+
−Ft + (σ̃ − 2Tk−1

+ )[b− + g]2

χσ̃(2
√
λb+ − 1)

− (1− r)b2−b+

= − rb+

χσ̃(2
√
λb+ − 1)

Ft

+ g(b− + g)(b− − a+ σ̃−1/2(1− 2Tk−1
+ σ̃−1)) + (χ− 1)gb−b+

+ rb+
(σ̃ − 2Tk−1

+ )[b− + g]2

χσ̃(2
√
λb+ − 1)

− (1− r)b2−b+. (79)
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It remains to find a maximal r = rt > 0, such that the sum of the last two terms is always negative.
Considering it as a quadratic in b− + g, one has

g(b− + g)(b− − a+ σ̃−1/2(1− 2Tk−1
+ σ̃−1)) + (χ− 1)gb−b+

+ rb+
(σ̃ − 2Tk−1

+ )[b− + g]2

χσ̃(2
√
λb+ − 1)

− (1− r)b2−b+

= (b− + g)2(b− − a+ σ̃−1/2(1− 2Tk−1
+ σ̃−1))− b−(b− + g)(b− − a+ σ̃−1/2(1− 2Tk−1

+ σ̃−1))

+ (χ− 1)(b− + g)b−b+ − (χ− 1)b2−b+

+ rb+
(σ̃ − 2Tk−1

+ )

χσ̃(2
√
λb+ − 1)

[b− + g]2 − (1− r)b2−b+.

This is a quadratic c2(b− + g)2 + c1(b− + g) + c0, where

c2 = (b− − a+ σ̃−1/2(1− 2Tk−1
+ σ̃−1)) + rb+

(σ̃ − 2Tk−1
+ )

χσ̃(2
√
λb+ − 1)

,

c1 = (χ− 1)b−b+ − b−(b− − a+ σ̃−1/2(1− 2Tk−1
+ σ̃−1)),

c0 = −(χ− r)b2−b+.

We wish to show that c2 < 0, and furthermore that the maximum c0− c21
4c2

is negative. Equivalently,
c21 − 4c0c2 < 0.

Condition 1: quadratic coefficient is negative. The equivalent condition for this to hold is that

(b− − a+ σ̃−1/2(1− 2Tk−1
+ σ̃−1)) + rb+

(σ̃ − 2Tk−1
+ )

χσ̃(2
√
λb+ − 1)

< 0

⇔ rχ−1 ≤
σ̃(a− b− − σ̃−1/2(1− 2Tk−1

+ σ̃−1))(2
√
λb+ − 1)

b+(σ̃ − 2Tk−1
+ )

. (80)

The RHS is positive for all σ̃ if a > λ−1/2.
Condition 2: quadratic is upper bounded by 0. Let p = pt := a− b−− σ̃−1/2(1−2Tk−1

+ σ̃−1) =

a− λ−1/2 + 2Tk−1
+ σ̃−3/2 > 0. Rewriting the coefficients, we obtain

c2 = −p+ rb+
σ̃ − 2Tk−1

+

χσ̃(2
√
λb+ − 1)

, (81)

c1 = (χ− 1)b−b+ + b−p, (82)

c0 = −(χ− r)b2−b+. (83)

The equivalent condition is

0 ≥ c21 − 4c0c2 (84)

⇔ 0 ≥ ((χ− 1)b+ + p)2 − 4(−p+ rb+
σ̃ − 2Tk−1

+

χσ̃(2
√
λb+ − 1)

)(−(χ− r)b+). (85)

This inequality has to be strict at r = 0 for a feasible rate to exist. One obtains the simplified quadratic
inequality:

0 ≥ ((χ− 1)b+ + p)2 − 4(−p)(−χb+).

