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Abstract
Level-set methods provide a powerful computational framework for simulating free boundary
problems in materials science. This paper presents a unified perspective on their application to two
distinct phenomena: multicomponent alloy solidification and epitaxial island growth. Although
these problems differ significantly in physical mechanisms and characteristic length scales, they
can both be effectively addressed within the level-set framework, highlighting the versatility of the
method across diverse applications. We outline the mathematical formulations and highlight com-
putational advances and common features across applications. This overview highlights the role of
level-set methods as a foundational tool in predictive materials modeling.

1. Introduction

The level-set method of Osher and Sethian [1] has emerged as a versatile computational framework for
simulating interface dynamics. Its implicit representation of interfaces allows it to naturally handle topo-
logical changes and to impose sharp boundary conditions at the exact location of the interface with con-
trolled accuracy. The level-set method has had tremendous success in diverse fields. In fluid dynamics,
it has been widely employed to model a broad spectrum of multiphase flow phenomena. Representative
applications include two-phase and free-surface flows [2–7], Hele–Shaw flows and incompressible flows
in complex geometries [8, 9], compressible detonation dynamics [10], droplet–surface interactions,
and coupled problems involving fluid–solid or incompressible–compressible interfaces [11–13]. The
level-set method has also made a significant impact in image processing. For instance, level-set-based
feature-preserving techniques have been developed to smooth noisy surfaces, in a manner closely related
to diffusion-based image processing methods [14]. Comprehensive overviews of these approaches can
be found in the book and review articles on the subject [15, 16]. In computer graphics, the level-set
method has been widely adopted to simulate complex fluid–structure interactions, including the two-
way coupling between fluids and thin deformable solids such as cloth or rigid shells [17]. It has also
been employed to generate highly realistic animations of water dynamics [18–21], as well as to capture
the visual complexity of phenomena such as flames [22] and bubbles [23]. The level-set method has also
found extensive application in problems of optimization and shape reconstruction. Notable examples
include its use in inverse problem techniques for the design of photonic crystals [24], the reconstruc-
tion of surfaces from point clouds [25], and the optimization of geometries under constraints [26]. It
has further been employed to determine optimal shapes for structural design [27, 28] and to reconstruct
solvent-excluded surfaces of large biomolecules [29, 30]. Beyond these applications, the level-set method
has been applied to problems in self-assembly of diblock copolymers, including the solution of inverse
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problems that identify confinement geometries guiding block copolymer assembly toward prescribed tar-
get patterns in lithography [31–36]. A broader overview of level-set approaches for inverse problems and
optimal design can be found in [37].

Hybrid strategies have also been investigated, where the level-set method is coupled with other
interface-tracking techniques, such as volume-of-fluid or particle-based methods, to enhance accuracy
and mass conservation [38–40]. For comprehensive perspectives, the reader is referred to several key
reviews and monographs on the subject [41–44]. In the field of materials science, these developments
have enabled the formulation of sophisticated models for processes governed by evolving free boundar-
ies, thereby extending the versatility of the level-set method to a wide range of technologically relevant
phenomena.

This paper presents a unified perspective on the application of level-set methods to two distinct, yet
thematically linked, problems in materials science:

1. The modeling of solidification in multicomponent alloys in the context of additive manufacturing
(AM) using a sharp-interface formulation.

2. The modeling of epitaxial growth using an island dynamics model (IDM).

These applications differ in scale and governing physics, yet benefit from the level-set method’s strengths
in capturing evolving interfaces. Level-set methods have been applied to many other applications in
materials and we refer the interested reader to [45] and the references therein. Taken together, these
applications demonstrate the breadth and robustness of level-set methods in modeling free boundary
problems that differ significantly in physical mechanisms and characteristic length scales. This review
brings together these perspectives and highlights the method’s contribution to advancing predictive sim-
ulation capabilities in materials science.

1.1. Alloy solidification
AM holds immense promise for the development of advanced engineering components, particularly
through its unique ability to fabricate complex three-dimensional geometries that would be difficult or
impossible to achieve using conventional manufacturing techniques. Beyond geometric flexibility, AM
also enables site-specific control over material properties by tuning processing parameters and thermal
histories at a localized scale [46–51]. This capability opens new pathways for the design and optimiz-
ation of performance-critical parts in aerospace, biomedical, and energy systems. Recent studies have
demonstrated the potential of AM to tailor microstructure and phase distribution during fabrication,
thereby enhancing strength, ductility, and fatigue resistance in targeted regions of a component [46–51].

Realizing the full potential of AM requires a fundamental understanding of the complex, multi-
physics phenomena (heat transfer, mass diffusion, and fluid flow) that occur during solidification and
how they influence the resulting microstructures and properties. Key features such as solute segregation,
grain morphology, crystallographic orientation distribution, and defect formation (e.g. pores and cracks)
are governed by the conditions at the solid–liquid interface during the melt pool evolution. Among the
most critical solidification parameters are the local interface velocity (R) and the thermal gradient (G),
which can span several orders of magnitude within a single melt pool and vary spatially and temporally
during processing.

Designing AM-processed materials with targeted microstructures and properties therefore demands
predictive models that can map solidification regimes (planar, cellular, columnar, and equiaxed growth)
onto the (G, R) space for specific alloy systems. Although several models exist to predict structural
transitions, such as the columnar-to-equiaxed transition [52, 53], they often rely on empirical paramet-
ers that are difficult to measure or estimate experimentally and were originally developed under uni-
directional growth conditions, which are not representative of AM melt pool environments. As a res-
ult, these models frequently lack predictive capability under the complex thermal conditions imposed
by scanning strategies and beam parameters. There remains a significant knowledge gap linking thermal
transport, fluid flow, solute redistribution, and microstructure evolution, especially in multicomponent
alloy systems.

In response to this need, a wide range of numerical strategies have been developed to simulate solid-
ification. These approaches generally fall into three categories: cellular automata (CA) methods [54],
phase-field or other diffuse-interface methods [55–58], and sharp-interface methods [59–65]. CA meth-
ods are computationally efficient but are rule-based rather than physics-based, limiting their fidelity.
Phase-field methods offer a rigorous continuum approach in which the solid–liquid interface is described
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by a diffuse transition zone. However, while phase-field theory is asymptotically convergent to sharp-
interface descriptions in the limit of vanishing interface thickness, practical implementations require arti-
ficially broadened interfaces, which may reduce accuracy for highly localized phenomena. To the best
of our knowledge, there is currently no phase-field approach that can consider more than ternary sys-
tems. Considering a diffuse interface has also been considered within the level-set method [58], using the
level-set method to track the interface but solving transport equations using smeared boundary condi-
tions. This approach has the advantage of being simple but only approximately satisfies boundary condi-
tions such as the Gibbs–Thomson relation.

Sharp-interface methods, on the other hand, explicitly model the solid–liquid boundary as a discon-
tinuity. While they require sophisticated algorithms for interface tracking and for enforcing boundary
conditions, they offer the advantage of faithfully representing the true macroscale physical description.
In the case of a pure substance, where only the temperature field is solved, the early application of the
level-set method was introduced by [66], who employed a boundary integral formulation to compute
the temperature. This was later followed by the work of [59], who solved the temperature equation dir-
ectly on a grid. In [59], the boundary condition at the interface was implemented using the method of
Mayo [67], resulting in a second-order accurate scheme but yielding a non-symmetric linear system.
Subsequently, [68] proposed a symmetric discretization of the problem, which was later extended to
a fourth-order accurate scheme (albeit again producing a non-symmetric system) in [69]. This line of
work was further extended in [62] to adaptive grids, achieving second-order accuracy for both the tem-
perature field and its gradient in the context of the diffusion equation, and resulting in a fully second-
order accurate method for pure substances. The level-set methodology was later extended to binary sys-
tems in [64, 65].

Truly sharp-interface simulations have been largely limited to binary alloys, leaving a gap in mod-
eling capabilities for more realistic multicomponent systems. This gap has recently been addressed in
[70], where a sharp-interface computational framework for multicomponent alloy solidification was
introduced. The model couples temperature evolution, solute diffusion, and interface motion, captur-
ing the complex interplay of physical phenomena at the solid–liquid boundary. Key physical effects,
including crystallographic anisotropy, capillarity, and solute rejection, are resolved discretely as macro-
scopic discontinuities, rather than through approximate smoothing. A distinctive feature of the model
is its use of thermodynamically consistent, composition-dependent liquidus slopes and partition coeffi-
cients, obtained from the PANDATTM database, allowing accurate representation of local equilibrium at
the interface.

