distinguished lecture series presents

Jacob Lurie

Harvard University

Research Area

Algebraic Geometry, Topology, Homotopy Theory

Visit

Tuesday, October 16, 2018 to Thursday, October 18, 2018

Location

MS 6627

Let L be a positive definite lattice. There are only finitely many positive definite lattices L’ which are isomorphic to L modulo N for every N > 0: in fact, there is a formula for the number of such lattices, called the Smith-Minkowski-Siegel mass formula. In the first lecture, I’ll review the Siegel mass formula and explain a reformulation (due to Tamagawa and Weil) in terms of the volumes of certain adelic groups. This reformulation led Weil to conjecture a generalization of the mass formula, which applies to any (simply connected) semisimple algebraic group G over any global field K. In the second lecture, I’ll discuss the meaning of this conjecture in the case where K is a function field (that is, a finite extension of F_p(x), for some prime number p), and explain how it can be reformulated as a statement about the cohomology of certain moduli spaces. In the third lecture, I’ll discuss recent joint work with Dennis Gaitsgory, applying ideas from algebraic topology to compute the relevant cohomology groups and thereby obtain a proof of Weil’s conjecture in the function field case.
abstracts
The Siegel Mass Formula and Weil’s Conjecture
Weil’s Conjecture for Function Fields
Weil’s Conjecture via Factorization Homology
recordings & notes
Lecture 1
Lecture 2
Lecture 3
Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on email
Email
Share on print
Print
2300 Murphy Hall - Box 951438 - Los Angeles, CA 90095-1438 © 2018