One immediately observes now that if a ∈ (λ−1/2, 2λ−1/2], then

p = a− λ−1/2 + 2Tk−1
+ σ̃−3/2 ≤ λ−1/2 + 2Tk−1

+ σ̃−3/2 < b+. (86)

Therefore, taking χ = 1 yields that the quadratic inequality holds strictly,

p2 − 4pb+ < 0.
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One may now solve for r in Equation (85). Substituting χ = 1, the quadratic inequality becomes

(p)2 − 4(−p+ rb+
σ̃ − 2Tk−1

+

σ̃(2
√
λb+ − 1)

)(−(1− r)b+)

This is a quadratic with positive coefficient in r2 and is negative at r = 0. Since

pσ̃(2
√
λb+ − 1)

b+(σ̃ − 2Tk−1
+ )

, 1 (87)

are positive, the inflection point is also positive. Therefore, the rate (that also satisfies Equation (80))
is given by the smallest (positive) root. Since the quadratic is negative at r = 0, by the intermediate
value theorem (IVT), the positive root must be smaller than the (positive) quantity in (80).

C.0.3. Multi-dimensional case: overdamping. Let ζ > 0 be a constant to be chosen later, and define
the Lyapunov function

Ft = ζ−1(σ̃t − 2Tk−1
+ )[b− + ζgt]

2 + 2ζDKL(σ̃tλ).

Differentiating,

Ḟt

2(σ̃ − 2Tk−1
+ )

= ζ−1(g)(b− + ζg)2

+ ζ−1(b− + ζg)(ζ(−ag − g2 − λ−1 + σ̃−1) + gσ̃−3/2(σ̃ − 2Tk−1
+ ))

+ ζg(λ−1 − σ̃−1)

= ζ−1(b− + ζg)

·
[
gb− + ζg2 + ζ(−ag − g2 − λ−1 + σ̃−1) + gσ̃−3/2(σ̃ − 2Tk−1

+ )
]

+ ζgb−b+

= ζ−1(b− + ζg)

·
[
gb− − aζg − ζb−b+ + gσ̃−3/2(σ̃ − 2Tk−1

+ )
]

+ ζgb−b+

= ζ−1g(b− + ζg) ·
[
b− − aζ + σ̃−3/2(σ̃ − 2Tk−1

+ )
]

− b2−b+.

Since

DKL(σ̃, λ) ≤ σ̃
√
λb2−b+ − 1

2
σ̃b2− = b2−(

√
λb+ − 1

2
)σ̃, (88)

we have that

F ≤ ζ−1(σ̃t − 2Tk−1
+ )[b− + ζgt]

2 + ζb2−(2
√
λb+ − 1)σ̃,

and therefore we have the bound

−b2− ≤
−F + ζ−1(σ̃ − 2Tk−1

+ )(b− + ζg)2

ζ(2
√
λb+ − 1)σ̃

. (89)
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Introducing a rate parameter r > 0, we again split the control term −b2−b+ = −rb2−b+−(1−r)b2−b+,
giving the derivative control

Ḟt

2(σ̃ − 2Tk−1
+ )

= ζ−1g(b− + ζg) ·
[
b− − aζ + σ̃−3/2(σ̃ − 2Tk−1

+ )
]

− rb2−b+ − (1− r)b2−b+

≤ ζ−1g(b− + ζg) ·
[
b− − aζ + σ̃−3/2(σ̃ − 2Tk−1

+ )
]

+ rb+
−F + ζ−1(σ̃ − 2Tk−1

+ )(b− + ζg)2

ζ(2
√
λb+ − 1)σ̃

− (1− r)b2−b+

= − rb+

ζ(2
√
λb+ − 1)σ̃

F + rb+
ζ−1(σ̃ − 2Tk−1

+ )(b− + ζg)2

ζ(2
√
λb+ − 1)σ̃

+ ζ−2(b− + ζg)2[λ−1/2 − aζ − 2Tk−1
+ σ̃−3/2]

− ζ−2b−(b− + ζg)[λ−1/2 − aζ − 2Tk−1
+ σ̃−3/2]

− (1− r)b2−b+.

In the last step, we expand b−, and write g(b− + ζg) = ζ−1(b− + ζg)2 − ζ−1b−(b− + ζg). Define
the auxiliary variable similarly to the previous section, as

p = aζ − λ−1/2 + 2Tk−1
+ σ̃−3/2.