Numerically, the framework leverages adaptive mesh refinement (AMR) on quadtree grids and is
optimized for scalable performance on parallel computing architectures. This allows for physically real-
istic simulations under thermal conditions characteristic of AM, such as high cooling rates and steep
temperature gradients. The approach has been demonstrated on the solidification of Co–Al–W alloys,
a ternary system relevant to structural applications, and has considered simulation of a penta-alloy. To
the best of our knowledge, this work represents the first sharp-interface computational engine capable of
simulating solidification in alloys with an arbitrary number of alloying elements.

1.2. Epitaxial growth
Epitaxial growth underlies the fabrication of many modern electronic and optoelectronic devices, ranging
from transistors and quantum dot lasers to advanced memory architectures and catalysts, by enabling
the controlled deposition of atoms and molecules onto heated substrates, where they assemble into crys-
talline layers with atomic-scale precision [71–74]. The resulting structures exhibit extremely low defect
densities, which are essential for device performance. However, simulating this process is challenging
because the involved length and time scales span many orders of magnitude, from submonolayer atomic
events to surface morphology evolution across lateral scales of several microns or more. This disparity
necessitates multiscale modeling frameworks that span atomistic, mesoscale, and continuum descriptions
[75, 76]. A comprehensive theoretical framework must accurately describe atomistic phenomena such
as surface diffusion, nucleation, and island coalescence, as well as the transition to multilayer growth
regimes, which can result in kinetic roughening. The morphology of the growing film is sensitive to
experimentally tunable parameters such as the ratio of the surface diffusion constant D to the deposition
flux F, which governs whether atoms integrate smoothly into existing islands or form new nucleation
sites. Capturing these mechanisms in a model that is both quantitatively predictive and computationally
feasible across multiple regimes is a significant challenge [77, 78]. Ideally, such a model should be applic-
able to a wide range of homoepitaxial and heteroepitaxial systems, compatible with various growth tech-
niques, and capable of resolving dynamic processes from atomic to device scales. Level-set simulations
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offer a powerful framework for studying these effects by bridging atomistic processes and continuum-
scale behavior, making them particularly promising for the development of tools for engineering applica-
tions in advanced materials design.

Kinetic Monte Carlo (KMC) methods have long been a central tool for studying epitaxial growth,
as they directly incorporate atomistic event rates derived from fundamental physical principles, thereby
providing a natural framework for mimicking the underlying microscopic processes. Historically, one of
the earliest applications of KMC to epitaxial growth was the work of [79], who developed a fast KMC
algorithm for simulating molecular beam epitaxy. This contribution was instrumental in demonstrat-
ing that stochastic event-driven methods could efficiently capture deposition, diffusion, and nucleation
processes central to epitaxial layer formation. Since then, KMC has become the standard approach for
simulating epitaxial phenomena across a wide range of material systems. For example, [80] introduced
a multiscale KMC algorithm specifically tailored for epitaxial growth, demonstrating how stochastic
atomistic events can be systematically coupled with larger-scale morphological evolution. Earlier, [81]
provided a comprehensive review of KMC simulations in the context of chemical vapor deposition, high-
lighting the versatility of the method in describing growth processes involving adsorption, diffusion, and
reaction kinetics. In turn, [82] applied first-principles-based KMC simulations to heterogeneous catalysis,
offering a paradigm for how physically rigorous event rates can yield predictive insights into complex
surface processes. Recent advances highlight both the flexibility and the continuing relevance of KMC to
contemporary materials science. For example, [83] applied large-scale KMC simulations to the epitaxial
growth of graphene, providing insight into how growth kinetics and nucleation influence the morpho-
logy of two-dimensional materials. Their results underscore the ability of KMC to address the challenges
of simulating extended time and length scales in emerging low-dimensional systems. Likewise, [84] used
KMC to investigate the influence of growth conditions on the epitaxial growth of 3C–SiC(0001) vicinal
surfaces. Their study illustrates the predictive power of KMC in technologically important heteroep-
itaxial systems, where temperature, flux, and miscut angle strongly affect step-flow dynamics and surface
morphology.

Collectively, these studies illustrate how KMC serves as a bridge between fundamental atomic-scale
mechanisms and experimentally observable growth behavior. At the same time, despite their accuracy
and physical fidelity, KMC simulations are computationally demanding, particularly when long-range
interactions or extended spatiotemporal scales must be resolved, posing challenges for their applic-
ation to larger systems or technologically relevant growth regimes. By contrast, level-set simulations
provide a continuum-based alternative that efficiently bridges atomistic mechanisms with mesoscale
and continuum-scale behavior. The level-set formulation enables a continuous representation of island
boundaries, even as these coalesce, shrink, or evolve anisotropically. The IDM [85–87], developed in this
framework, offers a continuum alternative to KMC simulations, efficiently capturing stochastic nucle-
ation and interface motion via deterministic adatom flux at the islands’ boundaries. A key advantage of
the IDM and its level-set formulation is its significantly lower computational cost compared to Monte
Carlo simulations when accounting for long-range interactions such as elastic forces arising from lattice
mismatch.

1.3. Outline
Section 2 provides an overview of the level-set method, the core numerical algorithms on which it is
based, and how boundary conditions are imposed in this implicit approach. Sections 3 and 4 present
applications of the method to multicomponent alloy solidification and epitaxial growth, respectively.
Finally, section 5 offers concluding remarks and discusses future research directions.

2. The level-set method

The level-set method, introduced by Osher and Sethian [1], represents a moving interface as the zero
level set of a higher-dimensional scalar function. The interface evolves implicitly under a velocity field
determined by the governing physical laws, allowing for natural handling of topological changes such
as merging and pinching. The level-set function ϕ(x) is set to be negative in one phase (e.g. the liquid
phase in a solidification process) that occupies the region denoted Ω− and positive in the other phase
(e.g. the solid phase in a solidification process) that occupies the region denoted Ω+:

ϕ(x)< 0,∀x ∈ Ω−, ϕ(x) = 0,∀x on Γ, ϕ(x)> 0,∀x ∈ Ω+.

Figure 1 illustrates the level-set methodology for free-boundary problems. In this framework, the
governing physical equations are solved in the regions Ω− and Ω+, while appropriate boundary con-
ditions are prescribed on the evolving interface Γ. The procedure for imposing boundary conditions
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Figure 1. Typical level-set setup to free boundary problems.

within the level-set framework is presented in section 2.3, and the sets of partial differential equations
governing each region are detailed in section 3 for solidification and section 4 for the IDM.

Although in principle the level function can be chosen to be any Lipschitz continuous function, a
practical choice is to define the level-set function as the signed distance to the interface Γ. As the level-
set function is deformed under its normal velocity, it is necessary to re-initialize it to a signed distance
function. When the normal velocity exhibits strong anisotropy, it is necessary to perform the reinitial-
ization procedure at every time step in order to maintain the signed-distance property. More generally,
carrying out reinitialization at each step is a sound rule of thumb in scientific applications. A traditional
approach is to solve the reinitialization equation [2]:

ϕτ + sign
(
ϕ0
)
(|∇ϕ| − 1) = 0, (1)

where τ is a pseudo-time step, taken in practice to correspond to a number of iterations between 10 and
15.

In materials science, this representation proves especially useful in problems where the interface
dynamics depend on coupled processes such as diffusion, reaction kinetics, phase transformations, or
mechanical deformation. The method’s ability to maintain a sharp interface and its compatibility with
structured or adaptive grids make it particularly well-suited for high-resolution simulations. In addi-
tion, the level-set representation provides a straightforward way to compute the normal vector, n, to the
boundary and its mean curvature, κ:

n=
∇ϕ

|∇ϕ |
, κ=∇· n=∇· ∇ϕ

|∇ϕ |
.

