distinguished lecture series presents

Geordie Williamson

University of Sydney

Research Area

Geometric representation theory


Tuesday, May 30, 2017 to Thursday, June 1, 2017


MS 6627

Algebraic representations: This will be an introduction to the theory of algebraic representations. I will discuss the representation theory of SL_2, and general reductive algebraic groups, recalling the fundamental Steinberg tensor product and restriction theorems. I will then turn to Lusztig’s character formula and its status.
Constructible sheaves: I will discuss the geometric Satake equivalence and Finkelberg-Mirkovic conjecture. This provides a conceptually satisfying setting in which to understand Lusztig’s conjecture. Understand Lusztig’s conjecture for a fixed prime leads to subtle questions concerning torsion in intersection cohomology. I will discuss what is known and what remains to be understood.
Higher representation theory: I will discuss the Hecke category in its constructible and diagrammatic incarnations, and state recent theorems and conjectures which suggest that the Hecke category completely controls algebraic representations (as a “module category” in the sense of higher representation theory). Finally, I will try to motivate a recent conjecture with Lusztig.
recordings & notes
Lecture 1
Lecture 2
Lecture 3
Share on facebook
Share on twitter
Share on linkedin
Share on email
Share on print
2300 Murphy Hall - Box 951438 - Los Angeles, CA 90095-1438 © 2018