In order to have p > 0, we have the necessary and sufficient condition: aζ ≥ λ−1/2.
Consider the quadratic that is added to the F term. It can be written as c2(b− + ζg)2 + c1(b− +

ζg) + c0, where

c2 = −ζ−2p+ rb+ζ
−2 σ̃ − 2Tk−1

+

(2
√
λb+ − 1)σ̃

, (90)

c1 = ζ−2b−p, (91)

c0 = −(1− r)b2−b+. (92)

We wish to show that the quadratic is always negative for all possible g.
Condition 1: c2 < 0. This is equivalent to the inequality

r ≤ σ̃p(2
√
λb+ − 1)

b+(σ̃ − 2Tk−1
+ )

.

Condition 2: c21 − 4c2c0 < 0 when r = 0. This implies that the quadratic when r = 0 is strictly less
than 0, which guarantees the existence of a positive rate by continuity. This condition can be written
as

0 > ζ−4p2 − 4(−ζ−2p)(−b+)
⇔ 0 > ζ−2p− 4b+

⇔ 4ζ2b+ > p.

This holds for sufficiently large ζ since p ∼ aζ as ζ → ∞.
Let us take

ζ = aλ1/2/2. (93)
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Since a ≥ 2λ−1/2, the necessary condition aζ ≥ λ−1/2 holds and we have that p > 0. Therefore,
the above equivalences hold. Moreover, we have that

4ζ2b+ − p

≥ a2λb+ − 1

2
a2λ1/2 + λ−1/2 − 2Tk−1

+ σ̃−3/2

≥ 1

2
a2λ1/2 + λ−1/2 + a2λσ̃−1/2 − σ̃−1/2 > 0.

Therefore, the quadratic is always negative for r = 0. One obtains that the optimal rate is the smallest
positive root of c21 − 4c0c2, when written as a quadratic in r,

ζ−4p2 − 4(−ζ−2p+ rb+ζ
−2 σ̃ − 2Tk−1

+

(2
√
λb+ − 1)σ̃

)(−(1− r)b+),

and the rate becomes

Ḟt ≤ −
2rb+(σ̃ − 2Tk−1

+ )

ζ(2
√
λb+ − 1)σ̃

Ft.

C.1. Proof of strengthened KL bound. It remains to show the strengthened inequality (70). It
states:

DKL(σ̃, λ) ≤ σ̃
√
λb2−b+ − 1

2
σ̃b2−.

where b± = λ−1/2 ± σ̃−1/2. To use this, we use [41, Prop. 8], stated as follows. We first need the
concept of convexity over a probability space.

Definition 3. Let Ω ⊂ Rn be some domain, and P(Ω) the space of probability densities over Ω. For
a density ρ ∈ P(Ω), let TρP(Ω) and T ∗

ρP(Ω) be the tangent and cotangent spaces at ρ respectively.
A metric tensor is a (pointwise) invertible mapping G(ρ) : TρP(Ω) → T ∗

ρP(Ω), which induces a
metric inner product gρ on TρP(Ω) by

gρ(σ1, σ2) =

∫
σ1G(ρ)σ2 dx =

∫
Φ1G(ρ)

−1Φ2 dx , σ1, σ2 ∈ TρP(Ω),

where Φi satisfies σi = G(ρ)−1Φi, i = 1, 2.
Let E(ρ) be defined some functional over a probability space, such as the KL divergence. We say

that E(ρ) is α-strongly convex (with respect to a metric g) if for any ρ ∈ P(Ω), for any σ ∈ TρP(Ω),
we have

gρ(HessE(ρ)σ, σ) ≥ βgρ(σ, σ),

where HessE(ρ) is the Hessian operator w.r.t. the metric gρ.

The special case we consider is when the metric is given by the Wasserstein metric, with metric
tensor

G(ρ)−1(Φ) = −∇ · (ρ∇Φ),

and (tangent space) inner product (for G(ρ)−1Φi ∈ TρP(Ω),

gρ(G(ρ)Φ1, G(ρ)Φ2) =

∫
Φ1G(ρ)

−1Φ2 dx .

The enhanced KL property is given as follows.