Given the normal velocity of the interface, vn = v · n, derived from physical models, the level-set
function is evolved under using the level-set equation:

∂ϕ

∂t
+ vn|∇ϕ|= 0. (2)

2.1. Discretization of the level-set equations
2.1.1. Spatial discretization
The discretization of the normal and curvature are straightforward and are based on simple central
differencing. The discretizations of the reinitialization equation (1) and the level-set equation (2) are
more involved and are based on numerical advances on Hamilton–Jacobi solvers, themselves based on
advances in computational methods for conservation laws. Since those equations can be solved in a
dimension-by-dimension approach, it is enough to present the approach in one spatial dimension.

The Hamilton–Jacobi equation in one spatial dimension is written as:

ϕt +H(ϕx,x, t) = 0, (3)

and its discretization takes the form:

ϕn+1
i = ϕn

i −∆tHn
i

(
ϕ−
x ,ϕ

+
x

)
,

where ϕ−
x ,ϕ

+
x are the approximation of the left and right derivative of the level-set function ϕn and Hn

i

is an approximation of the Hamiltonian H.
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Figure 2. Framework for defining the numerical Hamiltonian Hn
i .

The first difficulty when considering numerically approximating the level-set equations is the fact
that equations are nonlinear and therefore can produce shock and rarefaction solutions that require
approximating derivatives of functions with steep gradients or kinks. Issued from progress made
in the context of conservation laws, the schemes used are of the type Essentially Non-Oscillatory
(ENO)/Weighted Essentially Non-Oscillatory (WENO) [88–91]. The main idea behind those approaches
is to create a customized stencil at each grid point in order to approximate derivatives, with the driving
principle being to start from the standard upwind direction and add grid points to the stencil in such a
way as to avoid regions of sharp gradients; sharp gradients can conveniently be estimated by creating a
finite difference table at each grid point. The ENO/WENO schemes used in these studies are detailed in
appendix.

Remarks:

1. We note that the use of ENO/WENO schemes, compared to a first-order upwind discretization,
inevitably increases the computational cost by a factor of three to four, depending on the
sophistication of the implementation. However, such high-order schemes are essential to mitigate the
excessive numerical diffusion associated with simple upwinding, which would otherwise compromise
the accuracy of the solution to the point of rendering the results unreliable.

2. In the case of uniform grids, the WENO scheme is typically used. In the case of adaptive grids, given
the computational cost of accessing grid points that are not immediately in the neighborhood of a
grid point at which we are seeking an approximation of the derivatives, we are limiting the ENO
procedure to second-order accuracy in conjunction with the treatment of T-junction nodes described
in section 2.2.

The second difficulty is to properly approximate, at each grid point, the Hamiltonian Hn
i depend-

ing on the values of ϕ−
x ,ϕ

+
x (see figure 2). This approximation must take into account nonlinear effects

related to shocks and rarefaction waves, following the Godunov strategy that defines the Hamiltonian as
follows:

Hn
i ≈


min

ϕx∈[ϕ−
x ,ϕ+

x ]
H(ϕx) , if ϕ−

x ⩽ ϕ+
x ,

max
ϕx∈[ϕ+

x ,ϕ−
x ]
H(ϕx) , if ϕ−

x ⩾ ϕ+
x .

(4)

For example, in the case of the level-set equation (2), which can be re-written as follows to give a direct
handle on the characteristic directions:

ϕt +
vnϕx√

ϕ2
x +ϕ2

y +ϕ2
z

ϕx +
vnϕy√

ϕ2
x +ϕ2

y +ϕ2
z

ϕy +
vnϕz√

ϕ2
x +ϕ2

y +ϕ2
z

ϕz = 0,

the Godunov formula, gives the following discretization for the term ϕx term:

1. If vnϕ−
x ⩽ 0 and vnϕ+

x ⩽ 0 discretize ϕx by ϕ+
x .

2. If vnϕ−
x ⩾ 0 and vnϕ+

x ⩾ 0 discretize ϕx by ϕ−
x .

3. If vnϕ−
x ⩽ 0 and vnϕ+

x ⩾ 0 set ϕx = 0.
4. If vnϕ−

x ⩾ 0 and vnϕ+
x ⩽ 0

(a) If |vnϕ+
x |⩾ |vnϕ−

x | discretize ϕx by ϕ+
x .

(b) If |vnϕ+
x |⩽ |vnϕ−

x | discretize ϕx by ϕ−
x .
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The terms ϕy and ϕz are discretized similarly, the results are plugged into equation (2). The reinitializa-
tion equation is discretized almost identically by writing equation (1) as:

ϕτ + sign
(
ϕ0
) ϕx√

ϕ2
x +ϕ2

y +ϕ2
z

ϕx +
ϕy√

ϕ2
x +ϕ2

y +ϕ2
z

ϕy +
ϕz√

ϕ2
x +ϕ2

y +ϕ2
z

ϕz − 1

= 0.

2.1.2. TVD-RK3
The spatial discretization is traditionally coupled with a TVD-RK3 algorithm for the time evolution [88].
TVD stands for Total Variation Diminishing and can be written as a set of simple Euler steps in com-
bination with linear averaging of the solution at intermediate steps. In the case of the Hamilton–Jacobi
equation (3), we start from ϕn, and perform one Euler step to find a temporary ϕ̃n+1 at each grid point:

ϕ̃n+1
i −ϕn

i

∆t
+Hn

i = 0,

followed by another Euler step to find a temporary ϕ̃n+2
i :

ϕ̃n+2
i − ϕ̃n+1

i

∆t
+Hn+1

i = 0,

where Hn+1
i is computed using equation (4) with ϕ−

x ,ϕ
+
x computed from ϕ̃n+1. Once ϕ̃n+2 is found, we

apply a weighted averaging procedure to find a temporary ϕ̃n+ 1
2 :

ϕ̃
n+ 1

2
i =

3

4
ϕn
i +

1

4
ϕ̃n+2.

Last, another Euler step is used to find a temporary ϕ̃
n+ 3

2
i :

ϕ̃
n+ 3

2
i − ϕ̃

n+ 1
2

i

∆t
+H

n+ 1
2

i = 0,

where H
n+ 1

2
i is computed using equation (4) with ϕ−

x ,ϕ
+
x computed from ϕ̃n+ 1

2 . The updated solution
ϕn+1 at each grid point is defined by a weighted average: ϕn+1:

ϕn+1
i =

1

3
ϕn
i +

2

3
ϕ̃
n+ 3

2
i .

We also refer the interested reader to other methodologies to reinitialize the level-set function that
are not based on partial differential equation (PDE) evolution equations, such as the Fast Marching
Method [42, 92, 93], the Fast Sweeping Method [94, 95] and their parallel versions [96–98], or other
explicit approaches [99–103], as well as the recent work by Osher seeking to overcome the curse of
dimensionality [104, 105] for Hamilton–Jacobi equations.

2.2. Adaptive grid refinement
The level-set method is known to exhibit a form of numerical error commonly referred to as ‘mass loss,’
wherein the evolving interface deviates slightly from the expected physical trajectory. This artifact, how-
ever, diminishes with grid refinement and results in a negligible loss of mass when sufficiently fine grids
are used. Because the computational cost scales with the number of grid points and high resolution is
primarily needed in the vicinity of the interface, AMR presents a particularly effective strategy. In addi-
tion, many problems in materials science are either diffusion-dominated or governed by partial differen-
tial equations with parabolic or elliptic components. These equations typically yield smooth solutions,
except near interfaces where discontinuities or sharp gradients may arise. This further supports the use
of adaptive grids, which concentrate computational resources where they are most needed while minim-
izing overall cost. An example of a three-dimensional crystal growth simulation is presented in figure 4.

In the context of AMR, quadtree and octree data structures representation of adaptive Cartesian grids
offer optimal efficiency in terms of both memory usage and CPU cost. In [107], the authors proposed
a straightforward discretization strategy applicable to level-set methods [108], parabolic and elliptic
equations in irregular domains [61, 62, 109–116], as well as the Navier–Stokes equations [117]. The core
contribution lies in the treatment of T-junction grid points, which are points on the grid where one (in
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Figure 3. Zoom on a T-junction grid point.