Proposition 5. Let E(ρ) be some potential energy functional in Wasserstein space, and suppose that
E satisfies Hess(α) for some α ≥ 0. Let ρ∗ be the minimizer of E. Further let Tt be the optimal
transport map from ρt to ρ∗. Then,

E(ρ∗) ≥ E(ρ) +

∫ 〈
Tt(x)− x,∇ δE

δρt

〉
ρt dx+

α

2

∫
∥Tt(x)− x)∥2ρt dx . (94)

We have the following corollary for the special case where E is KL divergence and ρt, ρ∗ are
both Gaussians. Let ρ∗ = N (0,Λ). We have the following representation of the KL divergence and
transport map:
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Lemma 3. The KL distance between two zero-mean Gaussians in Rd is

DKL(Σ1,Σ2) =
1

2

(
log detΣ2Σ

−1
1 − d+Tr

(
Σ−1

2 Σ1

))
. (95)

Moreover, the optimal transport map T from N (0,Σ1) to N (0,Σ2) is linear,

T (x) = Σ
−1/2
1 (Σ

1/2
1 Σ2Σ

1/2
1 )1/2Σ

−1/2
1 x. (96)

Substituting this into Proposition 5 yields the desired inequality. Let ρ∗ = N (0,Λ) be the desired
target distribution ρ∗ ∝ exp(−V ), where V (x) = x⊤Λ−1x/2.

Corollary 2. Let ρ∗ = N (0,Λ). Taking E(ρ) = DKL(ρ∥ρ∗), the minimizer of E is ρ∗. Moreover, if
ρ = N (0,Σ), then

E(ρ) ≤ −Tr
(
(Σ1/2ΛΣ1/2)1/2(Σ−1/2Λ−1Σ−1/2 − I)Σ

)
− α

2
Tr

((
Σ−1/2(Σ1/2ΛΣ1/2)1/2Σ−1/2 − I

)2
Σ

)
. (97)

In the case where the covariance matrices Σ and Λ commute, one has the strengthened bound, where
B± = Λ−1/2 ± Σ−1/2,

E(ρ) ≤ Tr
(
ΣΛ1/2B2

−B+ − ΣB2
−/2

)
.

Proof. The following two statements hold.
• E(ρ) satisfies Hess(α) where α = λ−1

max. This follows from the Bakry–Emery criterion
since V (x) is λ−1

max-strongly convex.
• The optimal transport map is linear by Lemma 3.

We can now substitute into (94). For a quadratic form x⊤Ax, we have that∫
x⊤Ax dN (0,Σ) (x) = Tr(AΣ). (98)

Further note that for the KL divergence,
δE

δρ
=

1

2
x⊤(Λ−1 − Σ−1)x+ 1, therefore ∇δE

δρ
(x) = (Λ−1 − Σ−1)x.

Since E(ρ∗) = 0, we have that

E(ρ) ≤ −
∫ 〈

T (x)− x,∇δE

δρ

〉
ρ dx− α

2

∫
∥T (x)− x∥2ρ dx

= −
∫
x⊤
(
Σ−1/2(Σ1/2ΛΣ1/2)1/2Σ−1/2(Λ−1 − Σ−1)

)
x dρ(x)

− α

2

∫
x⊤
(
Σ−1/2(Σ1/2ΛΣ1/2)1/2Σ−1/2 − I

)2
x dρ(x)

= −Tr
(
(Σ1/2ΛΣ1/2)1/2(Σ−1/2Λ−1Σ−1/2 − I)Σ

)
− α

2
Tr

((
Σ−1/2(Σ1/2ΛΣ1/2)1/2Σ−1/2 − I

)2
Σ

)
.

In the case where Λ and Σ commute, one may work over an eigenbasis and sharpen the bound
Equation (94) to each dimension. In particular, the transport map simplifies to T (x) = Λ1/2Σ−1/2x,
and the bound then becomes

E(ρ) ≤ −Tr
(
(Λ1/2Σ−1/2 − I)(Λ−1 − Σ−1)Σ

)
− 1

2
Tr

(
Λ−1

(
Λ1/2Σ−1/2 − I

)2
Σ

)
= Tr

(
Λ1/2(Λ−1/2 − Σ−1/2)(Λ−1 − Σ−1)

)
− 1

2
Tr
(
Σ(Λ−1/2 − Σ−1/2)2

)
= Tr

(
ΣΛ1/2B2

−B+ − ΣB2
−/2

)
,
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FIGURE 7. Contour plots of the covariance error of discrete-time ARWP (18), for
target distribution Λ = N (0, diag(1, 20)), with initialization N (0, 40I), at 2000
iterations. We observe that for lower levels of T , numerical instability dominates
in the highly underdamped setting a < 20−1/2, due to the covariance getting close
to zero.