Figure 4. Simulation of crystal growth in 3D (a) with a zoom on one crystal (b) and a further zoom on the resolved thermal
boundary layer (c). Figure reprinted from [106], Copyright (2016), with permission from Elsevier.

2D) or two (in 3D) neighboring grid points are missing, as illustrated in figure 3. The authors intro-
duced a definition for these missing neighbors that enables third-order accuracy:

uG =
s4u3 + s3u4
s3 + s4

− s3s4
s1 + s2

(
u2 − u0

s2
+

u1 − u0
s1

)
.

This formulation allows the use of standard upwind or central differencing schemes as if the grid
were uniform, while maintaining the desired level of accuracy. We note that given the computational
cost of accessing grid points that are not immediately in the neighborhood of a grid point at which we
are seeking an approximation of the derivatives, we are limiting the ENO procedure to second-order
accuracy. We note that adaptive grids are particularly advantageous for elliptic and parabolic problems,
i.e. those dominated by diffusion. In such cases, the solution is infinitely smooth away from the interface
and can therefore be accurately resolved on relatively coarse grids. Near the interface, however, discon-
tinuities in the solution and/or its flux require enhanced resolution, which can be efficiently provided
by local grid refinement. For example, [118] demonstrated that an adaptive grid with a coarse 32× 32
background resolution achieves the same level of accuracy as a uniform 256× 256 grid, provided that
the grid is locally refined to the effective 256× 256 level within a narrow band around the interface.
Building on the p4est library [119], which manages the distribution of adaptive grids across multiple
processes, [106] developed the casl library, which implements level-set methods and standard solvers
optimized for massively parallel architectures. Additional work utilizing the octree data structure includes
that of [19, 21] and research on mainly compressible flows on AMR can be found in [120] and the ref-
erences therein.

2.3. Imposing boundary conditions
An important advantage of the level-set method lies in its ability to impose sharp boundary condi-
tions, namely, the capability to enforce conditions directly at the precise interface location with con-
trolled accuracy (see sections 2.3.1–2.3.3), while preserving the discontinuities in the solution and its
flux. This capability is particularly important when modeling systems under the continuum assumption
underpinning conservation laws, where rapid variations across physical interfaces are accurately repres-
ented as sharp discontinuities rather than smooth transitions. Boundary conditions typically fall into
Dirichlet, Robin (with a sub case being Neumann) and jump conditions. In the context of solidification,
the Gibbs–Tompson is a well-known Dirichlet physical boundary condition that describes the equilib-
rium temperature of the phase transition and the concentration of alloying elements have a jump across
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Figure 5. Example of a typical numerical solution of the Poisson equation with jump conditions on irregular domains. Figure
reprinted from [129], Copyright (2020), with permission from Elsevier.

the solidification front. An example of Robin boundary condition will be discussed in the context of epi-
taxy (section 4) that is responsible for mound formation.

The Ghost Fluid Method (GFM), originally introduced to capture sharp discontinuities in compress-
ible flow and detonation problems [121–124], has significantly influenced how sharp boundary condi-
tions are imposed within the level-set framework. In the context of compressible flows, the central idea
is to track the location of shocks and contact discontinuities using the level-set method, while maintain-
ing two separate numerical solutions; one on each side of the interface representing the real fluid, and
a ghost fluid that is defined as the real fluid plus the Rankine–Hugoniot jump condition. Thanks to the
definition of a ghost fluid, the solution remains continuous across the interface and therefore avoids dir-
ectly differentiating discontinuous functions, thereby eliminating the large numerical errors that would
otherwise arise.

This simple yet powerful approach has been successfully extended to elliptic and parabolic prob-
lems. In particular, it has been applied to the Poisson and diffusion equations on irregular domains
with Dirichlet boundary conditions, as well as to problems involving jump conditions. In this section,
we briefly describe the methodology for jump, Dirichlet and Robin/Neumann conditions.

2.3.1. Jump boundary conditions
In the case of elliptic and parabolic equations, the jump conditions are given for the solution u and its
flux ∇u · n, in the form [u] = f and [µ∇u · n] = g, respectively, where f = f(x, t) and g= g(x, t) are known
functions, µ is a variable coefficient (e.g. the thermal conductivity in a solidification problem), the ‘jump
operator’ of a quantity Q is defined by [Q] = Q+ −Q−, where Q+/− is the value of Q at the interface
on the Ω+/− side, and the unit normal n points towards the inside of Ω−.

The first Ghost-Fluid approach replaced the jump in flux by its projection to each spatial dimension,
resulting in a strategy that is simple since it allows a dimension-by-dimension approach to approxim-
ating the Laplace operator [125]. In the case where the tangential component of the jump in flux are
crucial, this approach may introduce a numerical smearing of the tangential components that can pol-
lute the solution. To address this limitation, three techniques have been proposed. The first, inspired by
the work of [126], uses a Voronoi partition so that the degrees of freedom of the Voronoi cell are ortho-
gonal to their edges, making the application of the approach of [125] accurate when tangential terms
are important [127]. The second, known as xGFM [128], extends the GFM by enforcing the full jump
condition in the normal direction through an iterative process.

The third approach, introduced in [129], constructs second-order accurate expressions for the solu-
tion on either side of the interface using normal derivatives of the solution. The difference between these
expressions is then directly linked to the jump conditions in the solution and its flux. By approximat-
ing the local gradient via a least-squares fit using neighboring points, this method yields two candidate
formulas for the ghost value. Interestingly, [129] observe that choosing the formula corresponding to
the region with the smaller diffusion coefficient leads to a linear system with significantly improved con-
ditioning. Figure 5 is an example of the imposing sharp jump conditions using the method of [129],
illustrating that the jumps in the solution and its flux are indeed imposed at the discrete level. As illus-
trated in figure 6, both the condition number and the numerical error in the solution and its gradient
remain well-controlled (i.e. bounded), even in the presence of strong discontinuities in the diffusion
coefficient. We recall that for a linear system of equations Ax= b, the condition number, κ(A), measures
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Figure 6. Conditioning test in two spatial dimensions (each data point represents the maximum value among 10× 10=
100 different relative placements of an immersed interface on the computational grid). Figure reprinted from [129], Copyright
(2020), with permission from Elsevier.

Figure 7. Definition of the ghost value uGi+1 using a linear extrapolation. First, construct a linear interpolant I(x) = ax+ b of

u such that I(0) = ui and I(∆xΓ) = uΓ. Then define uGi+1 = I(∆x).

how sensitive the solution of the linear system is to small errors in the input b. A high condition num-
ber indicates that significant accuracy may be lost when solving the linear system (roughly up to κ(A)ε,
where ε is machine precision). The condition numbers is therefore a useful measure to assess the reliab-
ility of the solution of a linear system of equations. From a practical point of view, it is necessary to use
the method in [129] to avoid smearing in the tangential component. We note, however, that for some
applications such as incompressible flows without phase change nor Marangoni effects, tangential com-
ponents are absent, and the approach of [125] can be employed instead, which is simpler to implement.
In both cases, the resulting scheme achieves second-order accuracy in the maximum norm.

2.3.2. Dirichlet boundary conditions
Solving elliptic or parabolic problems requires implicit discretizations, where a linear system of equations
is built. Specifically, each line of the linear system is filled with the coefficients of the standard central
differencing formula in each spatial direction. In cases where a specific value must be imposed on an
irregular domain, the typical configuration is illustrated in figure 7, where the solution exhibits a dis-
continuity in the derivative at the interface6. The GFM addresses this by defining a ghost value that still
enables the use of standard central differencing while preserving the sharp interface behavior. This ghost
value is defined by considering the extrapolation of the solution from one side of the interface to the
other, which in turn gives the modified coefficients of the linear system for grid points adjacent to the
interface. The order of accuracy and the symmetry of the linear system is detailed in [68, 69, 130] sum-
marizes which extrapolation to use depending on the problem considered.

2.3.3. Robin boundary conditions
Robin boundary conditions are commonly employed to model physical phenomena such as convect-
ive heat or mass exchange at boundaries, semi-permeable membranes, imperfect insulation, or radiative

transfer, among many. In its most general form, Robin boundary conditions are written as
∂u

∂n
+αu= g,

where α= α(x, t) and g= g(x, t) are given functions; in the case where α= 0 the boundary condition is
of Neumann type. Robin boundary conditions are important as they give a condition for the flux of the
solution across the free boundary. An example of such application is given in section 4 for the simula-
tion of mounding in epitaxial growth.