as desired. □

APPENDIX D. DISCRETE TIME ARWP COVARIANCE UPDATE

Let V (x) = x⊤Λ−1x/2. Recall the original accelerated regularized kinetic system (18), updated
as {

Pk+1 = (1− aη)Pk − η(∇V (Xk) +∇ logWProx ρk(Xk)),

Xk+1 = Xk + ηPk+1.
(99)

We recall the essential expressions relating the covariance of a Gaussian to its regularized Wasserstein
proximal

K± = 1± Tλ−1, B± = λ−1/2 ± σ̃−1/2. (100)

Σ̃t = 2TK−1
+ +K−1

+ ΣtK
−1
+ , Σt = K+(Σ̃t − 2TK−1

+ )K+. (101)

Let us write Pk+1 = GkXk, where Gk is some matrix. Then,

Xk+1 = Xk + ηPk+1 = (I + ηGk)Xk, (102)

and the update of the momentum term

GkXk = Pk+1 = (1− aη)Pk − η(Λ−1 − Σ̃−1
k )Xk

= (1− aη)Gk−1Xk−1 − η(Λ−1 − Σ̃−1
k )Xk

= (1− aη)Gk−1(I + ηGk−1)
−1Xk − η(Λ−1 − Σ̃k)Xk.

Therefore, the regularized WProx kinetic equation in covariance form becomes

Xk+1 = (I + ηGk)Xk ⇒ Σk+1 = (I + ηGk)Σk(I + ηGk)
⊤, (103)

Gk = (1− aη)Gk−1(1 + ηGk−1)
−1 − η(Λ−1 − Σ̃−1

k ). (104)

APPENDIX E. ABLATION ON REGULARIZATION PARAMETERS: GAUSSIAN CASE

We consider a 2D Gaussian target distribution Λ = diag(1, 20). Figure 7 ablates against the
Wasserstein proximal regularization parameter T , which has to be fixed in T ∈ [0, 1). We observe
that the optimal damping is given by (36), which is consistent with the linearization analysis in
Section 4.3. Moreover, as T decreases, the update becomes (numerically) unstable for small damping
a. This is due to the update step (104): if T is small, then the regularized Wasserstein proximal
variance matrix Σ̃k may also be very small, leading to a large update in the momentum matrix G.
This makes the ODE system stiff, and can cause blowup if the step-size is not chosen to be sufficiently
small.
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T = 0.02 T = 0.05 T = 0.1

a = 2

a = 5

a = 15

FIGURE 8. Ablation of ARWP-Heavy-ball across some different choices of T ∈
{0.02, 0.05, 0.1} and a ∈ {2, 5, 15}. All evaluated at iteration 200 and step-size
η = 0.02. As T increases, the particles concentrate more around the parabola
y = x2.

APPENDIX F. ADDITIONAL PLOTS FOR ROSENBROCK DISTRIBUTION

Figure 8 plots the particle positions at iteration 200 for the Rosenbrock distribution. The particle
count is N = 100, step-size η = 0.02, and the parameters are varied as T ∈ [0.02, 0.05, 0.1] and
a ∈ [2, 5, 15]. We observe that as T increases, the particles stay closer to the parabola y = x2. This
is consistent with the observation in [37] that the T parameter “shrinks” the local variance by T .
The evolution is very similar for the different damping parameters in this case, possibly indicating
overdamping.

To contrast this sensitivity, we compare with ILA, which has different behavior as the damping
parameter changes as seen in Figure 9. For the less damped case, corresponding to a small Lipschitz
constant estimate, the particles are able to explore the tails. However, in the more damped case, the
particles do not explore the tails. KLMC does not explore the tails at all, as seen in Figure 10.

ARWP has an additional advantage over BRWP in its stability with respect to step-size. BRWP
is only able to diffuse up to a certain height of the parabola before some instabilities occur, and the
outermost particles begin to oscillate perpendicularly to the parabola.