6 In the case where, in addition, the solution itself is discontinuous, the numerical treatment outlined in section 2.3.2 is identical as it
fully decouples the numerical solution on both sides of the interface.
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Figure 8. Local grid arrangement of a computational cell centered at (i, j) cut by an interface defined by the level-set
function ϕ.

Although finite difference approaches extending the Ghost-Fluid Method for Dirichlet condi-
tions of [68, 69], have been adapted to impose Robin boundary conditions within the level-set frame-
work [131–136], a finite volume approach is generally preferred due to its more natural incorporation
of boundary fluxes and compatibility with conservative formulations. Through the use of the divergence
theorem over each cell containing the zero-level set (see figure 8), the boundary condition is naturally
incorporated into the formulation, reducing the problem to computing fluxes across the boundary of the
computational cell and the integration of a known function over the zero-level of the level-set function.
Specifically, the discretization of the Laplace operator over a computational cell Ci,j, covered by the irreg-
ular domain Ω, is treated as follows:

−∆u= f ⇐⇒ −
ˆ
Ci,j∩Ω

∆udC=

ˆ
Ci,j∩Ω

f dC

⇐⇒ −
ˆ
∂Ci,j∩Γ

∇u · ndC=

ˆ
Ci,j∩Ω

f dC.

The right-hand side of the last equality is approximated as fi,j ×Area(Ci,j ∩Ω), whereas the left-hand side
of the last equality can be approximated as:

− Li+ 1
2 ,j

ui+1,j − ui, j

∆x
− Li− 1

2 ,j

ui,j − ui−1,j

∆x

− Li,j+ 1
2

ui,j+1 − ui,j
∆x

− Li,j− 1
2

ui,j − ui,j−1

∆x
−
ˆ
Γ

(g−αu) dΓ,

where the Li± 1
2 ,j±

1
2
represent the length of the portion of the cell faces covered by the irregular domain

(see figure 8). Imposing Robin boundary conditions therefore boils down to approximating the integral
of (g−αu) over an interface represented by the level-set function.

The first finite volume formulation of Robin boundary conditions within the level-set framework was
introduced in [137], where the numerical integration of (g−αu) was based on the geometric approach
developed in [113, 138, 139]. This method is second-order accurate in the maximum norm. We are not
aware of alternative approaches for imposing Robin boundary conditions that achieve a comparable bal-
ance of simplicity and accuracy for interfaces that do not develop kinks. This methodology was sub-
sequently extended to support adaptive grids and moving interfaces in [61]. While this approach pro-
duces symmetric linear systems that are desirable for their fast inversion using standard linear algebra
numerical methods, the solution gradient is only first-order accurate. In turn, this limits free boundary
problems to first-order accuracy if they depend on the solution gradient; typical examples in materials
are those considered here. To solve that problem, [140] extended the work of [137] to produce second-
order accurate solutions, albeit non-symmetric linear systems, where one of the main ingredients is the
evaluation of the fluxes between cells that are discretized using the ideas of [141]. The methodology was
then extended in [142] to the case where the boundary is piece-wise continuous, i.e. applicable to the
case where the interface itself has kinks. The method retains second-order accuracy in the maximum
norm, including on adaptive grids and in the presence of kinked interfaces, and thus constitutes the
most advanced available approach.
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3. Application—solidification of multicomponent alloys in AM

3.1. Sharp interface model
Consider the solidification of an alloy system composed of N + 1 chemical species: a dominant solvent
element that forms the primary matrix of the alloy, and N additional solute elements present in lesser
concentrations. Such multicomponent alloy systems are representative of many technologically import-
ant materials, including high-entropy alloys and advanced superalloys, where the interactions between
multiple solute elements and the solvent play a critical role in determining microstructural evolution
during solidification. The thermodynamic and kinetic complexities introduced by the presence of mul-
tiple solutes (including solute partitioning, cross-diffusion effects, and non-linear phase equilibria) make
the modeling and control of solidification processes in these systems particularly challenging. Accurate
description of these phenomena is essential for predicting phase selection, morphology development, and
segregation patterns, which ultimately govern the mechanical and functional properties of the solidified
material.

We denote the evolving solid–liquid interface by Γ(t), and define the domains within the compu-
tational domain Ω that are occupied by the solid and liquid phases as Ωs and Ωl. We also define the
temperature, at time t and location x, as T= T(t,x) and the N different compositions as CJ = CJ (t,x),
J ∈ [1,N] in the solid and liquid regions as:

T(t,x) =

{
Tl (t,x) , x ∈ Ωl (t)
Ts (t,x) , x ∈ Ωs (t)

, and CJ (t,x) =

{
Cl
J (t,x) , x ∈ Ωl (t)

Cs
J (t,x) , x ∈ Ωs (t)

, J ∈ [1,N] .

In the absence of convective transport, the evolution of thermal and solutal fields is governed by
diffusion-dominated processes. The energy and species conservation laws reduce to classical diffusion
equations within each phase:

ρνcp
ν∂tT

ν −λν∇2Tν = 0, x ∈ Ων (t) , ν = s, l, (5)

∂tC
ν
J −Dν

J ∇2Cν
J = 0, x ∈ Ων (t) , ν = s, l, J ∈ [1,N] , (6)

where, ρν , cpν , and λν denote the mass density, specific heat capacity, and thermal conductivity, respect-
ively, within each phase ν ∈ s, l, corresponding to solid and liquid states. Similarly, Dν

J represents the dif-
fusivity of the Jth solute species in phase ν. The domains Ωs(t) and Ωl(t) evolve over time due to phase
transformation at the solid–liquid interface.

For the sake of clarity and tractability, we assume constant material properties within each phase, i.e.
ρν , cpν , λν , and Dν

J are considered independent of temperature and composition. Although more soph-
isticated models may account for their dependence on local thermodynamic conditions, this simplifica-
tion is often adequate for capturing the essential features of diffusion-driven solidification dynamics, and
the resulting equations provide the foundation for more advanced models incorporating interface kin-
etics, interfacial energy effects, and thermodynamic equilibrium conditions at the moving boundary. It
is also important to note that in the context of multicomponent alloy solidification, it is standard prac-
tice to solve the energy conservation equation in both the liquid and solid phases, as thermal diffusion
occurs at comparable timescales in both regions. In contrast, the governing diffusion equations for the
chemical species are generally restricted to the liquid phase, a modeling choice that is justified by the
fact that solute diffusion in the solid is several orders of magnitude slower than in the liquid and can,
to a good approximation, be neglected over the solidification timescale. Consequently, the solid is often
treated as a stationary phase with respect to solute transport, which simplifies the computational model
without compromising accuracy. This assumption is widely adopted in the literature and forms the basis
of many sharp-interface and phase-field models of alloy solidification.

In the modeling of multicomponent alloy solidification, the temperature and concentration fields
must satisfy a series of thermodynamic and interfacial conditions at the evolving solid–liquid interface.
A fundamental assumption in this framework is that the phase transformation occurs at local thermo-
dynamic equilibrium. Consequently, the temperature field is continuous across the solidification front,
leading to the condition:

[T] = 0, on Γ(t) , (7)

where the jump operator [·] represents the difference in a field variable across the interface (i.e.
[T] = Ts −Tl, with Ts and Tl denoting the temperatures on the solid and liquid sides, respectively).
Furthermore, the temperature at the interface must satisfy a generalized Gibbs–Thomson condition that

12



Modelling Simul. Mater. Sci. Eng. 34 (2026) 013001 F Gibou et al

Figure 9. Phase-diagram of Co–W–Al as predicted by the PANDAT™ database (dots) and polynomial approximations (solid
surface) used in this work. Figure reprinted from [70], Copyright (2023), with permission from Elsevier.

accounts for both interface kinetics and curvature effects:

Tl = Tliq (C1, . . . ,CN)+ ϵv (n)vn + ϵc (n)κ, on Γ(t) , (8)

where Tliq (C1, . . . ,CN) defines the local liquidus temperature as a function of the solute concentrations.
The normal velocity of the interface is denoted vn, and κ represents the mean curvature of the interface,
while ϵv(n) and ϵc(n) are the kinetic and capillary coefficients, respectively, which may depend on the
orientation of the interface normal n.

In classical solidification models, the liquidus temperature is often approximated as a linear function
of composition:

Tliq (C1, . . . ,CN) = Tm +m1C1 + . . .+mNCN,

where Tm is the melting temperature of the pure solvent, and mJ are referred to as the liquidus slopes
for the solutes C1, . . . ,CN. However, such linear approximations are insufficient for capturing the ther-
modynamic complexity of multicomponent alloys, where interactions between solutes can lead to highly
nonlinear behavior in the phase diagram. To address this, [70] adopted a more general approach by
allowing the liquidus temperature T liq to be an arbitrary, composition-dependent, function. Accordingly,
the liquidus slopes mJ = ∂Tliq/∂CJ are treated as functions of the local composition, enabling a more
accurate and physically realistic description of the solidification process. For the numerical simulations
reported in [70], the necessary thermodynamic data are obtained from the PANDAT™ database, which
provides reliable multicomponent phase equilibria for engineering alloys (see figure 9).

The thermal and chemical conditions at the solid–liquid interface play a critical role in determining
the morphology and composition of the resulting microstructure. The thermal balance at the moving
interface is governed by a Stefan-type condition, which enforces the conservation of energy by equating
the net heat flux across the interface to the latent heat released or absorbed during the phase transition:

[λ∂nT] = vnLf, x ∈ Γ(t) , (9)

where Lf denotes the latent heat of fusion per unit volume, λ is the thermal conductivity, ∂nT is the
temperature gradient normal to the interface, and vn is the normal velocity of the interface. This condi-
tion ensures that the local thermal field responds dynamically to the evolving interface and accommod-
ates the release or absorption of latent heat associated with phase change.

In addition to thermal equilibrium, chemical equilibrium must be maintained at the solidification
front. For multicomponent systems, this is typically captured through the concept of partition coeffi-
cients kJ, which describe the equilibrium distribution of each solute species between the solid and liquid
phases. These coefficients are defined as:

Cs
J = kJC

l
J, x ∈ Γ(t) , J ∈ [1,N] ,

where Cl
J and Cs

J are the concentrations of species J in the liquid and solid phases, respectively.
Importantly, for general multicomponent alloys where the phase diagram is nonlinear and the
liquidus/solidus surfaces are curved, the partition coefficients are not constant. Instead, they depend on
the local composition of the alloy at the interface:

kJ = kJ
(
Cl
1, . . . ,C

l
N

)
, J ∈ [1,N] .
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Figure 10. Overall accuracy of the computational method in the case of stable axisymmetric solidification. Figure reprinted from
[70], Copyright (2023), with permission from Elsevier.

Mass conservation of each species at the moving interface further imposes a set of interfacial bound-
ary conditions known as the solute-rejection equations. These conditions ensure that the solute flux in
the liquid and the rate of incorporation (or rejection) of solute into the solid phase are consistent:

Dl
J∂nlC

l
J − (1− kJ)vnC

l
J = 0, x ∈ Γ(t) , J ∈ [1,N] , (10)

where Dl
J denotes the diffusivity of species J in the liquid phase. These equations capture the complex

coupling between solute transport, interface motion, and phase equilibrium, and are essential for pre-
dicting microsegregation, solute trapping, and morphological stability during solidification of multicom-
ponent alloys. Once the normal velocity at the interface is defined, the level-set evolution equation is
solved as described in section 2. We refer the interested reader to [70] for the details of the numerical
implementation and to [143] for a coupling of simulation of a pure substance with fluid flows.

3.2. Level-set simulations
A detailed accuracy analysis of the temperature, concentration, interface velocity, and interface location
was conducted in [70] and is shown in figure 10 for a ternary Co–W–Al solidification case. Errors are
measured in the L∞-norm over the full simulation time, capturing the worst-case deviation from the
reference solution. The results indicate convergence rates approaching second order. This is particularly
important in multicomponent alloy solidification, where strong thermal and solutal gradients interact
with a moving interface. The verified accuracy supports the model’s reliability for predictive simulations
of complex solidification phenomena.

A practical simulation of directional solidification of a ternary Co–W–Al system is given in figure 11.
Denoting the computational domain Ω, with boundary ∂Ω, it is assumed that the total heat flux is spe-
cified and the boundary is impermeable to solutes:

λν∂nνT
ν = gTν , x ∈ Ων ∩ ∂Ω, ν = s, l,

Dl
J∂nlC

l
J = 0, x ∈ Ωl ∩ ∂Ω, J ∈ [1,N] ,

(11)

where gTν = gTν (t,x), ν = s, l, are prescribed heat fluxes for the liquid and solid phases. The simulation
investigates the influence of the thermal gradient G and the diffusion coefficient of aluminum (Al) on
dendritic growth during solidification. As expected, increasing the thermal gradient leads to finer dend-
ritic structures. The qualitative dependence of dendrite arm spacing on both G and the solidification rate
R is consistent with observations in binary alloy systems. However, the quantitative details, such as the
coefficients and exponents in the scaling laws, may differ due to additional complexities inherent in mul-
ticomponent systems. These include the presence of nontrivial phase diagrams, cross-diffusion effects
(e.g. Onsager coupling), and unequal solute diffusivities in the liquid phase. The level-set simulation
framework is particularly well-suited to capturing these effects, enabling systematic studies of how they
influence microstructural evolution.

14



Modelling Simul. Mater. Sci. Eng. 34 (2026) 013001 F Gibou et al

Figure 11. Solidification microstructures obtained for values of Al diffusivity from DAl = 10−5 cm2 s−1 to 8 · 10−5 cm2 s−1 and
GT from 100 K cm−1 to 5000 K cm−1 in case of L= 0.05 cm and V = 0.01 cm s−1. Displayed in color is the concentration field of
Al and W. Figure reprinted from [70], Copyright (2023), with permission from Elsevier.

4. Application—epitaxial growth and the IDM

4.1. The IDM
In [85, 86], Caflisch et al introduced the IDM as well as its numerical approximation using the level-
set method in [87, 144] and later analyzed the IDM and developed step edge boundary conditions for
well-posedness [145]. The core idea of the IDM is to represent the boundary of atomic-height islands
using a continuous level-set function ϕ(x, t), such that Islands of heights k are represented by the level
sets ϕ(x, t) = k− 1, and to consider a mean-field adatom density ρ= ρ(x, t). As such, the IDM achieves
atomistic fidelity in the growth direction, while employing a continuum description in the lateral direc-
tions. The method also accounts for nucleation events, and other atomistic processes influencing island
growth. The level-set function evolves according to the transport equation:

∂ϕ

∂t
+ vn|∇ϕ|= 0,

where vn is the interface normal velocity field, which is computed from the adatom fluxes across the
island boundary from the upper (k+1) and lower terraces (k):

vn = aD
(
n ·∇ρ(k+1) − n ·∇ρ(k)

)
,

where D is the adatom diffusion coefficient and a is the lattice constant.
The adatom concentration ρ(x, t) satisfies a reaction-diffusion equation with source and sink terms:

∂ρ

∂t
= F+D∇2ρ− dNnuc

dt
,

where F is the deposition flux and the last term models the nucleation rate of new dimers assuming a
probability proportional to ⟨ρ2⟩, i.e. the integral of ρ2, and written as:

dNnuc

dt
= 2Dσ1⟨ρ2⟩,
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where σ1 is the capture number for nucleation [146]. The factor of 2 accounts for the capture of 2
adatoms during nucleation and the fact that dimers are assumed to be stable. In [147, 148], it was estab-
lished that the capture numbers σs associated with islands of size s obey the scaling relation σs/σav =
L(s/sav), where L denotes a linear functional dependence. This representation provides a consistent
framework in which the reference value σ1 may be prescribed explicitly. This stochastic nucleation
mechanism has been validated using KMC simulations [149]. Anisotropic growth can be captured by
modifying vn. A key advantage of the IDM is its ability to take large time steps while accurately captur-
ing the essential physics of adatom diffusion and detachment. A notable application of this approach is
presented in [150], where an IDM was employed to study the narrowing and sharpening of the island-
size distribution as a function of strain in the submonolayer heteroepitaxial growth regime. In that work,
the model is coupled to an elastic formulation based on atomistic interactions, which is solved efficiently
at each simulation step.