APPENDIX G. HYPERPARAMETERS FOR EXPERIMENTS

We detail the hyperparameters used in the plots for the ill-conditioned Gaussian Section 5.2,
Gaussian mixture Section 5.4, and Bayesian neural network examples Section 5.5. These are given
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Iter. 50 200 500

FIGURE 9. Top row: underdamped ILA (η = 0.05, L = 2; bottom row: over-
damped ILA (η = 0.05, L = 10). Evaluated at iterations 50, 200 and 500.
Overdamped ILA does not explore the tails.

Iter. 50 200 500

FIGURE 10. Top row: underdamped KLMC (η = 0.01, a = 5; bottom row:
overdamped KLMC (η = 0.01, a = 20). Evaluated at iterations 50, 200 and 500.
There is no exploration.

respectively in Tables 2 to 4. The parameters for Rosenbrock experiments are given in the previous
section Section F.
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Iter. 50 200 500

FIGURE 11. Rosenbrock distribution with BRWP (η = 0.02, T = 0.05). Evalu-
ated at iterations 50, 200 and 500. The convergence is fast but does not continue
to explore the tails, as the outermost particles oscillate back and forth about the
parabolic valley.

Method Parameters

ULA η = 0.01
MALA η = 0.05
BRWP η = 0.2, T = 0.05
ARWP-Nesterov η = 0.3, T = 0.05
ARWP-Heavy-ball η = 0.3, T = 0.05, a = 1
ILA η = 0.2, L = 5
KLMC η = 0.2, a = 5

TABLE 2. Ill-conditioned Gaussian

Method Parameters

ULA η = 0.1
MALA η = 0.3
BRWP η = 0.5, T = 0.1
ARWP-Nesterov η = 0.6, T = 0.1
ARWP-Heavy-ball η = 0.6, T = 0.1, a = 1
ILA η = 0.3, L = 1
KLMC η = 0.2, a = 2

TABLE 3. GMM

Dataset Parameters

Boston η = 0.02, T = 0.01
Combined η = 0.02, T = 0.01
Concrete η = 0.15, T = 0.01
Kin8nm η = 0.02, T = 0.01
Wine η = 0.1, T = 0.005

TABLE 4. BNN

APPENDIX H. DISCRETIZED KINETIC LANGEVIN ALGORITHMS

We detail the ILA and KLMC algorithms here, which were used as benchmarks for the low-
dimensional examples.
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H.1. Inertial Langevin Algorithm. The inertial Langevin algorithm (ILA) [16, Alg. 1.1] takes the
following form. A particle is initialized with position X0 and velocity P0 = 0. The hyperparameters
are a friction coefficient ε ∈ [4/3, 7/4], a step-size ∆t, and the Lipschitz constant of ∇V denoted as
L. The ILA update then defines two new parameters:

β := 1− ε∆t, τ := ∆t2/L,

and updates the particle position as

Xk+1 = Xk,

Pk+1 = Xk+1 −Xk.

For simplicity, we take the friction ε = 1.5, and use the Lipschitz constant as a tunable damping
coefficient.

H.2. Kinetic Langevin Monte Carlo. The KLMC algorithm is given in [10, 12]. The algorithm is
given by an exponential integrator, detailed as follows. For a damping parameter a and a step-size η,
the KLMC update is given by [12, Sec. 3]:[

Xk+1

Pk+1

]
=

[
Xk + ψ1(η)Pk − ψ2(η)∇V (Xk)
ψ0(η)Pk − ψ1(η)∇V (Xk)

]
+

√
2a

[
ξk+1

ξ′k+1

]
, (105)

where ψ0(t) = e−at, ψk+1(t) =
∫ t

0
ψk(s) ds, and

[
ξk+1

ξ′k+1

]
are 2d-dimensional centered Gaussian

vectors with covariance matrix given by[
ξk+1

ξ′k+1

]
∼ N (0,C), C =

∫ η

0

[
ψ0(t)
ψ1(t)

] [
ψ0(t) ψ1(t)

]
dt .

The expressions are given in closed form as follows:

ψ0(t) = e−at,

ψ1(t) = a−1(1− e−at),

ψ2(t) = a−2(at+ e−at − 1),

C =

[
(2a)−1(1− e−2aη) (2a2)−1(1− e−aη)2

(2a2)−1(1− e−aη)2 (2a3)−1(2aη − e−2aη + 4e−aη − 3)

]
.