The diffusion equation governing the adatom density ρ requires the specification of appropriate
boundary conditions at island boundaries to accurately describe the underlying atomistic processes.
These boundary conditions play a critical role in determining the predictive capabilities of the IDM,
as they directly influence mass transport at the evolving interface. In the case where the diffusion from
the upper and lower terraces are equal, the boundary condition is ρ= ρeq, where ρeq denotes the equi-
librium adatom density. However, for most epitaxial growth, the diffusion coefficients are not equal,
which promotes the growth of mounds with important practical applications in photonic-crystal lasers,
quantum dot lasers, single-photon emitters, solar cells, catalytic converters, lithography, and more.
This boundary condition encapsulates the influence of the Ehrlich–Schwoebel (ES) barrier [151, 152]
and serves as a key element in bridging atomistic-scale kinetics with continuum-scale morphological
evolution [153–155]:

∇ρ · n+ D ′

D−D ′ ρ=
D ′

D−D ′ ρeq, (12)

where ρ and its gradient ∇ρ are evaluated at the island boundary, D′ is an atomistic rate that charac-
terizes the energy barrier for adatom diffusion across the island edge and n is the outward normal to
the boundary. In the limit D ′ → D, the boundary condition (12) simplifies to the Dirichlet condition
ρ(x) = ρeq, as found in classical theories of step-flow growth [71, 156, 157]. The equilibrium adatom
density ρeq plays a central role in defining attachment kinetics at step edges. In [158], an expression
for ρeq is derived under the assumption of no Ehrlich–Schwoebel barrier, while in [137], the authors
develop and implement a formulation that incorporates the effects of a finite Ehrlich–Schwoebel barrier.
More generally, the value of ρeq depends on atomistic kinetic parameters, including the detachment rate
and the rate of edge diffusion, as discussed in [85].

4.2. Level-set simulation
As an illustrative example, we report the results of level-set simulations from [159]. In the case of irre-
versible aggregation, corresponding to the boundary condition ρ= 0 at island edges, the IDM yields
results that are in good agreement with KMC simulations, as shown in [87]. Figure 12 illustrates this
agreement by showing the evolution of the adatom density and island density as functions of surface
coverage for various values of the ratio D/F. Additionally, the cluster size distribution at a final coverage
of 20% is presented, further demonstrating the consistency between the IDM and atomistic simulation
results. Level-set simulations have been used to find the functional form of capture numbers used in
rate equations expressing the densities of islands of all sizes. The capture numbers quantify the efficiency
with which an island of a given size, in a specified environment, competes for available monomers. A
key advantage of the Island Density Model is its implicit incorporation of island-island correlations,
thereby accounting for the geometric arrangement of islands relative to their neighbors. Notably, the
capture numbers were found to exhibit a linear dependence on island size [147, 148, 160].

Figure 13 illustrates the influence of the step-edge barrier on surface morphology during epitaxial
growth. For a strong Ehrlich–Schwoebel barrier, corresponding to a small ratio D ′/D= 0.01, the simu-
lation exhibits the formation of well-defined mounds with a characteristic ‘wedding cake’ structure, fea-
turing approximately ten exposed terraces after the deposition of eleven monolayers. As D ′/D increases,
reflecting a reduction in the strength of the Ehrlich–Schwoebel barrier, the mounding becomes less pro-
nounced. In the case where D ′/D= 0.95, which is a very high ratio, the surface evolves toward a mor-
phology consistent with near layer-by-layer growth, indicating that the suppression of interlayer trans-
port asymmetry promotes smoother film evolution.
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Figure 12. The island density (left) and adatom density (center) and cluster size distribution (right) for different values of D/F in
the case of the boundary condition ρ= 0 (irreversible aggregation). Each simulation has a final coverage of 20%. The results of
the KMC simulations are from [87]. Figure reprinted from [159], Copyright (2018), with permission from Elsevier.

Figure 13. Effects of the Ehrlich–Schwoebel barrier and formation of mounds with D ′/D= 0.01 (left) corresponding to a strong
Ehrlich–Schwoebel barrier and D ′/D= 0.95 (right), corresponding to a scenario close to ρ(x) = ρeq. Both simulations are at the
same times. Figure reprinted from [159], Copyright (2018), with permission from Elsevier.

5. Conclusion and perspective

The level-set method has emerged as a unifying computational framework for modeling free bound-
ary problems across a wide spectrum of materials science applications. This review has synthesized its
role in two contrasting yet complementary contexts: the solidification of multicomponent alloys and the
mesoscale dynamics of epitaxial growth. In both application, the method’s ability to maintain a sharp
interface, naturally handle topological changes, and flexibly incorporate boundary conditions provides
significant advantages over alternative approaches.

For alloy solidification, particularly in the context of AM, the level-set formulation enables high-
fidelity simulations of solid–liquid interfaces, capturing complex thermodynamic interactions and multi-
species transport with high accuracy. It accommodates multicomponent systems and sharp-interface
physics that are beyond the reach of phase-field models, especially for more than three component
alloys. In the context of epitaxial growth, the IDM and its level-set implementation offers a continuum-
scale alternative to stochastic KMC simulations, dramatically reducing computational cost while pre-
serving physical accuracy. It efficiently models nucleation, coalescence, and step-edge kinetics, with the
flexibility to incorporate key phenomena such as the Ehrlich–Schwoebel barrier through Robin-type
boundary conditions. Taken together, these applications underscore the versatility and robustness of
level-set methods in materials science. Their seamless integration with finite volume and finite differ-
ence discretizations, AMR, and physically grounded boundary conditions makes them a powerful tool for
predictive modeling and design.

Further developments in multiscale coupling, uncertainty quantification, and high-performance
implementations will continue to expand the frontiers of level-set-based simulation in materials science.
An especially promising direction is the integration of machine learning (ML) with level-set frameworks
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in materials science for designing hybrid physics-based/data-driven simulations. ML can assist in learn-
ing surrogate models for expensive forward simulations, accelerating inverse design by providing data-
driven approximations of the shape-to-structure map. Recent advances in computational materials sci-
ence have explored this integration to enhance modeling capabilities, improve computational efficiency,
and enable data-driven materials design. One such effort is the Level-Set Learning framework, which
employs reversible neural networks to identify low-dimensional parameterizations of level sets in high-
dimensional spaces. This approach has proven especially effective for reducing uncertainties and avoiding
overfitting when working with limited data in inverse design and predictive modeling applications [161].
Another direction is the use of hybrid inference systems that couple ML with classical numerical tech-
niques to improve curvature estimation in level-set computations or the evolution of the level-set itself.
By using neural networks to refine gradient and curvature evaluations near interfaces, this approach
helps mitigate numerical errors such as mass loss and surface tension computations, thereby increasing
the accuracy of multiphase and interface-driven simulations [162–165].

ML techniques have also been integrated into the level-set framework to address Stefan prob-
lems [166], and have also been employed for operator learning in the context of inverse problems gov-
erned by diffusion-dominated dynamics [167] on fixed irregular domains. The physics-informed neural
network (PINN) approach of [166] to the solution of the Stefan problem showed success on the predic-
tion of planar interfaces, but it is not clear whether or not this approach will be accurate in the prac-
tical cases where dendritic structures develop. In addition, [168] pointed out that the erratic conver-
gence behavior often observed in PINNs may stem from their reliance on automatic differentiation. This
concern is further supported by [169], which highlights fundamental flaws in software-based automatic
differentiation, including its dependency on the network’s current approximation of the solution dur-
ing training. This dependency can lead to significant errors, particularly when the evolving solution is
far from the true one. To address this issue, [168] proposed incorporating a discretized formulation of
the governing PDE, thereby bypassing automatic differentiation. Their results demonstrated that con-
vergence improves systematically with the introduction of additional virtual grid points, yielding more
accurate and stable solutions. Other fundamental work on optimization of neural networks can be found
in [170, 171] and the references therein. These examples collectively highlight the emerging role of ML
as a powerful complement to level-set methods in addressing multiscale, nonlinear, and data-intensive
challenges in materials science.
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Appendix. ENO–WENO schemes

We provide details on the ENO/WENO schemes used in this work

A.1. ENO schemes
In the numerical solution of Hamilton–Jacobi equations and conservation laws, one of the key challenges
is to design reconstructions that remain accurate in smooth regions while avoiding spurious oscillations
near discontinuities. The ENO schemes address this challenge and are built upon two guiding principles:

1. The upwind direction must be correctly identified,
2. When extending the stencil to construct higher-order interpolants, the additional point should be

chosen from the region where the solution exhibits the greatest smoothness, thereby suppressing
oscillations near discontinuities.

18



Modelling Simul. Mater. Sci. Eng. 34 (2026) 013001 F Gibou et al

A convenient framework for constructing polynomial interpolants in the context of ENO recon-
structions is provided by Newton’s form together with divided difference tables. Consider, for example,
a stencil consisting of the grid points x0,x1,x2, and x3. The Newton representation of the interpolating
polynomial is given by:

ũ(x) = a0︸︷︷︸
ũ0(x)

+ a1 (x− x0)︸ ︷︷ ︸
ũ1(x)

+ a2 (x− x0)(x− x1)︸ ︷︷ ︸
ũ2(x)

+ a3 (x− x0)(x− x1)(x− x2)︸ ︷︷ ︸
ũ3(x)

,

where the coefficients ai ∈ R are found by imposing that:

ũ(x0) = u(x0) , ũ(x1) = u(x1) , ũ(x2) = u(x2) , ũ(x3) = u(x3) .

With this polynomial, the derivative at xi is expressed as:

dũ

dx
(xi) = ũ1 (xi)+ ũ2 (xi)+ ũ3 (xi) .

The divided-difference table provides a convenient framework for defining the coefficients ai iterat-
ively. Since ũ(x0) = u(x0), the first coefficient depends only on the initial data point7, which we denote
by

a0 = u [x0] .

Once a0 is known, the next coefficient a1 is determined from the condition ũ(x1) = u(x1), so that it
depends on u(x0) and u(x1); we write

a1 = u [x0,x1] .

Proceeding in the same way, we obtain

a2 = u [x0,x1,x2] , a3 = u [x0,x1,x2,x3] .

In general, the divided differences u[·] are defined recursively as

u [x0, . . . ,xi] =
u [x1, . . . ,xi]− u [x0, . . . ,xi−1]

xi − x0
.

The standard notations are Di u= u[x0, . . . ,xi]
The divided differences are particularly useful because their magnitudes provide a measure of the

local smoothness of the solution. Specifically, |D1u| reflects the strength of the first derivative, |D2u| that
of the second derivative, and so forth. Consequently, they offer valuable guidance in selecting the most
appropriate grid point to add to a stencil.

Third-order ENO (ENO3) reconstruction: In this work we employ the ENO3 scheme. Suppose that the
characteristic direction is determined by λ. The construction of the interpolant proceeds as follows:
Step 1. Upwind selection. The first-order interpolant ũ1(x) must account for the upwind direction:

ũ1 (x) =

D1
i− 1

2
, λ⩾ 0,

D1
i+ 1

2
, λ < 0.

Step 2. Second-order extension. To avoid including discontinuities, the stencil is extended by comparing
smoothness indicators. For instance, if λ< 0 the first step involves the points (xi,xi+1). The candid-
ates for extension are xi−1, associated with D2

i , and xi+2, associated with D2
i+1. The second-order term

is chosen as

ũ2 (x) =

{
D2

i , |D2
i |⩽ |D2

i+1|,
D2

i+1, otherwise.

7 Indeed, a0 = u(x0).
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Step 3. Third-order extension. The procedure is repeated at the third level. Suppose D2
i was selected at Step

2. The candidates are then xi−2 (associated with D3
i− 1

2
) and xi+2 (associated with D3

i+ 1
2
). The third-order

contribution is

ũ3 (x) =

D3
i− 1

2
, |D3

i− 1
2
|⩽ |D3

i+ 1
2
|,

D3
i+ 1

2
, otherwise.

Interpolant and derivative. In this example, assuming |D3
i− 1

2
|⩽ |D3

i+ 1
2
|, the reconstructed polynomial is

ũ(x) = D0
i +D1

i+ 1
2
(x− xi)+D2

i (x− xi)(x− xi+1)+D3
i− 1

2
(x− xi)(x− xi+1)(x− xi−1) .

From this expression, the derivative at xi follows directly:

ũx (x) = D1
i+ 1

2
+D2

i [2x− (xi + xi+1) ]+D3
i− 1

2

(
3x2 − 2x(xi + xi−1 + xi+1)+ (xi−1xi + xixi+1 + xi−1xi+1)

)
.

Notation: In the case λ> 0, the upwind stencil involves the points i and i− 1. We denote by D−
x u the

corresponding approximation of ux(xi). Conversely, when λ< 0, the upwind stencil involves the points i
and i+ 1, and we denote by D+

x u the approximation of ux(xi).

A.2. WENO schemes
As described in appendix A.1, the ENO scheme selects among three candidate stencils, first by enforcing
the correct upwind direction and then by avoiding stencils that cross discontinuities. In smooth regions,
a weighted convex combination of these stencils yields higher-order accuracy. This principle forms the
foundation of the WENO schemes.

We illustrate the construction for the approximation of D−
x u; the case of D

+
x u follows analogously.

The three possible ENO approximations of D−
x u are given by

u1x =
1
3d1 −

7
6d2 +

11
6 d3,

u2x =− 1
6d2 +

5
6d3 +

1
3d4,

u3x =
1
3d3 +

5
6d4 −

1
6d5,

where the finite differences are defined as

d1 =
ui−2 − ui−3

∆x
, d2 =

ui−1 − ui−2

∆x
, d3 =

ui − ui−1

∆x
, d4 =

ui+1 − ui
∆x

, d5 =
ui+2 − ui+1

∆x
.

The WENO approximation of D−
x u is constructed as a convex combination of the above stencils:

D−
x u = ω1u

1
x +ω2u

2
x +ω3u

3
x, (A.1)

where the nonlinear weights ωk are chosen such that the scheme achieves fifth-order accuracy in smooth
regions while retaining the ENO property near discontinuities. By construction, the weights satisfy
ω1 +ω2 +ω3 = 1. The optimal (linear) weights that give fifth-order accuracy in smooth regions are
{0.1, 0.6, 0.3}.

The nonlinear weights are obtained through the following procedure:

• Smoothness indicators. For each stencil, define

S1 =
13
12 (d1 − 2d2 + d3)

2
+ 1

4 (d1 − 4d2 + 3d3)
2
,

S2 =
13
12 (d2 − 2d3 + d4)

2
+ 1

4 (d2 − d4)
2
,

S3 =
13
12 (d3 − 2d4 + d5)

2
+ 1

4 (3d3 − 4d4 + d5)
2
.

• Nonlinear coefficients. Define

α1 =
0.1

(S1 + ϵ)
2 ,

α2 =
0.6

(S2 + ϵ)
2 ,

α3 =
0.3

(S3 + ϵ)
2 ,

with ϵ= 10−6max(d21,d
2
2,d

2
3,d

2
4,d

2
5)+ 10−99 to prevent division by zero.
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• Nonlinear weights. Finally, set

ω1 =
α1

α1 +α2 +α3
,

ω2 =
α2

α1 +α2 +α3
,

ω3 =
α3

α1 +α2 +α3
.

The construction of D+
x u follows in the same manner, but with the definitions of the finite differences

shifted as

d1 =
ui+3 − ui+2

∆x
, d2 =

ui+2 − ui+1

∆x
, d3 =

ui+1 − ui
∆x

, d4 =
ui − ui−1

∆x
, d5 =

ui−1 − ui−2

∆x
.

We refer the interested reader to [41, 43, 44] for additional details on ENO/WENO schemes.
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[162] Ángel Larios-Cárdenas L and Gibou F’eric 2023 Machine learning algorithms for three-dimensional mean-curvature computa-

tion in the level-set method J. Comput. Phys. 478 111995
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